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Abstract. It has been shown that swarm topologies influence the be-
havior of Particle Swarm Optimization (PSO). A large number of con-
nections stimulates exploitation, while a low number of connections stim-
ulates exploration. Furthermore, a topology with four links per particle
is known to improve PSO’s performance. In spite of this, there are few
studies about the influence of swarm topologies in Multi-Objective Par-
ticle Swarm Optimizers (MOPSOs). We analyze the influence of star,
tree, lattice, ring and wheel topologies in the performance of the Speed-
constrained Multi-objective Particle Swarm Optimizer (SMPSO) when
adopting a variety of multi-objective problems, including the well-known
ZDT, DTLZ and WFG test suites. Our results indicate that the selection
of the proper topology does indeed improve the performance in SMPSO.

Keywords: Swarm topology · Particle swarm optimization · Multi-objective
particle swarm optimization · Multi-objective optimization

1 Introduction

Particle Swarm Optimization (PSO) is a metaheuristic proposed in the mid-
1990s by Kennedy and Eberhart [7] that mimics the social behavior of bird
flocks and schools of fish. PSO searches a solution to an optimization problem
using particles that move through the search space employing their best previous
position and the best position of the particles to which that particle is connected.
The graph that represents these connections is called swarm topology. It has
been empirically shown that the topology influences the behavior of a single-
objective PSO [6, 8]. A topology with many connections improves the exploitative
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behavior of PSO, while a topology with few connections improves its explorative
behavior [6].

A wide variety of Multi-Objective Particle Swarm Optimizers (MOPSOs)
have been developed [10] over the years. However, unlike the case for single-
objective PSO, studies on the influence of a swarm topology in the performance of
a MOPSO are very scarce. Yamamoto et al. [12] studied the influence of a swarm
topology for the bi-objective problems ZDT1, ZDT3, and ZDT4. They found that
increasing the topology connections improves the convergence towards the true
Pareto Front, and that decreasing such connections promotes diversity. On the
other hand, Taormina and Chau [11] examined the effect of a swarm topology
for a bi-objective problem of neural networks training. They noticed that a
topology with four connections (a lattice topology) improves the performance
of a MOPSO. Both studies offer relevant information about the influence of a
swarm topology. However, the results of these two studies are limited to bi-
objective problems having similar features. In contrast, the study presented in
this paper covers a wide variety of problems with two and three objectives, taken
from the Zitzler-Deb-Thiele (ZDT), the Deb-Thiele-Laumanns-Zitzler (DTLZ)
and Walking-Fish-Group (WFG) test suites.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide some basic concepts related to multi-objective optimization and PSO, in-
cluding swarm topologies. Then, in Section 3, we describe the operation of the
Speed-constrained Multi-objective Particle Swarm Optimizer (SMPSO) which is
our baseline algorithm. Section 4 presents a discussion on the use of topologies
in MOPSOs. Section 5 presents two schemes for handling swarm topologies in
MOPSOs, as a framework for conducting the study presented herein. Our ex-
perimental results are provided in Section 6. Finally, our conclusions and some
potential paths for future research are provided in Section 7.

2 Background

2.1 Multi-objective Optimization

We are interested in solving a continuous unconstrained multi-objective opti-
mization problem that is defined as follows:

minimize
x∈Ω

F (x) = (f1(x), f2(x), · · · , fm(x))T (1)

where x = [x1, x2, · · · , xn]T belongs to the decision variable space defined by Ω.
And F (x) : Ω → IRm consist of m objective functions fi(x) : IRn → IR that are
usually in conflict. In a multi-objective problem, we aim to find the best trade-off
solutions that can be defined in terms of the notion of Pareto Optimality. We
provide the following definitions to describe this concept.

Definition 1. Let u, v ∈ IRm, u is said to dominates v (denoted by u � v),
if and only if ui ≤ vi for all i = 1, ...,m and ui < vi for at least one index
j ∈ {1, · · · ,m}.



A Study of Swarm Topologies and Their Influece on MOPSOs 3

Definition 2. A solution x ∈ Ω is Pareto Optimal if it does not exist another
solution y ∈ Ω such that F (y) � F (x).

Definition 3. Given a multi-objective optimization problem (F (x), Ω), the Pa-
reto Optimal Set (PS) is defined by:

PS = {x ∈ Ω | x is a Pareto Optimal solution},

and its image PF = {F (y) | y ∈ PS} is called Pareto Front.

2.2 Particle Swarm Optimization

PSO is a bio-inspired metaheuristic that works with a set of particles (called
swarm) that represents potential solutions to the optimization problem. Each
particle xi ∈ IRn at generation t updates its position using the following expres-
sion:

xi(t) = xi(t− 1) + vi(t). (2)

The factor vi(t) is called velocity and is defined by

vi(t) = wvi(t− 1) + C1r1(xpi − xi(t− 1)) + C2r2(xli − xi(t− 1)) (3)

where w is a positive constant known as inertia weight; C1 and C2 are positive
constants known as cognitive and social factors, respectively; r1 and r2 are two
random numbers with a uniform distribution in the range [0, 1]; xpi is the best
personal position found by the ith particle , and xli is the best particle to which
it is connected (called leader). In order to define the connections that allow us
to select the leader, we need to determine the topology of the swarm.

