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Abstract— In many applications it can be advantageous for designing an ‘optimal’ trajectory from Earth to the
the decision maker to have multiple options available for a comet 67P/Churyumov-Gerasimenko (see [10], [12], and
possible realization of the project. One way to increase the 5154 Section V.C of this paper). One crucial parameter is the
number of interesting choices is in certain cases to conside | h dateT. which is in the ti indow 1460, 1825
in addition to the optimal solution z* also nearly optimal or aunch datélo W Ich 1S _'n e time window( ’ ]
approximate solutions which differ in the design space from MJD2000 (Modified Julian Date 2000). The best known
x* by a certain value. In this paper we address the efficient solution is a trajectory?; with T(P;) = 1546 [MJD2000]
computation and discretization of the setE of e-approximate  (value rounded) and objective valygP;) ~ 1.34 [km/s]

solutions for scalar optimization problems. For this we wil —neagyred is the total variation in velocity that the engine
suggest two strategies to archive and update the data coming have to deliver to reach the destination). If the DM is
from the generation process of the search procedure, and Wil '

use Differential Evolution coupled with the new archivers br ~ Willing to accept a deterioration of = 0.5 [km/s], then
the computation of E. Finally, we will demonstrate the behavior he/she is given (among others) another two possible local

of the archiver empirically on some academic functions as we  optimal trajectoriesP, (with To(P2) = 1619 [MJID2000]
as on two models related to space mission design. and f(P;) = 1.76 [km/s]) and P; (with Tp(z3) = 1748
[MJID2000] andf(z3) = 1.76 [km/s]). Hence, in that case
the DM is offered two more choices for the launch of the
One common way to solve a real world engineeringpacecraft (2.5 respectively 6.5 months affg(P; )).

problem is by transforming it into an optimization problem
and to seek for the (at least One) Optlmal solution. From a Here we address the probiem of Computing approximate
practical point of view, however, it can in some cases makg|utions of scalar optimization problems. Since the set
sense to include in addition to the Optlma| solutions aIS@ of thesee_approximate solutions typica”y forms am
nearly optimal ones since by this the decision maker (DMjimensional set, where is the dimension of the parameter
can be offered a larger variety of possibilities: two s@o8  space, a suitable discretization is mandatory in order to be
which are ‘near’ in objective space (i.e., have similagpplicable to real world problems. In this work, we focus on
objective values) may differ significantly in parametekhe approximation of the local minima withifi and discuss
space. The storage of both solutions may give the DM gossible discretization strategies in case the objective i
second option for the realization of his/her project. ‘flat’ around a local minimum inE (as this is for instance
As one example we consider the objective shown in Figufigie case for the ‘funnels’ in models related to space mission
1. In case the DM is W|”|ng to accept a deteriorationéof design)' For thisy we will propose and investigate one
f contains next to the global minimizer, also the local archiving strategy which we will combine with Differential
minimizer xz; which is such an é-approximate solution” Eyolution (DE) in order to obtain an efficient algorithm for
(i.e., the function values of (z1) and f(z) differ by less the approximation of.
thane). As well, all other points infa,b] U [c,d] are also The current work can be considered as an ‘extension’
approximate solutions, however, they are all ‘dominatechf previous studies on the computation of approximate
within their connected components by the solutiefsand  solutions for multi-objective optimization problems (M&P
2 and are possibly too near to them in order to give the DMee [5), [7],9]. The crucial difference when considering
a significant new alternative to eithef or z,. Hence, an scalar optimization problems (i.e., one objective) is that
‘optimal’ outcome of the optimization process (dependingy that case a discretization in parameter space can be
on the problem) could be to present the possible choicggrformed. As we will see later on, a discretization of the
z1 andzz — and no other solution in order not to confuseset of interest is mandatory, and in case multiple objestive
the DM and for sake of an efficient computation (since n@re under consideration, a discretization in parameterespa
superfluous options have to be stored and updated). leads either to a tremendous number of archive entries when
As another example we consider the problem ofhoosing small or even moderate values for the discretizati

