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Computer Science Department, CINVESTAV-IPN CNRS, UMI 3175, UMR 7271

pescador@computacion.cs.cinvestav.mx denis.pallez@unice.fr

Carlos Ignacio Hernández Castellanos Carlos A. Coello Coello
Technology Department Computer Science Department,

Mutuo Financiera CINVESTAV-IPN
carlos@mutuofinanciera.com ccoello@cs.cinvestav.mx

Abstract—Offline parameter tuning (OPT) of multi-objective
evolutionary algorithms (MOEA) has the goal to find an appro-
priate set of parameters for solving a large number of problems.
According to the no free lunch theorem (NFL), no algorithm can
have the best performance in all classes of optimization problems.
However, it is possible to find an appropriate set of parameters of
an algorithm for solving a particular class of problems. For that
sake, we need to study how to estimate the aggregate quality
function for an algorithmic configuration assessed on a set of
optimization problems.

In this paper, we study robustness measures for dealing with
the parameter settings of stochastic algorithms. We focus on
decomposition-based MOEAs and propose to tune scalarizing
functions for solving some classes of problems based on the
Pareto front shapes using up to 7 objective functions. Based
on our experimental results, we were able to derive interesting
guidelines to evaluate the quality of algorithmic configurations
using a combination of descriptive statistics.

Index Terms—Offline parameter tuning, robustness measures,
multiobjective evolutionary algorithms, scalarizing functions.

I. INTRODUCTION

The challenge for offline parameter tuning (OPT) techniques
is to find the best parameter configuration of an evolutionary
algorithm that successfully solves a large number of multi-
objective optimization problems (MOPs). In multiobjective
evolutionary algorithms (MOEAs), each parameter has a sig-
nificant influence on their performance such as its rate of
convergence and on the quality of the solutions obtained.
OPT is subject to uncertainty according to two aspects:
1) the stochastic procedures involved in MOEAs, 2) the opti-
mal configuration for an MOEA optimizing a set of problem
instances at the same time.

The goal of this paper is to study robustness measures
used in the area of uncertainty [1], [2] to compute the
performance of an algorithmic configuration used in the offline
tuning methods. Our main contribution is to provide a set
of guidelines on the use of robustness measures for solving
multi-objective optimization problems (MOPs). We adopt a
particular case study to improve the performance of MOEA

based on decomposition (MOEA/D) and we employ an evo-
lutionary OPT tool which has been used in other studies [3]–
[5]. We focus on an important component of MOEA/D, the
scalarizing function (SF) which is a strategy to transform a
MOP into several single objective problems. Some SFs involve
additional parameters in R that require to be tuned according
to particular characteristics on the MOP such as the Pareto
front shape or the number of objective functions.

The remainder of this paper is organized as follows. Previ-
ous works on parameter settings are briefly discussed in sec-
tion II with a particular focus on MOPs detailed in section IV.
Then, uncertainty and robustness measures are introduced in
section III. Decomposition-based MOEAs based on scalarizing
functions are described in section V. Section VI presents our
methodology for studying robustness. Section VII presents our
results and their discussion. We finally conclude the paper and
present some possible paths for future work in section VIII.

II. PARAMETER SETTINGS

Performance of EAs is strongly related to the definition of
appropriate parameter values. Typically, before running an EA,
the user empirically determines the proper encoding, selection
mechanism, and evolutionary operators, as well as their nu-
merical parameters such as the population size, mutation and
crossover rates. There exist two main possibilities for dealing
with the parameter setting problem: offline parameter tuning
and the online parameter control strategies [6]. The first one
refers to selecting a set of parameter values which can be
established by hand according to the user’s prior experience
or applying experimental design methods. In these cases, the
same set of parameters is used in all the iterations of an
EA. The second strategy includes adaptive mechanisms where
the parameter values are modified using information gathered
during the evolutionary search process. Adaptive and self-
adaptive strategies are feedback-based approaches. The former
uses indicators to monitor the performance of the evolutionary
process. The second strategy encodes the parameter values in



each individual of the population and solves at the same time
the optimization and the configuration problems.