2.3 Swarm Topology

A swarm topology (or, simply, a topology) is a graph where each vertex repre-
sents a particle, and there is an edge between two particles if they influence each
other [8]. The set of particles that affect a given particle is called neighborhood.
In the experiments reported below, we use five topologies that have been studied
before in PSO:

– Fully connected (star or gbest). All the particles in this topology influence
each other [6]. See Fig. 1a. Therefore, the information between particles
expands quickly.

– Ring (lbest). In this topology, each particle is influenced by its two immedi-
ate neighbors [6]. See Fig. 1b. For this reason, the information transmission
between particles is slow.

– Wheel. It consists of one central particle that influences and is influenced
by the remainder particles in the swarm [6]. See Fig. 1c. The central particle
acts as a filter that delays the information.

– Lattice. In this topology, each particle is influenced by one particle above,
one below and two on each side [6]. See Fig. 1d.

– Tree. The swarm in this topology is organized as a binary tree where each
node represents a particle. See Fig. 1e.
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Fig. 1. Swarm topologies

3 SMPSO

In contrast to single-objective PSO, a MOPSO’s particle could have more than
one leader due to the nature of multi-objective problems. Therefore, a large
number of MOPSOs usually store their leaders in an external archive, which
retains the non-dominated solutions found so far [10]. For this reason, we assume
in this paper that a MOPSO works with an external archive and selects the
leaders from it. Accordingly, we selected for the experimental analysis a standard
Pareto-based MOPSO that works in this manner: the Speed-constrained Multi-
objective Particle Swarm Optimizer (SMPSO) [9]. The core idea behind SMPSO
is to control the particles’ velocity employing a constriction coefficient χ defined
by:

χ = 2/(2− ϕ−
√
ϕ2 − 4ϕ) (4)

where ϕ = 1 if C1 + C2 is less or equal than four. Otherwise, ϕ = C1 + C2.
Besides the constriction coefficient, SMPSO bounds the jth velocity component
of each ith particle, denoted by vi,j(t), using the equation:

vi,j(t) =


δj if vi,j(t) > δj

−δj if vi,j(t) ≤ −δj
vi,j(t) otherwise

(5)

where δj = (upper limitj − lower limitj)/2, and the upper and lower limits of
the jth decision variable are upper limitj and lower limitj respectively.

In summary, for computing the velocity, SMPSO selects the leader by ran-
domly taking two solutions from the external archive and chooses the one with
the largest crowding distance, which measures how isolated a particle is from
the others. After that, the velocity is estimated with the selected leader using
equation (3). Then, the result is multiplied by the constriction factor defined in
equation (4) and bounded using the rule defined in equation (5).

SMPSO works in the following way. First, the swarm is randomly initialized,
and the external archive is constructed with the non-dominated solutions cur-
rently available. During a certain (pre-defined) number of iterations, the velocity
and position of each particle is computed. Then, polynomial-based mutation [1]
is applied to the resulting individual, using a mutation rate pm, and the new par-
ticle is evaluated. Finally, the particles’ personal best and the external archive
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are updated. If the archive exceeds a pre-defined limit, the solution with the
lowest crowding distance is removed. The pseudocode of SMPSO is shown in
Algorithm 1.

Algorithm 1 Pseudocode of SMPSO

1: Initialize the swarm with random values
2: Initialize the external archive with the non-dominated solutions of the swarm
3: while the maximum number of iterations is not reached do
4: for each particle pi in the swarm do
5: Randomly take two solutions from the external archive and select the one

with the largest crowding distance as the leader xli

6: Compute the velocity using equation (3) and multiply it by equation (4)
7: Constrain the velocity using equation (5)
8: Compute the particle’s position with equation (2)
9: Apply polynomial-based mutation

10: Evaluate the new particle
11: end for
12: Update the particle’s memory and the external archive
13: if the size of the external archive exceeds its limit then
14: Remove from the external archive the particle with the lowest crowding

distance
15: end if
16: end while

4 Handling Topologies in Multi-Objective Particle
Swarm Optimizers

In PSO, each particle updates its best personal position by comparing both the
current and the previous positions and selecting the best one. Furthermore, the
leader of each particle is selected by examining the best personal position of
the particles to which it is connected. In multi-objective problems, however, we
cannot select just one solution as the best. Therefore many MOPSOs store the
best position found by particles in an external archive and select the leaders
from it. This leader selection scheme does not allow MOPSOs to use distinct
topologies because the neighborhood of a particle is not examined to select its
leader. Moreover, many MOPSOs use a fully connected topology because each
particle takes into consideration the positions found by the whole swarm. For
this reason, it is necessary to design a leader selection scheme to handle swarm
topologies in MOPSOs.

