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Abstract- This paper reviews some of the most popular
evolutionary multiobjective optimization techniques cur-
rently reported in the literature, indicating some of their
main applications, their advantages, disadvantages, and
degree of aplicability. Finally, some of the most promising
areas of future research are briefly discussed.


1 Introduction


Since the pioneering work of Rosenberg in the late 1960s re-
garding the possibility of using genetic-based search to deal
with multiple objectives [1], this new area of research (now
called Evolutionary Multi-Objective Optimization, or EMOO
for short) has grown considerably as indicates the notable in-
crement (mainly in the last 15 years) of technical papers in
international conferences and peer-reviewed journals, special
sessions in international conferences and interest groupsin
the Internet1.


Multiobjective optimization is with no doubt a very im-
portant research topic both for scientists and engineers, not
only because of the multiobjective nature of most real-world
problems, but also because there are still many open ques-
tions in this area. In fact, there is not even a universally ac-
cepted definition of “optimum” as in single-objective opti-
mization, which makes it difficult to even compare results of
one method to another, because normally the decision about
what the “best” answer is corresponds to the so-called (hu-
man)decision maker.


Evolutionary algorithms seem particularly suitable to
solve multiobjective optimization problems because they deal
simultaneously with a set of possible solutions (the so-called
population) which allows to find an entire set of Pareto opti-
mal solutions in a single run of the algorithm, instead of hav-
ing to perform a series of separate runs as in the case of the
traditional mathematical programming techniques. Addition-
ally, evolutionary algorithms are less succeptible to the shape
or continuity of the Pareto front, whereas these two issues are
a real concern for mathematical programming techniques.


In this paper we will try to provide a quick review of the
most important work performed in this area, indicating some
of the current research trends and the most important areas of
future research.


1The author maintains a list on Evolutionary MultiobjectiveOptimization
at: http://www.lania.mx/˜ccoello/EMOO/EMOObib.html


2 Statement of the Problem


Multiobjective optimization (also called multicriteria opti-
mization, multiperformance or vector optimization) can be
defined as the problem of finding [2]:


a vector of decision variables which satis-
fies constraints and optimizes a vector function
whose elements represent the objective func-
tions. These functions form a mathematical de-
scription of performance criteria which are usu-
ally in conflict with each other. Hence, the term
“optimize” means finding such a solution which
would give the values of all the objective func-
tions acceptable to the designer.


Formally, we can state it as follows:
We want to find the vector�x� = [x
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T is the vector of decision vari-
ables.


In other words, we wish to determine from among the set
F of all numbers which satisfy (1) and (2) the particular set
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which yields the optimum values of all the ob-
jective functions.


3 Pareto Optimum


The concept ofPareto optimumwas formulated by Vilfredo
Pareto in the XIX century [3], and constitutes by itself the
origin of research in multiobjective optimization. We say that
a point�x� 2 F is Pareto optimalif for every �x 2 F either,
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In words, this definition says that�x� is Pareto optimal if
there exists no feasible vector�x which would decrease some
criterion without causing a simultaneous increase in at least
one other criterion. Unfortunately, the Pareto optimum al-
most always gives not a single solution, but rather a set of
solutions callednon-inferioror non-dominatedsolutions.


3.1 Pareto Front


The minima in the Pareto sense are going to be in the bound-
ary of the design region, or in the locus of the tangent points
of the objective functions. In Figure 1, a bold line is used to
mark this boundary for a biobjective problem. The region of
points defined by this bold line is called thePareto Front. In
general, it is not easy to find an analytical expression of the
line or surface that contains these points, and the normal pro-
cedure is to compute the pointsFk and their corresponding
f(F


k


). When we have a sufficient amount of these, we may
proceed to take the final decision.


