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ABSTRACT
In this paper we develop evolutionary strategies for numeri-
cal continuation which we apply to scalar and multi-objective
optimization problems. To be more precise, we will pro-
pose two different methods—an embedding algorithm and a
multi-objectivization approach—which are designed to fol-
low an implicitly defined curve where the aim can be to de-
tect the endpoint of the curve (e.g., a root finding problem)
or to approximate the entire curve (e.g., the Pareto set of
a multi-objective optimization problem). We demonstrate
that the novel approaches are very robust in finding the set
of interest (point or curve) on several examples.


Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization


General Terms
Algorithms, Performance


Keywords
scalar optimization, multi-objective optimization, continua-
tion method, multi-objectivization, evolutionary computa-
tion


1. INTRODUCTION
One of the most common problems in optimization is the
location of zeros, i.e., to find a point x ∈ Rn such that


F (x) = 0, (1)


where F : Rn → Rn. Such problems arise e.g. when equi-
libria of systems are sought, in scalar optimization (e.g.,
F := ∇f , i.e., the gradient of the objective f) or in multi-
objective optimization (for the detection of Karush-Kuhn-
Tucker (KKT) points). However, problems of the kind (1)
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may be hard to solve. It is for instance well reported in lit-
erature that the (classical) Newton method—certainly the
most prominent root finding method—can fail for improper
starting points, and that damping strategies can lead to se-
quences which ’creep’ into the root or do even not converge.
As a possible remedy, one can try to solve (1) using ho-
motopy or continuation methods [1]: given a function G :Rn → Rn which is related to F and where a solution x0


with G(x0) = 0 is known or can be approximated with low
effort, one can define the convex homotopy:


H(x, λ) = λF (x) + (1 − λ)G(x). (2)


Since it is


H(x, 0) = G(x), H(x, 1) = F (x), (3)


one can try to trace the implicitly defined curve1


H−1(0) = {x ∈ Rn | ∃λ ∈ [0, 1] : H(x, λ) = 0} (4)


from λ0 = 0 to λ1 = 1 starting with x0 which is the so-
lution of H for λ0. One famous example for such a curve
is the Pareto set of a multi-objective optimization problem
(MOP). It is well known that in certain cases (but not in
all) the Pareto set of a bi-objective MOP is equal to the set
H−1


P (0), where


G(x) = ∇f1(x), F (x) = ∇f2(x), (5)


f1 and f2 the objectives of the MOP, and x0 the minimizer
of G (see Section 4.2 for such an example), which is a direct
consequence of the theorem of Kuhn and Tucker [16]. Note
that in this case the entire curve is of interest.
Numerical continuation methods have been studied inten-
sively over the last decades and amazing theoretical and
practical results have been generated in many fields. How-
ever, these methods heavily exploit gradient information
which is not always given. In this paper, we propose two re-
lated evolutionary path following strategies which are deriva-
tive free. The latter of the two methods can be viewed as
a certain multi-objectivization [15] approach. Both meth-
ods will be investigated with respect to their ability to solve
scalar and multi-objective optimization problems.
The remainder of this paper is organized as follows: In Sec-
tion 2, we state the background required for the understand-


1The implicit function theorem ensures that the set H−1(0)
is under some assumptions on F and G at least locally a
curve. Connecting curves do not exist in all cases.







ing of the sequel. In Section 3, we propose the evolution-
ary continuation strategies: a hill climber for root finding
problems which is the core of the curve tracing method we
suggest thereafter, and a multi-objectivization approach. In
Section 4, we show some numerical results, and finally, some
conclusions are drawn in Section 5.


2. BACKGROUND
2.1 Scalar and Multi-objective Optimization
Here we briefly state some notations required for the under-
standing of the sequel. For a more thorough discussion we
refer e.g. to [12, 5].
In the following we consider unconstrained scalar objective
optimization problems


min f : Rn → R (6)


as well as unconstrained bi-objective optimization problems


min F = (f1, f2) : Rn → R2. (7)


While the optimality for one objective is clear, the bi-objective
case needs some explanation.