Yamamoto et al. [12] introduced a topology handling scheme where each
particle had a sub-archive that was updated by the particle and its neighbors.
Accordingly, each particle selected its leader from its sub-archive and the sub-
archives of its neighbors. One advantage of this scheme is that it promotes di-
versity because a solution from a sub-archive could dominate a solution from
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another one. Furthermore, this scheme allows us to manipulate directly the best
position found by the particles. On the other hand, one disadvantage of this
scheme is that the space and time complexity of the MOPSO increase due to the
use of sub-archives, and they get worse when the population size is increased.

Taormina and Chau [11] proposed another topology handling scheme where
the leaders are added to the swarm. Each leader will influence four particles,
but the particles will not influence the leaders, so they will not move. Taormina
and Chau mentioned that these leaders are instances of non-dominated solutions
found by the particles, but they do not provide any further information.

Due to the disadvantages of these two previously described schemes, we pro-
pose here two topology handling schemes which are described next.

5 The Proposed Topology Handling Schemes

In order to analyze the influence of the topology in MOPSOs, we propose two
topology handling schemes and implement them in SMPSO. Both schemes differ
only in the place from which the leader is taken: either the particle’s memory or
the external archive:

5.1 Scheme 1

The idea of scheme 1 is to emulate the leader selection scheme from a single-
objective PSO. Therefore, it selects the leader of each particle by examining
the personal best positions of the particles in the neighborhood and selecting
the best from them. In order to implement scheme one in SMPSO (we called
this algorithm SMPSO-E1), we modified line 5 of Algorithm 1. Thus, SMPSO-
E1 obtains the particle’s neighborhood and saves it in Ni. Next, it selects as a
leader, the particle whose personal best position dominates most of the others
in Ni. After that, the particle’s position and its velocity are computed as in the
original SMPSO.

5.2 Scheme 2

Under scheme 2, we associate each element of the external archive to each particle
in the swarm, i.e., the ith element of the external archive is associated with the
ith particle in the swarm. If the archive size is smaller than the swarm size, the
archive elements are assigned again. Furthermore, the swarm size is restricted to
be larger or equal to the archive size. Afterwards, a particle will select its leader
by exploring the external archive components that are assigned to the particle’s
neighbors. The idea of scheme 2 is to use each external archive element as an
alternative memory, in order to operate with the global best positions as leaders.
In order to implement scheme 2 in SMPSO (we named this algorithm SMPSO-
E2), we modified Algorithm 1. First, before computing the new positions of the
particles, we assign the external archive elements to each particle. Then, for each
particle, we randomly take two elements in the neighborhood and select as leader
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the one with the largest crowding distance. After that, we compute the particle’s
distance as in the original SMPSO.

6 Experiments and Analysis
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Fig. 2. Distribution of
ranks of SMPSO-E1 for
each topology where rank
1 is the best and rank 5 is
the worst.

In this work, we compare five state-of-the-art topolo-
gies: star, ring, lattice, wheel, and tree. The influence
of each topology is evaluated both using SMPSO-E1
and SMPSO-E2. We also contrast the performance of
SMPSO-E1, SMPSO-E2, and the original version of
SMPSO. In order to analyze the impact of a par-
ticular topology in the performance of a MOPSO,
we adopted several test problems: the Zitzler-Deb-
Thiele (ZDT) [14], the Deb-Thiele-Laumanns-Zitzler
(DTLZ) [2], and the Walking Fish Group (WFG) [4]
test suites. From the ZDT test suite, we excluded
ZDT5 due to its discrete nature. We use 3-objective
instances of DTLZ and WFG problems. The number
of variables is 30 for ZDT1 to ZDT3, and 10 for ZDT4
and ZDT6. In the case of the DTLZ problems, the
number of variables is n = 3 + k − 1, where k = 5 for
DTLZ1, k = 10 for DTLZ2 to DTLZ6, and k = 20
for DTLZ7. Finally, we use 24 variables for the WFG
problems.

For assessing performance, we selected three per-
formance indicators: the hypervolume (HV) [13], the
Modified Inverted Generational Distance (IGD+) [5],
and the s-energy [3]. The two first indicators assess
both the convergence and the spread of the approx-
imation set, while the third indicator measures only
the diversity of the approximation set. The reference
points used for the hypervolume, per problem, are the
worst values found of the objective functions multi-
plied by 1.1.

To ensure a fair comparison, we defined the same
set of parameters for each MOPSO. We set the swarm
and archive size to 100 for the ZDT problems and to 91
for the WFG and DTLZ test problems. The mutation
probability was set to pm = 1/n, and the inertia weight was set to w = 0.1.
Moreover, the MOPSOs stop after performing 2500 iterations.

6.1 Methodology

We performed 30 independent runs of each MOPSO and normalized the result-
ing Pareto Front approximations. Then, we computed the indicators, normalized
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their values, and computed the corresponding means and standard deviations.
Since we are dealing with stochastic algorithms, we also applied the Wilcoxon
signed-rank test with a significance level of 5% to validate the statistical con-
fidence of our results. We used the mannwhitneyu function from the SciPy

Python library for this purpose.

6.2 Experimental Results
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Fig. 3. Distribution of
ranks of SMPSO-E2 for
each topology where rank
1 is the best and rank 5 is
the worst.