4 Some of the Most Important Approaches


Due to obvious space limitations, we cannot enumerate here
all the different EMOO approaches that have been proposed
in the literature2, and we will limit our study to the ap-
proaches that have been more popular among researchers:


� Aggregating functions


� Schaffer’s VEGA


� Fonseca and Fleming’s MOGA


� Srinivas and Deb’s NSGA


� Horn and Nafpliotis’ NPGA


� Target vector approaches


4.1 Aggregating functions


Knowing that a genetic algorithm needs scalar fitness infor-
mation to work, it is almost natural to propose a combination
of all the objectives into a single one using either an addition,
multiplication or any other combination of arithmetical oper-
ations that we could devise. An example of this approach is a
sum of weights of the form:


min
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� 0 are the weighting coefficients represent-
ing the relative importance of the objectives. It is usually
assumed that
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2The interested reader should refer to [4, 5] for more detailed surveys of
EMOO approaches.


4.1.1 Applications


Syswerda and Palmucci [6] used weights in their fitness func-
tion to add or subtract values during the schedule evaluation
of a resource scheduler, depending on the existence or ab-
sence of penalties (constraints violated). Jakob et al. [7]used
a weighted sum of the several objectives involved in a task
planning problem : to move the tool center point of an indus-
trial robot to a given location as precisely and quickly as pos-
sible, avoiding certain obstacles and aiming to produce a path
as smooth and short as possible. Jones et al. [8] used weights
for their genetic operators in order to reflect their effective-
ness when a GA was applied to generate hyperstructures from
a set of chemical structures. Wilson & Macleod [9] used this
approach as one of the methods incorporated into a GA to
design multiplierless IIR filters in which the two conflicting
objectives were to minimize the response error and the im-
plementation cost of the filter. Liu et al. [10] used this tech-
nique to optimize the layout and actuator placement of a 45-
bar plane truss in which the objectives were to minimize the
linear regulator quadratic control cost, the robustness and the
modal controllability of the controlled system subject to to-
tal weight, asymptotical stability and eigenvalues constraints.
Yang and Gen [11] used a weighted sum approach to solve a
bicriteria linear transportation problem. More recently,Gen
et al. [12, 13] extended this approach to allow more than
two objectives, and added fuzzy logic to handle the uncer-
tainty involved in the decision making process. A weighted
sum is still used in this approach, but it is combined with
a fuzzy ranking technique that helps to identify Pareto solu-
tions, since the coefficients of the objectives are represented
with fuzzy numbers reflecting the existing uncertainty regard-
ing their relative importance.


4.1.2 Strengths and weaknesses


This method was the first technique developed for the genera-
tion of non-inferior solutions for multiobjective optimization.
This is an obvious consequence of the fact that it was implied
by Kuhn and Tucker in their seminal work on numerical op-
timization [14]. The main strength of this method is its effi-
ciency (computationally speaking), and its suitability togen-
erate a strongly non-dominated solution that can be used as an
initial solution for other techniques. Its main weakness isthe
difficulty to determine the appropriate weights that can ap-
propriately scale the objectives when we do not have enough
information about the problem, particularly if we consider
that any optimal point obtained will be a function of such
weights. Still more important is the fact that this approach
does not generate proper Pareto optimal solutions in the pres-
ence of non-convex search spaces regardless of the weights
used [15].


4.2 Schaffer’s VEGA


David Schaffer [16] extended Grefenstette’s GENESIS pro-
gram [17] to include multiple objective functions. Schaffer’s
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Figure 1: An example of a problem with two objective functions. The Pareto front is marked with a bold line.


approach was to use an extension of the Simple Genetic Algo-
rithm (SGA) that he called theVector Evaluated Genetic Al-
gorithm(VEGA), and that differed of the first only in the way
in which selection was performed. This operator was modi-
fied so that at each generation a number of sub-populations
was generated by performing proportional selection accord-
ing to each objective function in turn. Thus, for a prob-
lem with k objectives,k sub-populations of sizeN=k each
would be generated (assuming a total population size ofN ).
These sub-populations would be shuffled together to obtain a
new population of sizeN , on which the GA would apply the
crossover and mutation operators in the usual way. Schaffer
realized that the solutions generated by his system were non-
dominated in a local sense, because their non-dominance was
limited to the current population, and while a locally domi-
nated individual is also globally dominated, the converse is
not necessarily true [16]. An individual who is not domi-
nated in one generation may become dominated by an indi-
vidual who emerges in a later generation. Also, he noted a
problem that in genetics is known as “speciation” (i.e., we
could have the evolution of “species” within the population
which excel on different aspects of performance). This prob-
lem arises because this technique selects individuals who ex-
cel in one dimension of performance, without looking at the
other dimensions. The potential danger doing that is that we
could have individuals with what Schaffer calls “middling”
performance3 in all dimensions, which could be very useful
for compromise solutions, but that will not survive under this
selection scheme, since they are not in the extreme for any
dimension of performance (i.e., they do not produce the best


