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Abstract—In spite of the success of the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D), the
generation of weights for problems having many objectives,
continues to be an open research problem. In this paper, we in-
troduce a new methodology based on low-discrepancy sequences
to generate the weights vectors employed by MOEA/D. We
analyze and compare the proposed methodology using different
low-discrepancy sequences and its impact in the search process
of MOEA/D. The proposed approach is evaluated in problems
having many objective functions (up to 15 objectives). We show
the flexibility and ease of use of this type of sequences when
adopting them to generate the weights of MOEA/D.

I. Introduction

Multi-objective evolutionary algorithms (MOEAs) have
been successfully adopted for solving a wide variety of
engineering and scientific problems [1]. Since their origins,
MOEAs have had two main goals: 1) to find as many
(different) Pareto optimal solutions as possible; and 2) to
maintain a proper representation of the Pareto front (i.e.,
a well-distributed set of solutions along the Pareto front).
During several years, MOEAs adopted selection mechanisms
based on Pareto optimality [2] combined with a density esti-
mator (responsible of distributing solutions along the Pareto
front) based on techniques such as: clustering [3], crowding
distance [4], adaptive grids [5], niching and fitness shar-
ing [6], among many others. More recently, a multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
was introduced [7]. MOEA/D explicitly decomposes a multi-
objective optimization problem (MOP) into a finite number of
single-objective optimization subproblems. Each subproblem
is defined by a scalarization function and the emphasis on
each objective is determined by a weights vector. As it is well
known, a Pareto optimal solution of a MOP (under certain
conditions) is an optimal solution of a scalar optimization
problem [8]. Therefore, different elements of the Pareto set
can be reached by optimizing different scalarization functions
defined by different weights vectors. The uniformity of the
weights vectors, usually reflects the uniformity of the solutions
produced by MOEAs based on decomposition. However, when
the number of objectives increase, the uniformity of weights
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vectors becomes a problem which deserves to be studied and
it is precisely the focus of the study reported herein.

In the specialized literature, there are several methods that
have been used to generate a set of weights vectors. Among
these techniques, the simplex-lattice design [9] has become
one of the most adopted methodologies in multi-objective opti-
mization algorithms—see for example [7]. Simplex-lattice de-
sign is, perhaps, the best strategy employed to generate evenly
distributed weights vectors. However, it has a disadvantage: the
number of weights vectors increases in a binomial way with
respect to the dimension of the weights (k) and the number of
different coefficients (H) used in the design. The number of
weights vectors generated by this strategy is given by

(
H+k−1

k

)
.

In this way, when k = 3 and H = 10, the simplex-lattice
design will generate 66 weights vectors, while for k = 10 and
H = 10, a total of 92, 378 weight vectors will be generated.
In fact, the use of a high number of weights vectors increases
the computational complexity of multi-objective optimization
algorithms and in some applications, they become impracti-
cal. Although other similar methods have been proposed—
for example the simplex-centroid design [10] and the axial
design [11] method—they have the same problem, the higher
the dimensionality of the weights, the higher the number of
weights vectors.

In this paper, we analyze some low-discrepancy sequence
and their use in the construction of weights vectors. The
proposed approach is compared with respect to one strategy
which uses the simplex-lattice design to generate evenly
distributed weights in two different layers. We illustrate the
flexibility, ease of use and low complexity of our proposed
methodology, when used to generate a set of weights vectors
in high-dimensional spaces. As will be seen later on, the
distribution of weights vectors produced by our proposed
approach remains appropriate even when the dimensionality
of the weights increases. In addition, we analyze the impact
on the search process of MOEA/D when adopting the weights
vectors generated by our proposed methodology.

The remainder of this paper is organized as follows. In Sec-
tion II we introduce the basic terminology used in this paper.
Section III presents basic concepts related to the discrepancy
theory and the low-discrepancy sequences. In Section IV, we
describe in detail the proposed methodology to generate the set



of weights vectors. Section V shows the experimental analysis
of our proposed approach. Finally, in Section VI, we provide
our final remarks.