Here, we present the comparison of SMPSO, SMPSO-
E1, and SMPSO-E2 for each of the 5 topologies con-
sidered. Tables 1, 2, and 3 summarize the results for
each indicator where the best values have a gray back-
ground, and the “*” symbol means that this result is
statistically significant. Figs. 2 and 3 show the rank
distribution among the topologies of SMPSO-E1 and
SMPSO-E2, respectively. In this case, rank 1 is better
than rank 5. In Fig. 2, the SMPSO-E1 with lattice,
star, and tree topologies rank more frequently in the
first places regarding the hypervolume and IGD+ indi-
cators. In contrast, the ring and wheel topologies rank
more regularly in the last positions. This indicates
that topologies with more connections promote the
convergence of SMPSO-E1. Regarding the s-energy
indicator, the lattice topology ranks more frequently
in the best places, while the ring topology commonly
ranks in the worst. Therefore, the lattice topology of-
fers the best trade-off between convergence and diver-
sity for SMPSO-E1.

In the case of SMPSO-E2, we can see in Fig. 3 that
the wheel topology ranks more frequently in the best
places with respect to the hypervolume and IGD+, fol-
lowed by the tree topology, followed by the ring and
lattice topologies, and finally, by the star topology. It
is worth noting that topologies with fewer connections
have better values in the convergence indicators. Re-
garding the s-energy indicator, the star topology ranks
more frequently in the first places, followed by the ring
topology, and then the tree and the lattice topologies.
Ultimately, the wheel topology ranks more often in the
worst places. In this case, we cannot define a topol-
ogy that provides the best possible trade-off between
convergence and diversity. Fig. 4 compares the performance of the MOPSOs in
each problem. The blue and red connected lines denote the behavior of SMPSO-
E1 and SMPSO-E2, respectively, for each topology. Furthermore, the green line
represents the original SMPSO. We can see that in Figs. 4b and 4c, most of
the blue lines are above the green and red lines. Conversely, in Fig. 4a, all the
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lines are below the green and red lines. Therefore, it is clear that SMPSO-E1
performs worse than SMPSO-E2 and SMPSO.

Finally, in Tables 1 and 2, we can see that SMPSO-E2 with a wheel topology
has the best performance with respect to IGD+ and the hypervolume. Besides,
in Table 3, SMPSO-E2 with a star topology performs better with respect to
s-energy, but the difference is not statistically significant.
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Fig. 4. Indicator values of SMPSO, SMPSO-E1, and SMPSO-E2 for each problem.
Lower values are preferred for s-energy and IGD+, while higher values are preferred
for the hypervolume.

7 Conclusions and Future Work

In this work, we proposed two topology handling schemes that differ in the place
from which the leader is taken, and we implemented them in SMPSO. Moreover,
using the resulting MOPSOs (SMPSO-E1 and SMPSO-E2), we performed an
experimental analysis of the influence of the topology in the performance of a
MOPSO.

The experiments show that a scheme that uses information from the external
archive perform better than a scheme that uses information from the swarm.
Furthermore, the same topology will influence the performance of a MOPSO
in a different manner if the topology handling scheme is changed. On the other
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hand, our experiments also indicate that the fewer topology connections SMPSO-
E2 has, the better its convergence is. This effect could be because the particles
in a topology with many connections could try to go in multiple directions due
to the existence of multiple optimal solutions, causing the MOPSO to converge.
Conversely, if the topology has few connections, the information flows slowly and
the particles move to specific optimal solutions. Furthermore, the wheel topology
in SMPSO-E2 performs better than SMPSO and SMPSO-E1.

Therefore, the right selection of a topology can indeed improve the perfor-
mance of a MOPSO. In SMPSO-E1 and SMPSO-E2, the swarm topology had
little influence in the distribution of solutions. Thus, a topology handling scheme
that focuses on this topic could be worth developing.

Table 1. Mean and standard deviation of the HV indicator for SMPSO, SMPSO-E1,
and SMPSO-E2. The best values are highlighted in gray, and “*” indicates that the
results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2
Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 0.99999
(0.000)

0.99697
(0.003)

0.69748
(0.303)

0.99966
(0.001)

0.99967
(0.001)

0.99633
(0.014)

0.99999
(0.000)

0.99999
(0.000)

0.99999
(0.000)

0.99999
(0.000)

1.00000
(0.000)*

DTLZ2 0.81405
(0.038)

0.79588
(0.053)

0.30091
(0.135)

0.86375
(0.093)

0.85269
(0.069)

0.78544
(0.086)

0.81054
(0.041)

0.80032
(0.051)

0.80880
(0.037)

0.81901
(0.037)

0.88217
(0.064)

DTLZ3 1.00000
(0.000)

1.00000
(0.000)

0.80084
(0.254)

0.99999
(0.000)

1.00000
(0.000)

0.99999
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

DTLZ4 0.94139
(0.019)

0.56177
(0.095)

0.30938
(0.150)

0.75153
(0.117)

0.71058
(0.119)

0.69577
(0.100)