Def 2.1 (a) Let v, w ∈ R2. Then the vector v is less than
w (v <p w), if vi < wi for all i ∈ {1, 2}. The relation
≤p is defined analogously.


(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (in
short: x ≺ y) with respect to (7) if F (x) ≤p F (y) and
F (x) 6= F (y) (i.e. there exists a j ∈ {1, 2} such that
fj(x) < fj(y)), else y is called non-dominated by x.


(c) A point x ∈ Q is called Pareto optimal or a Pareto
point if there is no y ∈ Rn which dominates x.


The set of all Pareto optimal solutions is called the Pareto
set. This set typically—i.e., under mild regularity
assumptions—forms a one-dimensional object (i.e., a curve
or a set of curves). The image of the Pareto set is called the
Pareto front.


2.2 Continuation Methods
The first use of continuation methods dates back for more
than one century (see, e.g., [1] for an overview), however,
numerical continuation has started in the 1950’s when com-
puters became available (e.g., [9]) and has been permanently
developed further on since then. Common to all algorithms
is that the curve tracing problem is transferred to a finite
sequence of minimization problems which are executed con-
secutively. The first techniques directly used λ in (2) to
parametrize the curve (so-called embedding algorithms, as
the one proposed in Section 3.2). Such methods are in gen-
eral quite effective, but they may lead to problems in certain
cases since the curve (4) can not always be parametrized
by λ. Alternatively, particular differential equations can be
used instead of (2) [4, 14]. This has the advantage that in
that case the arclength of the curve, i.e., its ’natural’ param-
eter, can be used leading to a larger numerical stability for
the treatment of such problems. On the other hand, such
techniques can only be applied if the system is differentiable.


2.3 Evolutionary Methods
Transforming a single objective problem into a suitable multi-
objective one leads, in some cases [15, 13, 10], to a reduction
over the computational cost of their treatment.
In [15], Knowles et al. introduced the concept of multi-
objectivization as a procedure in which decomposing a single
objective into several ones, or adding new ones, can help to
reduce the number of local minimal from the original prob-
lem. By doing so, local methods like hill climbers can again
be used successfully. In [13], Jensen set the use of these ad-
ditional objectives (helper objectives) changing dynamically
in running time.
Successful examples for concrete problems have been pre-
sented [15, 13, 10, 11] showing ways to use this approach
in other problems. Even though, there does so far not exist
a general method to transform the single objective problem
into a multi-objective one. There are some details to take
care about; for example, the optima of the original problem
must remain reachable from the new problem, and it is typ-
ically important that the new constructed objectives are in
conflict with the original one.
According with some experimental examples [13], using a
reduced number of helper objectives is convenient; but, a
promising research path is still studying how this affects the
diversity of spaces during the search, and also the reduction
in terms of solution time.
Finally, a problem which is related to the scope of this paper
is dynamic multi-objective optimization where the task is to
trace the entire Pareto set with changing external parame-
ters. For this, we refer to [8, 23, 17].


2.4 The Hill Climbers
In the following we shortly present two local search strate-
gies, one for scalar optimization and one for multi-objective
optimization, which we will use later on.


Hill Climber with Line Search. Algorithm 1 shows the
basic variant of the Hill Climber with Line Search (HCLS)
as proposed in [20] for scalar optimization problems. The
basic oberservation behind the algorithm is the following one
which is well known in mathematical programming: given
a point x0 ∈ Rn and a (arbitrary) search direction ν ∈Rn\{0} there is—under mild assumptions on the objective
f—a 100 percent chance that either ν or −ν is a descent
direction for f at x0. The HCLS makes use of this as follows:
for x0 in parameter space a point x1 from a neigborhood
B(x0, r)\{0} is chosen at random, where


