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Abstract. Evaluating the performance of Multi-Objective Evolutionary
Algorithms is complex since we have to assess different characteristics of
the approximation sets that they generate. Over the years, a variety
of performance indicators have been proposed to fulfill this task. One
of the most popular performance indicators has been the hypervolume
because it can assess both convergence and spread of a set of solutions
and it is fully Pareto compliant. However, its computational cost grows
exponentially with the number of objectives. A good alternative is the R2
indicator which has a similar behavior but a much lower computational
cost. Nevertheless, R2 sometimes is unable to differentiate two sets with
different distributions. In this work, we propose a novel performance
indicator based on the linear assignment problem called “ILAP”, which
offers advantages over R2. To illustrate this, we include an example in
which the ILAP can differentiate two sets when the R2 indicator cannot
do it. Furthermore, our experimental analysis shows that our proposed
indicator correctly ranks solution sets with different distributions and
shapes.

Keywords: Indicator · Linear Assignment Problem · Multi-Objective
Optimization

1 Introduction

The solution to a multi-objective optimization problem consists of a set of non-
dominated solutions which can not be easily evaluated as in the case of single-
objective problems. Therefore, the performance assessment of Multi-Objective
Evolutionary Algorithms (MOEAs) is an essential research topic. Over the years,
a variety of indicators have been proposed to assess different characteristics of
the Pareto Front approximations [12, 1, 7]. One of the most popular indicators
has been the hypervolume [12], which measures the space covered by an ap-
proximation set given a reference point. This indicator is Pareto compliant and
can assess both convergence and spread of the approximations produced by a
MOEA. However, its computational cost becomes unaffordable as the number
of objectives increases.
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Another commonly used performance indicator is R2 [1]. This indicator can
assess the convergence and diversity of the solutions by using a set of weight
vectors and a scalarizing function. Moreover, the behavior of the R2 indicator
is similar to that of the hypervolume (although R2 is weakly Pareto compliant)
but has a significantly lower computational cost [1]. Nevertheless, as we will see
later on, the R2 indicator may obtain the same value for approximation sets
with different distributions.

This work introduces a performance indicator based on the linear assignment
problem [2]: ILAP. In a linear assignment problem, we have to assign a set of
agents to a set of tasks. The assignment of an agent to a task corresponds to
a cost. Therefore, the aim is to find an assignment with the lowest cost. In the
case of the ILAP, we use a set of weight vectors and a set of individuals, where
the assignment cost is computed using a scalarizing function. Thus, we use the
cost of the best assignment as the indicator value.

Our experimental results show that ILAP correctly ranks solution sets with
different distributions and shapes. Moreover, we present an example in which
ILAP distinguishes two approximation sets in a better way than theR2 indicator.

The remainder of the paper is organized in the following way. First, we in-
troduce the necessary concepts to understand this paper in Section 2. Then, we
present in Section 3 our proposed indicator. After that, in Section 4, we discuss
the differences and similarities between our approach and the R2 indicator. In
Section 5, we evaluate our proposed ILAP. Finally, we present the conclusions
and some possible paths for future research in Section 6.

2 Background

2.1 Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) is defined as follows1:

minimize F (x) = [f1(x), . . . , fm(x)]T (1)

subject to gi(x) ≤ 0 i = 1, . . . , p, (2)

hj(x) = 0 j = 1, . . . , q (3)

where x = [x1, . . . , xn] is the vector of decision variables, fi : IRn → IR for
i = 1, . . . ,m are the objective functions, and gi, hi : IR

n → IR for i = 1, . . . , p,
j = 1, . . . , q are the constraints of the problem. We denote Ω as the decision
space and F as the feasible region.

In a MOP, we cannot easily compare the solutions because the objective
functions are usually in conflict with each other. Therefore, we use the Pareto
dominance relation to define a partial order of the solutions:

Definition 1. A vector x ∈ Ω is said to dominate y ∈ Ω (denoted as x ≺ y),
if fi(x) ≤ fi(y) for all i = 1, . . . ,m, and fj(x) < fj(y) in at least one j.

