
hypDE: A Hyper-Heuristic Based on Differential
Evolution for Solving Constrained Optimization
Problems

José Carlos Villela Tinoco and Carlos A. Coello Coello

Abstract. In this paper, we present a hyper-heuristic, based on Differential Evo-
lution, for solving constrained optimization problems. Differential Evolution has
been found to be a very effective and efficient optimization algorithm for contin-
uous search spaces, which motivated us to adopt it as our search engine for deal-
ing with constrained optimization problems. In our proposed hyper-heuristic, we
adopt twelve differential evolution models for our low-level heuristic. We also adopt
four selection mechanisms for choosing the low-level heuristic. The proposed ap-
proach is validated using a well-known benchmark for constrained evolutionary op-
timization. Results are compared with respect to those obtained by a state-of-the-
art constrained differential evolution algorithm (CDE) and another hyper-heuristic
that adopts a random descent selection mechanism. Our results indicate that our
proposed approach is a viable alternative for dealing with constrained optimization
problems.

1 Introduction

Heuristics have been a very effective tool for solving a wide variety of real-world
problems having a very large and little known search space. In its origins, research
on heuristics spent a great deal of efforts in designing generic heuristics that were
meant to be superior to the others in all classes of problems. This effort radically
switched after the publication of the No Free Lunch Theorems for search in the
1990s [16]. This work provided a mathematical proof of the impossibility to design
a heuristic that can be better than all the others in all classes of problems. This led
to a different type of research in which the focus switched to analyzing the strenghts

José Carlos Villela Tinoco · Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación, Av. IPN No. 2508
Col. San Pedro Zacatenco, México, D.F. 07360, MÉXICO
e-mail: ccoello@cs.cinvestav.mx

O. Schütze et al. (Eds.): EVOLVE – A Bridge between Probability, AISC 175, pp. 267–282.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

ccoello@cs.cinvestav.mx

268 J.C.V. Tinoco and C.A. Coello Coello

and limitations of heuristics in particular classes of problems, aiming to identify the
cases in which a certain type of heuristic may be better than others. These studies
naturally led to the idea of combining the efforts of different heuristics into a sin-
gle scheme. The motivation here would be to compensate the weaknesses of one
heuristic with the strenghts of another one in a certain type of problem. From the
different research proposals in this direction, one of the most promising has been
that of the hyper-heuristics, in which the idea is to design an approach that uses
a control mechanism for selecting from among several possible low-level heuris-
tics. The main motivation of hyper-heuristics is to release the user from the burden
of selecting a particular heuristic for the problem at hand (something that tends to
be cumbersome). Although hyper-heuristics have been mainly used in combinato-
rial optimization problems [5] we adopt this same framework here for constrained
continuous optimization.

In this paper, we propose a new hyper-heuristic based on Differential Evolution
(DE) variants which is aimed to solve constrained optimization problems in which
the decision variables are real numbers. The main contribution of this work is a
new selection mechanism designed to coordinate the different Differential Evolution
models incorporated into the proposed hyper-heuristic.

The remainder of this paper is organized as follows. In Section 2, we provide a
short description of the Differential Evolution algorithm. In Section 3, we briefly
describe the origins of hyper-heuristics and their core idea. The previous related
work is discussed in Section 4. Our proposed approach is provided in Section 5.
Our experimental results are presented in Section 6. Finally, Section 7 presents our
main conclusions and some possible paths for future research.

2 Differential Evolution

Differential Evolution (DE) was proposed in 1995 by Kenneth Price and Rainer
Storn in 1995 as a new heuristic for optimization of nonlinear and non-differentiable
functions [15]. In DE, the decision variables are assumed to be real numbers, and
new solutions are generated by combining a parent with other individuals. The main
DE algorithm can be defined based on the following concepts:

(i) The population:

Px,g = (xi,g) i = 0,1, . . . ,NP− 1, g = 0,1, . . . ,Gmax (1)

xi,g = [x0,x1, . . . ,xD−1]
T

where NP denotes the maximum number of vectors that make up the popula-
tion, g is the generation counter, Gmax is the maximum number of generations
and D is the number of decision variables of the problem.

A Hyper-Heuristic for Solving Constrained Optimization Problems 269

(ii) Mutation operator:

vi,G+1 = xr1,G +F
(
xr2,G− xr3,G

)
, r1
= r2
= r3
= i (2)

where r1, r2 and r3 ∈ [1,NP] are randomly selected vectors. F > 0 is a real
value that controls the amplification of the difference vector and xr1,G is the
base vector.

(iii) Crossover operator:

u ji,G+1 =

{
v ji,G+1 if U(0,1)≤Cr or j = jrand
x ji,G otherwise (3)

where Cr ∈ [0,1] is the crossover constant which has to be determined by the
user and jrand is a randomly chosen index ∈ 1,2, . . . ,D.