In this work, we focus on the OPT problem which can be
formalized as a 6-tuple T = (A,P,C,O, ψ, bmax) as follows:

• A is a target algorithm to be tuned. In this work, we
concentrate on MOEA/D, which is the most popular
decomposition-based MOEA;

• P is the set of parameters of A to be tuned. For instance,
if A is an EA, then population size, maximum number
of generations, crossover rate, etc. belong to P .

• C is the set of values for each parameter of P . An
instance c ∈ C is called a configuration of A;

• O is called a scenario and is a set of several prob-
lem instances (for example, {DTLZ1, DTLZ3, DTLZ5,
DTLZ7} from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [7]);

• ψ is a scalar fitness function used by T to asses the quality
of a configuration e.g., hypervolume (HV) [8], inverted
generational distance (IGD) [9] or the R2 [10] indicator.

• bmax is the maximum budget of function evaluations
available to tune A on O;

Here, the goal is to find the ‘best’ configuration c ∈ C,
based on ψ, for tuning A on a scenario O with bmax function
evaluations.

OPT is computationally expensive, but it is useful for
deriving knowledge about the relationships among parameters
involved in an EA. This procedure can tackle the prob-
lem from two perspectives: specialization or generalization
of algorithms. In the first perspective, given an algorithm’s
configuration, the aim is to find a subset of optimization
problems on which this algorithm obtains good results. In
the case of generalization of algorithms, the aim is to find
an algorithm configuration which solves the major quantity
of problems with different features [11]. Both perspectives
need to deal with the so-called no free lunch (NFL) theorem
which proves that, under certain assumptions, no optimization
algorithm is superior to any other on all possible optimization
problems [12].

During recent years, several tuning methods have been
designed to search automatically the most appropriate con-
figuration in the parameter values of the stochastic search
based algorithms. One of the first was the sequential parameter
optimization (SPO) [13] which is based on statistical tech-
niques such as design and analysis of computer experiments. In
[14]–[16], the so-called ParamILS method presented a steady
state algorithm that uses an iterated local search to improve
only categorical parameters using an initial configuration. The
relevance estimation and value calibration (REVAC) method
was proposed in [17]. This approach works with a population
of parameter configurations for estimating the distribution of
the target algorithm. Here, the relevance of each parameter is
determined according to the entropy measurement. Examples
of tuning tools that work on categorical and numerical param-
eters at the same time are the iterated racing for configuration
(I-RACE) framework [18] and the evolutionary algorithm
called EVOCA [19]. I-RACE samples a set of configurations

according to a particular distribution and incorporates an
iterative racing procedure for selecting the best configurations.
EVOCA is a steady state EA that, at each iteration generates
two new individuals via wheel-crossover and a local search
procedure. It can find good parameter values without requiring
an in-depth knowledge of parameter tuning methods.

III. UNCERTAINTY

The typical goal in optimization is to identify optimal solu-
tions. In the case of parameter settings, we want to optimize
the configuration c ∈ C of an MOEA on a scenario O. As
defined in section II, O contains several problems o1..k to be
optimized in their turn. However, the optimal configuration for
solving one problem oi can be poor for another problem oj of
one scenario O. Thus, the additional challenge is to have a set
of configurations that have a ‘good’ performance in a set of
scenarios. The main issue is how to define this performance.
To do so, we propose to use robustness measures, some of
the concepts of robust optimization [20], to solve the OPT
problem represented by Equation 1.

max
c∈C,o∈O

ψA(c, o) (1)

In order to do it, we substitute the nominal objective for
a robust measure that aggregates on the results from the
different problems measured by scalar fitness function ψ. In
the following, we present the robust measures that we use in
this work.
• Mean: is one of the most used in literature. With this

measure, we would be looking for the configuration that
works best in the mean of the cases. However, this
measure is not indicated when results contain outliers
since outlier value has a big impact on the mean value
itself.

