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Abstract: In this paper we propose the use of the genetic algorithm (GA) as a tool to solve multiobjective

optimization problems in structures. Using the concept of min-max optimum, a new GA-based multiobjective

optimization technique is proposed and two truss design problems are solved using it. The results produced by

this new approach are compared to those produced by other mathematical programming techniques and GA-based

approaches, proving that this technique generates better trade-o�s and that the genetic algorithm can be used as a

reliable numerical optimization tool.
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1 Introduction

In most real-world problems, several goals must be satis�ed simultaneously in order to obtain an optimal

solution. The multiple objectives are typically conicting and non-commensurable, and must be satis�ed simul-

taneously. For example, we might want to be able to minimize the total weight of a truss while minimizing

its maximum deection and maximizing its maximum allowable stress. The common approach in this sort of

problem is to choose one objective (for example, the weight of the structure) and incorporate the other objectives

as constraints. This approach has the disadvantage of limiting the choices available to the designer, making the

optimization process a rather di�cult task.

Another common approach is the combination of all the objectives into a single objective function. This

technique has the drawback of modelling the original problem in an inadequate manner, generating solutions that

will require a further sensitivity analysis to become reasonably useful to the designer.

A more appropriate approach to deal with multiple objectives is to use techniques that were originally designed

for that purpose in the �eld of Operations Research. Work in that area started a century ago, and many approaches

have been re�ned and commonly applied in economics and control theory.

This paper addresses the importance of multiobjective structural optimization and reviews some of the basic

concepts and part of the most relevant work in this area. Also, we discuss the suitability of a heuristic technique

inspired by the mechanics of natural selection (the genetic algorithm, or GA) to solve multiobjective optimization

problems. We also introduce a new method, based on the concept of min-max optimum. The new method

is compared with other GA-based multiobjective optimization methods and some mathematical programming

techniques. We show that the new method is capable of �nding better trade-o�s among the competing objectives.

Our approach is tested on two well-known truss optimization problems. We perform these tests with a computer

program called MOSES, which was developed by the authors to experiment with new and existing multiobjective

optimization algorithms.

�
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2 Previous Work on Multiobjective Structural Optimization

The �rst application of multiobjective optimization concepts in structural mechanics appeared in a 1968 paper

by Krokosky [35]. In this early paper, Krokosky devised a method that accommodates the designer's preference

of the design requirements. In his approach, Krokosky required the most desirable and least desirable values

of each of the decision variables and the di�erent levels of desirability of various combinations of such decision

variables provided through a ranking matrix. Krokosky adopted a random search technique to �nd the best

trade-o� correlating the di�erent objectives (i.e., desired values of the decision variables) in terms of the a priori

chosen design parameters. This technique happens to be computationally ine�cient and impractical because it is

sometimes very di�cult, or even impossible, to get all the requirements in terms of one quantity [45]. Krokosky's

approach was later applied to the optimal design of sandwich panels [55]. Rao et al. [45] used utility theory to

overcome some of the drawbacks of Krokosky's approach when dealing with optimal material choice problems.

Stadler [58] noted the scienti�c application of the concept of Pareto optimality to problems of natural structural

shapes. He used this concept to compute optimal initial shapes of uniform shallow arches. Rao et al. [47, 48]

showed signi�cant work in multiobjective structural optimization with uncertain parameters. Rao was one of the

�rst to point out the importance of incorporating concepts from game theory into structural optimization, and used

several mathematical programming techniques such as global criterion, utility function, goal programming, goal

attainment, bounded objective function and lexicographic methods, to solve multiobjective structural optimization

problems. A more extended analysis of the use of game theory as a design tool may be found in [61], although

no applications are included.

Carmichael [7] proposed the use of the "-constraint method to the multiobjective optimum design of trusses.

A more formal treatment of the subject wass given by Koski and Silvennoinen [33], who proposed a numerical

method that generates the Pareto optimal set of an isostatic truss, based on the exact solution of bicriterion

subproblems. An extension to this work was published later [34] by the same authors. In this latter paper the

authors proposed the scalarization of the original multiobjective optimization problem by using norm methods

and the reduction of the dimension of the problem by a partial weighting method. They used trusses (both

isostatic and hyperstatic) to illustrate these methods.

Fu and Frangopol [19] formulated a multiobjective structural optimization technique based on structural reli-

ability theory. This approach was illustrated solving a hyperstatic truss and a frame system. El-Sayed et al. [12]

used linear goal-programming techniques with successive linearizations to solve nonlinear structural optimization

problems. Their application was a three bar truss with uncertainties in both load magnitude and direction.

Hajela and Shih [29] presented a slight variation of the global criterion approach, used in conjunction with

a branch and bound algorithm, to solve multiobjective optimization problems that involve a mix of continuous,

discrete and integer design variables. A simply supported I-beam and a composite laminated beam were included

to exemplify their approach. Another variant of the global criterion approach was suggested by Saravanos and

Chamis [52] to design lightweight, low-cost composite structures. Tseng and Lu [60] applied goal programming,

compromise programming and the surrogate trade-o� method to the selection of system parameters and large

scale structural design optimization problems.

Grandhi et al. [25] presented a reliability-based decision criterion approach for multiobjective optimization

of structures with a large number of design variables and constraints. Lounis and Cohn [38] used a projected

Lagrangian algorithm to transform the multiobjective optimization of prestressed concrete structures into a single-

objective optimization problem.

Finally, the book by Eschenauer et al. [13] is a very valuable guide to some of the most relevant work in

multiobjective design optimization in the last few years. Good surveys on multiobjective structural optimization

may be found in Stadler [59], Duckstein [11] and Coello [10].

3 Basic Concepts

Multiobjective optimization (also called multicriteria optimization, multiperformance or vector optimization)

can be de�ned as the problem of �nding [41]:

a vector of decision variables which satis�es constraints and optimizes a vector function whose elements

2



  F

f

f

f f(x (x

(x

(x

1
*)1

*)2

)

2 )

Figure 1: Ideal solution in which all our functions have their minimum at a common point.

represent the objective functions. These functions form a mathematical description of performance

criteria which are usually in conict with each other. Hence, the term \optimize" means �nding such

a solution which would give the values of all the objective functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector �x

�

= [x

�

1

; x

�

2

; : : : ; x

�

n

]

T

which will satisfy the m inequality constraints:

g

i

(�x) � 0 i = 1; 2; : : : ;m (1)

the p equality constraints

h

i

(�x) = 0 i = 1; 2; : : : ; p (2)

and optimize the vector function

�

f(�x) = [f

1

(�x); f

2

(�x); : : : ; f

k

(�x)]

T

(3)

where �x = [x

1

; x

2

; : : : ; x

n

]

T

is the vector of decision variables.

In other words, we wish to determine from among the set of all numbers which satisfy (1) and (2) the particular

set x

�

1

; x

�

2

; : : : ; x

�

k

which yields the optimum values of all the objective functions.

The constraints given by (1) and (2) de�ne the feasible region F and any point �x in F de�nes a feasible solution.

The vector function

�

f(�x) is a function which maps the set F in the set X which represents all possible values of

the objective functions. The k components of the vector

�

f(�x) represent the non-commensurable criteria

1

which

must be considered. The constraints g

i

(�x) and h

i

(�x) represent the restriction imposed on the decision variables.