II. General Background

A. Multi-objective Optimization

Assuming minimization, a continuous multi-objective opti-
mization problem (MOP), can be stated as:

minimize
x∈Ω

F(x) (1)

where Ω ⊂ Rn defines the decision space and F is defined as
the vector of the objective functions: F : Ω → Rk, F(x) =

( f1(x), . . . , fk(x))ᵀ where each f j : Ω → R ( j = 1, . . . , k) is
the function to be minimized. In this paper, we consider the
box-constrained case, i.e., Ω =

∏n
i=1[a j, b j]. Therefore, each

variable vector x = (x1, . . . , xn)ᵀ ∈ Ω is such that ai ≤ xi ≤ bi

for all i ∈ {1, . . . , n}.
In multi-objective optimization, it is desirable to obtain

a set of trade-off solutions representing the best possible
compromises among the objectives (i.e., solutions such that
no objective can be improved without worsening another).
Therefore, in order to describe the concept of optimality
in which we are interested, the following definitions are
introduced [8].

Definition 1: Let x, y ∈ Ω, we say that x dominates y
(denoted by x ≺ y) with respect to the problem defined in
equation (1) if and only if: 1) fi(x) ≤ fi(y) for all i ∈ {1, . . . , k}
and 2) f j(x) < f j(y) for at least one j ∈ {1, . . . , k}.

Definition 2: Let x? ∈ Ω, we say that x? is a Pareto optimal
solution, if there is no other solution y ∈ Ω such that y ≺ x?.

Definition 3: The Pareto optimal set PS is defined by: PS =

{x ∈ Ω|x is a Pareto optimal solution} and its image PF =

{F(x)|x ∈ PS }) is called Pareto front PF.
As in most of multi-objective algorithms, we are interested

in finding a certain (finite) number of elements of the Pareto
optimal set, while maintaining a proper representation of the
Pareto front.

B. MOEA/D

The Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D) [7], transforms a MOP into several
scalarization problems. Therefore, an approximation of the
Pareto front is obtained by solving the N scalarization sub-
problems in which a MOP is decomposed.

Considering W = {w1, . . . ,wN} as the well-distributed set
of weights vectors, MOEA/D finds the best solution to each
subproblem defined by each weights vector using the Penalty
Boundary Intersection (PBI) approach [7], which has the form:

minimize: g(x|w, z?) = d1 + θd2 (2)

where

d1 =
||(F(x) − z?)ᵀw||

||w||
and d2 =

∣∣∣∣∣∣∣∣(F(x) − z?) − d1
w
||w||

∣∣∣∣∣∣∣∣

Algorithm 1: General Framework of MOEA/D
Input:
N: the number of the subproblems to be decomposed;
W: a set of weights vectors {w1, . . . ,wN};
T : the neighborhood size.
Output:
P: the final approximation to PS.

1 z = (z1 = +∞, . . . , zk = +∞)ᵀ;
2 Generate a random set of solutions P = {x1, . . . , xN} in Ω;
3 for i = 1, . . . ,N do
4 Bi = {i1, . . . , iT }, such that: wi1 , . . . ,wiT are the T closest

weight vectors to wi;
5 z j = min(z j, f j(xi)); // for j = 1, . . . , k

6 while stopping criterion is not satisfied do
7 for xi ∈ P do
8 Reproduction: Randomly select two indexes k, l from

Bi, and then generate a new solution y from xk and xl

by using genetic operators;
9 Mutation: Apply a mutation on y to produce y′;

10 Update of z: z j = min(z j, f j(xi)) ; // for j = 1, . . . , k
11 Update of Neighboring Solutions: For each index

j ∈ Bi, if g(y′|w j, z) < g(xi|w j, z), then set x j = y′;

12 return P = {x1, . . . , xN};

where x ∈ Rn and z? = min{ fi(x)|x ∈ Ω}. Since z? =

(z?1 , . . . , z
?
k )ᵀ is unknown, MOEA/D states each component z j

by the minimum value for each objective f j found during the
search process, for j = 1, . . . , k.

In MOEA/D, a neighborhood of the weights vector wi is
defined as a set of its closest weights vectors in W. Therefore,
the neighborhood of the ith subproblem consists of all the
subproblems with the weights vectors from the neighborhood
of wi and it is denoted by B(wi).