, _ 3 parameter, or leads to grave loss of information in case
C,L(‘,‘;Sf';;‘vﬁ';rﬁf aAl\J,Th(iE,sNarﬁo\_Mtgg,é%? %i‘ﬁa'tg‘g“ne”g’eddf, %(;ng;gtﬁgoythis parameter is large. The latter is due to the fact that
Meéxico, D.F. 07360, MEXICO (email: alara@computaciorcireestav.mx, the Pareto set typically forms & ¢ 1)-dimensional object,
{ccoello, schuetZeg@cs.cinvestav.mx). The second author is also_ V\_/ith th%herek is the number of objectives in the MOP, and hence,
UMK-LAEMIASLTS CNRS at CINVESTAV-PN. The fourth author mith " oo 2o ' aroind o bromising point (optimal or nearl
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f Algorithm 1 Generic Stochastic Search Algorithm
. Py C @ drawn at random
: Ag = ArchiveUpdate(Py, ()
. for 7=0,1,2,...do
P11 = Generate(Pj)
Aji1 = ArchiveUpdate(Pjq1, Aj)
end for

=

o9 R wN

ef

ax:b cxid x candidate set (or population) of the generation process at

iteration stepj, and A; the corresponding archive.
Fig. 1. Example of an objective function with two minima and z Finally, we define some distances between points as well
which are similar in objective space but differ in paramespace. as between different sets which we will need to evaluate the

approximation quality of our solutions.

optimal region. This changes, however, if only one objectiv Definition 2.1: Letu,v € R™ andA, B C R". The semi-
is under consideration since in that case the (local or gobdlistance dist, ) and the Hausdorff distancedy (-,-) are
optima are typically isolated (as in Figure 1), and hence, @€fined as follows:

discretization can in principle be performed in parametefd) distu,A) := 325‘”“—“”

space without essential loss of information.

Approximate solutions in space mission design problem§) distB, A) := sup dist(u, A)

have already been considered in [11], where a hybrid ueh

multiagent approach has been chosen for their detectiof¢) du (A, B) := max {dist(4, B),dist{(B, )}

Finally, our approach is similar in spirit to multi-modal

optimization, where the aim is to detect all local minima . THE SET OF INTEREST

within a given region (e.g., 2], [14]). In the following we define the set of interest/q ., and

The remainder of this paper is organized as follows(?IISCUSS some of its topological properties.

in Section .”’ we give the required b_ackground for the Definition 3.1: Let ¢ > 0, then the set ofe-efficient
understanding of the sequel. In Section IIl, we presenstolutionsM of (1) is defined b

and investigate the set of interest, and propose in Section Qe y
IV methods for their efficient computation. In Section V, Moe={zecQ : flz)—e< fly)VyeQ}. (4)
we present some numerical results, and finally draw so

e L . .
. ) . e say that a point is ane-approximate solution of a set
conclusions in Section VI. y P c-app

Aif f(x) —e< f(a) forall a € A.
Il. BACKGROUND )
Example 3.2: (a) Letf: R"™ — R be given by
In the following we consider single-objective optimizatio

problems (SOPs) of the form flz) = sz’ (5)
min f(z), Q) =t )
T€Q then the sets\/p and Mg . for ane > 0 are given by
where f : @ C R™ — R. For theoretical purposes we will LI
have to assume that the domajhis compact, the reader Mg ={0}, Mg.={zecR": Y x}<e}, (6)
=1

may think of ann-dimensional box
i.e., Mg, is the closed ball with centdy and radius
Q={zeR":aq;<x;<b,i=1,...,n}, (2) 2.
h (b) The set of approximate solutions for the
introductory example (see Figure 1) is given by
Mg, =la,b]U]c,d], i.e., the set is disconnected.

where a; and b; are the lower and upper bounds of eac
parameter:;. The solution set of (1) is given by

Mg :={zeQ : f(z) < fly)Vy € Q}. ®) o _ .
_ _ ~ The following little discussion shows thatl, . is typically
Note that)/g does not have to consist of one single solution,-dimensional (whereas\l,, is typically O-dimensional):

however, except for plateau functions the solution set béll . ° S
a finite set of points (i.e., &-dimensional set). let 2* € Mg n Q, where Q denotes the interior ofy,