The vector �x

�

will be reserved to denote the optimal solutions (normally there will be more than one).

The problem is that the meaning of optimum is not well de�ned in this context, since we rarely have an �x

�

such that for all i = 1; 2; : : : ; k

^

x 2 F

(f

i

(�x

�

) � f

i

(�x)) (4)

1

Non-commensurable means that the values of the objective functions are expressed in di�erent units.
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If this was the case, then �x

�

would be a desirable solution, but we normally never have a situation like this, in

which all the f

i

(�x) have a minimum in F at a common point x

�

. An example of this ideal situation is shown in

Figure 1. However, since this situation rarely happens in real-world problems, then we have to establish a certain

criteria to determine what would be considered as an \optimal" solution.

3.1 Pareto Optimum

The concept of Pareto optimum was formulated by Vilfredo Pareto in 1896 [42], and constitutes by itself the

origin of research in multiobjective optimization. We say that a point �x

�

2 F is Pareto optimal if for every �x 2 F

either,

^

i 2 I

(f

i

(�x) = f

i

(�x

�

)) (5)

or, there is at least one i 2 I such that

f

i

(�x) > f

i

(�x

�

) (6)

In words, this de�nition says that �x

�

is Pareto optimal if there exists no feasible vector �x which would decrease

some criterion without causing a simultaneous increase in at least one criterion. Unfortunately, the Pareto

optimum almost always gives not a single solution, but rather a set of solutions called non-inferior or non-

dominated solutions.

3.2 Pareto Front

The minima in the Pareto sense are going to be in the boundary of the design region, or in the locus of the

tangent points of the objective functions. This region is called the Pareto Front. In general, it is not easy to �nd

an analytical expression of the line or surface that contains these points, and the normal procedure is to compute

the points F

k

and their corresponding f(F

k

). When we have a su�cient amount of these, we may proceed to

take the �nal decision.

3.3 Min-Max Optimum

The idea of stating the min-max optimum and applying it to multiobjective optimization problems, was taken

from game theory, which deals with solving conicting situations. The min-max approach to a linear model was

proposed by Jutler [40] and Solich [40]. It has been further developed by Osyczka [39], Rao [46] and Tseng and

Lu [60].

The min-max optimum compares relative deviations from the separately attainable minima. Consider the ith

objective function for which the relative deviation can be calculated from

z

0

i

(�x) =

jf

i

(�x)� f

0

i

j

jf

0

i

j

(7)

or from

z

00

i

(�x) =

jf

i

(�x)� f

0

i

)j

jf

i

(�x)j

(8)

It should be clear that for (7) and (8) we have to assume that for every i 2 I and for every �x 2 F , f

i

(�x) 6= 0.

If all the objective functions are going to be minimized, then equation (7) de�nes function relative increments,

whereas if all of them are going to be maximized, it de�nes relative decrements. Equation (8) works conversely.

Let �z(�x) = [z

1

(�x); : : : ; z

i

(�x); : : : ; z

k

(�x)]

T

be a vector of the relative increments which are de�ned in R

k

. The

components of the vector z(�x) will be evaluated from the formula

8

i2I

(z

i

(�x)) = max fz

0

i

(�x); z

00

i

(�x)g (9)
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Now we de�ne the min-max optimum as follows [40]:

A point �x

�

2 F is min-max optimal, if for every �x 2 F the following recurrence formula is satis�ed:

Step 1:

v

1

(�x

�

) =

min

x 2 F

max

i 2 I

fz

i

(�x)g (10)

and then I

i

= fi

1

g, where i

1

is the index for which the value of z

i

(�x) is maximal.

If there is a set of solutions x

1

� F which satis�es Step 1, then

Step 2:

v

2

(�x

�

) =

min

x 2 x

1

max

i 2 I; i 62 I

1

fz

i

(�x)g (11)

and then I

2

= fi

1

; i

2

g, where i

2

is the index for which the value of z

i

(x) in this step is maximal.

If there is a set of solutions x

r�1

� F which satis�es step r � 1 then

Step r:

v

r

(�x

�

) =

min

x 2 x

r�1

max

i 2 I; i 62 I

r�1

fz

i

(�x)g (12)

and then I

r

= fI

r�1

; i

r

g, where i

r

is the index for which the value of z

i

(�x) in the rth step is maximal.

If there is a set of solutions x

k�1

� F which satis�es Step k � 1, then

Step k:

v

k

(�x

�

) =

min

�x 2 x

k�1

z

i

(�x)

max

i 2 I; i 62 I

k�1

for i 2 I and i 62 I

k�1

(13)

where v

1

(�x

�

); : : : ; v

k

(�x) is the set of optimal values of fractional deviations ordered non-increasingly.

This optimum can be described in words as follows. Knowing the extremes of the objective functions which

can be obtained by solving the optimization problems for each criterion separately, the desirable solution is the

one which gives the smallest values of the relative increments of all the objective functions.

The point �x

�

2 F which satis�es the equations of Steps 1 and 2 may be called the best compromise solution

considering all the criteria simultaneously and on equal terms of importance.

4 Mathematical Programming Techniques

Multiobjective optimization is a very well known topic in Operations Research, and many techniques have

been developed to deal with such problems. The �rst step in developing a mathematical programming technique

to deal with multiobjective optimization problems is to be able to identify, given a set of feasible solutions to the

problem, which of them are Pareto optimal. After that, it will be desirable to agree upon a further concept of

absolute optimality in this context, in case the designer desires a single �nal solution. For the scope of this paper,

we will adopt the concept of min-max optimum for that purpose.

Osyczka provides in his book [40] an algorithm based on the contact theorem [37], which can identify Pareto

optimal solutions from a given set of feasible solutions. This algorithm was implemented by the authors of this

paper and incorporated in MOSES together with another one that �nds the optimum in the min-max sense [10].

4.1 Monte Carlo Methods

We also implemented the two Monte Carlo methods used by Osyczka [40] to �nd the min-max optimum.

These methods are called exploratory because a point is generated by means of a rule which disregards the results

previously obtained. In particular, the Monte Carlo method picks up a certain number of points at random over

the estimated range of all the variables of the problem. This is done formally by obtaining the randomly selected

value for x

i

from the following formula

x

i

= x

a

i

+ �

i

(x

b

i

� x

a

i

) for i = 1; 2; : : : ; n (14)
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where x

a

i

is the estimated or given lower limit for x

i

, x

b

i

is the estimated or given upper limit for x

i

, and �

i

is

a random number between zero and one. We employed the same random number generator used by the genetic

algorithm to implement the FORTRAN function RANF of the original program.

If we want to generate the values of variables for l

a

points, we start by generating random numbers �

i

for each

point, and then use equation (14) to obtain the values of the variables x

i

. After that, we test each generated

point for violation and discard it if it is not a feasible solution. If the point is in the feasible region, we evaluate

the objective function for that point. The best result is taken as the minimum, and a new set of random numbers

is generated for each of l

a

points.