B(x, r) := {x ∈ Rn : xi−ri ≤ xi ≤ xi+ri ∀i = 1, .., n}, (8)


and r ∈ Rn
+ the ’radius’ of the neigborhood. If f(x1) <


f(x0), then the line search is performed from x0 in direction
ν := (x1 − x0) (lines 4-6 of Algorithm 1, see Section 3.1
for a particular choice of t). In case f(x0) < f(x1), an
analog line search is performed starting at x1 but using −ν
as search direction (lines 7-9 of Algorithm 1). The strength
of the algorithm has been reported ([20]), however, it has
been observed that r is a crucial design parameter for the
efficiency of the approach: if the values of r are too large,
then the search directions can be misleading (for instance,
if x0 is already near the minimizer, points x1 which are too
far from x0 yield objective values which are worse, and thus,
the search is started from x1, see line 9 of Alg. 1). If on the
other hand r is too small, the ’right’ step size t is hard to







find as for all line search methods, and thus, the solutions
’creep’ toward the minimizer. We will see below that this
problem can be solved in the root finding context.


Algorithm 1 Hill Climber with Line Search


Require: starting point x0 ∈ Q, radius r ∈ Rn
+


Ensure: sequence {xi}i∈N of candidate solutions
1: for l = 1, 2, . . . do
2: set x̃1 := xl−1


3: choose x̃2 ∈ B(x̃1, r)\{x̃1} at random
4: if f(x̃2) < f(x̃1) then
5: ν := (x̃2 − x̃1)/‖x̃2 − x̃1‖
6: compute t ∈ R+ and set xl := x̃1 + tν.
7: else if f(x̃1) < f(x̃2) then
8: ν := (x̃1 − x̃2)/‖x̃1 − x̃2‖
9: compute t ∈ R+ and set xl := x̃2 + tν.


10: end if
11: end for


Hill Climber with Sidestep. The Hill Climber with Sidestep
(HCS) has been designed for the numerical treatment of
MOPs [19]. It is a local iterative search procedure and
intended to be able of both moving toward and along the
Pareto set depending on the location of the current iter-
ate. The method is based on the observations on the geom-
etry of multi-objective optimization made in [3] which we
present here briefly for the bi-objective case. Whereas one
can (roughly) divide the search directions ν in the scalar
objective case for a point x0 into descent direction (i.e., the
function value decreases when moving from x0 in direction
ν) or ascent direction, there are (basically) four cases when
two objectives are considered. These are the cones


{+, +}, {+,−}, {−, +}, {−,−}. (9)


If, for instance, ν is in {−, +} it means that ν is a descent
direction for f1 and an ascent direction for f2, where f1 and
f2 are the two objectives of the MOP (analog for the other
cones). The observation made in [3] is as follows: if a point
x0 is ’far away’ from the (local) Pareto set, then there is a
high chance that a randomly chosen search direction is ei-
ther in {−,−} or in {+, +} (as in the scalar objective case,
if ν is in {+, +}, then the opposite direction −ν is in {−,−}
which points toward the Pareto set. In both cases, the ’hill
climbing’ can be performed). If on the other hand x0 is
’near’ to the Pareto set, then the chance is high that a ran-
domly chosen search direction is either in {−, +} or {+,−}
(which is pointing, roughly speaking, ’along’ the Pareto set–
or a ’sidestep’ direction in the upward movement. However,
it has been observed that for a proper movement along the
Pareto set some directions within one cone have to be aver-
aged (design parameter Nnd in Algorithm 2).
Algorithm 2 shows a variant of the HCS which utilizes these
observations. The algorithm is basically identical to the ver-
sion which has been proposed in [19] except for one modifi-
cation (which we will need later on): the sidestep is only per-
formed along directions which are inside {+,−}, i.e., seeking
for improvement of f2. The algorithm thus generates a se-
quence of points which are first guided toward the Pareto
set, and when the set is reached, the iterates are guided
along the Pareto front in direction of the minimizer of f2.