0.93544
(0.016)

0.92248
(0.019)

0.93991
(0.017)

0.92746
(0.015)

0.96688
(0.015)*

DTLZ5 0.99326
(0.002)

0.95838
(0.006)

0.23308
(0.104)

0.92515
(0.024)

0.91583
(0.014)

0.91969
(0.020)

0.99601
(0.002)

0.99702
(0.001)

0.99270
(0.003)

0.99633
(0.001)

0.99760
(0.001)*

DTLZ6 0.99997
(0.000)

0.99993
(0.000)

0.68536
(0.277)

0.99955
(0.001)

0.99971
(0.000)

0.99920
(0.001)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

DTLZ7 0.95036
(0.027)

0.96958
(0.021)*

0.21446
(0.132)

0.83502
(0.055)

0.84259
(0.052)

0.83981
(0.065)

0.93912
(0.019)

0.95026
(0.027)

0.94900
(0.027)

0.94681
(0.018)

0.94085
(0.026)

WFG1 0.97934
(0.005)

0.43578
(0.217)

0.75196
(0.070)

0.94859
(0.015)

0.90301
(0.038)

0.47389
(0.217)

0.99078
(0.003)

0.99114
(0.002)

0.98043
(0.003)

0.99183
(0.002)

0.99495
(0.004)*

WFG2 0.96900
(0.010)

0.93333
(0.018)

0.39314
(0.170)

0.94195
(0.026)

0.90560
(0.027)

0.85999
(0.052)

0.96614
(0.010)

0.96408
(0.012)

0.96622
(0.012)

0.96427
(0.010)

0.97596
(0.014)*

WFG3 0.97586
(0.009)

0.94573
(0.036)

0.48072
(0.155)

0.87778
(0.048)

0.90471
(0.031)

0.76816
(0.144)

0.97749
(0.011)

0.97382
(0.012)

0.97226
(0.012)

0.97692
(0.009)

0.98341
(0.011)*

WFG4 0.91697
(0.020)

0.43842
(0.111)

0.25039
(0.110)

0.68273
(0.097)

0.64494
(0.065)

0.40172
(0.168)

0.92541
(0.016)

0.92125
(0.018)

0.92499
(0.020)

0.92351
(0.016)

0.96908
(0.020)*

WFG5 0.91891
(0.018)

0.40458
(0.127)

0.22354
(0.100)

0.66482
(0.070)

0.63603
(0.072)

0.35667
(0.153)

0.91564
(0.017)

0.91365
(0.019)

0.91434
(0.015)

0.91843
(0.016)

0.96516
(0.020)*

WFG6 0.95530
(0.059)

0.54999
(0.083)

0.19753
(0.085)

0.50558
(0.107)

0.72334
(0.067)

0.52365
(0.089)

0.96534
(0.017)

0.94079
(0.073)

0.94778
(0.060)

0.96042
(0.018)

0.89054
(0.100)

WFG7 0.92619
(0.017)

0.50668
(0.103)

0.23671
(0.101)

0.70426
(0.092)

0.67143
(0.059)

0.46856
(0.130)

0.91768
(0.015)

0.91782
(0.021)

0.92472
(0.018)

0.92754
(0.012)

0.97322
(0.015)*

WFG8 0.92835
(0.017)

0.49882
(0.101)

0.31892
(0.109)

0.72133
(0.082)

0.68940
(0.059)

0.46319
(0.111)

0.91636
(0.020)

0.92307
(0.015)

0.92857
(0.013)

0.92391
(0.017)

0.97240
(0.016)*

WFG9 0.94363
(0.057)

0.51928
(0.074)

0.12279
(0.063)

0.42907
(0.118)

0.66481
(0.086)

0.50926
(0.113)

0.94353
(0.054)

0.91859
(0.089)

0.95324
(0.016)

0.93372
(0.067)

0.83133
(0.114)

ZDT1 0.99974
(0.000)

0.98460
(0.006)

0.54580
(0.190)

0.89412
(0.037)

0.97277
(0.011)

0.95933
(0.035)

0.99980
(0.000)

0.99983
(0.000)

0.99972
(0.000)

0.99981
(0.000)

0.99989
(0.000)*

ZDT2 0.99977
(0.000)

0.99640
(0.001)

0.50140
(0.189)

0.83360
(0.072)

0.98613
(0.006)

0.98471
(0.010)

0.99982
(0.000)

0.99983
(0.000)

0.99976
(0.000)

0.99981
(0.000)

0.99982
(0.000)

ZDT3 0.99973
(0.000)

0.96979
(0.012)

0.44926
(0.190)

0.80671
(0.083)

0.96309
(0.016)

0.94488
(0.039)

0.99980
(0.000)

0.99982
(0.000)

0.99973
(0.000)

0.99982
(0.000)

0.99988
(0.000)*

ZDT4 0.99946
(0.000)

0.61466
(0.213)

0.16460
(0.109)

0.22890
(0.148)

0.67996
(0.198)

0.31222
(0.140)

0.99964
(0.000)

0.99970
(0.000)

0.99946
(0.000)