Throughout the search process, MOEA/D finds the best
solution to each subproblem maintaining a population of N
solutions P = {x1, . . . , xN} where xi ∈ Ω is the current
solution to the ith subproblem. Algorithm 1 presents the
general framework of MOEA/D, however, for a more detailed
description, the interested reader is referred to [7].

III. Discrepancy and Low-Discrepancy Sequences

A. Discrepancy

Discrepancy theory (also called theory of distribution ir-
regularities) is a branch of mathematics which deals with the
problem of distributing points uniformly over some geometric
object and evaluating the inevitably arising errors. This the-
ory was ignited by theoretical contributions such as Weyl’s
equidistribution theorem [12] and Roth’s theorem [13] on the
irregularities of point distributions. The discrepancy of a point
set, measures the nonuniformity of such points placed (without
loss of generality1) in a unit cube [0, 1]s, where s > 0 denotes
the dimension of the unit cube. In the specialized literature
there are several discrepancy measures which determine the

1A set of points can be normalized to a unit cube.



nonuniformity of a point set. The most widely studied discrep-
ancy measure and commonly adopted in quasi-Monte-Carlo
methods, is the well-known Lp-discrepancy, which is formally
stated as follows, see [14].

Definition 4: Let C s = [0, 1)s be a s-dimensional unit cube.
Let P = {x1, . . . , xn} ⊂ C s. For p > 0, the Lp-discrepancy (Dp)
of P is defined by,

Dp(P) =


∫
Cs

∣∣∣∣∣N(P, [0, x))
n

− Vol ([0, x))
∣∣∣∣∣p δx


1/p

(3)

where [0, x) denotes the interval [0, x1)×· · ·×[0, xs), N(P, [0, x))
denotes the number of points of P falling in [0, x), and Vol(A)
is the volume of A, which is the distribution function of the
uniform distribution on C s.

The smaller the value of Dp, the more uniform the distri-
bution of points of P. With p = ∞, the above discrepancy
is called star discrepancy (D?) and it is formally stated as
follows.

Definition 5: Let C s = [0, 1)s be a s-dimensional unit cube.
Let P = {x1, . . . , xn} ⊂ C s. The star discrepancy (D?) of P is
defined by,

D?(P) = sup
x∈Cs

∣∣∣∣∣N(P, [0, x))
n

− Vol ([0, x))
∣∣∣∣∣ (4)

where [0, x) denotes the interval [0, x1)×· · ·×[0, xs), N(P, [0, x))
denotes the number of points of P falling in [0, x), and Vol(A)
is the volume of A.

B. Low-Discrepancy Sequences

Formally, a low-discrepancy sequence can be defined as
follows.

Definition 6: Let P = {x1 . . . , xN} be a sequence of points
in [0, 1]s. P is said to be a low-discrepancy sequence if for
any N > 1

D?(P) ≤ Cs
(log N)s

N
(5)

where the constant Cs depends only on the s-dimensional
problem.

In the following, we present some low-discrepancy se-
quences that we have adopted in the study presented here.

1) Halton sequence: Let b1, . . . , bs be s pairwise relatively
prime. The s-dimensional Halton sequence [15] of order N is
defined as:

xn =
(
ϕb1 (n), . . . , ϕbs (n)

)
, n = 0, 1, . . . ,N − 1, (6)

where ϕb j (n) ( j = 1, . . . , s) is the jth radical inverse function:
ϕb j (n) =

∑l( j)
i=0 ai( j, n)b−i−1

j . This sum is finite with the integer
coefficients ai( j, n) ∈ [0, b j − 1] ( j and n are indexes) coming
from the digit expansion of the integer n in base b j, that is:
n =

∑l( j)
i=0 ai( j, n)bi

j, where l( j) = dlogb j
ne.