3By “middling”, Schaffer meant an individual with acceptable perfor-
mance, perhaps above average, but not outstanding for any ofthe objective
functions.


value for any objective function, but only moderately good
values for all of them). Speciation is undesirable because
it is opposed to our goal of finding a compromise solution.
Schaffer suggested some heuristics to deal with this problem.
For example, to use a heuristic selection preference approach
for non-dominated individuals in each generation, to protect
our “middling” chromosomes. Also, crossbreeding among
the “species” could be encouraged by adding some mate se-
lection heuristics instead of using the random mate selection
of the traditional GA.


4.2.1 Applications


Ritzel and Wayland [15] used a variation of VEGA in which
they incorporated a parameter to control the selection ratio.
In the case of the groundwater pollution containment prob-
lem that Ritzel and Wayland solved, there were only two ob-
jectives, and the selection ratio was defined as the ratio of the
fraction of strings selected on the basis of the first objective
(reliability) to the fraction selected via the second objective
(cost). Surry et al. [18] proposed an interesting application
of VEGA to model constraints in a single-objective optimiza-
tion problem to avoid the need of a penalty function. Surry
et al., however, modified the standard procedure of VEGA
and introduced a form of ranking based on the number of
constraints violated by a certain solution, and they reported
that their approach worked well in the optimization of gas
supply networks, since the tendency of VEGA to favor cer-
tain solutions can actually be an advantage when handling
constraints, because in that case we want to favor precisely
any solution that does not violate any constraint over those
which do. Cvetković et al. [19] proposed several approaches
to overcome VEGA’s problems. For example, to wait for a
certain amount of generations before shuffling together the







population, or avoid shuffling the individuals, and instead
copy or migrate a certain amount of individuals from one sub-
population to another. They used these and other traditional
multiobjective optimization approaches for preliminary air-
frame design. Tamaki et al. [20, 21] developed a technique in
which at each generation, non-dominated individuals in the
current population are kept for the following generation. This
approach is really a mixture of Pareto selection and VEGA,
because if the number of non-dominated individuals is less
that the population size, the remainder of the population in
the following generation is filled applying VEGA to the dom-
inated individuals. On the other hand, if the number of the
non-dominated individuals exceeds the population size, indi-
viduals in the following generation are selected among the
non-dominated individuals using VEGA. In a later version of
this algorithm, called Pareto Reservation strategy, Tamaki et
al. [21] used also fitness sharing among the non-dominated
individuals to maintain diversity in the population.


4.2.2 Strengths and weaknesses


Although Schaffer reported some success, and the main
strength of this approach is its simplicity, Richardson et al.
[22] noted that the shuffling and merging of all the sub-
populations corresponds to averaging the fitness components
associated with each of the objectives. Since Schaffer used
proportional fitness assignment [23], these fitness compo-
nents were in turn proportional to the objectives themselves
[24]. Therefore, the resulting expected fitness corresponded
to a linear combination of the objectives where the weights
depended on the distribution of the population at each gen-
eration as shown by Richardson et al. [22]. The main con-
sequence of this is that when we have a concave trade-off
surface certain points in concave regions will not be found
through this optimization procedure in which we are using
just a linear combination of the objectives, and it has been
proved that this is true regardless of the set of weights used
[22]. Therefore, the main weakness of this technique is its
inability to produce Pareto-optimal solutions in the presence
of non-convex search spaces.