3. THE ALGORITHMS


Algorithm 2 Hill Climber with Sidestep (HCS)


Require: starting point x0 ∈ Q, radius r ∈ Rn
+, number


Nnd of trials
Ensure: sequence {xl}l∈N of candidate solutions
1: a := (0, . . . , 0) ∈ Rn


2: nondom := 0
3: for l = 1, 2, . . . do
4: set x̃1 := xl−1


5: choose x̃2 ∈ B(x̃1, r)\{x̃1} at random
6: if x̃1 ≺ x̃2 then
7: ν := (x̃2 − x̃1)/‖x̃2 − x̃1‖
8: compute t ∈ R+ and set xl := x̃2 + tν.
9: nondom := 0, a := (0, . . . , 0)


10: else if x̃2 ≺ x̃1 then
11: ν := (x̃1 − x̃2)/‖x̃1 − x̃2‖
12: compute t ∈ R+ and set xl := x̃1 + tν.
13: nondom := 0, a := (0, . . . , 0)
14: else
15: if f2(x̃2) < f2(x̃1) then
16: s := 1
17: else
18: s := −1
19: end if
20: a := a + s


Nnd


x̃2−x̃1


‖x̃2−x̃1‖


21: nondom := nondom + 1
22: if nondom = Nnd then
23: compute t̃ ∈ R+ and set xl := x̃l + t̃a.
24: nondom := 0, a := (0, . . . , 0)
25: end if
26: end if
27: end for


Here we propose two evolutionary strategies for continua-
tion: an embedding algorithm which uses a variant of the
HCLS (which is adapted for the root finding context) and a
multi-objectivization approach.


3.1 A Hill Climber for Root Finding Problems
Here we adapt the HCS which is presented in Section 2 to
the context of root finding. Assume we are given a problem


g(x) = 0, (10)


where g : Rn → Rn is a nonlinear function. It is well known
that problem (10) can be transformed into the minimization
problem


min f(x) = ‖g(x)‖2
2, (11)


and thus, the original root finding can be attacked by any
method for scalar optimization (such as the HCLS) by using
the auxiliary problem (11). However, the additional infor-
mation that the minimum of (11) is given by 0 has two
important implications on the hill climber—one obvious im-
plication and one which is less obvious—which make the
procedure more effective.
Implication 1: The hill climber can be equipped with a stop-
ping criterion. If the function value of the current iterate xl


is below a given threshold, say f(xl) ≤ tol with tol ∈ R+,
the iteration can be terminated.
Implication 2: The step size control can be adjusted to the
given context. For this, we propose the following strategy:
Assume we are given points x0, x1 ∈ Rn with ‖x1 − x0‖ ≤ r
(r ’small’) and f(x1) < f(x0) (as given by the neighborhood







search of the HCLS, see line 3 of Algorithm 1). The question
is how to perform the search along ν := (x1−x0)/‖x1−x0‖,
i.e., how to find a ’suitable’ point x2 = x0 + tν, which re-
duces to the choice of an appropriate step length t ∈ R+. It
would be desirable to ask for a point x2 such that


f(x2) ≈ κf(x0), (12)


where κ ∈ (0, 1). Such a procedure would ideally yield linear
convergence, which is certainly the most one can expect for
an evolutionary strategy ([22]). Assuming that x2 is not too
far from x0 we can use the Mean Value Theorem to obtain
the following estimation


f(x2) − f(x0) ≈ ∇f(x0) · (x2 − x0), (13)


where a · b denotes the inner product of a and b. Using (12)
and applying the norm on both sides of (13) leads to


(1 − κ)f(x0) ≈ t|∇f(x0) · ν| (14)


Finally, since x1 is near to x0 the directional derivative
∇f(x0)·ν can be approximated by (f(x1)−f(x0))/‖x1−x0‖
which leads to the step size


t∗ :=
(1 − κ)f(x0)‖x1 − x0‖


|f(x1) − f(x0)|
, (15)


which does not use gradient information. The choice of a
small value of κ leads to a small value of t∗, and thus, slows
down convergence. In turn, large values of κ could lead to
a faster convergence, but the probability that (12) is true is
lower (note that (13) is a first order approximation).
If t∗ is too large, i.e., if f(x2) > f(x0) where x2 = x0 +
t∗ν (which can certainly be the case in early stages of the
iteration process) we propose to use backtracking methods
[7]. For the computations done in this paper we have used
an Armijo-like quadratic approximation analog to the one
presented in [20].
Algorithm 3 shows the principle of the Hill Climber for Root
Finding (HCR) which is a variant of the HCLS involving
the two points discussed above (i.e., the line search in lines
6 and 13 of Algorithm 3 has to be performed as in (15)
and the discussion below). Note that x1 is used to estimate
the directional derivative ∇f(x0) · ν which implies that r
is not an important design parameter any more: since r
determines the maximal distance from x0 to x1 it can be
chosen ’small’, for instance as the square root of the machine
precision which is sometimes suggested for finite difference
techniques.