1 without loss of generality, we assume minimization problems
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Pareto optimality, which is the most commonly used notion of optimality
adopted in multi-objective optimization, is formally defined as follows:

Definition 2. A vector x ∈ F is Pareto optimal if there does not exist another
vector y ∈ F such that y ≺ x.

Moreover, we also adopt the following definitions commonly used in multi-
objective optimization:

Definition 3. The Pareto Optimal Set P∗ is defined as:

P∗ := {x | x is Pareto optimal}

Definition 4. The Pareto Optimal Front PF∗ is defined as:

PF∗ := {F (x) ∈ IRm | x ∈ P∗}

Definition 5. Given a predefined weight vector w ∈ IRm, a scalarizing func-
tion s transforms a multi-objective problem into a single-objective problem of the
following form:

minimize s(f ′(x),w) (4)

subject to x ∈ F , (5)

where x is the decision vector, F ∈ IRn is the feasible region, f ∈ IRm is the
vector of m objective functions, f ′(x) := f(x) − z, and z ∈ IRm is a reference
point.

2.2 Linear Assignment Problem

A Linear Assignment Problem (LAP) comprises a set of agents and a set of
tasks where assigning an agent to a task involves a cost. Therefore, the aim is
to find an assignment that minimizes the overall cost. Formally, a LAP can be
formulated as follows.

Definition 6. Given a set of agents A = {a1, . . . , an}, a set of tasks T =
{t1, . . . , tn}, and the cost function C : A × T → IR. Let Φ : A → T the set
of all possible bijections between A and T , the linear assignment problem (LAP)
can then be stated as

minimize
ϕ∈Φ

∑
a∈A

C(a, ϕ(a)) (6)

Usually, the cost function can be expressed as a real-valued matrix C with
elements Cij = C(ai, tj). Moreover, the set Φ of all possible bijections can be
viewed as a set of permutation matrices X where each matrix x ∈ X holds

xij =

{
1 if agent i is assigned to task j,

0 otherwise.
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Therefore, a LAP can be modeled as [2]:

minimize
x∈X

n∑
i=1

n∑
j=1

Cijxij (7)

such that

n∑
j=1

xij = 1 (i = 1, 2, . . . , n), (8)

n∑
i=1

xij = 1 (j = 1, 2, . . . , n), (9)

xij ∈ {0, 1} (i, j = 1, 2, . . . , n). (10)

This problem can be solved using the so-called Hungarian algorithm, which has
an O(n3) computational complexity [2].

3 Our Proposed Indicator

Molinet Berenguer and Coello Coello [9] transformed the selection process of a
MOEA into a LAP. In this proposal, the authors consider a set of individuals
and a set of weight vectors representing different regions of the Pareto front.
Moreover, the cost of assigning an individual to a weight vector is computed
using a scalarizing function. Therefore, after solving the LAP, the individuals
assigned to a weight vector are selected for the next generation. The authors
proposed an algorithm called Hungarian Differential Evolution (HDE) that uses
the LAP selection scheme. The experimental results show that the HDE is very
competitive with respect to state-of-the-art algorithms.

In the case of the LAP selection process, the size of the set of individuals is
bigger than the set of weight vectors. Therefore, the Hungarian algorithm finds
the subset of individuals that minimizes the overall assignment cost and discards
the subsets with the worst values. Hence, we can deduce that the minimum
overall assignment cost gives us an estimation of how good or bad a set is. Using
this idea, we propose an indicator based on the LAP. The ILAP indicator is
defined in the following.

Definition 7. Given a set of uniformly distributed weight vectors W = {w1, . . . ,wn},
an approximation set A = {a1, . . . ,an}, and a cost matrix C such that Cij =
s(wi,aj) where s is a scalarizing function. Then, the ILAP is defined as:

ILAP =
1

n
min
x∈X

{
n∑

i=1

n∑
j=1

Cijxij

}
(11)

where X is the set of permutation matrices.

We compute the ILAP by obtaining a cost matrix C using s, A, and W . Then,
we solve the LAP defined by C employing the Hungarian algorithm. Finally,
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the indicator value is the best assignment’s cost divided by n. The cost matrix
computation is performed in O(mn2), where m is the number of objectives.
Moreover, the LAP problem is solved in O(n3). Therefore the computational
complexity of computing the ILAP is O(mn2 + n3).