(iv) Selection operator:

xi,G+1 =

{
ui,G+1 if f (ui,G+1)< f (xi,G)
xi,G otherwise (4)

To decide whether or not a solution should become a member of generation
G+1, the vector ui,G+1 is compared to the vector xi,G; if ui,G+1 yields a smaller
objective function value than xi,G, then xi,G+1 takes the value ui,G+1; otherwise,
the old value is retained.

The main DE variants are named using the following notation: DE/x/y/z, where x
represents the base vector to disturb, y is the number of pairs of vectors that are to be
disturbed and z is the type of recombination to be adopted [11]. Algorithm 17 shows
variant of DE called DE/rand/1/bin, which is the most popular in the specialized
literature. rand indicates that the base vector to be disturbed is chosen at random
and bin means that binomial recombination is adopted.

Algorithm 1 Differential Evolution algorithm in its DE/rand/1/bin variant
G← 0
Initialize Px,G
while Termination criterion not satisfied do

for i←{0, . . . ,NP−1} do
Select r1, r2, r3 ∈ {0, . . . ,NP−1} randomly, where r1
= r2
= r3
Select jrand ∈ {0, . . . ,D−1} randomly
for j ←{1, . . . ,D−1} do

if U [0,1]<Cr or j = jrand then
ui, j ← xr3, j,G +F

(
xr1, j,G−xr2, j,G

)
else

ui, j ← xi, j,G

if f (ui)≤ f
(
xi,G
)

then
xi,G+1 ← ui

G← G+1

270 J.C.V. Tinoco and C.A. Coello Coello

3 Hyper-Heuristics

The use of heuristics for the solution of high complexity problems has become very
popular in recent years, mainly because of their flexibility, efficacy and ease of use.
However, this popularity has simultaneously fostered the development of a wide
variety of heuristics. Such a diversity of methods makes it difficult to select one
for a particular problem. Additionally, there are very few studies that attempt to
identify the main advantages or disadvantages of a heuristic with respect to others,
in a particular problem (or class of problems).

The term hyper-heuristic was originally introduced by Cowling et al. [5] to refer
to approaches that operate at a higher level of abstraction than conventional heuris-
tics. Additionally, a hyper-heuristic is capable of identifying which low-level heuris-
tic needs to be used at a certain moment. In other words, hyper-heuristics operate
in the space of available heuristics while heuristics work directly on the space of
solutions of the problem [14]. Thus, a generic procedure for a hyper-heuristic is the
following [2]:

(i) Step 1. Start with a set H of heuristics each of which is applicable to a problem
state and transforms it into a new problem state.

(ii) Step 2. Let the initial problem state be S0.
(iii) Step 3. From the state Si of the problem, find the most appropriate heuristic to

transform the problem to the next state (Si+1).
(iv) Step 4. If the problem has been solved, stop. Otherwise, go to Step 3.

The main aim of hyper-heuristics is to provide a general framework that can of-
fer good quality solutions for a larger number of problems. This suggests that a
hyper-heuristic that has been developed for a particular problem could be easily ex-
tended to other domains by simply replacing the set of low-level heuristics and the
evaluation function [4]. There is, of course, a well-defined interface between the
hyper-heuristic and its low-level heuristics in order to achieve this objective. This
interface must consider the following aspects:

(i) The interface should be standard, that is, only one interface is required to com-
municate the hyper-heuristic to the set of heuristics; otherwise, it will require a
separate interface for each heuristic.

(ii) The interface should facilitate its portability to other domains. When requiring
to solve a new problem, the user only has to supply all the low-level heuristics
and the corresponding evaluation function.

4 Previous Related Work

Hyper-heuristics have been mainly used in combinatorial optimization, and their
use in continuous optimization problems is still rare (if we consider constrained
problems, then their use is even more scarce). The only previous related work

A Hyper-Heuristic for Solving Constrained Optimization Problems 271

that we found is the paper from Biazzini et al. [1] in which they proposed a dis-
tributed hyper-heuristic for solving unconstrained continuous optimization prob-
lems. These authors adopted an island model and distributed several low-level
heuristics throughout the islands. The authors concluded that their proposed ap-
proach produced results that were more consistent than those obtained by any of the
low-level heuristics adopted, when considered in an independent manner. Biazzini
et al. [1] adopted six DE models, a particle swarm optimizer and a random sampling
algorithm. Each island was assigned a population of size NP and implemented the
following seven selection mechanisms:

(i) StatEq.- assigns a heuristic to each island at the beginning of the run and does
not change this assignment anymore.

(ii) DynEq.- assigns a random heuristic to each island after each cycle, where one
cycle within an island represents the generation of one new solution using a
heuristic.

(iii) Tabu.- corresponds to an adaptation to the hyper-heuristic proposed in [3] and
it runs this algorithm on each of the islands that make up the hyper-heuristic.

(iv) SDigmo and DDigmo.- assigns a probability of selecting each heuristic based
on the performance of each of the algorithms so that, after that probability is
computed, a heuristic can be assigned to each of the nodes (islands).