Algorithm 1 gives a framework of a generic stochasticandf continuous. Then there exists by continuity ffa

optimization algorithm, which will be considered in this ko heighborhoodV of = inside @ such that
[1]. Here,@ C R™ denotes the domain of the MOP; the fl@)—e< f(z*) Vx €N, @)



and hence, the-dimensional setV is contained inMq . Algorithm 2 A := ArchiveUpdateMq,c (Ao, P, €)
Thus, suitable discretization strategies are requiredtier Require: archive Ay, candidate se” C (@, tolerancec €
efficient use of approximate solutions. R+
Ensure: updated archived

Another important aspect is the connectedness of tha: A := A,
set of interest. It can be shown (analog to [6]) that in2: for all p € P do
case the objectivef is convex, thenMq . is connected 3: if Ao A: f(a)+ €< f(p) then
(and can possibly be computed most efficiently by local 4: A:=AU{p}
search procedures), but this does not hold in general, as the end if
above example shows. Hence, global strategies are typicalls: for all a« € A do

required for the approximation d¥/g .. 7: if f(p)+e< f(a) then
Finally, it is important to note that the approach can bes: A:= A\{a}
used to detect multiple solutions i/ since every optimal o end if

solution is also ane-approximate solution. To be more 10: end for
precise, the set of optima/, is contrained inMqg . for 11 end for
everye > 0. Furthermore, it is

Mg = () Mg, 8)
e>0

incoming data farther by considering a suitable discrétina

) . o ] strategy. For this, we proposerchiveUpdateMg D, (See
Classical elitist approaches have strong limitations irecte Algorithm 3) which is similar to the first archiver but
ing multiple solutions since there is typically only onesle  yerforms a selection of the promising data. The underlying
(scalar) value out of a finite set of candidates (which chang€ g of ArchiveUpdateMq. D, is to keep (locally) best
however, in case the model contains multiple objectives), -4 solutions y

: AN . Jo within a certain range (usiege R, in
Regarding this, it is important to note_that a d'scr?“m’ft'oobjective space and a vectdr € R” in parameter space)
of Mg, . cannot be performed by looking at the objective

: ng e E and to discard inferior points in the neighborhood of these
values (as e.g. done in [6] for the multi-objective case).  ynes in order to obtain a suitable discretization (compare t

IV. AN ALGORITHM FOR THEAPPROXIMATION OF M,  the motivating example in Section I).

In this section we present one possibility to compute apl\_/lore precisely, given an archivé, and a candidate solution

proximations ofM, .. Following the notation of Algorithm p, the new archiverl is constructed as followst is rejected

1, we will consider separately the archiver and the generaté%?ljdtigingfeﬁ |s£iseet ?{40; ieltze}z(? I)S rxg;‘;&a‘?grt?:grgzg
which form the evolutionary strategy. 0 & JTb) T € P o

found solution), or if there exists an element AoNBX (p),

A. Two Archiving Strategies where the neighborhooBX (p) is defined as

In the following we discuss two possible archiving strate-
gies aiming for the representation df/y ., one which ©(p) = fz € R™ : |z —pi| < Ar =1 10
captures alk-approximate solutions out of the obtained data, ~ (p) :={x Hlzi =il v i=1onk (10)
and one which uses a certain discretization strategy. which is at least as good as (line 6 of Algorithm 4).

The first archiver we consider herdychiveUpdateMq., If p is not discarded, this means that (i) this point is an
is shown in Algorithm 2. The algorithm captures all efficient-approximate solution ofi, and (ii) that it is the best point
solutions out of the obtained data (i.e., the candidate seisits neighborhood (the latter defined Hy e R"). Hence,
P;). To be more precise, let; be the set of all considered the new archived consists ofy as well as all other points of
points up to iteration step i.e.,C; := | J._, P, then for the A, which aree-approximate solutions of, and which are
archive A; after thel-th step of the search it holds: not in the A-neighborhood ofy (lines 10-14 of Algorithm
3).
o _ ) Note that ArchiveUpdateMq D, in Algorithm 3 is