• Median: is quite useful since it removes outliers. How-
ever, removing outliers would mean that we are not
interested in all cases but rather in most of them. Thus,
using this measure would mean that we are interested in
the configuration that works well for most scenarios but
it could fail completely in the others.

• Worst case: in this case, the fitness would be represented
by the worst result in the given scenario. This would
optimize over worst cases and thus ensure that the config-
uration would work at least with that quality. However,
this measure can be over-conservative, since the worst
case could never happen in practice.

Each of those measures has some advantages and drawbacks.
The decision to use them should include the preference of the
decision maker as well as the aim of the algorithm that we
are tuning.

Moreover, since the MOEA has uncertainty itself (the same
configuration can give different quality), it is also required
to treat it in the same form as for the scenario. We first
approximate the fitness for the MOEA and afterward for the
scenario. Namely, we combine: mean-mean, median-median,
best-worst, mean-worst, median-worst and worst-worst. We
make an emphasis on the worst-case since we are aiming for
one configuration that works in all problem instances.
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IV. MULTI-OBJECTIVE OPTIMIZATION

A MOP can be represented as follows:

Minimize f(x) :=
(
f1(x), f2(x), . . . , fm(x)

)
(2)

subject to x ∈ S, (3)

where S ⊂ IRn is the feasible region and each decision
variables vector x ∈ S is related to an objective vector
f(x) ∈ IRm. The solution to a MOP, called the Pareto optimal
set (POS), is given by:

POS := {x ∈ S : 6 ∃y ∈ S,y ≺ x}, (4)

and its image in IRm, is called the Pareto optimal front (POF).
Some MOPs have complicated characteristics that cause

difficulties to MOEAs for converging to the POS as a large
number of decision variables (large-scale MOPs) or a large
number of objective functions (many-objective problems).
Furthermore, there are several Pareto front shapes such as
linear, convex, concave, mixed, disconnected and degenerated
geometries (see Fig. 1). Also, multi-frontal problems can cause
a premature convergence for MOEAs, which results in the
generation of false Pareto fronts.

There are three main classes of MOEAs: based on Pareto
dominance, performance indicators or decomposition. The
last class has an efficient search ability to deal with many-
objective optimization problems in a low computational time.
However, the performance of decomposition-based MOEAs
strongly depends on a scalarizing function and a set of target
directions. The most popular decomposition-based MOEA is
MOEA/D [21], which have been widely used and modified
with the aim of improving its performance when solving a
wide variety of MOPs.

MOEA/D decomposes a MOP into several single-objective
subproblems which are solved in a collaborative manner.
Each solution from the population is associated with a search
direction (weight vector) to optimize a transformation method
called the scalarizing function (SF). Two goals should be
accomplished during the search process. The first goal is to
minimize the distance between a candidate solution and the
reference point (typically, the ideal vector) in order to achieve
convergence towards POF. The second goal is the use of

different search directions defined by a uniform distribution
around all regions in the objective space. It aims to promote
diversity for covering the entire POF. MOEA/D establishes
neighborhoods at each target direction and applies iteratively
a mating selection mechanism and evolutionary operators to
enhance individuals. After that, an update process modifies the
reference points and the current population according to the
SF values. The first version of MOEA/D used the simulated
binary crossover (SBX) and polynomial-based mutation (PM).

V. SCALARIZING FUNCTIONS

A scalarizing function (SF) is a mathematical programming
technique that transforms a MOP into a single-objective one.
Its goal is to combine a vector of objective functions
y = [f1, . . . , fm]T with a reference direction
λ = {λ1, . . . , λm} to obtain a scalar value g(y) : IRm → IR.

This paper is focused on SFs that can be stated as:

minimize g(f ′(x);λ) (5)
subject to x ∈ S, (6)

where λ is a weight vector that must satisfy
∑m
i=1 λ

i = 1
and λi ≥ 0 for all i ∈ {1, . . . ,m}. Each component value
represents the relative importance assigned to each objective
function.
f ′(x) is a transformation function (see equation (7)) to

handle negative or incommensurable objective functions.

f ′(x) := f(x)− z ∗, (7)

where z ∗ = [z1, · · · , zm]T is the ideal point that denotes the
optimum value of the ith objective functions of a MOP. An
estimation of the ideal point can be obtained by minimizing
each of the objective functions individually.