(v) Pruner.- initially uses the entire collection of available algorithms, but as the
search proceeds, it removes more and more algorithms from this set and does
not consider them anymore.

(vi) Scanner.- the algorithms are sorted based on the latest solutions they have
found so far and defines a minimum number of consecutive executions for each
heuristic in each island.

However, as mentioned above, the work of Biazzini et al. [1] does not include a
constraint handling mechanism. This is precisely the issue that we address here:
how to design a hyper-heuristic for constrained continuous optimization using DE
variants as our low-level heuristics.

5 Our Proposed Approach

As indicated before, we propose here a new hyper-heuristic for constrained opti-
mization (in continuous search spaces), based on the use of different DE variants.
Table 1 shows each of the DE variants used as low-level heuristics for our proposed
hyper-heuristic.

We adopted a selection mechanism that aims to incorporate some type of
knowledge for choosing the low-level heuristics to be applied at any given time. For
designing such a selection mechanism, it was necessary to identify some of the char-
acteristics of each of the DE variants. This led us to implement a random descent
mechanism [5] to identify the behaviors and characteristics of the different DE vari-
ants when applied to unconstrained optimization problems (a constraint-handling

272 J.C.V. Tinoco and C.A. Coello Coello

Table 1 Set of low-level heuristics used by our proposed hyper-heuristic

Models with Models with
exp recombination bin recombination

h1 DE/best/1/exp h7 DE/best/1/bin
h2 DE/rand/1/exp h8 DE/rand/1/bin
h3 DE/current-to-best/1/exp h9 DE/current-to-best/1/bin
h4 DE/best/2/exp h10 DE/best/2/bin
h5 DE/rand/2/exp h11 DE/rand/2/bin
h6 DE/current-to-rand/1/exp h12 DE/current-to-rand/1/bin

mechanism is incorporated later on). Figure 1 shows the behavior of the DE variants
adopted when using two different values of Cr. Here, we can observe that this pa-
rameter plays an important role on the performance of each DE variant. In fact, we
found out as well that the type of recombination that performed better was related
to the value of Cr that was adopted (i.e., for certain values of Cr, either the binary or
the exponential recombination performed better). Additionally, we found a correla-
tion between the type of recombination that was more effective and the number of
decision variables of the problem. Then, for certain combinations of these elements
(Cr value, recombination type, and dimensionality), we found out that a particular
DE variant performed better. All of these results were found in our experimental
study, but the details are omitted here due to space constraints.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 im
pr

ov
em

en
t

Strategy DE

f1
f2
f3
f4
f5

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 im
pr

ov
em

en
t

Strategy DE

f1
f2
f3
f4
f5

a) b)

Fig. 1 Total successful steps for each model when using: a) Cr = 0.2 and b) Cr = 0.8

Based on the experimental results previously indicated, our hyper-heuristic con-
sists of two phases. The first phase is responsible for selecting the type of recom-
bination to be adopted (either exp or bin). In order to do this, we randomly vary at
each generation g, the parameter Cr within the range [0,1] and, depending on the
value of Cr that we adopt, and on the number of decision variables of the problem,
we select the type of recombination to be used. Once we have decided what type of

A Hyper-Heuristic for Solving Constrained Optimization Problems 273

recombination to use, the second phase consists in selecting the specific model to
be applied for generating the population Px,g+1.

For the second phase, we implemented two selection mechanisms. The first of
them is called Cr random, and, as its name indicates, it consists of randomly choos-
ing the DE variant to be used. The second mechanism uses a roulette wheel to
choose the DE variant to be adopted. The diagram shown in Fig. 2 indicates the
process for choosing the low-level heuristic to be applied.

h2h1

f (x)

h12
...

hsel = rand(hi,hs)

hi = 7

hs = 12

hi = 1

hs = 6

CR =U(0.0,1.0)

CR >CRselCR≤CRsel

HYPER-HEURISTIC

DOMAIN BARRER

CR random Roulette

hsel = roulette(hi,hs)

HEURISTICS

Fig. 2 Diagram that illustrates the selection mechanism of the proposed hyper-heuristic

When using a roulette wheel, a certain probability is assigned to each of the DE
variants, based on their performance during the search process, so that the probabil-
ity of selecting a certain DE variant is proportional to its performance. In order to
mitigate the well-known bias problems of the roulette wheel selection mechanism
(i.e., the worst individual may be selected several times [5]), we implemented three
types of roulette wheel selection:

• Original roulette (R1): this is the original algorithm proposed in [6].
• Roulette with random init (R2): in this case, the initial position of the roulette

wheel is randomly selected.
• Roulette with permutation (R3): in this case, we create a permutation of the

positions of the roulette and then, we apply the original algorithm.

Algorithm 18 shows the pseudocode of the proposed selection mechanism. Here,
mechanism refers to the selection mechanism and Crsel is a parameter indicating
the probability of selecting a DE variant either with binomial or with exponential
recombination. The parameter Crsel is calculated based on the equation (5), so that

274 J.C.V. Tinoco and C.A. Coello Coello

the percentage of selection of DE variants with either exponential or binomial re-
combination is determined based on their performance on the problem being solved.