The two Monte Carlo methods described by Osyczka [40] to �nd the min-max optimum were incorporated in

MOSES. In the �rst of them, the search space is explored twice, �rst searching for the ideal vector

�

f

0

and then

searching for the min-max optimum. In the second method, the space of variables is explored only once, and the

Pareto set is generated while searching for the ideal vector

�

f

0

. Then, this set analyzed to check which solution is

the min-max optimum.

There are several trade-o�s between these two methods. For example, the second method uses less CPU time

than the �rst, because the space of variables is explored only once, but it also requires much more memory since

the whole Pareto set has to be stored. Obviously, the designer normally wants to analyze the entire Pareto

set in order to take a decision, but as we mentioned before, this set could be too large and the computational

resources available could be insu�cient for that sake. Osyczka recommends the reduction of this set by introducing

constraints of the form

f

i

(�x) � f

0

i

for i = 1; 2; : : : ; k

where values of f

0

i

are chosen by the designer.

The second method should be preferred for problems with a large number of constraints and for discrete

programming problems, because in those cases we expect to have a small Pareto set. The main advantage

of exploratory methods in general is their exibility, since they can be applied both to linear and non-linear

programming problems. However, they are normally recommended only for cases where a few decision variables

are handled because otherwise, they could take too long to �nd a reasonable good solution.

4.2 Osyczka's Multicriterion Optimization System

This system was developed at the Technical University of Cracow, and its FORTRAN implementation is

provided in Osyczka's book [40]. A C translation of that code was incorporated into MOSES, and its contents is

summarized next.

Osyczka's system contains several multiobjective optimization methods:

(1) Min-max method : Equation (9) is used to determine the elements of the vector �z(�x).

(2) Global criterion method : In this method, the equation:

f(�x) =

k

X

i=1

�

f

0

i

� f

i

(�x)

f

0

i

�

p

(15)

is used as the global function. For this formula Boychuk and Ovchinnikov [6] have suggested p = 1, and

Salukvadze [51] has suggested p = 2, but other values of p can also be used. Obviously, the results will di�er

greatly depending on the value of p chosen. Thus, the selection of the best p is an issue in this method, and it

could also be the case that any p could produce an unacceptable solution. We assumed p = 2 for our experiments.

(3) Weighting min-max method : This is a combination of the weighting method and the min-max approach

that can �nd the Pareto set of solutions for both convex and non-convex problems. The equation

8

i2I

(z

i

(�x) = maxfw

i

z

0

i

(�x); w

i

z

00

i

(�x)g) (16)

is used to determine the elements of vector �z(�x).

(4) Pure weighting method : The equation

min

k

X

i=1

w

i

f

i

(�x) (17)
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is used to determine a preferred solution, where w

i

� 0 are the weighting coe�cients representing the relative

importance of the objectives. It is usually assumed that

k

X

i=1

w

i

= 1 (18)

(5) Normalized weighting method :

�

f(�x) is used in equation (4.2).

Since all these methods require the ideal vector, the user is given the choice of providing it, or letting the

system to �nd it automatically. For this purpose, the system includes a single criterion optimization technique:

(i) The exible tolerance (FT) method : Is a sequential method in which a point is established on the basis of

the previously obtained results. Based on this information, the method will know where the minimum is likely to

be so that the appropriate search direction may be established. Typical sequential methods, even when they are

more e�cient and more highly developed than exploratory methods, tend to be designed to solve only continuous

convex problems. However, this particular method can deal with non-linear models [30]. A detailed explanation

of this algorithm and its implementation may be found in [10].

5 Multiobjective Optimization using GAs

The notion of genetic search in a multicriteria problem dates back to the late 60s, in which Rosenberg's [50]

study contained a suggestion that would have led to multicriteria optimization if he had carried it out as presented.

His suggestion was to use multiple properties (nearness to some speci�ed chemical composition) in his simulation

of the genetics and chemistry of a population of single-celled organisms. Since his actual implementation contained

only one single property, the multiobjective approach could not be shown in his work, but it was a starting point

for researchers interested in this topic.

Genetic algorithms require scalar �tness information to work, which means that when approaching multicriteria

problems, we need to perform a scalarization of the objective vectors. One problem is that it is not always possible

to derive a global criterion based on the formulation of the problem. In the absence of information, objectives

tend to be given equivalent importance, and when we have some understanding of the problem, we can combine

them according to the information available, probably assigning more importance to some objectives. Optimizing

a combination of the objectives has the advantage of producing a single compromise solution, requiring no further

interaction with the decision maker [17]. The problem is, that if the optimal solution cannot be accepted, either

because the function used excluded aspects of the problem which were unknown prior to optimization or because

we chose an inappropriate setting of the coe�cients of the combining function, additional runs may be required

until a suitable solution is found. Some of the main approaches proposed in the literature will be summarized in

the remainder of this section.

5.1 VEGA

David Scha�er [53] extended Grefenstette's GENESIS program [26] to include multiple objective functions.

Scha�er's approach was to use an extension of the Simple Genetic Algorithm (SGA) that he called the Vector

Evaluated Genetic Algorithm (VEGA), and that di�ered of the �rst only in the way in which selection was

performed. This operator was modi�ed so that at each generation a number of sub-populations was generated

by performing proportional selection according to each objective function in turn. Thus, for a problem with k

objectives, k sub-populations of size N=k each would be generated, assuming a total population size of N . These

sub-populations would be shu�ed together to obtain a new population of size N , on which the GA would apply

the crossover and mutation operators in the usual way. This process is illustrated in Figure 2 (taken from Scha�er

[53]).

Scha�er realized that the solutions generated by his system were non-inferior in a local sense, because their

non-inferiority is limited to the current population, and while a locally dominated individual is also globally

dominated, the converse is not necessarily true [53]. An individual who is not dominated in one generation

may become dominated by an individual who emerges in a later generation. Also, he noted that the so-called
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Figure 2: Schematic of VEGA selection.

\speciation" problem could arise from his approach (i.e., we could have the evolution of \species" within the

population which excel on di�erent aspects of performance).

This problem arises because this technique selects individuals who excel in one dimension of performance,

without looking at the other dimensions. The potential danger doing that is that we could have individuals with

\middling" performance in all dimensions, which could be very useful for compromise solutions, but that will not

survive under this selection scheme, since they are not in the extreme for any dimension of performance (i.e.,

they do not produce the best value for any objective function, but only moderately good values for all of them).

Speciation is undesirable because it is opposed to our goal of �nding a compromise solution.

Scha�er suggested some heuristics to deal with this problem. For example, to use a heuristic selection prefer-

ence approach for non-dominated individuals in each generation, to protect our \middling" chromosomes. Also,

crossbreeding among the \species" could be encouraged by adding some mate selection heuristics instead of using

the random mate selection of the traditional GA. Although Scha�er reported some success, Richardson et al. [49]

noted that the shu�ing and merging of all the sub-populations corresponds to averaging the �tness components

associated with each of the objectives. Since Scha�er used proportional �tness assignment, these were in turn

proportional to the objectives themselves [17]. Therefore, the resulting expected �tness corresponded to a linear

combination of the objectives where the weights depended on the distribution of the population at each generation

[49]. As a consequence, di�erent non-dominated individuals were generally assigned di�erent �tness values. This

problem becomes more severe when we have a concave trade-o� surface because points in concave regions of the

trade-o� surface cannot be found by optimizing a linear combination of the objectives, no matter what set of

weights we use.