Next, we describe a set of SFs commonly used in
decomposition-based MOEAs, and we provide some infor-
mation that aims to provide a better understanding of the
impact of their model parameters for solving MOPs with
different Pareto front shapes. Table I shows six SFs compatible
with Pareto dominance which can handle convex, linear and
concave Pareto front shapes. Both CHE and ASF generate
at least weak Pareto optimal solutions and do not require
additional parameters. The AASF, PBI, EWC and VADS



TABLE I: Weighted and unconstrained scalarizing functions.

SF Minimize g(f ′(x);λ) := Parameter values

Chebyshev (CHE) [22] maxi
{
λi|yi|

}
-

Achievement
max

{
yi
λi

}
Scalarizing -Function (ASF) [23]
Augmented

max
{
yi
λi

}
+ α

∑
i
yi
λi

small
ASF (AASF) [24] α > 0

Penalty d1 + θd2, θ ∈ (0,∞)

Boundary where d1 :=
∣∣∣y • λ

‖λ‖

∣∣∣ suggested

Intersection (PBI) [21] and d2 :=
∥∥∥y − d1 λ

‖λ‖

∥∥∥ θ = 5

Exponential ∑
i

(
ep λi − 1

)
ep yi p ∈ [1,∞)Weighted

Criteria (EWC) [25]
Vector Angle ‖y‖(

λ
‖λ‖

•
y
‖y‖

)t t > 0
Distance suggested

Scaling (VADS) [26] t = 100

functions can avoid the generation of weak Pareto optimal
solutions introducing additional model parameters. However,
these parameters are very sensitive to the Pareto front shape
and the MOP’s dimensionality.

The parameter α in AASF should take small values. In [27],
it was recommended to set α ≈ 10−4. MOEAs that adopt this
scalarizing function are [27], [28]. The EWC function requires
a large value of p to achieve Pareto optimality, but this can
lead to numerical overflow [29]. In [30], EWC was used to
solve a problem related to a voltage distribution network. For
the VADS function, t = 100 was recommended by its authors.
The PBI function can produce uniformly distributed solutions
in objective space by setting appropriate values for θ. There are
several studies [31]–[33] that provided a sensitivity analysis of
PBI, varying θ ∈ [0.1, 100].

Figure 2 illustrates some boxplots that represent the effect of
the parameter sensitivity in the AASF and PBI functions. Here,
we use the MOEA/D framework with the same parameter
setting and only the SF varied. We compute the normalized
hypervolume on 30 independent runs for solving the DTLZ1,
DTLZ2 and DTLZ2−1 test functions. We can see that one
parameter value can be appropriate for a particular Pareto
front shape and can work poorly for others. This effect occurs
in the same way if we vary the MOP’s dimensionality. Such
sensitivity to parameter setting justifies the need to find and
optimize the ’best’ configuration when dealing with several
MOPs and same MOEA configuration.

VI. EXPERIMENTAL METHODOLOGY

The goal of our experiments is to study the effect of ro-
bustness measures cause in the OPT methods. To achieve this
goal, we use the descriptive statistics mentioned in section III
and the tuning tool called evolutionary calibrator (EVOCA)
to find the suitable scalarizing function (SF) and its model
parameters to reach the maximum performance into MOEA/D
framework. Our two particular goals are: 1) to verify which
measures are the most useful in three scenarios characterized
according to the Pareto front geometry, 2) to identify the most
robust configurations when scaling up the number of objective
functions in a MOP.
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Fig. 2: Examples of parameter sensitivity for the AASF
and PBI functions. Figures a) and b) show the normalized
hypervolume indicator for linear (DTLZ1), concave (DTLZ3)
and concave (DTLZ3−1) Pareto fronts.