3.2 Evolutionary Continuation by Embedding
Assume we are given the problem


Hλ(x) = 0, (16)


where H : Rn → Rn and λ an additional parameter which
varies without loss of generality from 0 to 1 (e.g., the convex
homotopy (2)). The first evolutionary continuation method
we propose is a straightforward application of the embed-
ding algorithm which has been used (successfully) since sev-
eral decades. The basic idea is to use λ to parametrize the
desired curve H−1(0). Starting from a solution x0 for λ0 = 0
the value of λ is increased by a small value, i.e., λ1 := λ0+∆,
and the problem Hλ1


(x) = 0 is tried to solve. Since conti-
nuity of H is assumed and ∆ is small, it makes sense to use
the former solution x0 as starting point for this optimization


Algorithm 3 xend = HCR(f, x0, tol)


Require: radius r ∈ Rn
+, maximal number of iterations


MaxIter, tolerance value tol ∈ R+.
Ensure: best found solution xend, stopping criterion:


f(xl) ≤ tol.
1: for l = 1, 2, . . . , MaxIter do
2: set x̃1 := xl−1


3: choose x̃2 ∈ B(x̃1, r)\{x̃1} at random
4: if f(x̃2) < f(x̃1) then
5: ν := (x̃2 − x̃1)/‖x̃2 − x̃1‖
6: compute t ∈ R+ and set xl := x̃1 + tν.
7: if f(xl) ≤ tol then
8: xend := xl


9: return
10: end if
11: else if f(x̃1) < f(x̃2) then
12: ν := (x̃1 − x̃2)/‖x̃1 − x̃2‖
13: compute t ∈ R+ and set xl := x̃2 + tν.
14: if f(xl) ≤ tol then
15: xend := xl


16: return
17: end if
18: end if
19: end for
20: xend := xl


problem since the minimizer of Hλ1
is assumed to be ’close’


to x0. This procedure is repeated until λfinal = 1.
Algorithm 4 shows the basic version of this approach. The
root finding is done by the HCR. For simplicity, we have
chosen the increment ∆ as constant. For complicated prob-
lems, however, this incremental value can easily be chosen
adaptively: the number of function calls of HCR required to
compute the ’update’ xi+1 from a given solution xi of Hλi


is a measure for the choice of ∆i = λi+1 − λi (if too much
function calls have been spent, the next increment has to be
chosen smaller, and vice versa).


Algorithm 4 Embedding Algorithm using HCR


Require: starting point x0 ∈ Rn, incremental step ∆ ∈R+, tolerance value tol ∈ R+.
Ensure: finite sequence of approximate solutions xi


1: set λ := 0
2: set i := 1
3: while λ < 1 do
4: xi := HCR(Hλ, xi−1, tol)
5: i := i + 1
6: λ := λ + ∆
7: end while


Though this algorithm is already very efficient in general (see
next section for examples), it has two potential drawbacks:
(i) The parameter λ is used to trace the curve H−1(0), which
is not always the best choice as mentioned above, and (ii)
if the underlying problem is an optimization problem (and
not a ’classical’ root finding problem) the gradients of the
objectives are required. The next algorithm is designed to
overcome these two problems.