Av=Mee={z€C : flz)—e< fly)Vye G} (O) (- i for the consider%tion of oneg candidate point
However, due to the dimension 8f, . the strategy is apart p, however, an extension to entire sef3 C @ is
from the theoretical point of view only interesting e.g.hiet straightforward. Further, for the sake of a better readsbil
cost of a function evaluation is relatively high, i.e., iflpn we have explicitly stated the best found solution This is
a moderate amount of function calls can be spent within ia fact not required since the best found solution is always
given time budget. In that case it makes sense to stfire included in the archive due to the construction of Algorithm
interesting information (and not too lose single promising.
candidates due to discretization) adachiveUpdateMg . Results of the sequence of archives when using
can be chosen without significant computational loss. ArchiveUpdateMq D, are not as straightforward as

More interesting—and mandatory for the efficient apfor the first archiverArchiveUpdateMg .. Given 4; and
plication to real world problems—is certainly to filter theC; as above, and denote hy,; the best found solution in



stepl, then it holds consider the departure tinig of a trajectory design problem.

If two trajectories are given where the departure time does
not differ significantly (say, less than one week), the tveo tr
however, further approximation qualities for finite caratiel J€ctories can not be regarded as different (at least acuprdi
solutions{ps, ..., ps}, s € N, cannot be given since the final 1© Z0), and the choice would always be in favor of the best
archive4, depends on the order the candidate solutigrase of both trajectories (i.e., the inferior trajectory does have

considered. To elucidate the behavior of the distribution d© P stored). In this manner the required number of archive
the sequence of archives withil, . convergence analysis entries depends on the behavior foind the preferences of

is required which we leave for future work. Instead, we wilthe DM.
present some numerical results in order to demonstrate the

usefulness of the novel strategy, which we will do in the next” A Possible Generator
section. For the approximation of\/, . we have chosen to use

Differential Evolution (DE, see [4]) as the basis for our
Algorithm 3 {A, zp} strategy since this state of the art heuristic has shown its
ArchiveUpdateMg D, (Ao, b0, p, €, A) efficiency on a variety of scalar optimization problems,
Require: archive A, best found solutionz; o, candidate including problems related to space mission design (e.g.,
solution p € Q, tolerancee € R., discretization [3]). In order to obtain a search procedure aiming for an

xb,l 6 MC“ Al 6 Mcl,év (11)

parameteA € R” approximation ofMg, . instead of ‘just’ the best solution we
Ensure: updated archivet, best found solution; utilize—using the notation of Algorithm 1—DE as generator
1 if f(p) < flxpo) then coupled with the new archivers. That is, during the run of DE,
2 api=p we take the members of the population after each generation
3: else and insert them into the archiver (see Algorithm 4).
4: Tp = Tp,0
5. end if Algorithm 4 DE + ArchiveUpdate Mg D,
6: if f(zp) +€ < f(p) or 3a € Ay : p € BX(a;) and 1. procedure DE
f(a) < f(p)) then 22 Ay = ArchiveUpdate(Py, D).
7: A=A, > discardp 3: Generate a random initial populatidfy.
8 return 4 for j =0,1,2,...do
9: end if 5: Apply the DE operators t@; in order to get
10: A:={p} 6: a new population?; ;.
11: for all a € Ay do 7 for everyp € P;y; do
12: if f(a) < f(zp) + € anda & BX(p) then 8: A; = ArchiveUpdate(p, A;).
13: A:=AU{a} o: end for
14:  end if 10: Ajp1 = A;j.
15: end for 11:  end for

12: end procedure

Crucial for the successful application of the latter arehiv
is certainly the proper choice ak. By construction of the

archiver it holds for every archive entrye A, V. NUMERICAL RESULTS
In the following we present some numerical results on two
AN BX (a) = {a}, (12)  academic problems as well as on two space mission design

problems in order to demonstrate the benefit of both the new

and hence, the choice ak has a direct influence on the . N
distribution of the archive entries (see e.g. the numericg\\]mhlver and the new strategy for the approximation ...

results in Section V.B). In general, smaller values lead tg_ Example A
a better approximation quality (measured in the Hausdorff _ ) _ _ )
sense), however, too small values should be avoided in order! N€ first academic function we considerfis @ C R —
to prevent huge archive sizes. Larger entrie\dead to the &+ Where

focus (and in the ideal case also to a complete reduction)

of the local minima withindg ., however, the possibility —sin(zy) sin(zz) if (z1,22) €[0,10]?
increases that several minima are located within dae f(z) =

neighborhood. —sin(zq) sin(z2) + 1 otherwise.