According to the tuple presented in section II, we use the
next elements in our experimental OPT:
• A : The multi-objective evolutionary algorithm based on

decomposition (MOEA/D).
• P := {CHE,ASF,AASF,EWC, V ADS,PBI} with

their corresponding model parameter values defined in
the ranges α ∈ [0, 10.0], p ∈ [0.1, 10.0], t ∈ [1, 100], and
θ ∈ [0.1, 50.0].

• O := DTLZ1, DTLZ3, DTLZ3−1 from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [7] and the Lamé su-
perspheres (LS) test problems [34] varying the parameter
γ = {0.3, 0.5, 1.0, 2.0, 4.0} with the goal of achieving
diverse Pareto front shapes. We classify our test MOPs
in three different scenarios according to their Pareto front
geometry as follows.

1) convex = {DTLZ3−1, LS (γ = 0.3), LS (γ =
0.5)}

2) linear = {DTLZ1, LS (γ = 1.0)}
3) concave = {DTLZ3, LS (γ = 2.0), LS (γ = 4.0)}

We tested this approach for m = 3, 5, 7 objectives. The
number of decision variables was set to n = m+ 4.

• ψ := the normalized hypervolume (NHV), defined as:

NHV (A) :=
HV∏
i ri

, (8)

where HV (A, r) = L
(
∪µi=1 [A(i), r]

)
is the hypervolume

indicator [35]. L measures convergence towards the PF
and maximum spread through the union of hypercubes
formed by all non-dominated elements in A and a refer-



ence point r := (r1, . . . , rm)T . It is set to (2, . . . , 2)T in
all our test problems. A high NHV value is better.

• bmax := The maximum budget established in the EVOCA
algorithm is 10, 000 function evaluations and ten seeds
per test problem at each generation.

Table II shows the parameter values used by MOEA/D,
where m is the number of objectives, n is the number of
decision variables, H is a parameter used by the simplex lattice
design (SLD) method to generate uniform weight vectors.
popsize and NFE are the population size and number of
function evaluations used. B is the neighborhood size per
weight vector.

TABLE II: The parameter setting used by MOEA/D. The mark
p in column H means that the original set of weight vectors
generated by SLD is pruned in order to obtain the desirable
population size.

m n H popsize NFE B
3 7 15 136 60,000 27
5 9 6p 180 80,000 36
7 11 4 210 90,000 42

Algorithm 1 shows the general structure of EVOCA while
Algorithm 2 shows how we introduce the different robustness
measures. Mean, median or worst are aggregation functions
that could be used in place of σ or ω.

Algorithm 1: EVOCA(A,P )
Input : Metaheuristic A, Parameters P
Output: Population

1 Pop = Generate Initial Population;
2 Evaluate each configuration ∈ Pop using Algorithm 2;
3 while not termination criterion met do
4 New-Pop = Pop;
5 Child = Wheel-crossover(Pop);
6 Evaluate Child using Algorithm 2 ;
7 Replace worst individual by Child in New-Pop;
8 Mut-child = Mutation(Child);
9 Evaluate Mut-child using Algorithm 2;

10 if Mut-Child better than child then
11 Replace 2nd worst individual by Mut-child in

New-Pop
12 Pop=New-Pop;

In EVOCA, the chromosome is represented by a string
where each element corresponds to a parameter, and its value.
Thus, the string length is the number of parameters to be
tuned. In our experiments, it is 6 SFs and 4 model parameters.
The population size is computed considering the number of
parameters to be tuned and their initial domain sizes. The
population size adopted in EVOCA is 25.