3.3 A Multi-objectivization Approach







Assume we are given either the problem


f(x) = 0, g(x) = 0, (17)


where f, g : Rn → Rn (these functions could be given by F
and G as in (2) or by H0 and H1 as in (16)), or the problem


min f(x), min g(x), (18)


where f, g : Rn → R. Both problems, the root finding prob-
lem and the minimization problem, can be multi-objectivized
into the following bi-objective MOP:


min F := (f̃ , g̃) : Rn → R2, (19)


where f̃ = ‖f‖ and g̃ = ‖g‖ in the root finding context and


f̃ = f and g̃ = g in case of (18).
Problem (19) can in principle tried to be solved by any multi-
objective search strategy, however, since the main interest
in this case is either the extreme point of the curve (in case
a root or a minimizer of f is sought) or the curve (e.g., when
the KKT points of a MOP have to be traced), a global ap-
proach is not needed in most cases since a local approach
can accomplish this task faster. Here we propose to use the
HCS since that algorithm is specialized on the movement
along the curve. Experiences in numerical continuation have
shown that a movement along a curve which leads to the de-
sired point are more stable and successful than ’just’ using
hill climbing methods applied on f [1]. So far, however,
we do not have an example which confirms this observation
with the HCS except for problems related to multi-objective
optimization. This will be one topic for future research.
Note that in this curve tracing problem the effect of the
’hill climber’ and the ’sidestep’ procedures of the HCS (see
Algorithm 2) are interchanged: the ’sidestep’ (line 23 of Al-
gorithm 2) is in fact a movement along the curve, and thus,
a movement toward the minimizer of f , whereas the ’hill
climbing step’ (lines 8 and 12 of Algorithm 2) can be viewed
as a correction step toward the Pareto set (i.e., the solution
path).
In the following we describe the modifications we have done
to the HCS as described in [19] in order to adapt it to the
path tracing context:
Adaptation to root finding problem (17): (i) the search di-
rection in the sidestep has to be changed (as already done
in Algorithm 2). In the current context we are particularly
interested in directions ν in {+,−}. (ii) The step size con-
trol for the sidestep has been changed to the one in (15)
since the root of f is of interest. We have observed that the
performance of the strategy was positively affected by this
change. (iii) as for the HCR the knowledge of the minimum
of f allows for a stopping criterion (i.e., to stop the process
if ‖f(xl)‖ ≤ tol1). Further, we have used another threshold
tol2 > tol1 such that the path following process was switched
to the HCR when ‖f(xl)‖ ≤ tol2 since correction steps are
not required any more when the current iterate is near to a
solution.
Adaptation to minimization problem (18): in that case the
HCS can be applied as suggested in [19]. The only modifi-
cation which is required is the change of the sidestep search
direction as described above.
Finally, a note on the choice of g: if there is no ’suitable’
choice of g (e.g., given by the application or coming from en-
gineering judgement) one can e.g. define for a given starting


point x0 the function


g(x) = x − x0, (20)


which we have done in Section 4.1.


Note that this strategy overcomes the two potential draw-
backs discussed in the previous subsection: in the context
of optimization, no gradient information is required, and no
parameter is used to trace the curve such as it is λ in the
embedding algorithm. However, one expects by construction
of the two strategies that if the latter algorithm succeeds it
will outperform the present multi-objectivization approach
(which is e.g. the case in Section 4.2).


4. NUMERICAL RESULTS
Here we present some numerical results for ’classical’ root
finding problems as well as for some path approximation
problems.


4.1 Root Finding
To test our algorithms we consider the following two well
known test functions which we treat as root finding prob-
lems:


g1, g2 : Rn → R
g1(x) :=


n−1
X


i=1


100(xi+1 − x2
i )


2 + (1 − xi)
2 (Rosenbrock [18])


g2(x) :=
n


X


i=1


|xi| +
n


Y


i=1


|xi| (Schwefel [21])


(21)