Crsel =
Total success of variants with binomial recombination

Total success of all variants

Crsel =
∑12

i=7 successi

∑6
i=1 successi +∑12

i=7 successi
(5)

Algorithm 2 Selection mechanism proposed
Input: mechanism
Output: selected heuristic
switch mechanism do

case RANDOM
heuristicsel ← rand(h1,h12)

case Cr RANDOM
Cr←U(0,1)
if Cr >Crsel then

/* DE variants with exponential
recombination */

heuristicsel ← rand(h1,h6)
else

/* DE variants with binomial recombination

*/
heuristicsel ← rand(h7,h12)

case ROULETTE
Cr←U(0,1)
if Cr >Crsel then

Select strategies with exponential recombination using a
roulette-wheel

else
Select strategies with binomial recombination using a
roulette-wheel

Finally, Algorithm 19 shows the pseudocode of the proposed hyper-heuristic. The
control parameters of the proposed algorithm are the following:

• Gmax: maximum number of generations.
• NP: number of individuals in the population.
• Cr: DE’s crossover constant.
• mechanism: type of selection mechanism adopted for the low-level heuristics

incorporated within the hyper-heuristic.

It is important to note that at the beginning of the search process we do not have
information about the performance of each low-level heuristic. Therefore, we re-
quire an initial training stage, which consists of the implementation of a maximum

A Hyper-Heuristic for Solving Constrained Optimization Problems 275

number of generations in which we use the random descent selection mechanism
proposed in [5] to initialize the expected values (EVs) for each of the DE variants
adopted, according to the following equation:

EVi =
successi

1
12 ∑

12
j success j

i = 1,2, . . . ,12 (6)

Algorithm 3 Our proposed hyper-heuristic
Input: NP, Gmax, Cr, mechanism
G← 0
Initialize Px,G

if mechanism is Cr RANDOM or RULETTE then
/* Training stage */
Gaux ← 0
while Gaux < Gproo f do

/* Apply mechanism random descent */
selection mechanism()
repeat

apply heuristic(heuristicsel)
G← G+ 1
Gaux ← Gaux + 1

until not being able to improve the previous solution;

Initialize the expected value of each low-level heuristic

while Termination criterion not satisfied do
selection mechanism()
if mechanism DESCENT then

repeat
apply heuristic(heuristicsel)
G← G+ 1

until not improve the previous solution;
else

apply heuristic(heuristicsel)
G←G+ 1

5.1 Handling Constraints

Differential Evolution was designed for solving unconstrained optimization prob-
lems. Thus, it is necessary to incorporate to it a constraint-handling scheme for
dealing with constrained optimization problems. One of the most popular constraint-
handling techniques used with evolutionary algorithms has been Stochastic Ranking
(SR) [12]. SR adopts a rank selection mechanism that tries to balance the influence
of considering either the objective function value or the degree of violation of the
constraints (a parameter called Pf is adopted for this sake). SR has been successfully

276 J.C.V. Tinoco and C.A. Coello Coello

incorporated into DE before. For example, [7] showed that when embedding SR
into DE, this constraint-handling mechanism can provide information to the mu-
tation operator about the most appropriate direction of movement. This produces,
indeed, a speed up in the convergence of the algorithm. Figure 3 shows two hypo-
thetical examples for the search directions to be considered: a) the movement of an
infeasible point to the feasible region, and b) the movement of a feasible point to the
infeasible region. This illustrates that it is possible to guide the search in such a way
that we can generate new solutions either closer or farther away from the feasible
region F (corresponding to cases a) and b) in Figure 3, respectively).

x1

x2
g(x)

F

xi

F

xr1

xr3

xr2

vi = xr1 +F(xr2 −xr3)

Posible solutions
ui

x1

x2

F

xi

g(x)

F

xr1

xr2

xr3

vi = xr1 +F(xr2 −xr3)

Posible solutions
ui

a) b)

Fig. 3 Example of the two types search direction: a) towards the feasible region F b) towards
the infeasible region

Stochastic Ranking sorts the individuals in the population, and the rank of each
individual (i.e., its position in the sorted list) is used to guide the search in a specific
direction. In order to select the search direction, we adopt a probabilistic value that
regulates the type of movements performed (either to move a solution into the feasi-
ble region or towards the infeasible region) and its use aims to explore the boundary
between the feasible and the infeasible region. We experimentally found that this
probabilistic value provided good results when set with the same value used by the
Pf parameter of SR.

Based on the previous discussion, we modified the selection operator of DE using
the following criteria:

• If the two solutions being compared are feasible, the one with the best objective
function value is chosen.

• Otherwise, we choose the solution with the lowest degree of constraint violation.