4.3 Fonseca and Fleming’s MOGA


Fonseca and Fleming [25] have proposed a scheme in which
the rank of a certain individual corresponds to the number of
chromosomes in the current population by which it is domi-
nated. Consider, for example, an individualx
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at generation
t, which is dominated byp(t)
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individuals in the current gen-
eration. Its current position in the individuals’ rank can be
given by [25]:


rank(x
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All non-dominated individuals are assigned rank1, while
dominated ones are penalized according to the population
density of the corresponding region of the trade-off surface.


Fitness assignment is performed in the following way
[25]:


1. Sort population according to rank.


2. Assign fitness to individuals by interpolating from the
best (rank1) to the worst (rankn � N ) in the way pro-
posed by Goldberg [23], according to some function,
usually linear, but not necessarily.


3. Average the fitnesses of individuals with the same rank,
so that all of them will be sampled at the same rate.
This procedure keeps the global population fitness con-
stant while maintaining appropriate selective pressure,
as defined by the function used.


As Goldberg and Deb [26] point out, this type of blocked
fitness assignment is likely to produce a large selection pres-
sure that might produce premature convergence. To avoid
that, Fonseca and Fleming used a niche-formation method to
distribute the population over the Pareto-optimal region,but
instead of performing sharing on the parameter values, they
have used sharing on the objective function values [27].


4.3.1 Applications


Chen Tan and Li [28] reported success in the use of MOGA
for the multiobjective optimization of ULTIC controllers that
satisfy a number of time domain and frequency domain spec-
ifications. Also, Chipperfield and Fleming [29] reported suc-
cess in using MOGA for the design of a multivariable con-
trol system for a gas turbine engine. Obayashi [30] used
Pareto ranking with phenotypic sharing andbest-Nselection
(the bestN individuals are selected for the next generation
amongN parents andN children) for the aerodynamic de-
sign of compressor blade shapes. Rodrı́guez Vázquez et al.
[31] extended MOGA to use it in genetic programming, in-
troducing the so-called MOGP (Multiple Objective Genetic
Programming). Genetic programming [32] replaces the tra-
ditional linear chromosomic representation by a hierarchical
tree representation that, by definition, is more powerful, but
also requires larger population sizes and specialized opera-
tors. MOGP was used for the identification of non-linear
model structures, as an alternative that the authors reported
to work better (in terms of representation power) than the use
of the conventional linear representation of MOGA that they
had attempted before [33]. Aherne et al. [34] used MOGA to
optimize the selection of parameters for an object recognition
scheme called the Pairwise Geometric Histogram paradigm.
Todd and Sen [35] used a variant of MOGA for the pre-
planning of containership layouts (a large scale combinatorial
problem). In Todd and Sen’s approach, a population of non-
dominated individuals is kept and updated at each generation,
removing individuals that become dominated and duplicates.
The traditional genetic operators and sharing are applied only
to this population. Niche sizes are computed automatically
for each criterion by substracting the maximum value for that
criterion from the minimum and dividing it by the population







size. Crossover was restricted so that only individuals that
were very similar could mate, and because of the permuta-
tions encoded, a repair algorithm had to be used afterwards.
Finally, a heuristic mutation that basically defined rules to ex-
change bit positions had to be used to avoid premature con-
vergence of the population.


4.3.2 Strengths and weaknesses


The main strengths of MOGA is that is efficient and rela-
tively easy to implement [36]. Its main weakness is that, as all
the other Pareto ranking techniques, its performance is highly
dependent on an appropriate selection of the sharing factor.
However, it is important to add that Fonseca and Fleming [25]
have developed a good methodology to compute such value
for their approach.