In case the objectivé is derived from a real world problem, (13)

a rule of thumb could be to choose the entriesfofsuch and domain@ = [0,200]2. The objective is constructed

that two solutionsz; andz, within the same seBX°(z) do  such that the minima are located witHin 10]2, i.e., Mg =
not represent different options for the DM. As an examplefx7, =3, z%, 2}, zf }, where



dH (Afinal, MQ) = InaX(diSt(Aj'mal, MQ), diSt(MQ, Afinal))a
(16)
where

dist(Mqg, Afinai) = max_ min ||z} — al. (17)

i=1,..,5a€Ainal
Surprisingly, DE can compete with thevINCON solver
when consideringlist(A rinai, Mg) in this example (and
is even better in the mean), and is by far the best when
considering the Hausdorff distance. The latter is strongly
connected to the result in Table I.

, 5066 oooo
ERS SN V=S =

Summarizing, it can be said that the new strategy (DE +
ArchiveUpdateMq D) is efficient in approximating all
the local minima ofMg . (and only them in this case).
However, it has to be noted that the result highly depends on
the choice of and A which is ad hoc unclear for this (and
other) academic model.

Fig. 2. Surface and contour plot of objective (13) within thages0, 10]2
and the setd/(, . for different values ot (the circles around the minimizers
x indicate the boundaries a¥/ ).

N ™o " m™ o N om m TABLE |
1 =\=, = To=| =, —= T3=|—=,%
2°92 292 2792 NUMBER OF COMPONENTS FOUND BY EACH METHODMINIMUM ,
. 31 31 . 51 571 (14) MAXIMUM AND AVERAGE VALUES ARE OVER 100RUNS.
Ta= 55 Ts=\35 5 Num. of components foung
Method Min | Mean Max
If choosing for instance = 0.3 the set of approximate Random Search 1 | 292 5
solutionsMy, . consists of five connected components, each Mu't'ﬁg{;g(fgg‘con) g ‘11';3 g
of them containing one minimizer!. Further, forA = (2, 2) :
an ‘optimal’ archiverA contains exactly five solutions, each
of them approximating one minimizef (compare to Figure TABLE Il

2) . DISTANCE FROM THE ARCHIVE OBTAINED WITH EACH METHOD TO THE
In order to compare the result of our approaCh (I'e" DE +OPTIMA SET. MINIMUM , MAXIMUM AND AVERAGE VALUES ARE OVER

arc_h|ver) we have chosen a multistart optimization process 100RUNS WITH AT LEAST ONE COMPONENT REACHED
(usingFMINCON of Matlab') and a random search procedure

both equipped with the archivetrchiveUpdateMg D,. Method Min d'St(A{,fg;ﬁ]’ Mo) Max
Tables | to 1ll show some averaged numerical results UsSiNg Random Search || 1.54819e-01| 7.95134e-01| 3.30567e+00
the three algorithms and a budget of 12,000 function callsMultistart (fmincon) || 7.18079e-07| 1.48833e-01| 3.46062e+00
per run. For DE, we have used a population size of 200, the_YSing DE 4.17808e-03] 2.96775e-02] 3.96064e-01
rand/1 strategy, and th&,.;.»: factor of the DE was set

to 0.9 in all cases. Table | shows the number of connected TABLE Il

components detected by each method. Here, DE clearly
outperforms the two other methods. This is important t
note since the maintainance of diversity is an important