2) Hammersley sequence: Let p1, . . . , ps−1 be the first s−1
prime numbers. The s-dimensional Hammersley sequence [16]
of order N is defined as:

xn =

( n
N
, ϕp1 (n), . . . , ϕps−1 (n)

)
, n = 0, 1, . . . ,N − 1, (7)

similar to the Halton sequence, ϕp j (n) is the jth radical inverse
function with respect to p j, i.e., ϕb j (n) =

∑l( j)
i=0 ai( j, n)p−i−1

j , for
j = 1, . . . , s − 1. ai( j, n) ∈ [0, p j − 1] ( j and n are indexes)
coming from the digit expansion of the integer n in base p j,
i.e., n =

∑l( j)
i=0 ai( j, n)pi

j and l( j) = dlogp j
ne.

3) Sobol sequence: The s-dimensional Sobol sequence [17]
is generated from a set of binary fractions of length w bits,
v j

i , i = 1, . . . ,w, j = 1, . . . , s. The numbers v j
i are called

direction numbers. In order to generate the direction numbers
for dimension j, a primitive (irreducible) polynomial on the
field GF2 with elements {0, 1} is defined. Assuming that the
primitive polynomial in dimension j is given by:

p j(x) = xq + a1xq−1 + · · · + aq−1x + 1.

The direction numbers in dimension j are generated by using
the following q-term recurrence relation

v j
i = a1v j

i−1 ⊕ a2v j
i−2 ⊕ · · · ⊕ aq−1v j

i−q+1 ⊕ v j
i−q ⊕ (v j

i−q/2
q),

where i > q. ⊕ denotes the bitwise XOR operation. The initial
numbers v j

1 ·2
w, . . . , v j

q2w can be arbitrary odd integers smaller
than 21, 22, . . ., and 2q, respectively. In this way, the Sobol
sequence x j

n (n =
∑w

i=0 bi2i, bi ∈ {0, 1}) in dimension j is
generated by

x j
n = b1v j

1 ⊕ b2v j
2 ⊕ · · · ⊕ bwv j

w, n = 0, 1, . . . ,N − 1. (8)

4) Faure sequence: The s-dimensional Faure sequence [18]
of order N is stated as follows. Let p be the first prime numbers
such that p ≥ s and pm is the upper bound of the sample size.
Let ci j =

(
i
j

)
mod p, 0 ≤ j ≤ i ≤ m. Consider the base p

representation of n, i.e., n =
∑m−1

i=0 ai(n)pi, where ai(n) ∈ [0, p)
are integers. The first coordinate of the point xn is then given
by

x1
n =

m−1∑
j=0

a j(n)p− j−1, n = 0, 1, . . . ,N − 1. (9)

The remaining coordinates are given by
xi

n =
∑m−1

j=0 a j(n)p− j−1 such that:
a j(n) = a j(n), j ∈ {0, 1, . . . ,m − 1} and
a j(n) =

∑m−1
l= j cl jal(n) mod p, j ∈ {0, 1, . . . ,m − 1},

(10)

in order i = 2, . . . , s. An illustration of this and the above
low-discrepancy sequence in R2 (i.e., with dimension s = 2)
is presented in Fig. 1.

In the specialized literature, there exist other low-
discrepancy sequences with asymptotically good behavior, i.e.,
with small value of Cs, such as the Niederreiter sequence [19],
the Niederreiter-Xing sequence [20] or the Kronecker se-
quences [21]. These sequences require to solve some imple-
mentation issues, which, indeed, increase the computational
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Fig. 1. Illustration of low-discrepancy sequences of order N = 210 in R2 (i.e., s = 2)

complexity becoming (in most cases) impractical. On the
other hand, sequences with asymptotically good behavior do
not necessarily perform well in practical applications, where
a finite number of elements close to the beginning of the
sequence is required.

IV. Constructing theWeights Vectors
One of the main problems in MOEAs that use a set of

weights vectors to obtain a proper representation of the PF
of a MOP (see e.g. MOEA/D [7], R2-IBEA [22], RIB-
EMOA [23]), is the definition of such weights vectors. For
these MOEAs, a good representation of the PF is achieved by
defining a well-distributed set of weights vectors. However,
as said before, when the number of objectives increases,
the generation of well-distributed weights vectors becomes a
problem.