Algorithm 20 shows the process carried out to generate, from the current population
Px,G, the new population Px,G+1. The objective function is denoted by f and the
degree of constraint violation is denoted by φ . Here, φ is given by:

A Hyper-Heuristic for Solving Constrained Optimization Problems 277

φ (x) =
m

∑
i=1

max{0,gi (x)}2 +
p

∑
j=1
|h j (x) |2 (7)

where gi (x) correspond to the inequality constraints and h j (x) denote the equality
constraints of the problem.

Algorithm 4 Pseudocode of our proposed DE approach for constrained opti-
mization

Input: strategy of DE to use
Result: generation G+ 1
begin

Apply Stochastic Ranking to rank the population Px,G

for i←{1, . . . ,NP} do
/* Selecting vectors to disturb */
if U(0,1)< Pf then

/* To the infeasible region */
r1 ← rand(1,α)
r2 ← rand(α+ 1,NP)

else
/* To the feasible region */
r1 ← rand(α+ 1,NP)
r2 ← rand(1,α)

Select vector r3 according to the DE strategy to be used:
/* Mutation */
vk.G = xk,G,r3 +F

(
xk,G,r1− xk,G,r2

)
/* Recombination */
Apply recombination operator according to the DE strategy adopted in
order to obtain ui

/* Selection */
if φ(ui) = φ(xi,G) = 0 then

if f (ui)< f (xi,G) then
xi,G+1 ← ui

else
xi,G+1 ← xi,G

else
if φ(ui)< φ(xi,G) then

xi,G+1 ← ui

else
xi,G+1 ← xi,G

278 J.C.V. Tinoco and C.A. Coello Coello

6 Results

In order to validate the performance of our proposed approach, we adopted several
standard test functions from the specialized literature on evolutionary constrained
optimization [12]. Our results were compared with respect to those generated by
the approach called CDE (Constrained Differential Evolution) [10] which is repre-
sentative of the state-of-the-art on DE-based constrained optimization. Additionally,
we also compared results with respect to the hyper-heuristic with a random descent
mechanism proposed in [5]. The hardware and software platform adopted for our
experiments, as well as the parameters adopted are the following:

(i) PC configuration:
System: Linux Ubuntu 10.04
CPU: Intel Pentium Dual Core Inside T2080 (1.73 GHz)
RAM: 1024 MB
Programming Language: C (gcc 4.4.3 compiler)

(ii) Parameters:
Maximum number of generations: Gmax = 6000
Population size: NP = 50
F : U(0.3,0.9) each generation
Cr : U(0,1) each generation
Pf : 0.50 for g06 and g11, and 0.45 for the remaining test problems

From the parameters adopted, it can be seen that all the approaches perform 300,000
objective function evaluations. Our experimental study comprised 100 independent
runs per algorithm per problem. In Tables 2, 3 and 4 we show the results obtained
by the CDE algorithm, the random descent mechanism and our proposed approach,
using the three roulette-wheel selection mechanisms previously indicated (R1 corre-
sponds to the original roulette-wheel, R2 corresponds to roulette-wheel with random
initial position and R3 corresponds to the roulette-wheel with permutation). From
these results, it can be noticed that not all the approaches required the maximum
number of generations to reach the best known result. That is the reason why in Ta-
ble 5 we show the average number of generations in which the algorithm converges
as well as the minimum number of generations that each algorithm required to find
the best known solution for each test problem.

6.1 Analysis of Results

From the results presented in Tables 2, 3 and 3, we can see that the selection mech-
anism based on a roulette-wheel with random initial position (R2) obtained good
results in most of the test problems. These results also indicate that the algorithm
CDE obtained very poor results in the test problems g03, g05, g10 and g13. We
can also observe that the hyper-heuristic approaches were unable to solve g11 in a
proper way, which is not the case of the CDE algorithm.

A Hyper-Heuristic for Solving Constrained Optimization Problems 279

Table 2 Statistics with respect to the f (x) obtained by CDE and the random descent mecha-
nism. μ corresponds to the mean values, σ to the standard deviation and M to the best solution
found in each case. BKS indicates the best known solution for each test problem. We show in
boldface those cases in which an approach reached the best known solution for that particular
test problem.

CDE R. descentBKS
μ σ M μ σ M

g01 -15.000 -13.93461 1.23×100 -14.99999 -11.25425 2.64×100 -12.000
g02 -0.803619 -0.8033878 6.83×10−5 -0.8033884 -0.784641 3.27×10−2 -0.7930787
g03 -1.000 0.24616 9.50×10−2 -1.000 -1.000 5.13×10−9 -1.000
g04 -30665.539 -30665.539 0.00×100 -30665.539 -30665.539 0.00×100 -30665.539
g05 5126.498 5315.60 3.01×102 5126.498 5195.899 2.20×102 5126.500
g06 -6961.814 -6961.814 0.00×100 -6961.814 -7229.388 1.41×103 -7818.326
g07 24.3062091 24.78596 3.12×10−1 24.3062091 24.31361 6.98×10−2 24.30623
g08 -0.095825 -0.09583 1.11×10−3 -0.095826 -0.095825 0.00×100 -0.095825
g09 680.6301 680.630 0.00×100 680.630 680.6301 0.00×100 680.6301
g10 7049.250 7090.50762 3.99×102 7085.876 7094.163 8.22×101 7049.396
g11 0.750 0.750 0.00×100 0.750 0.9505711 9.51×10−2 1.000
g12 -1.000 -1.000 0.00×100 -1.000 -1.000 0.00×100 -1.000
g13 0.053950 0.80852 1.87×10−1 0.2476 0.3678503 1.64×10−1 0.4394295

