
Adaptive Control of the Number of Crossed Genes
in Many-Objective Evolutionary Optimization

Hiroyuki Sato1, Carlos A. Coello Coello2,
Hernán E. Aguirre3 and Kiyoshi Tanaka3

1 Faculty of Informatics and Engineering, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 JAPAN

2 Departamento de Computación, CINVESTAV-IPN
Av. IPN No. 2508, México, D.F. 07360, México
3 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN

Abstract. To realize effective genetic operation in evolutionary many-
objective optimization, crossover controlling the number of crossed genes
(CCG) has been proposed. CCG controls the number of crossed genes by
using an user-defined parameter α. CCG with small α significantly im-
proves the search performance of multi-objective evolutionary algorithm
in many-objective optimization by keeping small the number of crossed
genes. However, to achieve high search performance by using CCG, we
have to find out an appropriate parameter α by conducting many ex-
periments. To improve the usability of CCG, in this work we propose
an adaptive CCG which dynamically controls the parameter α during
the solutions search in a single run of the algorithm. Simulation results
show that the values of α controlled by the proposed method converges
to an appropriate value even when the adaptation is started from any
initial values. Also we show the adaptive CCG achieves more than 80%
with a single run of the algorithm for the maximum search performance
obtained by the static CCG using an optimal α∗.

1 Introduction

The research interest of the multi-objective evolutionary algorithm (MOEA) [1]
community has rapidly shifted to develop effective algorithms for many-objective
optimization problems (MaOPs) because more objective functions should be
considered and optimized in recent complex applications. However, in general,
MOEAs noticeably deteriorate their search performance as we increase the num-
ber of objectives [2], especially Pareto dominance-based MOEAs such as NSGA-
II and SPEA2. One reason for this is that these MOEAs face difficulty to rank
solutions in the population, i.e., most of the solutions become non-dominated
and the same rank is assigned to them, which seriously spoils proper selection
pressure required in the evolution process. To overcome this problem in selection,
several methods to improve selection pressure have been proposed [2]. Contrary
to these studies focusing on selection, to realize effective genetic operation in

2

AB n bits
A’B’nt ⋅α

p1 p2 p1 p2Parents Offsprings
bitsl

Fig. 1. Controlling crossed genes for two-
point crossover (CCGTX)

AB n bits
A’B’0 1 0 0 0 1 0 0Mask Parents Offsprings tαset 1 with probability

Fig. 2. Controlling crossed genes for uni-
form crossover (CCGUX)

MaOPs, the variable space of many-objective 0/1 knapsack problem has been
analyzed [3]．[3] shows that variables of true Pareto optimal solutions (POS)
become noticeably diverse, and true POS becomes distributed almost uniformly
in variable space by increasing the number of objectives. Also, [3] shows that off-
spring created by conventional two-point and uniform crossovers has less chance
to be selected as parents because the operators becomes too disruptive and its
effectiveness decreases in MaOPs. To overcome this problem and enhance the
evolution by crossover operator in MaOPs, controlling the number of crossed
genes (CCG) has been proposed [3]. CCGTX, an extension of two-point crossover,
controls the maximum length of crossed genes by using an user-defined param-
eter αt. Also, CCGUX, an extension of uniform crossover, controls the number
of crossed genes by using a parameter αu. In MaOPs, CCG using a small α
remarkably improves the search performance of several MOEAs [3]. However, to
achieve high search performance by using CCG, we have to find out an appro-
priate parameter α by conducting many experiments.

To improve the usability of CCG, in this work we propose an adaptive CCG
which dynamically controls the parameter α during the solutions search in a
single run of the algorithm. In this work, we analyze the adaptation process of α
and verify the effectiveness of adaptive CCGTX and CCGUX on many-objective
0/1 knapsack problems with m = {4, 6, 8, 10} objectives.

2 Controlling the Number of Crossed Genes

2.1 CCG for Two-point Crossover (CCGTX)

CCGTX controls the length of crossed genes by using a parameter αt. Fig.1
shows the conceptual diagram of CCGTX. First we select parents A and B from
the parent population P, and randomly choose the 1st crossover point p1. Then,
we randomly determine the length of the crossed genes ℓ in the range [0, αt · n].
The 2nd crossover point is set to p2 = (p1 + ℓ) mod n. The possible range
of the parameter αt is [0.0, 1.0]. αt = 1.0 indicates the conventional two-point
crossover, and the length of crossed genes becomes short by decreasing αt.

2.2 CCG for Uniform Crossover (CCGUX)

CCGUX controls the probability of 1 in the mask bits by using a parameter αu.
According to the generated mask bits, we perform uniform crossover as shown in

3

Fig. 3. Conceptual figure of the proposed adaptive CCG

Fig.2. The possible range of αu is [0, 0.5]. αu = 0.5 indicates the typical uniform
crossover, and the number of crossed genes becomes small by decreasing αu.