In this section, we give a methodology to generate a well-
distributed set of weights vectors starting from a set of points
with low discrepancy.

In the following description, let us assume that k is the
dimension of the weights vectors and N is the number of
weights vectors to be generated.

Let B = {b1, . . . ,bN} be the low-discrepancy sequence of
order N in the (k−1)-dimensional unit cube, i.e., B ⊂ [0, 1)k−1.
Each weights vector wi ∈ W = {w1, . . . ,wN}, for i ∈ {1, . . . ,N},
is achieved according to the transformation (b→ w) presented
in Algorithm 2.

Algorithm 2: Transformation b→ w
Step 1. Sort the coefficients of each vector bi ∈ B such that:
0 ≤ bi

1 ≤ · · · ≤ bi
k−1, for each i ∈ {1, . . . ,N}.

Step 2. Set the weights vector wi = (wi
1 . . . ,w

i
k)ᵀ as:

wi
j =


bi

1, if j = 1
bi

j − bi
j−1, if 1 < j < k

1 − bi
j−1, if j = k

(11)

Since it is possible to recover the sorted b j’s by means of
the partial sums of the w j’s, the transformation b → w is
(n − 1)! to 1. In particular, a set of weights vectors denotes a
(k−1)-simplex in Rk. Because i) each swap in a sort is a linear
transformation, ii) the transformation formula (equation (11))

is linear, and iii) linear transformations preserve uniformity
of distributions, the uniformity of b implies the uniformity
of w on the (k − 1)-simplex. Therefore, considering that B is
built from a low-discrepancy sequence, the low discrepancy
of B implies the low discrepancy of W. The computational
complexity of this transformation over all the points in B is
given by O(N × k × log k).

Particularly, the low-discrepancy sequences presented in
Section III-B, have the property of generating the vector
b = 0, i.e., the origin point. Therefore, in this specific
case, the transformation b → w shall generate the weights
vector (0, 0, . . . , 0, 1)ᵀ, i.e., the kth canonical basis in Rk.
An illustration of different weights vectors generated by the
transformation b → w and using different low-discrepancy
sequences is shown in Fig. 2.

It is worth noting that a low discrepancy of W does not
imply the points in W are symmetrically stated. However,
a better symmetry of points can be reached by performing
all left shifts with feedback at each point w ∈ W and
selecting (from W and all the shifts) the best well-spread
points. This transformation (denoted as W → W?) is described
in Algorithm 3.

Since the simple transformation b → w generates the kth

canonical basis in Rk, Step 2 (in Algorithm 3) shall generate
all possible left shifts with feedback, i.e., it shall generate all
canonical basis in Rk. For example, for the weights vector
(0, 0, 1)ᵀ, all possible left shifts with feedback are: (0, 1, 0)ᵀ

and (1, 0, 0)ᵀ, whereas for (0.2, 0.3, 0.5)ᵀ the left shifts gen-
erate: (0.3, 0.5, 0.2)ᵀ and (0.5, 0.2, 0.3)ᵀ. In Algorithm 3, W s

stores both the original weights vectors W and the shifts with
feedback of each element in W.

The selection of well-distributed points is carried out in
Step 3 of Algorithm 3. Initially, the central vector wc =

(1/k, . . . , 1/k)ᵀ is stored in the final set of weights W?. Then,
the distances between the central vector and each weights
vector in W s are computed. In this way, while the cardinality
of W? is less than the number of required weights (N), the
weights vector in W s farthest to the set of final weights W?

is removed and stored in W?. In this way, the set W? shall
contain 1) the canonical basis in Rk and 2) the central vector
wc. Fig. 3 shows the transformation W → W? for a set of
weights vectors generated by the Sobol sequence of order



A) Sobol B) Halton C) Hammersley D) Faure

Fig. 2. Illustration of weights vectors generated by the transformation b→ w using different low-discrepancy sequences of order N = 210

Algorithm 3: Transformation W → W?