EVOCA uses two operators: a wheel-crossover operator
that constructs one child from the whole population. It uses
a roulette wheel procedure [36] to select the value of the
gene of each offspring. The child generated replaces the worst
individual on the current population. The crossover procedure

Algorithm 2: EvaluateConf(c, O, S, ψ, σ, ω, A) ∈ R
Input : Configuration c, Scenario O, Seeds S

Fitness func. ψ, Aggregation func. σ, ω,
Algorithm A

Output: evaluate quality of one configuration
1 begin
2 Σ← ∅
3 foreach o ∈ O do
4 Ω← ∅
5 foreach s ∈ S do
6 apf ← A(c, o, s) // MOEA execution
7 Ω← Ω ∪ ψ(apf)

8 Σ← Σ ∪ ω(Ω)

9 return σ(Σ)

is performed at each iteration. The mutation operator is a hill
climbing first improvement procedure, which takes a copy
of the child generated by the crossover operator and tries
to improve it by modifying one of its parameter values.
The mutation operator is always applied. When a numerical
parameter is selected, it tries to randomly take a new value
within a continuous range that represents the parameter do-
main. The mutated child generated replaces the second worst
individual on the current population, in case of producing a
better performance.

VII. RESULTS

Table III shows the scalarizing function obtained by
EVOCA for each of the approaches in the different scenarios
related to the Pareto front shapes. It is interesting to see
that the approaches select not only different parameters for
the scalarizing function but also different functions in several
cases. This is an interesting result since it shows the impact
of changing the robustness measure that is adopted.

For all scenarios, the experimental results are shown in
Table IV. In gray, we show the best result among the different
robustness measures. An arrow upwards indicates that the
approach is outperformed in a significant way by the baseline
algorithm (EVOCA with mean-mean). An arrow downwards
means that the baseline algorithm outperforms the robustness
measure. Furthermore, Figures 3, 4 and 5 show the box plots
for the different scenarios using the hypervolume indicator
without applying a normalization process. Marks a, b, c, d, e,
f correspond to each robustness measures presented in Table
IV. We can see in Figure 3 that EVOCA’s recommendation
for convex scenario outperforms the baseline version only in
Lamé supersphere with α = 0.3 and α = 0.5 using median-
median and best-worst measures. But in multifrontal MOPs
median-median fails and other measures obtain similar results.
This is because the median statistics discard the outlier results.
Figure 4 shows the linear scenario, where there is an evident
tendency: the best-worst measure outperforms the baseline
version in MOPs with more than 3 objectives. Finally, we
obtain similar results in Figure 5, where the EVOCA’s rec-
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Fig. 3: Scenario with convex geometry and 3, 5, 7 objectives

ommendation improve the baseline version only in unimodal
MOPs.

From the results, it is possible to observe that the best-
worst approach, is capable of outperforming the base algorithm
in most cases when the problems are unimodal. A similar
case occurs with the median. However, for the multi-modal
problems we can observe a deterioration of the quality of
the results. This suggests that such problems should be in a
different scenario and have their own configuration to find
good solutions.

Also, we can notice that the configurations found work well
while increasing the number of objectives. Further, we can
observe that the different robustness measures outperform the
baseline algorithm in most of the problems (aside from the
multi-modal problems). This suggests that alternative measures
to treat uncertainty can have a positive impact while searching
for configurations for a set of scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a comparative study to
analyze the effect of different robustness measures in the
offline parameter tuning procedure applied to MOEA/D. We
found that AASF showed the best results for the convex case,
VADS for the concave case and PBI for the linear case. This
shows evidence that the shape of the Pareto front has an effect
on the scalarizing function to be used. Furthermore, the values
for the scalarizing functions are different among the robustness
measures. We have observed that the median and best-worst
cases have interesting results for the unimodal problems. Thus,
they are worth studying a bit further.

As part of our future work, we are interested in scaling this
study with the number of objectives in order to find robust
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Fig. 5: Scenario with concave geometry and 3, 5, 7 objectives



TABLE III: EVOCA’s recommendation for different scenarios using 3,5,7 objectives

Geo mean-mean median-median best-worst worst-worst mean-worst median-worst
Convex AASF (α = 5.3727) EWC (p = 7.2) CHE AASF (α = 1.5305) AASF (α = 0.6977) AASF (α = 1.4065)
Concave VADS (p = 11.9) PBI (θ = 8.2) PBI (θ = 2.6) VADS (p = 6.3) VADS (p = 11.9) VADS (p = 12.1)
Linear PBI (θ = 15.9) PBI (θ = 10.4) AASF (α = 0.0469) PBI (θ = 4.2) PBI (θ = 8.4) PBI (θ = 11.3)