5.2 Lexicographic ordering

The basic idea of this technique is that the designer ranks the objectives in order of importance. The optimum

solution is then found by minimizing the objective functions, starting with the most important one and proceeding

according to the order of importance of the objectives [47]. Fourman [18] suggested a selection scheme based on

lexicographic ordering. In a �rst version of his algorithm, objectives were assigned di�erent priorities by the user

and each pair of individuals were compared according to the objective with the highest priority. If this resulted

in a tie, the objective with the second highest priority was used, and so on.

A second version of this algorithm, reported to work surprisingly well, consisted of randomly selecting the

objective to be used in each comparison. As in VEGA, this corresponds to averaging �tness across �tness

8



components, each component being weighted by the probability of each objective being chosen to decide each

tournament [17]. However, the use of pairwise comparisons makes an important di�erence with respect to VEGA,

since in this case scale information is ignored. Therefore, the population may be able to see as convex a concave

trade-o� surface, depending on its current distribution, and on the problem itself.

5.3 Weighted Sum

Hajela and Lin [28] included the weights of each objective in the chromosome, and promoted their diversity in

the population through �tness sharing. Their goal was to be able to simultaneously generate a family of Pareto

optimal designs corresponding to di�erent weighting coe�cients in a single run of the GA. Besides using sharing,

Hajela and Lin used a vector evaluated approach based on VEGA to achieve their goal. They proposed the use

of a utility function of the form:

�

U =

l

X

i=1

W

i

F

i

F

�

i

(19)

where F

�

i

are the scaling parameters for the objective criterion, l is the number of objective functions, and W

i

are the weighting factors for each objective function F

i

.

This approach uses a sharing function of the form:

�(d

ij

) =

(

1�

�

d

ij

�

sh

�

�

; d

ij

< �

sh

0; otherwise

(20)

where normally � = 1, d

ij

is a metric indicative of the distance between designs i and j, and �

sh

is the sharing

parameter which controls the extent of sharing allowed (Hajela and Lin [28] chose a number between 0.01 and

0.1 for �

sh

. The �tness of a design i is then modi�ed as:

f

s

i

=

f

i

P

M

j=1

�(d

ij

)

(21)

where M is the number of designs located in vicinity of the i-th design.

Under Hajela's representation, weight combinations are incorporated into the chromosomic string, and a single

number represents not the weight itself, but a combination of weights. For example, the number 4 (under oating

point representation) could represent the vectorX

w

= (0:4; 0:6) for a problem with two objective functions. Then,

sharing is done on the weights.

Finally, a mating restriction mechanism was imposed, to avoid members within a radius �

mat

to cross. The

value of �

mat

= 0:15 was suggested by Hajela and Lin in their paper [28].

5.4 Multiple Objective Genetic Algorithm

Fonseca and Fleming [16] have proposed a scheme in which the rank of a certain individual corresponds to the

number of chromosomes in the current population by which it is dominated. Consider, for example, an individual

x

i

at generation t, which is dominated by p

(t)

i

individuals in the current generation. Its current position in the

individuals' rank can be given by [16]:

rank(x

i

; t) = 1 + p

(t)

i

(22)

All non-dominated individuals are assigned rank 1, while dominated ones are penalized according to the

population density of the corresponding region of the trade-o� surface.

Fitness assignment is performed in the following way [16]:

1. Sort population according to rank.

2. Assign �tness to individuals by interpolating from the best (rank 1) to the worst (rank n

�

� N) in the way

proposed by Goldberg [21], according to some function, usually linear, but not necessarily.
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Figure 3: Flowchart of the Nondominated Sorting Genetic Algorithm (NSGA).

3. Average the �tnesses of individuals with the same rank, so that all of them will be sampled at the same

rate. This procedure keeps the global population �tness constant while maintaining appropriate selective

pressure, as de�ned by the function used.

As Goldberg and Deb [22] point out, this type of blocked �tness assignment is likely to produce a large selection

pressure that might produce premature convergence. To avoid that, Fonseca and Fleming used a niche-formation

method to distribute the population over the Pareto-optimal region, but instead of performing sharing on the

parameter values, they have used sharing on objective function values [57]. This maintains diversity in the

objective function values, but may not maintain diversity in the parameter set, which is an important issue for a

decision maker. Furthermore, this approach may not be able to �nd multiple solutions in problems where di�erent

Pareto-optimal points correspond to the same objective function value.

5.5 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and Deb [56], and is based

on several layers of classi�cations of the individuals. Before the selection is performed, the population is ranked

on the basis of nondomination: all nondominated individuals are classi�ed into one category (with a dummy

�tness value, which is proportional to the population size, to provide an equal reproductive potential for these

individuals). To maintain the diversity of the population, these classi�ed individuals are shared with their dummy

�tness values. Then this group of classi�ed individuals is ignored and another layer of nondominated individuals

is considered. The process continues until all individuals in the population are classi�ed. A stochastic remainder

proportionate selection was used for this approach. Since individuals in the �rst front have the maximum �tness

10



value, they always get more copies than the rest of the population. This allows to search for nondominated

regions, and results in quick convergence of the population toward such regions. Sharing, by its part, helps to

distribute it over this region. The e�ciency of NSGA lies in the way multiple objectives are reduced to a dummy

�tness function using a nondominated sorting procedure. With this approach, any number of objectives can be

solved [57], and both maximimization and minimization problems can be handled. Figure 3 (taken from Srinivas

and Deb [57]) shows the general ow chart of this approach.

5.6 Niched Pareto GA

Horn and Nafpliotis [31] proposed a tournament selection scheme based on Pareto dominance. Instead of

limiting the comparison to two individuals, a number of other individuals in the population was used to help

determine dominance. When both competitors were either dominated or non-dominated (i.e., there was a tie), the

result of the tournament was decided through �tness sharing [23]. Population sizes considerably larger than usual

were used so that the noise of the selection method could be tolerated by the emerging niches in the population

[17].

The pseudocode for Pareto domination tournaments assuming that all of the objectives are to be maximized

is presented below [31]. S is an array of the N individuals in the current population, random pop index is an

array holding the N indices of S, in a random order, and t

dom

is the size of the comparison set.

function selection /* Returns an individual from the current population S */

begin

shu�e(random pop index); /* Re-randomize random index array */

candidate 1 = random pop index[1];

candidate 2 = random pop index[2];

candidate 1 dominated = false;

candidate 2 dominated = false;

for comparison set index = 3 to t

dom

+ 3 do

/* Select t

dom

individuals randomly from S */

begin

comparison individual = random pop index[comparison set index];

if S[comparison individual] dominates S[candidate 1]

then candidate 1 dominated = true;

if S[comparison individual] dominates S[candidate 2]

then candidate 2 dominated = true;

end /* end for loop */

if ( candidate 1 dominated AND : candidate 2 dominated )

then return candidate 2;

else if ( : candidate 1 dominated AND candidate 2 dominated )

then return candidate 1;

else

do sharing;

end

Scaling of the objectives determines the convexity of the trade-o� surface, so that if we use a non-linear

rescaling, the objective values may convert a concave surface into a convex one, and vice-versa. Pareto-ranking

is blind to the convexity of the trade-o� surface, but this does not mean that it always precludes speciation [17],

since this can still occur if certain regions of the trade-o� region are simply easier to �nd than others. However,

Pareto-ranking eliminates sensitivity to the possible non-convexity of the trade-o� surface, and also it encourages

the production of compromise solutions.