0.99970
(0.000)

0.99982
(0.000)*

ZDT6 0.99984
(0.000)

0.99970
(0.000)

0.56279
(0.222)

0.93559
(0.192)

0.99724
(0.003)

0.95678
(0.048)

0.99988
(0.000)

0.99992
(0.000)

0.99983
(0.000)

0.99990
(0.000)

0.99983
(0.000)
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Table 2. Mean and standard deviation of the IGD+ indicator for SMPSO, SMPSO-E1,
and SMPSO-E2. The best values are highlighted in gray, and “*” represents that the
results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2
Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 0.03301
(0.008)

0.10113
(0.034)

0.64555
(0.235)

0.03768
(0.019)

0.07282
(0.028)

0.06023
(0.034)

0.02695
(0.006)

0.02469
(0.007)

0.03161
(0.008)

0.02813
(0.008)

0.00964
(0.007)*

DTLZ2 0.21076
(0.034)

0.25408
(0.063)

0.81479
(0.101)

0.21706
(0.094)

0.23453
(0.069)

0.29559
(0.088)

0.21078
(0.041)

0.21764
(0.049)

0.20805
(0.038)

0.20568
(0.043)

0.11160
(0.053)*

DTLZ3 0.00010
(0.000)

0.00025
(0.000)

0.27655
(0.272)

0.00039
(0.000)

0.00063
(0.000)

0.00050
(0.000)

0.00009
(0.000)

0.00009
(0.000)

0.00011
(0.000)

0.00008
(0.000)

0.00006
(0.000)*

DTLZ4 0.36628
(0.058)

0.41288
(0.122)

0.67536
(0.157)

0.14286
(0.101)*

0.25582
(0.117)

0.28146
(0.098)

0.36892
(0.036)

0.37913
(0.045)

0.36749
(0.050)

0.37046
(0.032)

0.32834
(0.045)

DTLZ5 0.01056
(0.004)

0.04157
(0.007)

0.78828
(0.116)

0.07523
(0.029)

0.08581
(0.017)

0.08063
(0.019)

0.00810
(0.003)

0.00711
(0.002)

0.01042
(0.003)

0.00645
(0.003)

0.00549
(0.003)

DTLZ6 0.00011
(0.000)

0.00015
(0.000)

0.32484
(0.307)

0.00056
(0.001)

0.00041
(0.000)

0.00092
(0.001)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

DTLZ7 0.05341
(0.028)

0.02154
(0.011)*

0.72537
(0.168)

0.09052
(0.048)

0.08785
(0.041)

0.09626
(0.056)

0.06084
(0.017)

0.04887
(0.027)

0.05003
(0.020)

0.05035
(0.017)

0.07792
(0.025)

WFG1 0.04042
(0.009)

0.64259
(0.198)

0.30569
(0.067)

0.09692
(0.035)

0.16581
(0.056)

0.57108
(0.219)

0.02178
(0.008)

0.02101
(0.008)

0.04016
(0.007)

0.01833
(0.006)

0.01592
(0.011)

WFG2 0.38268
(0.110)

0.32075
(0.065)

0.50751
(0.148)

0.21807
(0.115)*

0.35269
(0.098)

0.48516
(0.206)

0.43306
(0.115)

0.42087
(0.129)

0.40543
(0.135)

0.42631
(0.117)

0.33968
(0.138)

WFG3 0.05400
(0.023)

0.09340
(0.072)

0.13147
(0.059)

0.10034
(0.095)

0.11614
(0.070)

0.27577
(0.196)

0.04774
(0.020)

0.04590
(0.022)

0.05720
(0.025)

0.04256
(0.023)

0.03254
(0.018)*

WFG4 0.11260
(0.030)

0.54752
(0.124)

0.48730
(0.102)

0.30173
(0.091)

0.33005
(0.071)

0.57747
(0.220)

0.10234
(0.030)

0.10968
(0.029)

0.10192
(0.029)

0.10363
(0.030)

0.04687
(0.034)*

WFG5 0.11549
(0.020)

0.64706
(0.138)

0.57343
(0.070)

0.34744
(0.072)

0.40533
(0.069)

0.70434
(0.165)

0.12136
(0.023)

0.12583
(0.023)

0.12115
(0.019)

0.11680
(0.023)

0.04322
(0.025)*

WFG6 0.03305
(0.063)

0.37975
(0.076)

0.80127
(0.107)

0.48182
(0.105)

0.22680
(0.067)

0.38804
(0.081)

0.02238
(0.008)

0.05078
(0.087)

0.03640
(0.062)

0.02242
(0.010)

0.11099
(0.120)

WFG7 0.10877
(0.023)

0.58401
(0.128)

0.67342
(0.125)

0.32610
(0.106)

0.39782
(0.067)

0.63484
(0.167)

0.11558
(0.021)

0.11913
(0.029)

0.10563
(0.020)

0.10341
(0.019)

0.02883
(0.019)*

WFG8 0.10817
(0.025)

0.60173
(0.119)

0.63615
(0.108)

0.32510
(0.092)

0.38945
(0.065)