TABLE IV: Results reported by EVOCA with different robust measures for different scenarios
Sc Geo Dim mean-mean median-median best-worst worst-worst mean-worst med-worst

C
on

ve
x

L γ = 0.3
03D 0.99949(7.6989e-06) ↑ 0.99994(2.4944e-08) ↑0.9968(7.6713e-07) ↓0.99937(1.6849e-05) ↓0.99916(2.2555e-05) ↓0.99935(1.4162e-05)
05D 0.99978(3.6113e-06) ↑ 1.0000(4.0000e-08) ↑0.99999(4.4408e-16) ↓0.99976(5.9568e-06) ↓0.99973(1.1476e-05) ↓0.99976(6.4822e-06)
07D 0.99982(8.5306e-06) ↑ 1.0000(1.7950e-08) ↑ 1.0000(0.0000e+00) ↓0.99981(8.6050e-06) ↓0.99979(1.0696e-05) ↓0.99981(9.7633e-06)

L γ = 0.5
03D 0.99778(3.6635e-06) ↓0.99758(4.4021e-07) ↓0.99557(3.0983e-06) ↓0.99768(9.3282e-06) ↓0.99748(1.5878e-05) ↓0.99767(8.3159e-06)
05D 0.99976(9.1288e-06) ↑ 0.99997(5.1207e-08) ↑0.99993(2.5377e-07) ↓0.99973(1.0707e-05) ↓0.99968(1.9492e-05) ↓0.99973(1.0752e-05)
07D 0.99981(2.0659e-05) ↑ 0.99999(3.3306e-16) ↑0.99999(4.4457e-06) ↓0.99978(2.2967e-05) ↓0.99975(2.4902e-05) ↓0.99977(2.8233e-05)

DTLZ3−1
03D 0.99335(2.0098e-04) ↓0.0000(0.0000e+00) ↓0.99010(3.0459e-04) 0.99334(1.6041e-04) 0.99340(1.3607e-04) 0.99342(7.1454e-05)
05D 0.99991(1.4226e-05) ↓0.0000(0.0000e+00) ↓0.99978(1.0693e-05) ↓0.99989(2.1022e-05) ↓0.99983(4.3120e-05) ↓0.99989(2.0928e-05)
07D 0.99996(1.4068e-05) ↓0.0000(0.0000e+00) ↓0.99983(2.1933e-04) ↓0.99995(2.5509e-05) ↓0.99994(2.3587e-05) ↓0.99995(2.0053e-05)

L
in

ea
r L γ = 1.0

03D 0.97481(9.1966e-07) 0.97481(3.1155e-07) ↓0.97481(1.1706e-06) 0.97481(2.3795e-07) 0.97481(2.6042e-07) 0.97481(3.3757e-07)
05D 0.99886(1.4922e-07) 0.99886(1.4083e-07) ↑ 0.99886(4.1831e-07) 0.99886(2.8511e-07) 0.99886(1.5205e-07) 0.99886(1.3743e-07)
07D 0.99994(2.8481e-07) 0.99994(4.0573e-07) ↑ 0.99994(3.3306e-16) ↓0.99994(9.7262e-07) ↓0.99994(4.9379e-07) ↑0.99994(2.5289e-07)

DTLZ1
03D 0.99681(3.2364e-05) 0.99681(2.5263e-05) ↑ 0.99683(1.1418e-05) 0.99681(2.3043e-05) 0.99680(2.7473e-05) 0.99681(2.3141e-05)
05D 0.99995(3.9159e-06) 0.99995(3.7555e-06) ↑ 0.99996(5.0619e-07) ↓0.99995(3.9932e-06) 0.99995(2.3360e-06) ↑0.99995(3.7648e-06)
07D 0.99999(2.5451e-06) 0.99999(3.7277e-06) ↑ 0.99999(4.3969e-07) ↓0.99997(1.1753e-05) ↓0.99998(4.1686e-06) 0.99999(2.9046e-06)