Step 1. Set W s = W
Step 2. Let W = {w1, . . . ,w|W |}

for j ∈ {1, . . . , |W |} do
– compute all left shifts with feedback of w j ∈ W and

add them to W s

end for
Step 3. Let W s = {w1, . . . ,w|W s |} and wc = (1/k, . . . , 1/k)ᵀ then
• set W? = {wc}

• for j ∈ {1, . . . , |W s|} do
– compute d j = ED(w j,wc)
– set v j = AVAILABLE

end for
• while |W?| < N do

k = arg max
j | v j=AVAILABLE

d j

vk = UNAVAILABLE
W? = W? ∪ {wk}

for l ∈ {1, . . . , |W s|} do
dl = min(ED(wl,wk), dl), iff vl = AVAILABLE.

end for
end while

where ED(a,b) denotes the Euclidean distance between a and b.

N = 210.
Since the transformation W → W? considers the left

shifts with feedback and the set W by itself, the cardinality
of W s becomes k × |W |. The computational complexity of
transformation W → W?, is stated in Step 3, which is given
by O(N × |W s|) = O(N × k× |W |). Since cardinality of W is N,
the final complexity is O(N2 × k).

It is worth noting that the distribution of points can be
improved by computing the permutations of each weights
vector in W instead of computing the shifts with feedback.
Note however that the cardinality of W s shall become k!×|W |,

W W

Fig. 3. Illustration of the transformation W → W? for a set of weights W
generated by the Sobol sequence of order N = 210

which indeed, increases the computational complexity of the
transformation W → W? to O(N2 × k!). In this study, we are
interested in the design of a practical mechanism to generate
a well-spread set of weights vectors. For this reason, we limit
this work to the use of left shifts with feedback.

V. Experimental Analysis

A. Performance assessment

In this study, we are interested in the good distribution of
weights vectors and their impact on the search process of
MOEA/D [7], in high-dimensional objective spaces. In the
specialized literature, there are several methods that have been
used to assess the diversity of nondominated points—see e.g.,
the performance measures spacing [24], spread [25] and en-
tropy [26]. Since the weights set denotes a set of nondominated
points, one of above mentioned measures could be employed
to assess the distribution of the weights set. However, as it was
discussed in [27], [28], in some cases, these measures don’t
provide a correct assessment of the distribution. Not only does
the Hypervolume indicator (IH) [29] assess the approximation
of points to the real Pareto front, but it also assesses the
distribution of points along the Pareto front. However, in
some cases, this metric does not necessarily assess a good
diversity of points along the Pareto front. When the Pareto
front describes a convex surface, IH benefits to samplings with
more solutions close to the convex part. Conversely, if the
Pareto front describes a concave surface, IH favors samplings
with more solutions in the extreme portions of the Pareto
front. Since the weights set denotes a hyperplane, neither
a convexity nor a concavity is described. It means that IH

shall assess in a proper way the distribution of points in the
hyperplane. Therefore, in this study, we assess the distribution
of weights vectors by using the Hypervolume indicator. To
compute IH of the weights set, the reference point was stated
as the unitary vector, i.e., (1, . . . , 1)ᵀ. With this, we can assess a
good distribution to the extreme portions of the (k−1)-simplex.

As we said before, simplex-lattice design [9], is perhaps,
the best strategy used in the construction of evenly distributed
weights vectors. However, when the dimension of the weights
increases, this methodology becomes impractical. A strategy
to deal with high dimensional spaces is the one proposed
in [30] (called herein two-layered simplex-lattice design). This
strategy uses the simplex-lattice design to generate an outside
layer and an inside layer in the weights set. Fig. 4 illustrates



TABLE I
Configuration for the two-layered simplex-lattice design

Dimension Layers Layer configuration Number of weights

3 1 H = 19 210
4 1 H = 9 220
5 1 H = 6 210
6 2 H1 = 4,H2 = 3 182
7 2 H1 = 4,H2 = 2 238
8 2 H1 = 3,H2 = 2 156
9 2 H1 = 3,H2 = 2 210
10 2 H1 = 3,H2 = 2 275
11 2 H1 = 2,H2 = 2 132
12 2 H1 = 2,H2 = 2 156
13 2 H1 = 2,H2 = 2 182
14 2 H1 = 2,H2 = 1 119
15 2 H1 = 2,H2 = 2 135

the two-layered simplex-lattice design in R3 by using H1 = 2
(for the outside layer) and H2 = 1 (for the inside layer).