Table 3 Statistics with respect to the f (x) values obtained for a random choice of Cr and for
R1. μ corresponds to the mean values, σ to the standard deviation and M to the best solution
found in each case. BKS indicates the best known solution for each test problem. We show in
boldface those cases in which an approach reached the best known solution for that particular
test problem.

Cr random R1BKS
μ σ M μ σ M

g01 -15.000 -11.82917 2.72×100 -12.000 -14.81745 2.72×100 -15.000
g02 -0.803619 -0.8009026 6.16×10−3 -0.8036145 -0.8015735 4.63×10−3 -0.803613
g03 -1.000 -0.9999999 3.09×10−8 -0.9999999 -0.9999997 7.55×10−7 -0.9999999
g04 -30665.539 -30665.539 0.00×100 -30665.539 -30665.539 0.00×100 -30665.539
g05 5126.498 5171.077 1.42×102 5126.498 5170.813 1.42×102 5126.498
g06 -6961.814 -6961.814 0.00×100 -6961.814 -6961.814 0.00×100 -6961.814
g07 24.3062091 24.30722 7.70×10−3 24.306210 24.30708 3.42×10−4 24.30705
g08 -0.095825 -0.095825 0.00×100 -0.095825 -0.095825 0.00×100 -0.095825
g09 680.6301 680.6301 0.00×100 680.6301 680.6301 0.00×100 680.6301
g10 7049.250 7103.163 8.81×101 7049.63 7104.965 8.83×101 7049.783
g11 0.750 0.8992142 1.19×10−1 1.000 0.901635 1.18×10−1 1.000
g12 -1.000 -1.000 0.00×100 -1.000 -1.000 0.00×100 -1.000
g13 0.053950 0.3227286 2.22×10−1 0.4388694 0.3071761 1.98×10−1 0.4388515

On the other hand, Table 5 shows that the selection mechanism based on a
roulette-wheel with random initial position (R2) required a lower number of iter-
ations than the others in ten of the thirteen test problems adopted. This mechanism
also had the lowest average number of generations in seven of the test problems
adopted. This confirms that this selection mechanism had the best overall perfor-
mance from all the approaches that were compared in our experimental study.

280 J.C.V. Tinoco and C.A. Coello Coello

Table 4 Statistics with respect to the f (x) values obtained for R2 and R3. μ corresponds to
the mean values, σ to the standard deviation and M to the best solution found in each case.
BKS indicates the best known solution for each test problem. We show in boldface those
cases in which an approach reached the best known solution for that particular test problem.

R2 R3BKS
μ σ M μ σ M

g01 -15.000 -15.000 0.00×100 -15.000 -14.8200 2.72×100 -15.000
g02 -0.803619 -0.8014436 4.67×10−3 -0.8014834 -0.8014504 5.91×10−3 -0.8036136
g03 -1.000 -0.9999997 7.05×10−7 -0.9999999 -0.9999996 1.04×10−6 -0.9999999
g04 -30665.539 -30665.539 0.00×100 -30665.539 -30665.539 0.00×100 -30665.539
g05 5126.498 5171.097 1.42×102 5126.498 5171.311 1.43×101 5170.288
g06 -6961.814 -6961.814 0.00×100 -6961.814 -6961.814 0.00×100 -6961.814
g07 24.3062091 24.30649 7.54×10−4 24.30627 24.30705 3.31×10−3 24.307
g08 -0.095825 -0.095825 0.00×100 -0.095825 -0.095825 0.00×100 -0.095825
g09 680.6301 680.6301 0.00×100 680.6301 680.6301 1.00×10−5 680.6301
g10 7049.250 7103.024 8.82×102 7049.556 7106.478 8.92×101 7049.664
g11 0.750 0.8997895 1.18×10−1 1.000 0.9016549 1.18×10−1 1.000
g12 -1.000 -1.000 0.00×100 -1.000 -1.000 0.00×100 -1.000
g13 0.053950 0.3132858 2.13×10−1 0.4388565 0.3144292 2.11×10−1 0.4388585

Table 5 Average and minimum number of generations required for each algorithm to reach
the best known solution to each of the test problems adopted.