C
on

ca
ve

L γ = 2.0
03D 0.92821(2.0129e-06) 0.92821(1.2526e-06) ↑ 0.92821(1.3764e-06) ↑ 0.92821(1.0095e-06) ↑0.92821(2.0129e-06) 0.92821(2.0137e-06)
05D 0.99017(1.2045e-06) 0.99017(9.6148e-07) ↑ 0.99017(6.5248e-07) 0.99017(1.0589e-06) ↑0.99017(1.2045e-06) 0.99017(1.1618e-06)
07D 0.99863(1.5886e-06) ↑0.99863(1.0217e-06) ↑ 0.99863(7.1644e-07) 0.99863(2.2111e-06) ↑0.99863(1.5886e-06) 0.99863(1.9602e-06)

L γ = 4.0
03D 0.89376(1.8281e-05) ↑ 0.89419(1.3943e-05) ↑0.89419(1.2420e-05) ↓0.89328(1.2611e-05) ↑0.89376(1.8281e-05) 0.89377(1.8035e-05)
05D 0.97715(1.1496e-05) ↑ 0.97754(8.2635e-06) ↑0.97753(1.0646e-05) ↓0.97682(1.0701e-05) ↑0.97715(1.1496e-05) ↑0.97716(1.2953e-05)
07D 0.99482(5.2873e-05) ↑ 0.99500(3.4305e-05) ↑0.99494(6.3347e-05) ↓0.99479(4.2571e-05) ↑0.99482(5.2873e-05) 0.99483(4.2165e-05)

DTLZ3
03D 0.92623(8.8163e-04) ↓0.91765(6.6721e-03) ↓0.92330(1.9209e-03) 0.92632(6.7448e-04) ↑0.92623(8.8163e-04) 0.92643(1.0158e-03)
05D 0.98925(3.7990e-04) ↓0.66321(4.5688e-01) ↓0.98887(4.2865e-04) 0.98921(3.2035e-04) ↑ 0.98925(3.7990e-04) 0.98907(4.3676e-04)
07D 0.99051(3.6548e-02) ↓0.67700(4.3885e-01) ↓0.96755(1.1470e-01) ↑ 0.99781(3.7914e-04) ↑0.99051(3.6548e-02) 0.93313(2.0597e-01)

configurations that scale with the number of objectives. Fur-
thermore, we intend to increase the number of test problems
and their characteristics. Our preliminary results suggest that
multi-modal problems deserve a special scenario. Finally, we
plan to use more sophisticated robustness measures and to use
them as a starting point for the design of self-adaptive models.
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Morales, M.-C. Riff, and C. A. Coello Coello, An Overview of Weighted
and Unconstrained Scalarizing Functions. Cham: Springer International
Publishing, 2017, pp. 499–513.

[6] A. Eiben and S. Smit, “Parameter tuning for configuring
and analyzing evolutionary algorithms,” Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 19 – 31, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210650211000022

[7] S. Huband, P. Hingston, L. Barone, and L. While, “A Review of
Multiobjective Test Problems and a Scalable Test Problem Toolkit,”
IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp.
477–506, October 2006.

[8] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolution-
ary Algorithms—A Comparative Study,” in Parallel Problem Solving
from Nature V, A. E. Eiben, Ed. Amsterdam: Springer-Verlag,
September 1998, pp. 292–301.

[9] C. A. Coello Coello and N. Cruz Cortés, “Solving Multiobjective
Optimization Problems using an Artificial Immune System,” Genetic
Programming and Evolvable Machines, vol. 6, no. 2, pp. 163–190, June
2005.

[10] M. P. Hansen and A. Jaszkiewicz, “Evaluating the quality of approxi-
mations to the non-dominated set,” Technical University of Denmark,
Tech. Rep. IMM-REP-1998-7, March 1998.

[11] S. K. Smit and A. E. Eiben, “Parameter tuning of evolutionary al-
gorithms: Generalist vs. specialist,” in Applications of Evolutionary
Computation, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt,
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