In this study, we compare the distribution of weights of our
proposed approach with respect to the two-layered simplex-
lattice design. The complete configuration of H values for
different dimensions of the two-layered simplex-lattice design
is shown in Table I. Note however, that we only use the
two-layer strategy when the dimensionality is greater than 5;
otherwise, a single layer is employed.

B. On the low-discrepancy sequences

As we said before, the set of weights vectors generated by
different low-discrepancy sequences is compared with respect
to the simplex-lattice design. Since the number of weights in
simplex-lattice design depends on the configuration of the H
values (even for the two-layer strategy), we adopted the same
number of weights vectors for our proposed methodology.

Table II shows the IH indicator for the weights vectors
generated by the different strategies compared in this study.
For an easy interpretation, the best values are in boldface
and the second best values are underlined. From this table,
we can see that, in most cases, the weights set generated
by the simplex-lattice design achieved a higher IH value than
any other strategy. This is not surprising, since as mentioned
before, the simplex-lattice design is probably the best strategy
to generate equally distributed weights vectors. However, when
the dimensionality of the weights increases, the performance
of the two-layered simplex-lattice strategy starts to deteriorate.

Outside layer

Inside layer

Fig. 4. Illustration of the two-layered simplex-lattice design. The outside
layer is stated by H1 = 2 (generating six weights vectors), while the inside
layer is set by H2 = 1 (generating three weights vectors)

This is due mainly to the fact that the two-layer configura-
tion does not provide a sufficiently good distribution along
the (k − 1)-simplex. In contrast, the use of low-discrepancy
sequences is not limited for any configuration. As we can
see from Table II, when the dimensionality of the weights
increases (k > 10) the proposed methodology becomes better
than the simplex-lattice design. In particular, from the low-
discrepancy sequence, the Sobol’s sequence became the best
choice to generate the set of weights vectors. An example of
different weights vectors in R3 generated by different methods
is shown in Fig. 5. To contrast the proposed methodology, we
include the set of weights vectors generated by simplex-lattice
design (Fig. 5-E) and a sampling of random weights (Fig. 5-F).

C. On the performance of the weights vectors in MOEA/D

In order to validate the impact of different weights vectors in
MOEA/D, we adopted three MOPs taken from the literature:
The well-known DTLZ1 and DTLZ2 test problems [31] and a
rotated version of DTLZ2 (DTLZ2 ROT) [30]. These prob-
lems have connected Pareto fronts, which describe a linear,
a concave and a convex surface, respectively. Such problems
are controlled by the parameter K which states the difficulty
of each problem (for more details see [31]). Since we only
test the distribution of points produced by MOEA/D, we
state K with the minimum allowable value (the smaller the
value, the problem is easier to solve). For each set of weights

A) Sobol B) Halton

C) Hammersley D) Faure

E) siplex-lattice design F) random weights

Fig. 5. Illustration of weights vectors in R3 generated by different strate-
gies. Figures A to D correspond to the weights vectors generated by low-
discrepancy sequences of order N = 210. Figures E and F correspond to
the weights vectors generated by the simplex-lattice design (with only one
layer H = 19, i.e., 210 weights vectors) and 210 random weights vectors,
respectively.



TABLE II
Hypervolume for the weights set obtained by different methods.

Dimension Simplex-
lattice

Sobol Halton Hammersley Faure Random

3 0.806094 0.805209 0.797167 0.797505 0.805209 0.784856
4 0.924554 0.920339 0.905950 0.903775 0.915613 0.895743
5 0.967593 0.959349 0.945150 0.944709 0.954705 0.930800
6 0.983109 0.975670 0.954625 0.951910 0.968713 0.933604
7 0.993778 0.988688 0.967964 0.965749 0.982565 0.954102
8 0.994831 0.991509 0.949837 0.963820 0.984827 0.945335
9 0.997901 0.995257 0.967757 0.972456 0.989662 0.956424
10 0.999161 0.997850 0.980030 0.976338 0.993499 0.965295
11 0.996380 0.996909 0.956934 0.959910 0.994217 0.947044
12 0.998036 0.998771 0.961059 0.965120 0.996590 0.953036
13 0.998941 0.999209 0.957777 0.968477 0.997847 0.954429
14 0.999387 0.999273 0.957909 0.958817 0.995907 0.950421
15 0.999674 0.999616 0.961711 0.959053 0.998153 0.952001

