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Abstract

This paper summarizes a research project fo-
cused on the analysis and development of new
algorithms based on artificial immune sys-
tems to solve optimization problems. Two
main types of problems are of our main in-
terest: (1) how to incorporate constraints of
any type (linear, nonlinear, equality and in-
equality) into a genetic algorithm used for
single-objective optimization, and (2) how to
generate the Pareto optimal set of a multiob-
jective optimization problem. Our current re-
sults indicate that artificial immune systems
are a viable alternative both for single- and
for multi-objective optimization.

1 Introduction

Artificial immune systems (AIS) are a new research
area that takes ideas from our biological immune sys-
tem to solve complex problems, mainly in engineering
and the sciences [11, 5]. The success of our immune
system to defend us from diseases is due to its sev-
eral information processing features that include the
following: pattern recognition capabilities, memory,
ability to learn, robustness, fault tolerance, and self-
organizing capabilities, among others. These are the
properties of the immune system that mainly attract
researchers to try to emulate it in a computer. Even
when the immune system is a very complex system
(comparable only to our brain) and its behavior is not
fully understood, several computational models of it
have been developed so far [11, 5]. Our research has
focused on the use of artificial immune systems to solve
numerical optimization problems of two types: single-
objective and multi-objective, both with and without
constraints.

2 Artificial immune system

The aim of the immune system is to keep an organism
healthy, recognizing foreign agents (called antigens)
and defending the organism from them. The main ac-
tors in the immune response are the molecules called
antibodies, whose recognition capabilities are impres-
sive. Antibodies are capable of recognizing an enor-
mous quantity of diverse antigens, from only a fairly
limited variety. The information necessary to carry
out this recognition task is distributed throughout the
genome, and the antibodies must combine segments of
such information to form the immune response. When
an antigen has been recognized, the antibodies with
the highest affinity to it will be cloned creating mul-
tiple copies of them. Furthermore, these new cloned
molecules will suffer a high rate mutation (or hypermu-
tation), in order to improve their affinity. The muta-
tion rate is proportional to the antibody-antigen affin-
ity. To a higher affinity, a lower mutation rate is used,
and viceversa. At this point, the immune system is
able to neutralize and eliminate the antigens. Some
high affinity clones will remain circulating through the
body as memory cells, then at a secondary exposi-
tion to the same antige (or a similar one), the im-
mune system will use these memory cells for providing
a more efficient and faster response (called secondary
response). The clonation and hypermutation processes
are called the clonal selection principle [11], and this
is precisely one of the models adopted in the research
reported in this paper.

3 Constraint-Handling with an AIS

Our first interest is to solve single-objective nonlinear
optimization problems of the form:

Minimize f(Z) 1)



subject to:
hij(®) =0, j=1,...,p (3)

where # is the vector of decision variables, n is the
number of inequality constraints and p is the number
of equality constraints. For solving this problem, we
proposed an extension of the algorithm of Hajela & Lee
[7] that emulates the invaders recognition process by
combining antibodies’ libraries in order to attain anti-
gen specificity. The algorithm is based on the mecha-
nism by which the immune system combines gene seg-
ments to learn the correct antibodies for the specific
antigen. The search process of our approach is led by
a genetic algorithm in which the feasible designs will
be considered as antibodies and the infeasible designs
as antigens. Then, we run a simulation in which the
goal is that infeasible designs are “similar” (where sim-
ilarity is measured in terms of Hamming distances in
genotypic space) to feasible ones. The idea is to push
infeasible individuals to the feasible region. This ap-
proach uses a GA embedded into another one. The
outer GA is on charge of optimizing the original ob-
jective function, and the inner GA only handles the
constraints of the problem. Note however that the
computational complexity of the approach is not re-
ally (N?), because the internal genetic algorithm does
not evaluate the original fitness function of the prob-
lem, but only measures Hamming distances (see [1] for
details).