0.63409
(0.133)

0.12590
(0.027)

0.12015
(0.022)

0.11112
(0.018)

0.11776
(0.025)

0.03815
(0.019)*

WFG9 0.02673
(0.049)

0.35521
(0.050)

0.73704
(0.082)

0.47878
(0.084)

0.22603
(0.086)

0.37548
(0.080)

0.02877
(0.054)

0.05392
(0.095)

0.01700
(0.007)

0.03652
(0.069)

0.15095
(0.121)

ZDT1 0.00039
(0.000)

0.01323
(0.005)

0.39003
(0.203)

0.09011
(0.030)

0.02464
(0.010)

0.03646
(0.032)

0.00035
(0.000)

0.00033
(0.000)

0.00041
(0.000)

0.00031
(0.000)

0.00025
(0.000)

ZDT2 0.00021
(0.000)

0.00251
(0.001)

0.42733
(0.213)

0.10997
(0.046)

0.00930
(0.004)

0.01021
(0.007)

0.00018
(0.000)

0.00015
(0.000)

0.00021
(0.000)

0.00018
(0.000)

0.00009
(0.000)*

ZDT3 0.00103
(0.000)

0.02096
(0.007)

0.46837
(0.214)

0.13350
(0.057)

0.02279
(0.008)

0.03485
(0.026)

0.00093
(0.000)

0.00085
(0.000)

0.00106
(0.000)

0.00098
(0.000)

0.00078
(0.000)

ZDT4 0.00063
(0.000)

0.37585
(0.234)

0.85215
(0.130)

0.79590
(0.174)

0.31050
(0.215)

0.72769
(0.158)

0.00052
(0.000)

0.00048
(0.000)

0.00063
(0.000)

0.00047
(0.000)

0.00043
(0.000)

ZDT6 0.00019
(0.000)

0.00035
(0.000)

0.41284
(0.224)

0.06345
(0.192)

0.00269
(0.003)

0.04083
(0.044)

0.00014
(0.000)

0.00010
(0.000)

0.00017
(0.000)

0.00012
(0.000)

0.00020
(0.000)
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Table 3. Mean and standard deviation of the s-energy indicator for SMPSO, SMPSO-
E1, and SMPSO-E2. The best values are highlighted in gray, and “•” represents that
the results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2
Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 1.141e-13
(0.000)

3.506e-03
(0.018)

7.015e-02
(0.239)

3.376e-03
(0.018)

5.690e-04
(0.002)

1.401e-05
(0.000)

3.346e-13
(0.000)

6.078e-13
(0.000)

4.183e-13
(0.000)

1.031e-13
(0.000)

6.109e-11
(0.000)

DTLZ2 9.007e-04
(0.005)

9.139e-07
(0.000)

2.869e-08
(0.000)

1.957e-08
(0.000)

3.223e-11
(0.000)

3.337e-02
(0.179)

1.391e-05
(0.000)

6.640e-03
(0.011)

2.229e-06
(0.000)

1.896e-03
(0.007)

6.427e-03
(0.011)

DTLZ3 1.355e-10
(0.000)

3.907e-02
(0.180)

1.544e-03
(0.008)

4.636e-02
(0.162)

7.300e-02
(0.110)

3.635e-02
(0.122)

1.965e-07
(0.000)

1.093e-06
(0.000)

2.665e-10
(0.000)

9.056e-07
(0.000)

7.648e-07
(0.000)

DTLZ4 4.563e-06
(0.000)

1.350e-02
(0.037)

2.343e-02
(0.053)

5.861e-02
(0.162)

5.994e-02
(0.192)

8.029e-02
(0.203)

9.265e-06
(0.000)

1.679e-05
(0.000)

6.177e-08
(0.000)

5.557e-06
(0.000)

5.653e-07
(0.000)

DTLZ5 2.277e-12
(0.000)

2.626e-12
(0.000)

4.879e-02
(0.188)

6.785e-06
(0.000)

4.160e-12
(0.000)

1.408e-10
(0.000)

2.918e-12
(0.000)

1.302e-12
(0.000)

3.706e-12
(0.000)

1.162e-12
(0.000)

1.657e-12
(0.000)

DTLZ6 2.565e-10
(0.000)

1.483e-05
(0.000)

1.115e-01
(0.290)

1.209e-07
(0.000)

6.510e-05
(0.000)

2.566e-08
(0.000)

6.661e-10
(0.000)

4.564e-11
(0.000)

1.127e-10
(0.000)

2.188e-11
(0.000)

3.971e-11
(0.000)

DTLZ7 6.239e-12
(0.000)

2.101e-10
(0.000)

5.481e-02
(0.205)

4.958e-09
(0.000)

3.105e-08
(0.000)

7.612e-11
(0.000)

1.291e-11
(0.000)

1.447e-11
(0.000)

1.245e-11
(0.000)

2.506e-11
(0.000)

1.847e-05
(0.000)

WFG1 6.707e-06
(0.000)

1.523e-07
(0.000)

9.602e-05
(0.000)

6.198e-09
(0.000)