and each MOP, MOEA/D is performing the same number of
generations (3,000). For all the instances, we employed the
PBI approach and the parameters for MOEA/D are set as
in [7]. However, the number of subproblems (N) is stated
by the number of weights vectors defined by the simplex-
lattice design (see Table I). In Table III, we show the IH

values achieved by the nondominated solutions obtained by
MOEA/D using different weights sets. These values were
computed using the reference vector (1.1, . . . , 1.1)ᵀ for DTLZ2
and DTLZ2 ROT and (0.6, . . . , 0.6)ᵀ for DTLZ1. For an easy
interpretation, the best values are in boldface while the second
best values are underlined.

From this table, we can see that for DTLZ1, MOEA/D
obtained a better IH value using the weights vectors gen-
erated by the simplex-lattice design in the majority of the
dimensions. This performance was expected since the original
weights vectors generated by the simplex-lattice design (which
indeed, describes a hyperplane) obtained a better IH value (see
Table II). Note however, that when the number of objectives
increases, this set of weights deteriorates the performance of
MOEA/D. For DTLZ2 (which has a concave Pareto front), the
performance of MOEA/D using the weights vectors generated
by the simplex-lattice design became very similar. The IH

indicator showed a better performance using these weights
vectors than the one generated by the low-discrepancy se-
quences. However, analogously to DTLZ1, the performance
of MOEA/D decayed as the number of objectives increases
(see e.g. for more than 10 objectives). The main reason of
this is that the configuration of layers stated in Table I was
not suitable to cover the whole objective space. Note however
that another configuration of layers could result in a large
number of weights vectors, which can become impractical.
The most contrasting results were in DTLZ2 ROT. For this
particular problem, the performance of MOEA/D using the
weights vectors generated by the low-discrepancy sequences
became better than the one generated by the simplex-lattice
design.

It is worth noting that the two-layer strategy, indeed, favored
the samplings with solutions towards the extreme portions of
the Pareto front. For this reason, the use of these weights

vectors benefits the search of MOEA/D in DTLZ2. However,
for DTLZ2 ROT, the performance of MOEA/D became poor.
In contrast, the performance of MOEA/D using the weights
vectors generated by the low-discrepancy sequences became
better than the one achieved by using the simplex-lattice design
in DTLZ2 ROT. In general terms, for high dimensional
objective spaces, the performance of weights vectors generated
by low-discrepancy sequences outperformed the one achieved
by the simplex-lattice design.

VI. Conclusions
We have presented a methodology for the construction of

weights vectors. The proposed approach is based on a finite set
of points with low discrepancy. Such points are projected to
the (k− 1)-simplex (which defines the set of weights vectors).
The discrepancy of such points is reflected in the resulting
weights set. Therefore, the lower the discrepancy, the better
the distribution of points in the (k − 1)-simplex. To validate
our proposed methodology, we assessed the distribution of
points by using the Hypervolume indicator. Our proposed
approach was compared with respect to the simplex-lattice
design and (for more than five objectives) to the two-layer
strategy. We showed that our proposed approach produces a set
of weights vectors with a proper distribution. Our experiments
showed that our proposed approach became effective when the
dimensionality of the weights increases.

Given the characteristics of our proposed approach, we have
shown the flexibility of the method by not depending on
any parameter for the construction of weights as occurs with
other methodologies—we only need to define the dimension-
ality and the number of weights vectors required. Regarding
efficiency, our proposed approach achieved a computational
complexity of O(N2×k), which is comparable to one iteration
of traditional MOEAs reported in the specialized literature,
see [32]. Therefore, the study presented herein, suggests that
the proposed methodology is appropriate for the generation of
weight vectors in high-dimensional objective spaces.
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