3 Adaptive Control of the Number of Crossed Genes

CCG using a small α remarkably improves the search performance of several
MOEAs in MaOPs [3]. However, to achieve high search performance by the
conventional CCG using a static parameter α for the entire solutions search
[3], we have to find out an appropriate α by conducting many experiments.
To improve the usability of CCG while achieving high search performance in a
single run of the algorithm, in this work we propose an adaptive CCG which
dynamically controls α so that the parameter is automatically guided to an
appropriate value during the solutions search in a single run of the algorithm.

Fig.3 shows the conceptual figure of the proposed adaptive CCG. Since this
method is designed based on a framework used in NSGA-II and S-CDAS [3],
entire population R consists of parent (elite) population P and offspring popu-
lation Q. In the process of adaptive CCG, we use two vectors. The first one is
αs = {αs

1, α
s
2, · · · , αs

|Q|}, in which effective values of α are kept to create superior

offspring. The other one is α = {α1, α2, · · · , α|Q|}, which is used to generate
offspring for the next generation. Also, for all solutions in the offsprings popula-
tion Q, we individually put a tag showing α used to create each solution. Before
we start the solutions search, we initialize αs

j (j = 1, 2, · · · , |Q|) by initial αi.
Also, we initialize the counter that measures the number of survived offspring
c by 0. For each generation, we update the elements in αs. After selection of
new parents population P, we pick up one survived offspring from P. Then, we
increment c and replace the element αs

1+c mod |Q| with the value of α tagged on
the current offspring. We repeat this process for all survived offspring in P. Next,
we determine the value of αj (j = 1, 2, · · · , |Q|) in α by applying polynomial
mutation [4] to all the elements in αs. Finally, we create offspring by performing
CCG using the updated elements in α to fill up new offsprings population Q.

4

Generations

α

Static CCGTX using the best α*t=0.03
Adaptive CCGTX (αi=0.0)
Adaptive CCGTX (αi=0.5)
Adaptive CCGTX (αi=1.0)

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

(a) The adaptive CCGTX

Generations

α

Static CCGUX using the best α*t=0.01
Adaptive CCGUX (αi=0.00)
Adaptive CCGUX (αi=0.25)
Adaptive CCGUX (αi=0.50)

0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

(b) The adaptive CCGUX

Fig. 4. Transition of α over generation (n = 500 and m = 8 objectives)

4 Experimental Results and Discussion

4.1 Problems, Parameters and Metrics

In this work we use many-objective 0/1 knapsack problems [5] withm = {4, 6, 8, 10}
objectives, n = 500 items, and feasibility ratio ϕ = 0.5. We verify the effects of
CCG when it is combined with S-CDAS for parents selection similar to [3]. We
adopt crossovers with a crossover rate pc = 1.0, and apply bit-flipping muta-
tion with a mutation rate pm = 1/n. In the following experiments, we show the
average performance with 30 runs, each of which spent T = 2, 000 generations.
Population size is set to N = 200 (|P| = 100 and |Q| = 100). Also, we employ
polynomial mutation [4] with ηm = 40 to obtain α from αs.

To evaluate the search performance of MOEAs, we use Hypervolume (HV)
[6], which measures the m-dimensional volume of the region enclosed by the
obtained non-dominated solutions and a dominated reference point in objective
space. Here, we use r = (0, 0, · · · , 0) as the reference point. Obtained POS
showing a higher value of hypervolume can be considered as a better set of
non-dominated solutions from both convergence and diversity viewpoints.

4.2 Transition of α in the proposed adaptive CCG

First, we observe the adaptation process of α by the adaptive CCG. Fig.4 shows

the transition of average α =
∑|Q|

j=1 αj/|Q| over generations. For the adaptive
CCGTX, we plot three different results by using initial αi = {0.0, 0.5, 1.0}. For
the adaptive CCGUX, we use αi = {0.0, 0.25, 0.5}. Also, we plot α∗

t = 0.03 and
α∗
u = 0.01 maximizing HV by the static CCGTX and CCGUX as horizontal lines.
From the result for adaptive CCGTX shown in Fig.4 (a), we can see that

α converges to a specific value even when we start adaptation from any initial
αi. Also, the converged value of α is close to α∗

t = 0.03. Convergence of α by
the adaptive CCGTX using αi = 0.0 is fastest among three different adaptive
CCGTX. Also, from the result for adaptive CCGUX shown in Fig.4 (b), we
can see the similar tendency of the adaptive CCGTX. From these results, the
adaptation of α by the proposed adaptive CCG is thought to be working well.