3.914e-04
(0.002)

1.454e-07
(0.000)

2.714e-09
(0.000)

4.275e-04
(0.002)

1.621e-09
(0.000)

3.333e-02
(0.180)

6.297e-08
(0.000)*

WFG2 3.857e-12
(0.000)

7.653e-12
(0.000)

3.792e-02
(0.179)

1.370e-10
(0.000)

3.513e-10
(0.000)

2.660e-07
(0.000)

1.913e-12
(0.000)

6.343e-13
(0.000)

9.577e-13
(0.000)

3.085e-11
(0.000)

7.659e-13
(0.000)

WFG3 2.375e-08
(0.000)

3.806e-07
(0.000)

6.042e-02
(0.212)

1.434e-07
(0.000)

3.310e-06
(0.000)

1.295e-07
(0.000)

3.176e-07
(0.000)

2.546e-08
(0.000)

2.581e-08
(0.000)

2.816e-08
(0.000)

1.365e-07
(0.000)

WFG4 5.093e-08
(0.000)

9.281e-03
(0.050)

3.680e-02
(0.180)

8.530e-08
(0.000)

1.686e-03
(0.009)

3.754e-06
(0.000)

4.755e-08
(0.000)

4.844e-08
(0.000)

6.139e-08
(0.000)

4.854e-08
(0.000)

8.009e-08
(0.000)

WFG5 3.552e-10
(0.000)

7.542e-04
(0.004)

1.361e-04
(0.001)

5.059e-10
(0.000)

3.333e-02
(0.180)

7.000e-10
(0.000)

9.346e-08
(0.000)

3.491e-10
(0.000)

2.681e-10
(0.000)

5.375e-10
(0.000)

5.671e-10
(0.000)

WFG6 3.291e-06
(0.000)

1.376e-03
(0.007)

3.336e-02
(0.180)

7.085e-06
(0.000)

8.563e-04
(0.004)

3.146e-04
(0.002)

3.014e-06
(0.000)

2.469e-06
(0.000)

2.242e-06
(0.000)

2.407e-06
(0.000)

4.877e-06
(0.000)

WFG7 1.089e-11
(0.000)

4.965e-10
(0.000)

1.204e-06
(0.000)

2.080e-11
(0.000)

1.406e-02
(0.076)

3.333e-02
(0.180)

1.054e-11
(0.000)

8.564e-12
(0.000)

1.898e-08
(0.000)

1.033e-11
(0.000)

4.042e-11
(0.000)

WFG8 2.987e-07
(0.000)

8.504e-07
(0.000)

7.951e-05
(0.000)

8.527e-07
(0.000)

3.385e-04
(0.002)

3.336e-02
(0.180)

2.860e-07
(0.000)

2.381e-07
(0.000)

5.952e-05
(0.000)

2.796e-07
(0.000)

3.430e-07
(0.000)

WFG9 1.001e-12
(0.000)

4.561e-10
(0.000)

3.333e-02
(0.180)

1.009e-12
(0.000)

2.981e-03
(0.016)

4.756e-04
(0.003)

7.260e-13
(0.000)

7.276e-13
(0.000)

9.823e-13
(0.000)

7.737e-13
(0.000)

2.156e-12
(0.000)

ZDT1 1.222e-10
(0.000)

1.104e-09
(0.000)

9.597e-02
(0.208)

5.123e-08
(0.000)

2.253e-09
(0.000)

1.240e-08
(0.000)

1.165e-10
(0.000)

1.175e-10
(0.000)

1.130e-10
(0.000)

1.215e-10
(0.000)

1.374e-10
(0.000)

ZDT2 9.719e-09
(0.000)

7.584e-08
(0.000)

1.170e-01
(0.293)

6.223e-05
(0.000)

7.512e-07
(0.000)

1.764e-06
(0.000)

1.144e-08
(0.000)

9.838e-09
(0.000)

8.591e-09
(0.000)

9.851e-09
(0.000)

1.269e-08
(0.000)

ZDT3 5.414e-09
(0.000)

6.296e-07
(0.000)

1.171e-01
(0.221)

1.945e-06
(0.000)

5.979e-07
(0.000)

4.632e-07
(0.000)

4.847e-09
(0.000)

4.776e-09
(0.000)

4.701e-09
(0.000)

4.816e-09
(0.000)

9.529e-09
(0.000)

ZDT4 2.786e-11
(0.000)

9.603e-03
(0.027)

2.743e-01
(0.179)

4.082e-01
(0.249)

1.501e-02
(0.079)

3.949e-02
(0.108)

2.426e-11
(0.000)

2.049e-11
(0.000)

2.770e-11
(0.000)

2.624e-11
(0.000)

2.999e-11
(0.000)

ZDT6 4.016e-09
(0.000)

3.719e-09
(0.000)

2.354e-01
(0.291)

3.585e-03
(0.015)

2.762e-06
(0.000)

1.615e-02
(0.087)

4.053e-09
(0.000)

3.969e-09
(0.000)

3.975e-09
(0.000)

9.804e-09
(0.000)

1.334e-05
(0.000)
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