For comparison we use the hill climbers (1 + 1)ES [21], the
HCLS (i.e., the version which is described in [20]), and the
HCR. Further, we have applied NSGA-II [6] and the HCS
on the multi-objectivized problems


min(f, ‖x − x0‖) : Rn → R2, i = 1, 2, (22)


taking the best value of g at the end of the run. Tables 1-3
show the results on g1 and for dimensions n = 2, 5 and 10,
Tables 4-6 show the results on g2.
Several observations can be made: The ‘best’ strategy (ac-
cording to the two test problems) seems to be the HCR. The
direct comparison to the HCLS indicates that the reason has
to be the newly developed step size control (15). Also the
HCS whose main focus is the approximation of the entire
curve (see Figure 1) is highly competitive. The comparison
to the other multi-objectivization approach (using NSGA-
II on (22)) is of course a bit unfair since the approach of
NSGA-II is global. Thus, if a larger budget of function calls
would have been available, this approach would have won
(see also Figure 1). However, the scope was to find the roots
quickly, and in this case local methods are advantageous (if
they converge). The situation changes completely for f2 and
n = 10 (Table 6). In that case, all local methods fail and
only NSGA-II delivers useful results.


4.2 Curve Approximation
Now we present two examples of continuation problems where
the entire curve is of interest.
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Figure 1: Numerical result of MOP (22) for g1 of (21) and using the starting point x0 = (0, 0). The Pareto
front has been computed using NSGA-II. Subfigures (a) and (c) show solution paths of the HCS with different
values of Nnd. Note that the higher the value of Nnd, the better the approximation of the Pareto curve gets.


Table 1: Result of 100 runs on Rosenbrock’s exam-
ple (21) and for dimension n = 2. The table shows
the percentage of runs that reached a specified tol-
erance for error, using each algorithm over the same
number of function evaluations. g(x0) is the function
value for the initial point. xf is the final point (root
reached).


n=2, Nmax=1000, g(x0) ≈ 8.6 x107


err = ||g(xf )||2


Method err< 1 err< 0.1 err < 0.01


(1 + 1)ES 91% 82% 70%
HCLS 81% 81% 37%
HCR 82% 81% 80%
HCS 100% 100% 98%
NSGA-II 49% 19% 4%


Table 2: Result of 100 runs on Rosenbrock’s exam-
ple and for n = 5 (see Table 1 for details).


n=5, Nmax=10,000, g(x0) ≈ 3.4 x108


err = ||g(xf )||2


Method err< 10 err< 1 err < 0.1


(1+1) ES 100% 83% 82%
HCLS 99% 49% 1%
HCR 100% 84% 84%
HCS 99% 88% 78%
NSGA-II 36% 1% 1%


Table 3: Result of 100 runs on Rosenbrock’s exam-
ple and for n = 10 (see Table 1 for details).


n=10, Nmax=100,000, g(x0) ≈ 7.7 x108


err = ||g(xf )||2


Method err< 10 err< 1 err < 0.1


(1+1) ES 100% 84% 84%
HCLS 98% 0% 0%
HCR 100% 80% 80%
HCS 99% 91% 91%
NSGA-II 23% 0% 0%


Table 4: Result of 100 runs on Schwefel’s example
and for n = 2 (see Table 1 for details).


n=2, Nmax=1000, g(x0) ≈ 440
err = ||g(xf )||2


Method err< 1 err< 0.1 err < 0.01


(1+1) ES 53% 53% 52%
HCLS 86% 86% 76%
HCR 97% 96% 96%
HCS 79% 78% 77%
NSGA-II 53% 46% 9%


Table 5: Result of 100 runs on Schwefel’s example
and for n = 5 (see Table 1 for details).


n=5, Nmax=30000, g(x0) ≈ 3.2 x106


err = ||g(xf )||2


Method err< 10 err< 1 err < 0.1


(1+1) ES 9% 8% 8%
HCLS 3 % 3% 0%
HCR 48% 48% 48%
HCS 20% 19% 19%
NSGA-II 53% 36% 1%


Table 6: Result of 100 runs on Schwefel’s example
and for n = 10 (see Table 1 for details).


n=10, Nmax=100,000, g(x0) ≈ 1.0 x1013


err = ||g(xf )||2


Method err< 10 err< 1 err < 0.1


(1+1) ES 1% 1% 1%
HCLS 0% 0% 0%
HCR 0% 0% 0%
HCS 0% 0% 0%
NSGA-II 23% 15% 1%







4.2.1 Computation of a Pareto Front
The first example comes from multi-objective optimization.
Consider the bi-objective MOP