3.1 Use of Parallelism

In order to study the effect of parallelism in our
constraint-handling approach, we proposed a multiple-
population GA with a distributed memory. The popu-
lation was divided in as many demes (subpopulations)
as processors were available. Each deme evolved inde-
pendently from the others exchanging individuals at
regular intervals. Some of the main considerations to
take into consideration in the design of our parallel GA
were the following:

e The number of demes was equal to the number of
available processors and the population was dis-
tributed throughout the demes.

e The number of iterations for the AIS simulation
(inner GA) was reduced proportionally to the
number of demes used.

e For each deme, we applied different genetic oper-
ators in order to explore different regions of the
search space.

KM | Serial | 2P 3P iP
SP=5.11 | SP=10.71 | SP=20.17
flz) | f=z) f(@) f(@) f(z)
AV | -1471 | -1453 | -14.78 -14.59 -14.82
BS | -14.79 | -14.78 | -14.9 -14.99 -14.99
WS [ -14.62 | -13.84 | -12.99 -11.88 -12.99
SD | N/JA | 0.23 0.51 0.88 0.4830

Table 1: Comparison of results for the first example. P
indicates the number of processors used and SP refers to
the speedup achieved. N/A = Not Available. AV = Mean,
BS = Best, WS = Worst, SD = Standard Deviation.

The efficiency of a parallel algorithm tends to be mea-
sured in terms of its correctness and its speedup. The
speedup (SP) of an algorithm is obtained by dividing
the processing time of the best serial algorithm (T)
by the processing time of the parallel version (T})':
SP = % To obtain the best serial algorithm, we per-
formed a set of experiments to determine the minimum
parameters required by our algorithm to operate rea-
sonably well [12]. We compared the results obtained
from both the serial and the parallel versions of our al-
gorithm against Koziel & Michalewickz’s technique [9],
which is one of the best constraint-handling techniques
known at date, using the well-known Michalewicz’s
test function benchmark [10].

Table 1 shows results for one of the test functions used.
Note that our serial implementation generates practi-
cally the same results that Koziel and Michalewicz’s
technique (KM), despite the lower computational cost
of our approach (150,000 fitness function evaluations
vs. 1,400,000 of KM). The parallel versions maintain
similar results but with a lower standard deviation.
The speedup achieved in this case is remarkable.

4 Multiobjective Optimization

Our second goal was to be able to solve multiobjective
optimization problems (MOPs) which are defined as
follows:

Find the vector #* = [z}, 3, ..., 2%]" which will sat-
isfy the m inequality constraints:

the p equality constraints
hi(Z)=0 i=1,2,...,p (5)

and will optimize the vector function
F@ =17@, @), ... @] O)
!This expression assumes identical processors and iden-

tical input sizes (i.e., number of fitness function evaluations
in our case).



- T . ..
where Z = [21,%2,...,%,] is the vector of decision

variables.