It should be noticed that even when Pareto-based ranking correctly assigns all non-dominated individuals the

same �tness, does not guarantee that the Pareto set be uniformly sampled, since �nite populations will tend to
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converge to only one optimum when several equivalent optima are present, due to stochastic errors in the selection

process [17]. This phenomenon, which is known as genetic drift, has been observed in both natural and arti�cial

evolution, and can also occur in Pareto-based GA optimization [17].

Goldberg and Richardson [23] proposed the used of �tness sharing to prevent genetic drift and to promote

the sampling of the whole Pareto set by the population. Fonseca and Fleming [16] implemented �tness sharing

in the objective domain and provided theory for estimating the necessary niche sizes based on the properties of

the Pareto set. Horn and Nafpliotis [31] also arrived at a form of �tness sharing in the objective domain, and

suggested the use of a metric combining both the objective and the decision variable domains, leading to what

they called nested sharing.

6 A New GA-based Approach Based on a Weighted Min-Max Strategy

This is really a variant of Hajela's idea, in which a few changes were introduced by the authors [10]:

1. The initial population is generated in such a way that all their individuals constitute feasible solutions. This

can be ensured by checking that none of the constraints is violated by the solution vector encoded by the

corresponding chromosome.

2. The user should provide a vector of weights, which are used to spawn as many processes as weight com-

binations are provided (normally this number will be reasonably small). Each process is really a separate

genetic algorithm in which the given weight combination is used in conjunction with a min-max approach to

generate a single solution. Notice that in this case the weights do not have to be encoded in the chromosome

as in Hajela's approach.

3. After the n processes are terminated (n=number of weight combinations provided by the user), a �nal �le

is generated containing the Pareto set, which is formed by picking up the best solution from each of the

processes spawned in the previous step.

4. Since this approach requires knowing the ideal vector, the user is given the choice to provide such values

directly (in case he/she knows them) or to use another genetic algorithm to generate it. This additional

program works in a similar manner, spawning k processes (k=number of objective functions), where each

process corresponds to a genetic algorithm responsible for a single objective function. When all the processes

terminate, there will be a �le containing the ideal vector, which turns out to be simply the best values

produced by each one of the spawned processes.

5. The crossover and mutation operators were modi�ed to ensure that they produced only feasible solutions.

Whenever a child encodes an infeasible solution, it is replaced by one of its parents.

6. Notice that the Pareto solutions produced by this method are guaranteed to be feasible, as opposed to the

other GA-based methods in which there could be convergence towards a non-feasible solution.

6.1 The GA optimizer for single-objective problems

Using the GA itself as an optimizer for single-objective problems is a controversial topic, mainly because the

di�culties found to adjust its parameters (i.e., population size, maximum number of generations, mutation and

crossover rate) [27]. Since one of the goals of this work is to be able to produce a reliable design optimization

system, this is a natural problem to face. In practice, GA parameters are empirically adjusted in a trial and error

process that could take quite a long time in some cases.

For several months, we experimented with a very simple methodology, explained below, for a variety of en-

gineering design optimization problems. The results that we obtained led us to think that it was a reasonable

choice to use in MOSES. The method is the following:

� Choose a certain value for the random number seed and make it a constant.
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� Make constants for the population size and the maximum number of generations (we normally use 100

chromosomes and 50 generations, respectively).

� Loop the mutation and crossover rates from 0:1 to 0:9 at increments of 0:1 (this is actually a nested loop).

This implies that 81 runs are necessary. In each step of the loop, the population is not reinitialized.

� For each run, update 2 �les. One contains only the �nal costs, and the other has a summary that includes,

besides the cost, the corresponding values of the design parameters and the mutation and crossover rates

used.

� When the whole process ends, the �le with the costs is sorted in ascending order, and the smallest value is

searched for in the other �le, returning the corresponding design parameters as the �nal answer.

So far, we have found much better results using oating point representation with this methodology, and our

results show that this is a trend in numerical optimization problems [10]. This approach is actually a dynamic

adjustment of parameters, because the population is initialized only once in the process, so that the individuals'

�tness continues improving while changing the crossover and mutation rates. Notice that even when we could

know the crossover and mutation rates produced the best answer, running the GA once with those parameters

will not necessary generate the exact same answer. The reason is that the population at the moment of �nding

the best result could have been recombined and improved several times, being quite di�erent of the random

initial population of a simple GA. This procedure has some resemblance with Eshelman's CHC Adaptive Search

Algorithm [14], but in our case we do not use any re-feeding of the population through high mutation values

when it has stabilized, nor a highly disruptive recombinator operator that produces o�spring that are maximally

di�erent from both parents. Our approach uses a conventional two-point crossover and it exhibits its best behavior

with a oating point representation in numerical optimization problems.

7 Structural Optimization using Genetic Algorithms

Goldberg and Samtani [24] appear to have �rst suggested the use of GAs for structural optimization. They

considered the use of a GA to optimize a 10-bar plane truss. Jenkins [32] used a straightforward implementation

of Goldberg's SGA (Simple Genetic Algorithm) [21] to optimize a trussed-beam roof structure, a three-bar truss

and a thin-walled coss-section.

Hajela [29] analyzed the potential of GAs as function optimizers in the context of structural optimization.

He discussed encoding, optimal population size, selection, crossover and mutation over binary alphabets, making

an important distinction between random search and genetic search. His FORTRAN implementation of a GA

was applied to problems with nonconvex search spaces: a two-beam grillage structure, a two-element thin-walled

cantilever torsional rod subjected to sinusiodal excitation and the dynamic response of a 10-bar plane truss.

Rajeev and Khrisnamoorthy [44] used the GA for discrete optimization of generalized trusses. Schoenauer and

Xanthakis [54] presented a general method of handling constraints in genetic optimization, based on the Behavioral

Memory paradigm. Instead of requiring the problem-dependent design of either repair operators (projection onto

the feasible region) or penalty functions (weighted sum of constraint violations and the objective function), they

sampled the feasible region by evolving from an initial random population, successively applying a series of

di�erent �tness functions which embodied constraint satisfaction. Only in the �nal step was the optimization

restricted to the feasible region. The success of the whole process was highly dependent on the genetic diversity

maintained during the �rst steps, ensuring a uniform sampling of the feasible region. They applied this scheme

to test problems of truss structure optimization: a 10-bar (2D) and a 25-bar (3D) truss. Sharing and restricted

mating were used to ensure genetic diversity in these applications.