4.4 Srinivas and Deb’s NSGA


The Non-dominated Sorting Genetic Algorithm (NSGA) was
proposed by Srinivas and Deb [37], and is based on several
layers of classifications of the individuals. Before selection is
performed, the population is ranked on the basis of nondom-
ination: all nondominated individuals are classified into one
category (with a dummy fitness value, which is proportional
to the population size, to provide an equal reproductive po-
tential for these individuals). To maintain the diversity of the
population, these classified individuals are shared with their
dummy fitness values. Then this group of classified individu-
als is ignored and another layer of nondominated individuals
is considered. The process continues until all individualsin
the population are classified. A stochastic remainder propor-
tionate selection was used for this approach. Since individu-
als in the first front have the maximum fitness value, they al-
ways get more copies than the rest of the population. This al-
lows to search for nondominated regions, and results in quick
convergence of the population toward such regions. Sharing,
by its part, helps to distribute it over this region. The effi-
ciency of NSGA lies in the way in which multiple objectives
are reduced to a dummy fitness function using a nondomi-
nated sorting procedure. With this approach, any number of
objectives can be solved [27], and both maximimization and
minimization problems can be handled.


4.4.1 Applications


Périaux et al. [38] used the NSGA to find an optimal distribu-
tion of active control elements which minimizes the backscat-
tering of aerodynamic reflectors. Vedarajan et al. [39] used
the NSGA for investment portfolio optimization, but inter-
estingly they used binary tournament selection instead of
stochastic remainder selection as suggested by Srinivas and
Deb [37]. The authors claim that this approach worked well
in their examples, although they do not provide any argument
for their choice of selection strategy. Tournament selection
is expected to introduce a high selection pressure that may
dilute the effect of sharing. However, since Vedarajan et al.


used fairly large population sizes (above 1000 individuals),
the counter-effect of tournament selection may had been ab-
sorbed by the extra individuals in the population. Michielssen
and Weile [40] used also the NSGA to design an electromag-
netic system.


4.4.2 Strengths and weaknesses


The main strength of this technique is that can handle any
number of objectives, and that does sharing in the parame-
ter value space instead of the objective value space, which
ensures a better distribution of individuals, and allows mul-
tiple equivalent solutions exist. Some researchers [36] have
reported that its main weakness is that it is more inefficient
(both computationally and in terms of quality of the Pareto
fronts produced) than MOGA, and more sentitive to the value
of the sharing factor�


share


. Other authors [41, 42] report
that the NSGA performed quite well in terms of “coverage”
of the Pareto front (i.e., it spreads in a more uniform way
the population over the Pareto front) when applied to the 0/1
knapsack problem, but in their experiments no comparisons
with MOGA were provided.


4.5 Horn and Nafpliotis’ NPGA


Horn and Nafpliotis [43] proposed a tournament selection
scheme based on Pareto dominance. Instead of limiting the
comparison to two individuals, a number of other individu-
als in the population was used to help determine dominance
(typically around 10). When both competitors were either
dominated or non-dominated (i.e., there was a tie), the result
of the tournament was decided through fitness sharing [44].
Population sizes considerably larger than usual with otherap-
proaches were used so that the noise of the selection method
could be tolerated by the emerging niches in the population
[24].


Horn and Nafpliotis [43] arrived at a form of fitness shar-
ing in the objective domain, and suggested the use of a metric
combining both the objective and the decision variable do-
mains, leading to what they callednested sharing.


4.5.1 Applications


Belegundu et al. [45] used the NPGA for the design of lam-
inated ceramic composites. Poloni and Pediroda [46] used
it for the design of a multipoint airfoil that has its minimum
drag at two given lift values with a constraint in the maxi-
mum allowed pitching moment. A variation of the NPGA
was proposed by Quagliarella and Vicini [47]. They intro-
duced the dominance criteria of the problem in the selection
mechanism (as in the NPGA), but then selected the individ-
uals to be reproduced to generate the following population
using a random walk operator. This obviously produces a lo-
cally dominating individual rather than a globally dominating
one. Additionally, if more than one non dominated individual
is found, then the first one encountered is selected (instead
of doing sharing like in the NPGA). At the end of every new







generation, the set of Pareto optimal solutions is updated and
stored. They used this approach for airfoil design [47].


4.5.2 Strengths and weaknesses


Since this approach does not apply Pareto selection to the en-
tire population, but only to a segment of it at each run, its
main strengths are that is very fast and that it produces good
non-dominated fronts that can be kept for a large number of
generations [36]. However, its main weakness is that besides
requiring a sharing factor, this approach also requires a good
choice of the size of the tournament to perform well, compli-
cating its appropriate use in practice.