In the ILAP, each weight vector must be assigned to a currently unassigned
solution while minimizing the cost. In the ideal case, each weight vector is as-
signed to a solution where it obtains its lowest cost. However, let’s assume that
more than one weight vector obtains its lowest cost with the same solution. In
that case, the indicator will assign the solution to the vector with the lowest
value and will use the second-best solutions for the remaining vectors.

This process allows the ILAP to assess convergence and diversity at the same
time. On the one hand, it measures convergence by always considering the best
values of the scalarizing functions. On the other hand, it measures diversity
because it tries to quantify how much the solutions cover the regions of the
weight vectors. Examples of these two cases are shown in Fig. 1a and Fig. 1b,
where the ILAP successfully ranks the sets. We used the Achievement Scalarizing
Function (ASF) [10] for these examples and for the rest of the paper.
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(a) Measuring convergence.
ILAP = 25000.3375 for circles’ set,
and ILAP = 25000.4375 for trian-
gles’ set.
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(b) Measuring diversity.
ILAP = 25000.4375 for circles’ set,
and ILAP = 197500.675 for trian-
gles’ set.

Fig. 1: Examples where the ILAP assesses both convergence and diversity. A
lower value is preferred; therefore, the ILAP ranks the sets correctly in both
cases.
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4 Comparison between Our Approach and the
R2-indicator

The R2 indicator is a performance indicator that assesses the convergence and
the diversity of a solution set. It assesses performance by mapping the candidate
solutions from objective space into utility space. Given a reference set A, a set
of reference vectors V , and a scalarizing function2 s. The R2 indicator is defined
as follows [1]:

R2(A, V ) =
1

|V |
∑
v∈V

min
a∈A

{s(a,v)}

The ILAP and R2 indicators have some similarities. Both use scalarizing
functions and weight vectors to assess the performance of an approximation set.
Moreover, the indicators will obtain the same value when the regions given by
the weight vectors are equally covered (as shown in Fig. 2).
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Fig. 2: Example of a case where ILAP and R2 obtain the same values: ILAP =
R2 = 10000.3875

However, the R2 indicator only considers the solutions with the best values
of the scalarizing function, discarding the information provided by the solu-
tions with the worst values. Therefore, the R2 indicator may not evaluate the
performance of the whole set and may obtain the same value for two different
approximations. On the other hand, the ILAP indicator considers the whole
set since it assigns each weight vector with a different solution and obtains the
indicator’s value from this assignment.

An example of the previous situation is shown in Fig. 3a and Fig. 3b. Given
two different approximation sets, the R2 indicator obtains the same value, while

2 also known as utility function
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the ILAP obtains distinct values. Furthermore, the ILAP prefers the approxi-
mation set with a solution nearer an uncovered vector.
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(a) R2=44000.50133, ILAP=44000.584
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(b) R2=44000.50133, ILAP=44000.616

Fig. 3: The R2 indicator obtains the same value for two sets with distinct distri-
butions, while the ILAP indicator obtains different values.

5 Experimental Analysis

5.1 Evaluation in Artificial Many-Objective Pareto Fronts

In this section, we study the performance of the ILAP in artificial Pareto fronts.
We employed three types of solutions sets generated in a unit m-simplex:

– C1. The solutions are concentrated in one corner of the simplex.
– C2. The solutions are randomly generated.
– C3. The solutions are uniformly distributed. We employ the method pro-

posed in [5] for this type of set.

Moreover, the set size for each dimension is shown in Table 1, and Fig. 4a to
Fig. 5l show the parallel coordinates graphs of the sets. Regarding the ILAP, we
use the ASF, and the Uniform Design with the Hammersley method (UDH) [9]
for generating the weight vectors.

m 3 4 5 6 7 8 9 10

Set size 100 110 120 130 140 150 160 170

Table 1: Set size for each dimension
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The results are shown in Tables 2a and 2b. Moreover, we include the results
of the hypervolume indicator (HV) [12] as a reference. We can observe that
the ILAP consistently ranks the C3 sets in first place, the C2 sets in second
place, and the C1 sets in last place. Furthermore, HV obtains the same ranking.
Therefore, the ILAP can correctly rank a set of solutions in 3 to 10 dimensions.