OHAUSDORFF DISTANCE BETWEEN THE ARCHIVE OBTAINED WITH EACH
METHOD AND THE OPTIMA SET. MINIMUM , MAXIMUM AND AVERAGE

issue when considering approximate solutions as motivated VAtUES ARE OVERIOORUNS WITH AT LEAST ONE COMPONENT

in the introduction. Tables Il and Ill are dedicated to the REACHED.
(local) convergence behavior of the archive entries. Since Method i Héll\;llsdorff v
H H H etho n ean ax
Mg consists _of 5 different solutions, we have chosen to Use— = meE503e5e700 9320166500
for a comparison the values (note that both séfs,.; and [ "Muftistart (fmincon) || 4.44283e+00] 6.28666€+00| 1.12152e+01
Mg are finite, and hence, we can usgn andmax) Using DE 4.17808e-03| 2.51149e-01] 4.44260e+00
dist(Afina, Mg) = max min [la—z7||, (15) B. Example B

aeAfinal i=1,..,5

The next academic function we consider is (compare to

i.e., the maximal distance from an archive entryAf;,,

. Example 3.2)
to M¢, and the Hausdorff distance

fR*—=R

) = o+ 4o

Thttp://www.mathworks.com



Figure 3 shows some numerical results for the two dif- 2
ferent archiving strategies and different discretizagiom 15
all cases we have chosen= 1 and have insertedv = .
100,000 randomly chosen points out of the domaih = os
[-2,2]? into the archivers. Figure 3 (a) shows the result <o
of ArchiveUpdateMq ., where the final archivedy;,q o8
consists of the numerically intractable amount of 16,607 N
elements. Figure 3 (b) shows a result of the archiver
ArchiveUpdateMg D, using A = (0.1,0.1) leading to % as 4 ws 0 o i s 2
175 archive entries. Though this is unlike the first result a !
tractable number of elements, similar small values of the (8) ArchiveUpdateMq e, |Afinatl = 16,607
entries of A can quickly lead to similar problems when

increasing the number of parameters. A possible remedy :
could be (if possible) to assign different values for thaiest L
A; according to their significance. Figure 3 (c) shows a result !
of ArchiveUpdateMg D, for A = (0.1,1). Hereby, it is o8
assumed that a change in is relatively important (and *
results with even small changes in have to be stored)

while a change in parametes is not of relevance (or not as

relevant as a change iny). Hence, the result in Figure 3 (c)

resembles rather a 1-dimensional set than a 2-dimensienal s 7ots 1 s 0 0s 1 s 2
(as it is the case foi/g ). Proceeding in a similar manner,
the ‘dimension’ of Mg . (and hence the number of elements
in the archive) can be reduced in any order according to the
problem and the computational limitations: if, in the ertie
case, the valué\; = b; — a; is chosen, where; andb; are

the bounds for parameter;, then the archiver makes no
distinction with respect tar;, and hence, the ‘dimension’
of the outcome set obtained byrchiveUpdate Mg D, is ~
indeed reduced.

(b) ArchiveUpdateMq Dy, A = (0.1,0.1),
|Afinal| =175

C. Rosetta .

Next to the previous academic examples we consider
two interplanetary trajectory design models. The pecitjiar T oes 2o e e
of both problems (as well as other problems related to
space mission design) is that the local minima are—similar
Rosenbrock’s famous banana function—typically located
in Iong, narrow, and flat vaIIeys, Hence, such problem@'g. 3. Numerical results for SOP (18) using different arehiand different
are typically (i) hard to solve and (ii) the approximationdiscretization parameters.
of Mg, by using ArchiveUpdateMq D, can contain a
tremendous number of archive entries for small or even
moderate values ofA (as observed in the two cases at
hand since in both cases the dimension of the paramefEne trajectory model we consider here is the one described
space isn = 22). To avoid this and to obtain a meaningfulin [10], [12]. Figure 4 shows three projections of the final
approximation of Mgy . we have proceeded as describedrchive Ay;,,; of one run of the algorithm described in
in the previous subsection: we have divided the domaiBection Il fore = 0.5 [km/s] and A as described above.
into ‘significant’ and ‘insignificant’ parameters. For theAy;,.; consists of a total of 122 elements and contains an
significant parameters (launch date, initial velocity, ¢im approximation of the best known solutidh, with f(P;) ~
of flights) we have chosen the discretization parametdr34 [km/s] [12] as well as othee-approximate solutions
A; = (b; —a;)/0.01, i.e., one percent of the given rangeof P; within three connected components. The three local
[a;,b;], and for the insignificant parameters (angles, we optima within the components are shown in Table IV. As
have chosen the valu&; = (b; — a;)/0.1. already mentioned in the Introduction, the DM is offered (at