4.6 Target Vector Approaches


Under this name we will consider approaches in which the de-
cision maker has to assign targets or goals that he/she wishes
to achieve for each objective. The most popular techniques
included here are: Goal Programming [48, 49], Goal Attain-
ment [9, 50] and the min-max approach [51, 52, 53]. These
techniques will yield a dominated solution if the goals desired
are chosen in the feasible domain, which is a condition that
might certainly limit their applicability.


4.6.1 Applications


Wilson & MacLeod [9] used goal-attainment as another of
the methods incorporated into their GA to design multiplier-
less IIR filters. Wienke et al. [54] used goal-programming
in combination with a genetic algorithm to optimize simulta-
neously the intensities of six atomic emission lines of trace
elements in alumina powder as a function of spectroscopic
excitation conditions. Eric Sandgren [55] also used goal pro-
gramming coupled with a genetic algorithm to optimize plane
trusses and the design of a planar mechanism. Coello and
Christiansen applied a weighted min-max approach to the op-
timization of I-beams [56] and manufacturing problems [53],
and to the design of a robot arm [52]. Hajela and Lin [51]
applied a weighted min-max approach to several structural
optimization problems.


4.6.2 Strengths and weaknesses


The main strength of these methods is their efficiency (com-
putationally speaking) because they do not require any non-
dominance comparisons. However, their main weakness is
the definition of the goals (and probably weights for each ob-
jective). These techniques have also been criticized for not
being able to deal with non-convex search spaces [5].


5 Theory


Not much theoretical work has been performed in this area,
despite the large amount of publications reported in the lit-
erature, since most of them deal with either applications or


new variations of existing techniques. The most important
theoretical work in this area is easily identified:


� Fonseca and Fleming [25, 57, 58] have provided some
important (general) concepts on Pareto ranking, non-
dominance, and ways to determine sharing factors and
mating restriction parameters.


� Horn [59, 60] and Horn and Nafpliotis [61] have pro-
vided important guidelines to choose appropriate val-
ues for the sharing factor.


� Rudolph [62] and Van Veldhuizen and Lamont [63]
have provided some theoretical analysis of conver-
gence towards the Pareto set in an attempt to define the
limits of GA-based search in this domain.


Obviously, a lot of work remains to be done regarding
theory of EMOO techniques. First, it would be desirable
to perform a rigorous and detailed analysis of some of the
most common EMOO approaches. Apparently, Fonseca and
Fleming’s MOGA is a good candidate for this sort of detailed
mathematical analysis [5]. Another important theoreticalas-
pect that deserves attention is the analysis of the size of the
Pareto front with respect to the objectives. Although some
researchers [57, 59] have implied that the size of the Pareto
front grows with the number of objectives, some recent work
by Van Veldhuizen and Lamont [5, 63] indicate that the num-
ber of points in the Pareto front really depends more on the
front’s shape than on the number of objectives.


It is also required more work on niching and fitness shar-
ing so that more accurate sharing factors can be easily de-
fined. Finally, there is a need for detailed studies of the dif-
ferent aspects involved in the parallelization of EMOO ap-
proaches (e.g., load balancing, impact on Pareto convergence,
performance issues, etc.), including new algorithms that are
more suitable for parallelization than those currently in use.


6 Test Functions


A very important aspect of this research area that has been
generally disregarded in the technical literature is the use
of appropriate test functions. For some reason, many re-
searchers have tested their approaches only with the two clas-
sic test functions provided by Schaffer in his seminal work on
EMOO [16]. These functions are not only very simple (they
have only two objectives), but are also unconstrained and do
not show any of the most important aspects that would be
interesting to analyze using an EMOO approach (e.g., con-
cavity or discontinuity of the Pareto front).