5

m (Number of objectives)

H
yp
er
vo
lu
m
e

Conventional two-point crossover
Static CCGTX using αt

* = 0.03

 Adaptive CCGTX
 αi=0.0
 αi=0.5
 αi=1.0

4 6 8 10

1

1.1

1.2

1.3

(a) Adaptive CCGTX

m (Number of objectives)

H
yp
er
vo
lu
m
e

Typical uniform crossover
Static CCGUX using αu

* = 0.01

 Adaptive CCGUX
 αi=0.00
 αi=0.25
 αi=0.50

4 6 8 10

1

1.1

1.2

1.3

(b) Adaptive CCGUX

Fig. 5. HV obtained by the adaptive and static CCG (n = 500 bits)

4.3 Performance of the proposed adaptive CCGTX and CCGUX

Next, we verify the search performance of the adaptive CCG. Fig.5 (a) shows
results of HV obtained by the conventional two-point crossover, the adaptive
CCGTX with αi = {0.0, 0.5, 1.0} and the static CCGTX with the optimal α∗

t =
0.03 maximizing HV in [3]. All results are normalized by the results of the
conventional two-point crossover. Here, in the case of the static CCGTX with
α∗
t , we only show the best result among many experiments varying αt step by

step in the possible range of αt ∈ [0, 1]. On the other hand, in the cases of
the conventional two-point crossover and the proposed adaptive CCGTX, we
show results obtained by a single run of the algorithm. As De Jong mentioned
in [7], note that performance comparison between EA with static parameter
setting and EA with adaptive setting is unfair since it is likely that the static
setting is established via preliminary parameter tuning by many experiments
conducted in advance, which is not included in the comparison. Therefore, note
that comparing the adaptive CCGTX with the static CCGTX using α∗

t is not fair
comparison. In these graphs, we show the achievement of the search performance
by the adaptive CCGTX between the basic performance by conventional two-
point crossover and the maximum performance by the static CCGTX using α∗

t .

From the results of Fig.5 (a), we can see that the adaptive CCGTX using
any αi achieves higher HV than the conventional two-point crossover. Also, the
adaptive CCGTX using smaller initial adaptation range αi shows higher HV ,
and the adaptive CCGTX with αi = 0.0 achieves the highest HV among the
adaptive CCGTX using three different initial αi. This is because the adaptive
CCGTX with αi = 0.0 realizes the fastest convergence of α to the optimal value
as shown in Fig.4 (a). Next, by comparing results of the adaptive CCGTX with
the static CCGTX using α∗, we can see that the adaptive CCGTX using αi = 0.0
achieves {82.1, 83.7, 82.1, 82.1}% of HV for the maximum HV obtained by the
static CCGTX with α∗

t for m = {4, 6, 8, 10} objectives, respectively.

Next, Fig.5 (b) shows results ofHV obtained by the typical uniform crossover,
the adaptive CCGUX with αi = {0.0, 0.25, 0.5} and the static CCGUX with the

6

optimal α∗
u = 0.01 maximizing HV . All results are normalized by the results

of the typical uniform crossover. From the results of Fig.5 (b), we can see the
similar tendency obtained by the adaptive CCGTX. The adaptive CCGUX with
αi = 0.0 achieves {86.6, 80.3, 83.0, 84.3}% of HV for the maximum HV obtained
by the static CCGUX with α∗

t for each m = {4, 6, 8, 10} objectives problem.

5 Conclusions

To improve the usability of CCG and find out an appropriate parameter α in
a single run of the algorithm, we have proposed the adaptive CCG which dy-
namically controls the parameter α during the solutions search. Also, we have
analyzed the adaptation process of α, and have verified the effectiveness of the
adaptive CCG in the search performance on many-objective 0/1 knapsack prob-
lems with m = {4, 6, 8, 10} objectives. Simulation results showed that average α
controlled by the adaptive CCG converges to an appropriate value even when
the adaptation is started from any initial values. Also, we showed that the con-
verged value of α is close to α∗ maximizing HV by the static CCG. Through
performance verification, we showed the adaptive CCGTX and CCGUX achieve
higher HV than the conventional two-point crossover and the typical uniform
crossover. Also, we showed that the adaptive CCG using small initial αi achieves
more than 80% with a single run of the algorithm for the maximumHV obtained
by the static CCG with α∗ found through many experiments.

As future works, we want to further improve the search performance of the
proposed algorithm by refining the adaptation mechanism. Also, we are plan-
ning to study on the effective crossover operators for many-objective continuous
optimization problems.

References

1. C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary 　 Algo-
rithms for Solving Multi-Objective Problems, Boston, Kluwer Academic Publishers,
2002.

2. H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective opti-
mization: A short review”, Proc. of 2008 IEEE Congress on Evolutionary Compu-
tation (CEC2008), pp. 2424-2431, 2008.

3. H. Sato, H. Aguirre and K. Tanaka, “Improved S-CDAS using Crossover Controlling
the Number of Crossed Genes for Many-objective Optimization”, Proc. GECCO
2011, pp.753-760, 2011.

4. K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineer-
ing design”, Computer Science and Informatics, 26(4), 30-45, 1996.

5. E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms
– a comparative case study”, Proc. 5th Intl. Conf. on Parallel Problem Solving from
Nature (PPSN-V), LNCS Vol.1498, pp.292-304, 1998.

6. E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999.

7. K. De Jong, “Parameter Setting in EAs: a 30 Year Perspective”, in Parameter
Setting in Evolutionary Algorithms, Springer, pp.1–18, 2007.