CDE R. Desc. Cr random R1 R2 R3
μ min μ min μ min μ min μ min μ min

g01 614.88 543 725.93 714 727.84 563 722.37 763 549.32 541 720.14 701
g02 5843.77 5954 5963.33 5934 5960.73 5979 5939.29 5954 5950.26 5907 5975.90 5995
g03 4134.24 3152 5719.55 4217 5693.44 4218 5650.55 4174 5682.42 3128 5598.37 3505
g04 675.33 476 872.34 758 887.19 738 867.98 749 510.26 449 868.86 719
g05 3456.54 1652 4395.93 1786 4293.48 3059 4448.92 1411 3855.19 1346 4316.96 1613
g06 1162.60 154 1100.83 435 931.24 423 1092.50 445 1070.48 291 965.39 496
g07 5945.12 4130 5973.51 5726 5762.79 5834 5766.33 5730 5903.23 4976 6783.88 5757
g08 165.75 98 214.59 100 163.16 97 161.65 97 161.61 78 162.18 102
g09 2621.86 1068 3878.70 1481 3520.84 1581 3518.51 1374 2393.24 1028 3417.16 1384
g10 5954.63 5921 5920.25 5975 5921.15 5985 5943.33 4895 5875.74 4987 5907.12 4989
g11 536.14 367 457.28 302 401.55 302 417.25 302 166.14 230 391.43 466
g12 201.72 163 158.95 134 163.48 119 161.76 129 159.32 119 172.54 132
g13 4119.88 4003 4577.57 3876 5184.46 2529 5007.46 3906 5208.23 2258 5136.14 3111

7 Conclusions and Future Work

We have proposed here a new hyper-heuristic for solving constrained optimization
problems. The proposed approach uses as its low-level heuristics a set of twelve
differential evolution variants. Additionally, the selection mechanism of differential
evolution was modified in order to make it able to handle constraints (stochastic
ranking was adopted for this sake).

The results obtained by our proposed approach are very promising, since they are
better than those produced by a state-of-the-art DE-based evolutionary optimization
approach (CDE). This indicates that the mechanism adopted by our hyper-heuristic
is working in a proper way.

A Hyper-Heuristic for Solving Constrained Optimization Problems 281

As part of our future work, we aim to improve the selection mechanism of our
hyper-heuristic. In order to achieve that, it is required to perform a more in-depth
study of the different DE variants adopted here, so that we can understand in a better
way how they work when dealing with constrained optimization problems. We are
also interested in adding to our hyper-heuristic other low-level heuristics such as
particle swarm optimization [9] and evolution strategies [13], since we believe that
such approaches perform search movements that could complement those produced
by differential evolution. Evidently, the goal of adding more heuristics would be to
improve the performance of our hyper-heuristic.

Acknowledgements. The second author acknowledges support from CONACyT project
103570.

References

1. Biazzini, M., Bánhelyi, B., Montresor, A., Jelasity, M.: Distributed hyper-heuristics for
real parameter optimization. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 1339–1346. ACM, Montréal Québec (2009)

2. Burke, E., Hart, E., Kendall, G., Newall, J.: Hyper-Heuristics: An Emerging Direction
In Modern Search Technology, handbook of metaheuristics edn., ch. 16, pp. 457–474.
Springer, New York (2003)

3. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and
rostering. Journal of Heuristics 9(6), 451–470 (2004)

4. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent Developments. SCI, vol. 136,
pp. 3–29. Springer, Berlin (2008)

5. Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

6. De Jong, K.A.: An analysis of the behaviour of a class of genetic adaptive systems. Ph.D.
thesis, University of Michigan (1975)

7. Fan, Z., Liu, J., Sorensen, T., Wang, P.: Improved differential evolution based on stochas-
tic ranking for robust layout synthesis of mems components. IEEE Transactions On In-
dustrial Electronics 56(4), 937–948 (2008)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Reading (1989)

9. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco (2001)

10. Lampinen, J.: Constraint handling approach for the differential evolution algorithm. In:
Proceedings of the Congress on Evolutionary Computation 2002 (CEC 2002), vol. 2,
pp. 1468–1473. IEEE Service Center, Piscataway (2002)

11. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F.
(eds.) New Ideas in Optimization, pp. 79–106. McGraw-Hill (1999)

12. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.
Transactions On Evolutionary Computation 4(3), 284–294 (2000)

13. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)

282 J.C.V. Tinoco and C.A. Coello Coello

14. Storer, R., Wu, S., Vaccari, R.: Problem and heuristic search space strategies for job shop
scheduling. ORSA Journal on Computing 7, 453–467 (1995)

15. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Tech. Rep. TR-95-012, International Computer
Science Institute (1995)

16. Wolpert, D., MacReady, W.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

	Part I Cell Mapping and Quasi-stationary Distributions
	Introduction
	Optimal Control
	Cell Mapping Methods
	Control Application
	Optimal Control of Competing Species
	Numerical Examples of Optimal Control
	Conclusions
	References
	Introduction
	Related Literature
	Background and Motivation
	Contact Process
	Quasi-stationary Distribution
	Physicist's Heuristic
	Stochastic Approximation Analysis of the Algorithm
	Formal Description of the Algorithm
	Sketch of Proof of Convergence
	Variations on the Existing Algorithm with Improved Rateof Convergence
	Counter Example to CLT
	The Parallel Algorithm
	Continuous-Time Markov Chains
	Formulation and Convergence
	Rate of Convergence
	Uniformization
	Numerical Experiments
	Loopy Markov Chain
	Contact Process on Complete Graph
	Discussion and Conclusion