Having several objective functions, the notion of “op-
timum” changes, because in MOPs, the aim is to find
good compromises (or “trade-offs”) rather than a sin-
gle solution as in global optimization. The notion of
“optimum” that is most commonly adopted is called
Pareto optimum. In words, the definition of Pareto
optimum says that * is Pareto optimal if there exists
no feasible vector £ which would decrease some cri-
terion without causing a simultaneous increase in at
least one other criterion. The phrase “Pareto optimal”
is considered to mean with respect to the entire deci-
sion variable space unless otherwise specified. Pareto
optimal solutions are also termed non-inferior, admis-
sible, or efficient solutions; their corresponding vectors
are termed nondominated. We found several difficul-
ties attempting to extend our previous algorithm to
deal with MOPs. Basically, the main difficulty was re-
lated to the use of similarity measures both for identi-
fying nondominated solutions and maintaining diver-
sity. This led us to use a different approach, based
on the clonal selection principle, which we briefly de-
scribed before. In our proposed approach, the set of
candidate solutions is represented by binary strings,
and are classified as antigens and antibodies. In a first
attempt, our antigens were the nondominated individ-
uals, and a feasibility criterion was also adopted if the
MOP was constrained. In contrast, antibodies rep-
resented individuals that were dominated or feasible.
A weight (w) was assigned to each antigen indicat-
ing if it was a “very good” or just a “good” antigen
(“very good” denoted nondominated and feasible anti-
gens, whereas “good” indicated nondominated solu-
tions (even if infeasible)). These weights were used to
affect the antigen-antibody affinity (genotypic match-
ing), promoting both nondominance and feasibility.
Then, high affinity antibodies were cloned. These new
clones were mutated with rates proportional to their
affinity measure. The highest the affinity, the lower
the mutation rate used and viceversa. At this point,
the population was formed by the set of antigens, anti-
bodies and mutated clones. The population size then
was reset to its original value, allowing only the sur-
vival of the nondominated individuals. Our approach
used a secondary population (an external file) in order
to help the algorithm to produce a uniform distribu-
tion of nondominated vectors along the Pareto front.
For that sake, we adopted the adaptive grid proposed
by Knowles & Corne [8].

This algorithm was validated using several test func-
tions taken from the specialized literature. Results
were compared to the microGA for multiobjective op-
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Figure 1: Comparison of results for one example. The
true Pareto front is shown as a continuous line (note
that the horizontal segments are NOT part of the
Pareto front and are shown only to facilitate drawing
the front) and the Pareto front found by our approach
is shown as crosses.

timization [3]. Besides graphical comparisons, two
metrics were used (two set coverage and spacing). See
[2] for details. Figure 1 shows a sample result for one
of the problems used. In general, our algorithm had
a good convergence rate to the true Pareto front, but
not a very good spread of solutions. This led us to
review our algorithmic design.

4.1 Further Improvements

Our second iteration was an algorithm which departs
more from the clonal selection principle but that it’s
more effective in practice. The main changes of our
new algorithm are the following:

e All individuals from the population play the role
of antibodies (i.e., there are not antigens).

e Antibodies selected for cloning are:

— For the case of constrained problems: non-
dominated and feasible antibodies (domi-
nance is measured only with respect to other
feasible individuals). If there are not feasible
antibodies, then all nondominated antibodies
are selected.

— For the case of unconstrained problems: all
nondominated antibodies are selected.

e It uses information extracted from the secondary
memory in order to determine the number of
clones that must be created. The idea is to gener-
ate more clones that correspond to less populated
regions of the Pareto front.
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Figure 2: Pareto front obtained by our revised version
of MISA in an example. The true Pareto front of the
problem is shown as a continuous line.

e If the secondary memory is full, then a crossover
operator is applied to its members at certain in-
tervals, so that we can reach intermediate points
between them.

Our revised algorithm (called multiobjective immune
system algorithm, or MISA for short). A sample result
is shown in Figure 2. In general, our revised version
of MISA provided competitive results with respect to
the two other algorithms against which it was com-
pared (the NSGA-II [6] and PAES [8]). Although it
did not always ranked first when using three metrics
(generational distance, error ratio and spacing), in all
cases it produced reasonably good approximations of
the true Pareto front of each problem under study,
particularly with respect to the generational distance
metric, which measures closeness to the true Pareto
front of the problem. See [4] for details.

5 Conclusions and Future work

Our explorations of artificial immune systems in opti-
mization have been very fruitful so far. We have pro-
duced two highly competitive approaches: one for con-
strained single-objective optimization and another one
for multiobjective optimization problems. Our current
work focuses on further improvements to MISA. How-
ever, the main emphasis of our current work revolves
around performing a theoretical study of the two al-
gorithms described in this paper. We are particularly
interested in analyzing the convergence properties of
our 2 algorithms, and we are considering the use of
Markov chain models for that sake.
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