m C1 C2 C3

3 5.0453 1.5322 1.1263

4 5.6031 1.8407 1.3157

5 5.9506 2.3113 1.5775

6 5.8495 2.6022 1.9827

7 6.0938 2.9235 2.1356

8 5.9524 3.0488 2.4045

9 5.8106 3.2949 2.9855

10 5.5003 3.4681 3.1862

(a) ILAP

m C1 C2 C3

3 0.77462 1.076862 1.11977

4 0.906105 1.32058 1.369026

5 1.036677 1.49916 1.560266

6 1.197589 1.659354 1.737507

7 1.284942 1.862622 1.920832

8 1.400768 2.057528 2.111709

9 1.586619 2.252491 2.328822

10 1.805137 2.501373 2.563038

(b) HV

Table 2: ILAP and HV values of the sets C1, C2, and C3 for each dimension m.
Darker cells imply better values.

5.2 Evaluation in Pareto Front Approximations

In this section, we use the ILAP, the hypervolume, and the R2 indicator to
evaluate the performance of two well-known MOEAs: the NSGA-II [3] and the
MOEA/D [11]. For this purpose, we ran each algorithm 30 times using different
problems. We adopted the DTLZ1, DTLZ2, and DTLZ7 problems from the Deb-
Thiele-Laumanns-Zitzler (DTLZ) [4] test suite, the DTLZ1−1 from the Minus-
DTLZ test problems [8], and the WFG1-WFG3 from the Walking-Fish-Group
(WFG) [6] test suite with m = 3, 5, 8, and 10 objectives. Regarding the DTLZ
problems, we set the number of decision variables to n = m + k − 1, where
k = 5 for DTLZ1, k = 10 for DTLZ2, and k = 20 for DTLZ7. In the case of
the WFG problems, we set the position-related parameters to 2 × (m − 1) and
the distance-related parameters to 20. Finally, we use the same configuration of
DTLZ1 for DTLZ1−1.

In the case of the algorithm’s parameters, we set the population sizes to
100 for three objectives, 120 for five, 140 for eight, and 160 for ten. We set the
crossover and mutation parameters to pc = 1.0, pm = 1/number of variables,
nc = 20, and nm = 20. Regarding the MOEA/D parameters, we used a neigh-
borhood size T = 20, the ASF function, and the UDH weight vectors. Finally,
the ILAP and the R2 indicators adopted the ASF function and UDH weight
vectors.

Tables 3a, 3b, and 3c display the average and the standard deviation of each
indicator. We can observe that the three indicators obtain the same results for
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DTLZ1, DTLZ2, DTLZ7, WFG1, WFG2, and DTLZ1−1. In the case of the
WFG3 problem, the R2 and the hypervolume get the same rank in 5 and 8
objectives. In contrast, the ILAP and the hypervolume get the same rank in
3 and 5 objectives. This situation could happen because the WFG3 is a linear
problem that hardly fits the shape of a simplex. Therefore, the R2 and ILAP
indicators may have some trouble with the performance assessment because they
employ reference vectors sampled in a simplex.

6 Conclusions and Future Work

We proposed a novel performance indicator based on the Linear Assignment
Problem, called ILAP. The experimental results showed that our proposed ILAP
could successfully rank the solutions sets using different distributions and Pareto
Front shapes of many-objective problems. Moreover, we described an example
where the R2 indicator (the performance indicator with the most significant sim-
ilarity with the ILAP) can not distinguish between two different approximation
sets. And our proposed ILAP can differentiate them and prefers the one with a
solution near an uncovered region. As part of our future work, we would like to
analyze the mathematical properties of our proposed indicator.
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Table 3: Average and standard deviation of the hypervolume, R2, and ILAP
indicators. Gray cells imply better values. Moreover, the symbol “*” represents
that the algorithm is statistically better according to the Wilcoxon rank sum
test.