	References
	Part II Genetic Programming
	Introduction
	Locality
	Extending the Definition of Locality to the Continuous Valued-Fitness
	Related Work
	Sampling the Fitness Landscape
	Experimental Setup
	Benchmark Problems
	Uniform Genetic Programming
	Setting Bounds
	Evolutionary Runs
	Sampling and Measuring Locality
	Results and Discussion
	Quantitative Locality Measures and Performance
	Definitions of Locality and Limitations
	Conclusions
	References
	Introduction
	Epilepsy Signals
	Experimental Data
	Signal Recording
	Problem Statement
	Proposal
	Experiments and Results
	Summary and Conclusions
	References
	Introduction
	Stereo Computer Vision
	Disparity Map
	Correspondence Algorithms
	Proposal
	Problem Statement
	Proposed Solution
	Experimental Configuration and Results
	Dataset
	GP Search
	Experimental Setup
	Experimental Results
	Conclusions and Future Work
	References
	Part III Evolutionary Multi-objective Optimization
	Introduction
	Background
	Methods
	Base EMOA
	Tools
	Specialized EMOA for Evenly Spaced Pareto Fronts
	Experiments
	Setup
	Results
	Conclusions
	References
	Introduction
	Multi-Objective Optimization
	Multi-Objective Optimization Problem (MOP)
	Pareto Dominance
	Pareto Optimality
	Pareto Optimal Set
	Pareto Front
	Multi-Objective Next Release Problem
	Multi-Objective Quantum-Inspired Hybrid Differential Evolution
	Representation
	Mutation Operator
	Crossover Operator
	Selection
	Experiments
	Test Problems
	Performance Measures
	Experimental Setup
	Methodology
	Results and Analysis
	Conclusions
	References
	Introduction and Problem Formulation

	Background
	Methodology
	Pursuer's Control in a No-Game Situation
	Pursuit with Uncertainties: The Game Situation
	The MOE Algorithm
	Simulations for the Game at Hand
	Summary and Conclusions
	References
	Introduction
	PSA – Part and Select Algorithm
	Partitioning a Set
	Selection of a Representative Subset
	Complexity Analysis of the PSA
	Integration of PSA into NSGA-II
	Comparison of NSGA2-PSA with NSGA-II
	Test Problems
	Genetic Settings
	Performance Metrics
	Simulation Results
	Conclusions and Future Work
	References
	Introduction
	Background
	Gradient Free Directed Search
	Integration of DDS into MOEA/D
	Numerical Results
	Comparison MOEA/D and MOEA/D/DDS
	A Control Problem
	Conclusions
	References
	Part IV Combinatorial Optimization
	Introduction
	A Hyperheuristic Approach for Dynamic Selectionof Enumeration Strategies
	The Hyperheuristic Approach
	Measuring the Solving Process: Indicators
	Choice Function
	Choice Function Tuning with a Multilevel Structure
	Experimental Evaluation
	Results
	Conclusions
	References
	Introduction
	An Improved Implementation of a Simulated Annealing Algorithm
	Internal Representation and Search Space
	Evaluation Function
	Initial Solution
	Neighborhood Functions
	Cooling Schedule
	Stop Condition
	Computational Experiments
	Benchmark Instances and Performance Assessment
	Components and Parameters Tunning
	Comparing SAMPARS with an Existing SA Implementation
	Comparing SAMPARS with the State-of-the-Art Procedures
	Conclusions
	References
	Part V Probabilistic Modeling and Optimization for Emerging Networks
	Introduction
	Related Work
	Introduction to Bayesian Networks
	BN Based Critical Infrastructure Security Model
	Structure for Bayesian Network
	Conditional Probability Tables
	Risk Prediction
	Interdependencies - Directed Cycles in Bayesian Networks
	Conclusions and Future Work
	References
	Part VI Hybrid Probabilistic Models for Real Parameter Optimization and Their Applications
	Introduction
	Sampling Intensively the Most Promising Regions
	Preserving and/or Computing Adequate Variance Parameters in Order to Maintain the Exploration Capacity

	Selection Method
	Potential Selection Based EDA
	Experiments and Results Discussion
	Comparison with MIDEA, MBOA, and EDA with vbICA-MM
	Comparison with Adaptive Variance Scaling (Grahl et al.)
	Comparison with Adaptive Variance Scaling Schemes (Yungpeng et al.)
	Conclusions
	References
	Introduction
	Definitions and Concepts
	The Adaptive Extended Tree Cliqued - EDA (AETC-EDA)
	Adaptive Extended Tree Cliqued – EDA (AETC–EDA) Pseudocode
	Test Functions
	Experimental Results
	Discussion and Conclusions
	References
	Introduction
	Neighborhood Topologies
	Ring