Lin and Hajela [36] described a design optimization tool based on genetic search which inspired the development

of MOSES [10]. This system, called EVOLVE, was able to handle mixes of integer, discrete and continuous

design variables. It had automatic encoding/decoding facilities, automatic constraint handling, sharing to prevent

convergence of all candidate designs to a single optimum, it varied the granularity of the representation to increase

or decrease the precision with which a design space is represented, and used an special directed crossover operator

that identi�es signi�cant bit positions on a string constraining the crossover to such bit locations.
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Another important paper by Hajela and Lin [28] constitutes one of the very few attempts to achieve multiob-

jective structural optimization using GAs. The goal of the researchers in this work was to generate the Pareto set

with a single run of the GA, and a utility function with sharing is used for that sake. A statically loaded 10-bar

truss was used to exemplify their approach.

Adeli and Cheng [1] used a GA to minimize the total weight of a space truss subject to stress, displacement and

fabricational (availability of cross-sectional areas) constraints. A quadratic penalty function was used to transform

this constrained problem into an unconstrained one, and the �tness function was re-scaled because the GA always

maximizes and this was a minimization problem. Three space trusses were used to illustrate their approach: a

12-bar truss, a 25-bar truss and a 72-bar truss. In a further paper by the same authors [2], a hybrid GA that

integrated the penalty function method with the primal-dual method was proposed. This approach is based

on sequential minimization of the Lagrangian method, and eliminated the di�culties of the unpredictability

of the penalty function coe�cient. Adeli and Kumar [4] proposed a distributed GA for optimization of large

structures on a cluster of workstations connected via a local area network (LAN). The GA used a centralized

population model in which the master process had global knowledge about the search process, which resulted in

a faster convergence toward the optimal solution. A penalty function method and the augmented Lagrangian

method were used again to eliminate the original constraints of the problem. A 17-member truss and a 50-story

megastructure (848-element space truss) were solved using this approach. In a further paper, Adeli and Kumar

[3] also used a GA for structural optimization of large scale structures on massively parallel supercomputers.

Rajan [43] used a GA to design the size, shape and topology of space structures. Discrete and continuous values

were used to de�ne the cross-sectional areas of the members. The nodal locations were treated as continuous

design variables and the hybrid shape-optimization methodology, previously used with continuum structures, was

adapted to handle skeletal structures. Element connectivity and boundary conditions were treated as Boolean

design variables in the context of topology design. Rajan used a penalty function as the �tness, and exception

handling was considered to deal with unstable structures, absence of deformations in the structure and zero force

members. Also, in an e�ort to avoid recomputing the �tness function, a history of each chromosome was kept

so that when duplicates appeared, it was not necessary to recompute its �tness. The examples used in Rajan's

paper include a 6-node truss and a 14-node truss.

8 Examples

To introduce our new GA-based multiobjective optimization approach, we will use two truss design problems

that are commonly referenced in the literature. On each of these examples, three objectives will be considered:

minimize weight, maximum displacement and stress of the structure using the cross-sectional area of each element

as the design variables. Such objectives are conicting in nature, because if we want to reduce the displacement

and the stress that an element supports, we have to increase the cross-sectional area, consequently increasing the

weight of the structure. These objectives are also non-commensurable, because whereas stress and weight usually

have large values, maximum allowable displacement is in general a small value.

9 Example 1 : Design of a 25-bar space truss

Consider the 25-bar space truss taken from Rajeev and Khrisnamoorthy [44] shown in Figure 4. The problem

is to �nd the cross-sectional area of each member of this truss, such that we minimize its weight, the displacement

of each free node, and the stress that each member has to support.

Loading conditions are given in Table 1, member groupings are given in Table 2, and node coordinates are

given in Table 3. The assumed data are: modulus of elasticity, E = 1 � 10

4

ksi, � = 0:10 lb/in

3

; �

a

= �40 ksi,

u

a

= �0:35 in.
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Figure 4: 25-bar space truss used for the �rst example.

Node Fx (lbs) Fy (lbs) Fz (lbs)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Table 1: Loading conditions for the 25-bar space truss shown in Figure 4.
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Group Number Members

1 1-2

2 1-4, 2-3, 1-5, 2-6

3 2-5, 2-4, 1-3, 1-6

4 3-6, 4-5

5 3-4, 5-6

6 3-10, 6-7, 4-9, 5-8

7 3-8, 4-7, 6-9, 5-10

8 3-7, 4-8, 5-9, 6-10

Table 2: Group membership for the 25-bar space truss shown in Figure 4.

Node X Y Z

1 -37.50 0.00 200.00

2 37.50 0.00 200.00

3 -37.50 37.50 100.00

4 37.50 37.50 100.00

5 37.50 -37.50 100.00

6 -37.50 -37.50 100.00

7 -100.00 100.00 0.00

8 100.00 100.00 0.00

9 100.00 -100.00 0.00

10 -100.00 -100.00 0.00

Table 3: Coordinates of the joints of the 25-bar space truss shown in Figure 4.

16



240"

1 2 3 4 5

6 7 8 9 10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40 41 42

43 44 45 46 47

48 49 50 51 52 53 54 55 56

57 58 59 60 61

62 63 64 6665 67 68 69 70

71 72 73 74 75

144"

1 32 4

5 6 7 8
9 10

11
12 13

14
15 16 17

18 19 20 21 22 23 24 25

26 27
28 29 30

31
32 33

34
35 36

37 38

39 40 41 42

43 46 4744 45 48
49

50 51
52

53 54
55

56 57 58 59 60 61 62 63

64
65

66
67 68

69
70 71

72
73 74 75 76

77 78 79 80

81
82 83

84
85 86

87
88 89 90

91 92
93

94 95 96 97 98 99 100 101

102
103

104
105 106

107 108
109

110 111 112
113 114

115 116 117 118

119
120 121

122

123 124

125

126 127

128

129 130
131

132 133 134 135 136 137 138 139

140
141

142 143
144

145 146
147

148 149 150 151 152

153 154 155 156

157
158 159

160

161 162
163

164 165
166

167 168
169

170 171 172 173 174 175 176 177

178 179 180 181 182
183 184 185

186
187 188

189 190

191 192 193 194

195
196 197

198 199
200 360"

76 77

x

x

2

1

Figure 5: 200-bar plane truss used for the second example.
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Group Member

Number Number

1 1,2,3,4

2 5,8,11,14,17

3 19,20,21,22,23,24

4 18,25,56,63,94,101,132,139,170,177

5 26,29,32,35,38

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37

7 39,40,41,42

8 43,46,49,52,55

9 57,58,59,60,61,62

10 64,67,70,73,76

11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75

12 77,78,79,80

13 81,84,87,90,93

14 95,96,97,98,99,100

15 102,105,108,111,114

16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113

17 115,116,117,118

18 119,122,125,128,131

19 133,134,135,136,137,138

20 140,143,146,149,152

21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151

22 153,154,155,156

23 157,160,163,166,169

24 171,172,173,174,175,176

25 178,181,184,187,190

26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189

27 191,192,193,194

28 195,197,198,200

29 196,199

Table 4: Group membership for the 200-bar plane truss shown in Figure 5.

10 Example 2 : Design of a 200-bar plane truss

Consider the 200-bar plane truss taken from Belegundu [5], shown in Figure 5 (taken from Belegundu [5]).

The problem is to �nd the cross-sectional area of each member of this truss, such that we minimize its weight,

the displacement of each free node, and the stress that each member has to support.