(a) HV

M MOEAD NSGA-II

DTLZ1

3 1.324e+0 (8.5e-4) *1.331e+0 (3.1e-6)
5 *1.610e+0 (7.5e-6) 1.610e+0 (1.4e-4)
8 *2.144e+0 (6.2e-6) 2.143e+0 (4.4e-4)
10 *2.594e+0 (8.3e-6) 2.593e+0 (1.4e-4)

DTLZ2

3 *8.330e-1 (9.3e-4) 8.169e-1 (5.1e-3)
5 *1.593e+0 (2.1e-3) 1.584e+0 (5.5e-3)
8 *2.139e+0 (1.2e-3) 2.002e+0 (4.2e-2)
10 *2.589e+0 (1.2e-3) 2.454e+0 (3.9e-2)

DTLZ7

3 6.436e-1 (5.e-2) *6.908e-1 (2.6e-2)
5 6.136e-1 (5.6e-2) *8.222e-1 (1.9e-2)
8 2.e-1 (1.2e-1) *7.608e-1 (9.4e-2)
10 1.102e-1 (9.4e-2) *5.378e-1 (1.3e-1)

WFG1

3 *1.197e+0 (2.7e-2) 1.108e+0 (2.5e-2)
5 *1.526e+0 (3.6e-2) 1.273e+0 (2.9e-2)
8 *2.055e+0 (5.0e-2) 1.495e+0 (3.6e-2)
10 *2.465e+0 (3.5e-2) 1.378e+0 (3.8e-2)

WFG2

3 1.072e+0 (8.e-2) *1.155e+0 (8.2e-2)
5 1.328e+0 (1.1e-1) *1.58e+0 (6.9e-3)
8 1.711e+0 (1.4e-1) *2.129e+0 (6.3e-3)
10 2.074e+0 (2.1e-1) *2.576e+0 (7.8e-3)

WFG3

3 8.132e-1 (7.8e-3) 8.162e-1 (4.e-3)
5 1.140e+0 (1.4e-2) 1.134e+0 (1.4e-2)
8 1.472e+0 (2.9e-2) *1.501e+0 (2.7e-2)
10 1.518e+0 (5.1e-2) *1.798e+0 (3.5e-2)

DTLZ1−1

3 *2.775e-1 (2.9e-5) 2.733e-1 (2.2e-3)
5 1.224e-2 (9.e-5) 1.215e-2 (5.3e-4)
8 *3.472e-5 (1.3e-6) 3.167e-5 (2.3e-6)
10 4.988e-7 (3.8e-8) 4.924e-7 (3.6e-8)

(b) R2

M MOEAD NSGA-II

DTLZ1

3 7.692e-2 (7.e-3) *2.856e-2 (6.e-4)
5 *1.155e-3 (3.1e-5) 2.388e-1 (1.2e-1)
8 *1.318e-3 (5.5e-5) 8.6e-1 (3.1e-1)
10 *1.574e-3 (9.5e-5) 1.165e+0 (2.6e-1)

DTLZ2

3 *1.360e+0 (2.5e-4) 1.446e+0 (3.8e-2)
5 *8.176e-1 (5.2e-3) 1.196e+0 (5.9e-2)
8 *6.764e-1 (2.4e-2) 2.832e+0 (2.4e-1)
10 *8.836e-1 (1.0e-1) 3.216e+0 (2.0e-1)

DTLZ7

3 3.517e+0 (1.1e+0) *3.074e+0 (5.8e-1)
5 7.344e+0 (9.4e-1) *6.085e+0 (1.7e-1)
8 1.702e+1 (2.2e+0) *1.098e+1 (4.8e-1)
10 2.339e+1 (3.5e+0) *1.487e+1 (9.1e-1)

WFG1

3 *1.076e+0 (1.6e-1) 1.493e+0 (2.7e-1)
5 *1.375e+0 (2.2e-1) 2.922e+0 (2.6e-1)
8 *1.412e+0 (2.3e-1) 4.859e+0 (2.3e-1)
10 *1.797e+0 (2.1e-1) 8.452e+0 (2.7e-1)

WFG2

3 2.126e+0 (7.0e-1) *1.488e+0 (7.6e-1)
5 3.305e+0 (1.1e+0) *1.174e+0 (5.4e-2)
8 5.121e+0 (1.5e+0) *1.425e+0 (5.4e-2)
10 5.187e+0 (2.3e+0) *1.533e+0 (6.7e-2)