F = (f1, f2) : R50 → R2


f1(x) = (x1 − 1)4 +


50
X


i=2


(xi − 1)2


f2(x) =
50


X


i=1


i6=2


(xi + 1)2 + (x2 + 1)2


(23)


Since the two objectives are convex, the Pareto set is given
due to the theorem of Kuhn and Tucker [16] by H−1(0),
where


H(x, λ) = λ∇f1(x) + (1 − λ)∇f2(x) (24)


and λ ∈ [0, 1]. Figure 4.2.1 shows numerical results coming
from the embedding method applied on homotopy (24) and
from the HCS applied on MOP (23). For the embedding
method we have chosen x0 = (−1, . . . ,−1) ∈ R50, i.e., the
minimizer of f2, tol = 0.01, and ∆ = 0.01. The HCS was
started with x0.
The embedding algorithm spent 12,646 function calls (H)
for the 100 root finding problems (i.e., one for each value of
λ), and the HCS spent 21,706 function calls (F ). That is, in
this case, the embedding algorithm was faster (roughly by a
factor of two), however, used in turn gradient information.
Since both algorithms came up with a good representation
of the Pareto set/front with a reasonable amount of function
calls, it can be said that both algorithms accomplished the
task sufficiently.


4.2.2 A Nondifferentiable Continuation Problem
Finally, we consider the problem of approximating the non-
differentiable curve H−1


λ (0), where


Hλ : R3 → R3


Hλ(x) =


0


B


B


@


‖x‖∞ − 1


x3 − 0.5 max(cos(2π min
i=1,2


|xi|), sin(2π min
i=1,2


|xi|))


x1 − 2λ + 1


1


C


C


A


,


(25)


and λ ∈ [0, 1]. This problem is at first sight not closely re-
lated to optimization, however, problems of that kind (but
harder ones) can occur in optimal control theory when solv-
ing Hamilton Jaboci Bellman (HJB) equations [2]. A HJB
equation is a particular partial differential equation which
has to be solved backward in time. Since such solutions are
typically not smooth, problem (25) can be viewed as a pos-
sible starting point of the new methods to that challenging
field.
Figure 3 shows a numerical result of the embedding algo-
rithm, where we have used x0 = [−1,−1, 0], tol = 0.001,
and ∆ = 0.001. That is, to trace the curve 1000 runs of
HCR have been performed successfully. The total number
of function calls was 4758, i.e., in average less than five func-
tion calls had to be spent for each optimization problem.


5. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed two different evolutionary
strategies for numerical continuation and have investigated
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Figure 2: Numerical result for homotopy (24) using
the embedding algorithm (above) respectively for
MOP (23) using the HCS (below).


Figure 3: Numerical result of the embedding algo-
rithm on problem (25).







their ability to solve both scalar and multi-objective op-
timization problems. The first method is an embedding
method which utilizes a hill climber which was adapted in
this paper for the root finding context. The resulting method
is capable of tracing the curve efficiently, but requires an ex-
ternal parameter to trace the curve. Further, in the context
of optimization, the first gradients of the objectives—e.g.,
to detect the KKT points of a given multi-objective opti-
mization problem—are required. The second method is a
multi-objectivization approach which overcomes both poten-
tial drawbacks and is capable of approximating the efficient
set of the auxiliary multi-objectivized problem without using
gradient information and without the use of an external pa-
rameter. It remains, however, to show the particular benefit
of this approach beyond its use for multi-objective optimiza-
tion problems.
Next to this question there are some interesting issues which
we would like to address in the future. There is for instance
the general improvement of the methods with respect to
their performance which involves the adaptive choice of the
design parameters. Further, we will investigate the poten-
tial of the new methods with respect to hybridizations with
other methods in order to obtain fast and efficient optimiza-
tion strategies. Finally, we seek to apply our new methods.
One interesting application could be to solve numerically
Hamilton Jacobi Bellman equations which arise in optimal
control and in stochastic programming.
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