There are a total of three loading conditions: (1) 1 kip acting in positive x-direction at node points 1, 6, 15,

20, 29, 34, 43, 48, 57, 62, and 71; (2) 10 kips acting in negative y-direction at node points 1, 2, 3, 4, 5, 6, 8, 10,

12, 14, 15, 16, 17, 18, 19, 20, 24, 71, 72, 73, 74, and 75; and (3) loading condition 1 and 2 acting together. The

200 elements of this truss linked to 29 groups. The grouping information is shown in Table 4. The stress in each

element is limited to a value of 10 ksi for both tension and compression members. Young's modulus of elasticity

= 30,000 ksi, weight density = 0:283� 10

�3

kips/in

3

.
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Method f

1

f

2

f

3

Monte Carlo 1 57144:60 0.050551 1958.00

Monte Carlo 1 275439.48 0:003382 207.27

Monte Carlo 1 232253.56 0.003764 194:88

Min-Max (OS) 1166:98 0.781186 42028.65

Min-Max (OS) 1359.41 0:598842 33872.70

Min-Max (OS) 1359.41 0.598842 33872:70

GA (Binary) 72845:41 1.544286 87294.85

GA (Binary) 330717.40 0:002757 148.303585

GA (Binary) 330717.40 0.002757 148:303585

GA (FP) 468:93 1.565098 90959.54

GA (FP) 330716.80 0:002757 148.303654

GA (FP) 330717.25 0.002757 148:303598

Literature 493:94 1.285167 79916.70

Literature 493.94 1:285167 79916.70

Literature 493.94 1.285167 79916:70

Table 5: Comparison of results computing the ideal vector of the �rst example (design of a 25-bar space truss).

For each method the best results for optimum f

1

, f

2

and f

3

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System.

11 Comparison of Results

We will compare the ideal vector that each method generates with the best results reported in the literature

for two truss-design problems. We used the Monte Carlo methods included in MOSES, together with Osyczka's

multiobjective optimization system to obtain the ideal vector. Also, several GA-based approaches will be tested

using the same parameters (same population size and same crossover and mutation rates). If niching is required,

then the niche size will be computed according to the methodology suggested by the developers of the method

(see [10] for details). To perform the analysis required for the examples, we used the matrix factorization method

included in Gere and Weaver [20] together with the sti�ness method [20] as implemented in [8].

11.1 Example 1

The ideal vector of this problem was computed using Monte Carlo methods 1 and 2 (generating 300 points),

Osyczka's multiobjective optimization system and a GA (with a population of 300 chromosomes running during

100 generations) using binary and oating point representation, with the procedure described before to adjust its

parameters. The corresponding results are shown in Table 5 including the best results reported in the literature

[9]. The results for Monte Carlo Method 2 are the same as for Method 1, and the results presented for the

Min-max method are also the basis for computing the best trade-o� for all the methods in Osyczka's system. As

can be seen from these results, the GA provided the best ideal vector, combining the results produced with both

binary and oating point representation, although the second representation scheme provides better results in

general [10]. The mathematical programming techniques did not provide any reasonable results in this example,

mainly because of the high non-convexity of the search space and the high number of variables involved. It should

be noted that the set of results reported by Coello et al. [9] was produced optimizing only the �rst objective

(i.e., the total weight of the truss) in a discrete manner. Assuming continuous variables, the GA-engine for single

objective optimization was able to �nd a lighter truss.

As we can see in Table 6, the new GA-based approach proposed by the authors, named GAminmax, provide

the best overall results when a oating representation was used. It should be noted that our approach performs

hardly over the average when binary representation is used. The reason for its poor performance here, and before

(when trying to �nd the ideal vector) is that the population size does not seem to be large enough to guarantee
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Method f

1

f

2

f

3

L

p

(f)

Ideal Vector 468.928261 0.002757 148.303585 0.000000

Monte Carlo 1 113293.85 0.006212 363.6076 243.306621

Monte Carlo 2 110264.89 0.006925 394.8020 237.316252

Min-max (OS) 1344.32 0.676830 34793.19 479.969778

GCM (OS) 1359.41 0.598842 33872.70 445.507894

WMM (OS) 1344.32 0.676830 34793.19 479.969778

PMM (OS) 1359.41 0.598842 33872.70 445.50789

NMM (OS) 1359.41 0.598842 33872.70 445.50789

GALC (B) 254696.03 0.003078 178.85 542.46737

GALC (FP) 193849.17 0.003389 202.83 412.98462

Lexicographic (B) 219176.78 0.005791 280.06 468.38825

Lexicographic (FP) 129424.79 0.005412 303.46 277.010455

VEGA (B) 234854.32 0.003473 205.70 500.478800

VEGA (FP) 219453.21 0.003482 202.59 467.617915

NSGA (B) 250615.78 0.002975 171.74 533.680836

NSGA (FP) 226478.31 0.003971 205.53 482.796241

MOGA (B) 85297.74 0.023970 990.87 194.274927

MOGA (FP) 81778.41 0.021254 908.03 185.226194

NPGA (B) 92943.08 0.010969 585.22 203.127877

NPGA (FP) 55812.18 0.029665 1307.44 135.596546

Hajela (B) 99464.52 0.017495 1134.42 223.105294

Hajela (FP) 107947.60 0.007593 421.48 232.796738

GAminmax (B) 85604.05 0.036615 2190.83 207.605910

GAminmax (FP) 16230.99 0.037474 2227.73 60.226711

Table 6: Comparison of the best overall solution found by each one of the methods included in MOSES for the

�rst example (design of a 25-bar space truss). GA-based methods were tried with binary (B) and oating point

(FP) representations. The following abbreviations were used: OS = Osyczka's System, GCM = Global Criterion

Method (exponent=2.0), WMM (Weighting Min-max), PWM (Pure Weighting Method), NWM (Normalized

Weighting Method), GALC = Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.33 (equal weight for every objective).

convergence, considering the length of the string which, in this case is of 136 genes [10].

The results obtained for this problem show how easily the mathematical programming techniques can be

surpassed by a GA-approach, using the same number of points, though the GA starts with a completely random

population (our approach ensures that the initial population contains only feasible individuals, but these solutions

are still randomly generated). Although we used the same random numbers generator that the Monte Carlo

techniques use, the results are quite di�erent. For those who think that a simple linear combination of objectives

should be good enough to deal with multiobjective optimization problems, the results for GALC (see Table 6)

show the contrary. Our approach used a set of �fteen weights to compute the ideal vector.

11.2 Example 2

The second example (200-bar plane truss design) presents a larger structure in which the time taken by the

analysis becomes a critical issue. The Monte Carlo Methods 1 and 2 were used with 500 points, and the GA

also used a population size of 500 (over 100 generations) with binary and oating point representations, with

the procedure previously described to adjust its parameters. The corresponding ideal vector is shown in Table 7

including the best results reported in the literature [5]. Notice that the results presented by Belegundu violate

34 constraints of the problem, which means that his solution is not valid. This explains why the GA could not
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Method f

1

f

2

f

3

Monte Carlo 1 3019191:78 3.9983 74.99

Monte Carlo 1 5423359.65 0:522427 9.5056

Monte Carlo 1 5635985.90 0.556857 8:7115

Min-Max (OS) 617227:10 3.8398 91.9799

Min-Max (OS) 650984.03 3:6148 86.0389

Min-Max (OS) 641862.42 3.6235 85:8669

GA (Binary) 893885:79 33.6943 957.1493

GA (Binary) 9963295.72 0:370375 5.124250

GA (Binary) 9963295.72 0.370375 5:124250

GA (FP) 36167:73 38.675848 1062.77608

GA (FP) 9961698.96 0:370376 5.124382

GA (FP) 9962313.62 0.370377 5:124336

Literature 35162:93 44.144661 1137.7476

Literature 35162.93 44:144661 1137.7476

Literature 35162.93 44.144661 1137:7476

Table 7: Comparison of results computing the ideal vector of the second example (design of a 200-bar plane truss).