least) two more options in addition to the best known trajec-

The Rosetta case is a multi gravity assist trajectory frorory. Also, the number of archive entries is tractable siice
the Earth to the comet 67P/Churyumov-Gerasimenko fottloes not slow down the computational cost significantly. If,
lowing the gravity assist sequence that was planned for tigpothetically, for unified small values ak; three points
spacecraft Rosetta: Earth—Earth—Mars—Earth—Earth—€Comger coordinate direction and connected component would

(c) ArchiveUpdateMq Dz, A = (0.1,1),
|Afinal| =19



have been required for the approximation (which is muchowever, the outcome of the archiver is crucially dependent
less than shown in Figure 4), this would have led to a totain the choice of the discretization parameter € R’

of 3322 ~ 10'! archive entries, which would certainly notwhich has hence to be chosen problem dependent. Since
have been realizable. the ‘optimal’ choice of this parameter may be ad hoc
unclear, or intuitive choices may lead to a numerically
untractable number of archive entries, we have indicated
one way to reduce the elements in the archive which
has an analog effect as the reduction of the dimension

TABLE IV
THE THREE LOCAL SOLUTIONSP;, i = 1,2, 3, FROM THE THREE
CONNECTED COMPONENTS SHOWN INFIGURE 4.

Variable | Units Py Py Py of the set of interest and which allows for the efficient
1 MJD2000 | 1.542E+03 ] 1.748E+03| 1.620E+03 treatment of higher dimensional problems. Finally, we have
T2 km/sec | 4.443E+00| 5.000E+00| 5.000E+00 h th fici £ th h strat DE led
T3 n/a 9.881E-01 | 5.146E-01 | 9.613E-01 shown the eificiency of the search strategy ( _coupie
T4 n/a 5.623E-01 | 2.958E-01 | 5.000E-01 with the new archiver) on some benchmark functions and
zs5 days 3.652E+02 | 3.652E+02| 4.940E+02 its usefulness on two models related to space mission design
T6 days 7.082E+02 | 5.391E+02 | 5.389E+02
z7 days 2.574E+02 | 6.810E+02 | 6.811E+02 . . . . :
78 days | 7.304E+02| 6.307E+02 | 6.300E+02 .For the future, it remains to copsujer _the limit behavior
o days 1.850E+03 | 1.818E+03| 1.813E+03 with respect to convergence and distribution of the seqeienc
€10 ”ja g-ég?g'gi i-gggg'gi g-éiég'gé of archives under certain assumptions on the generation
11 n/a . - . - . - . . . .
oy A 136101 2 308501 | 3 953E-01 process _(as e.g. done in [5], [8], [7] for_ mult|-quect|ve
Z13 n/a 6.566E-01 | 2.713E-01 | 4.703E-02 optimization problems). Further, an adaptive choice/of
T14 n/a 4.375E-01 | 4.908E-01 | 4.876E-01 would be of particular interest for both theoretical andcpra
15 na | 2.986E+00| 2.374E+00| 1.699E+00 tical considerations: such an adaptation could for instdre
T16 n/a 1.050E+00 | 1.050E+00| 1.050E+00 . ;

oo A 3507E700 | 3326E700 | 3.338E+00 used to explore the neighborhood of a localgpproximate
T18 n/a 1.050E+00 | 1.050E+00| 1.050E+00 solution within Mg . since this set is very important to
T19 fag 32-217837EE+82 34%433?82 ?Z?ilﬁzjéEEJrg(])_ quantify its robustness. Finally, open branches of researc
20 ra -2. - -4. - -4. - : : : :

oot P 3 T35E+00 2 E56E+00 2 5605400 can pe_found when interleaving the archive with the ggneratp
T2 rad 3 554E+00 | 3.656E+00 | 3.656E+00 heuristic (DE, PSO, etc.) as a matter of feedback into itsimai

F(P) 1.342E+00 | 1.763E+00| 1.770E+00 population.
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