In this direction, Deb [64, 65] has recently proposed ways
to create controllable test problems for evolutionary multi-
objective optimization techniques using single-objective op-
timization problems as a basis. This is an interesting pro-
posal that could allow to transform deceptive and massively
multimodal problems into very difficult multiobjective opti-
mization problems. Van Veldhuizen and Lamont [5] have
also proposed some guidelines to design a test function suite
for evolutionary multiobjective optimization techniques, and







have included in a technical report some sample test problems
(mainly combinatorial optimization problems) [5].


Using benchmark problems such as those proposed by
Deb [64, 65] and Van Veldhuizen & Lamont [5], it should be
possible to perform detailed studies of performance of differ-
ent GAs (assuming certain quality measures) which are also
notoriously lacking in the technical literature (see Van Veld-
huizen and Lamont [5] for a detailed account of the few ex-
isting comparative studies of EMOO techniques).


7 Metrics


It is very important to define good metrics to measure the
effectiveness of an EMOO technique. The main proposals so
far are the following:


� To enumerate the entire intrinsic search space using
parallel processing techniques [5] so that we can know
the true Pareto front within the representation used. If
we know the true Pareto front, we can compare our re-
sults against it, and devise different metrics for esti-
mating how well is our GA performing (e.g., Van Veld-
huizen and Lamont [63] proposed the so-calledgener-
ational distance, which represents how far is a certain
solution from the true Pareto front).
This approach might work with relatively short binary
strings (Van Veldhuizen [5] reports success with strings
� 26 bits), but might not be suitable when using al-
phabets of higher cardinality (e.g., real-coded GAs) or
longer binary strings.


� Srinivas and Deb [27] proposed to measure the
“spread” of points along the Pareto front using a sta-
tistical metric such as the chi-square distribution. This
metric also assumes knowledge of the true Pareto front,
and emphasizes the good distribution of points (deter-
mined through a set of niches) rather than a direct com-
parison between our Pareto front and the true Pareto
front.


� Zitzler and Thiele [42] proposed two measures: the first
concerns the size of the objective value space which is
covered by a set of nondominated solutions and the sec-
ond compares directly two sets of nondominated solu-
tions, using as a metric the fraction of the Pareto front
covered by each of them.


All these metrics are interesting proposals but there are
almost no comparative studies of techniques that substantiate
their suitability in general test problems, which implies that
more work in this area is required.


8 Future Research Paths


As has been indicated before in some of the sections of this
paper, a lot of work remains to be done in this area. We will
briefly describe here some of the future research paths that
have not been mentioned yet and some of the related work
done so far (if any):


� Dynamics of a population: As Deb indicates [64], it
would be very useful to understand the dynamics of
the population of a GA over different generations when
applied to multiobjective optimization problems. If we
knew how is the population behaving and what issues
are making it difficult to keep nondominated solutions,
we could devise techniques in which the progress to-
wards the global Pareto front could be considerably
faster than with the current approaches.


� Stopping criteria: It is also important to define stop-
ping criteria for a GA-based multiobjective optimiza-
tion technique, because it is not obvious to know when
the population has reached a point from which no fur-
ther improvement can be reached (i.e., how do we know
that the global Pareto front has been found?). Cur-
rently, the main approaches used to stop this kind of
GA have been to either use a fixed number of genera-
tions, or to monitor the population at certain intervals
and interpret visually the results to determine when to
halt the evolution process.


� Real-world applications: With no doubt, the num-
ber of applications of evolutionary multiobjective op-
timization techniques to real-world problems will in-
crease over the years, and a probable trend in research
could be to reformulate many problems that are cur-
rently considered as if they only had one objective
(e.g., constraint-handling in single-objective optimiza-
tion [66]). This will constitute a more realistic ap-
proach to the solution of problems that frequently arise
in areas such as engineering, because they are normally
reduced to a single objective and the remaining objec-
tives are treated as constraints instead of handling all
(conflicting) objectives simultaneously.


9 Conclusions


This paper has attempted to provide a general view of the
main work that has been done on evolutionary multiobjec-
tive optimization, discussing the most popular techniquescur-
rently in use, some of their applications, their advantagesand
disadvantages, and some of the most important problems that
remain to be solved and the related work in process regarding
their (possible) solution.
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