For each method the best results for optimum f

1

, f

2

and f

3

are shown in boldface. OS stands for Osyczka's

Multiobjective Optimization System. All the objectives are being minimized.

achieve such a low weight using oating point representation. In fact, in Belegundu's dissertation [5] he even

provides a better solution (with a total weight of 26261.05) but that violates 48 constraints. We chose to include a

solution with a higher weight, but a lower number of violations. Nevertheless, the number of constraints violated

is still high and the GA could not possibly converge towards such solutions.

In this example, Monte Carlo methods provided results that are better (in general) than the solutions provided

by the GA-based techniques, which is remarkable, considering the large size of the search space (see Table 8).

This reects the problems of traditional GA-based techniques to �nd reasonable trade-o�s when the length of the

chromosome string is too large (493 genes in this case). Also the high amount of constraints (200 total) makes

this problem easier for mathematical programming techniques than for the GA using a penalty function. The

performance of Osyzcka's multiobjective optimization system is extremely good, but mainly because the initial

guesses provided by the user were quite close to a Pareto solution. The main use of such techniques is precisely

in cases in which we have a rough approximation of the solution, or a lot of knowledge about how the solution

space looks like is available, and we want to experiment within the boundaries of our partial result. Nevertheless,

it should be pointed out that our technique was able to �nd a better overall result than any other approach

(including mathematical programming methods) when a oating point representation was used.

12 Conclusions

We have proposed a new multiobjective optimization method based on the min-max optimization approach.

This approach is very robust because it transforms the multiobjective optimization problem into several single

objective optimization problems easier and faster to solve. When this approach is used with a oating point

representation, the technique seems to work better (i.e., faster and more accurately) than the other approaches

considered in this paper. The main drawbacks of our approach are that it requires the ideal vector and a set of

weights to delineate the Pareto set. However, our GA-based engine included in MOSES was used to compute the

ideal vector, generating results better than those previously reported in the literature. Also, if the ideal vector is

not known in advance, a set of goal (desirable) values for each objective can be provided instead. On the other

hand, �nding proper weights is typically an easy task, since not many of them are required to get reasonably

good results. In our applications, for example, no more than �fteen weights were used by our method.
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Method f

1

f

2

f

3

L

p

(f)

Ideal Vector 36167.73 0.370376 5.124250 0.000000

Monte Carlo 1 4475679.05 0.773293 12.173738 125.211428

Monte Carlo 2 5075790.44 0.561163 9.682691 140.745011

Min-max (OS) 641862.42 3.686123 88.04811 41.881840

GCM (OS) 641862.42 3.623485 85.86687 41.287050

WMM (OS) 641862.42 3.686123 88.04811 41.881840

PMM (OS) 617227.10 3.839831 91.97989 42.382994

NMM (OS) 641862.42 3.623485 85.86687 41.287050

GALC (B) 5388876.23 0.418137 6.623930 148.418423

GALC (FP) 4662186.53 0.426666 6.736934 128.371292

Lexicographic (B) 5106929.51 0.590409 11.446706 142.029185

Lexicographic (FP) 3925963.62 0.538302 9.329877 108.822923

VEGA (B) 5956689.85 0.546020 10.048603 165.131483

VEGA (FP) 4051105.81 0.662998 10.306576 112.810251

NSGA (B) 7020831.93 0.424951 6.678441 193.569332

NSGA (FP) 5369341.87 0.548805 8.334404 148.564917

MOGA (B) 3626863.83 0.489753 8.435848 100.247575

MOGA (FP) 2910316.85 0.722471 12.477403 81.852839

NPGA (B) 4028058.04 3.723483 73.607848 132.789464

NPGA (FP) 4453361.10 0.970288 5.468708 123.817748

Hajela (B) 1924166.83 1.362296 28.222939 59.387070

Hajela (FP) 4291090.29 0.874752 11.478412 120.245983

GAminmax (B) 1508966.74 2.213371 47.516121 53.970163

GAminmax (FP) 686362.29 2.223398 43.910769 30.549494

Table 8: Comparison of the best overall solution found by each one of the methods included in MOSES for the

second example (design of a 200-bar plane truss). GA-based methods were tried with binary (B) and oating point

(FP) representations. The following abbreviations were used: OS = Osyczka's System, GCM = Global Criterion

Method (exponent=2.0), WMM (Weighting Min-max), PWM (Pure Weighting Method), NWM (Normalized

Weighting Method), GALC = Genetic Algorithm with a linear combination of objectives using scaling. In all

cases, weights were assumed equal to 0.33 (equal weight for every objective).
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Our technique ensures that only feasible points are produced at generation zero, and the crossover and mutation

operatorswere modi�ed in such a way that infeasible solutions are never generated by the algorithm. This property

makes our approach unique, since none of the other GA-based techniques analyzed considered this important issue.

This is mainly because most of the previous work with multiobjective optimization techniques dealt only with

unconstrained problems.

Finally, the importance of MOSES as a benchmark for new and existing multiobjective optimization methods

should be obvious, since no other similar tools, combining GA-based approaches with mathematical programming

techniques, were previously available. Its modular structure allows the easy incorporation of new algorithms

without having to modify its main routines. Additional details may be found in [10]. Also, it should be said

that the system is a valuable tool, as it is, for engineering design optimization, because of the variety of di�erent

approaches that it contains.

13 Future Work

Much additional work remains to be done to improve the performance of our approach. One of our main

interests is to be able to compute the ideal vector during run-time, instead of having to give it in advance to

the GA. In that respect, we have developed another method that is very promising, but that still has some aws

and does not work properly with problems like the trusses used in this paper in which one of the objectives may

strongly guide the search towards the ideal value disregarding the importance of the remaining objectives [10].

It would also be desirable to parallelize the GA and the analysis of the structure, to reduce the computational

time required for each iteration. Adeli's approach [4] is an excellent example of the kind of work that can be

done in that respect. We also aim to be able to encourage theoreticians to develop a theory of convergence for

GAs in multiobjective optimization problems by using concepts from Operations Research such as the min-max

optimum.

Finally, it is highly desirable to be able to �nd more ways of incorporating knowledge about the domain into

the GA, as long as it can be automatically assimilated by the algorithm during its execution and does not have

to be provided by the user (to preserve its generality). It is also important to follow Eshelman and Scha�er's [15]

work on the pursuit of a theoretical framework that explains the excellent performance of real-coded GAs so that

practice can �nally meet theory in the use of GAs for numerical optimization.
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