WFG3

3 *2.667e+0 (2.5e-2) 2.673e+0 (2.0e-2)
5 *3.724e+0 (6.2e-2) 3.796e+0 (6.2e-2)
8 *5.617e+0 (8.1e-2) 5.711e+0 (7.7e-2)
10 6.985e+0 (2.2e-1) *6.594e+0 (1.1e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.46e+0 (6.4e-2)
5 *1.349e+1 (3.2e-2) 1.581e+1 (1.4e-1)
8 *3.073e+1 (8.9e-2) 3.825e+1 (3.5e-1)
10 *4.034e+1 (1.2e-1) 5.187e+1 (4.4e-1)

(c) ILAP

M MOEAD NSGA-II

DTLZ1

3 6.127e-1 (1.0e-3) *5.061e-1 (5.9e-2)
5 *1.155e-3 (3.0e-5) 9.361e-1 (1.0e-1)
8 *1.318e-3 (5.6e-5) 1.800e+0 (1.1e-1)
10 *1.577e-3 (9.8e-5) 2.105e+0 (6.0e-2)

DTLZ2

3 *1.363e+0 (3.4e-4) 1.958e+0 (7.2e-2)
5 *8.181e-1 (5.2e-3) 1.478e+0 (6.5e-2)
8 *6.765e-1 (2.5e-2) 4.292e+0 (2.2e-1)
10 *8.851e-1 (1.1e-1) 5.212e+0 (1.8e-1)

DTLZ7

3 4.797e+0 (1.1e+0) *3.298e+0 (6.3e-1)
5 1.257e+1 (1.2e+0) *6.904e+0 (1.7e-1)
8 2.834e+1 (3.0e+0) *1.333e+1 (4.4e-1)
10 3.711e+1 (6.0e+0) *1.825e+1 (6.9e-1)

WFG1

3 *1.359e+0 (1.7e-1) 1.721e+0 (3.8e-1)
5 *1.62e+0 (3.1e-1) 3.338e+0 (3.3e-1)
8 *1.727e+0 (2.9e-1) 5.834e+0 (4.5e-1)
10 *2.213e+0 (2.8e-1) 1.021e+1 (4.6e-1)

WFG2

3 2.377e+0 (6.3e-1) *1.75e+0 (8.5e-1)
5 3.568e+0 (1.1e+0) *1.954e+0 (2.3e-1)
8 5.302e+0 (1.5e+0) *2.953e+0 (2.5e-1)
10 5.314e+0 (2.2e+0) *3.271e+0 (3.0e-1)

WFG3

3 3.276e+0 (3.7e-2) *2.929e+0 (5.6e-2)
5 *4.172e+0 (1.2e-1) 4.804e+0 (1.3e-1)
8 *6.833e+0 (1.6e-1) 7.874e+0 (2.3e-1)
10 *9.165e+0 (2.5e-1) 9.488e+0 (2.6e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.627e+0 (6.7e-2)
5 *1.349e+1 (3.2e-2) 1.637e+1 (1.9e-1)
8 *3.076e+1 (7.4e-2) 3.915e+1 (3.e-1)
10 *4.037e+1 (1.2e-1) 5.325e+1 (3.7e-1)
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(a) C1 - 3D (b) C2 - 3D (c) C3 - 3D

(d) C1 - 4D (e) C2 - 4D (f) C3 - 4D

(g) C1 - 5D (h) C2 - 5D (i) C3 - 5D

(j) C1 - 6D (k) C2 - 6D (l) C3 - 6D

Fig. 4: Artificial solution sets generated in a unit simplex. Solutions in C1 are
concentrated in a corner, in C2 are randomly generated, and in C3 are uniformly
distributed.
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(a) C1 - 7D (b) C2 - 7D (c) C3 - 7D

(d) C1 - 8D (e) C2 - 8D (f) C3 - 8D

(g) C1 - 9D (h) C2 - 9D (i) C3 - 9D

(j) C1 - 10D (k) C2 - 10D (l) C3 - 10D

Fig. 5: Artificial solution sets generated in a unit simplex (continuation)
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