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Performance Indicators

Zitzler et al [2000] indicated that, when assessing performance of a MOEA,
three are the desirable goals:

1 The distance of the resulting nondominated set to the Pareto optimal
front should be minimized.

2 A good distributions of the solutions found is desirable. Normally, the
aim is a uniform distribution of solutions.

3 The extent of the obtained Pareto front should be maximized (i.e., for
each objective, a wide range of values should be present).
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It should be clear, however, that these goals are not always
desirable or even relevant. For example, if the true Pareto front
of a problem is not uniformly distributed, the second goal would
not apply.

Also, if the true Pareto front contained a single solution, the
third goal would not be relevant.

Because of these issues, normally the first goal is the one with
the highest relevance when assessing performance of a MOEA.

A very interesting issue regarding these three goals is that no
performance indicator can assess them all. Normally a
combination of indicators is required.
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Before we start describing the most commonly adopted performance
indicators, we need to define the preference relations that are normally
adopted to compare objective vectors.

Such preference relations are shown in the next slide.

Joshua Knowles, Lothar Thiele and Eckart Zitzler, “A Tutorial on the
Performance Assessment of Stochastic Multiobjective Optimizers”,
Technical Report No. 214, Computer Engineering and Networks Laboratory
(TIK), ETH Zurich, Switzerland, February 2006 (revised version).
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relation interpretation in objective space
strictly dominates z1 ≺≺ z2 z1 is better than z2 in all objectives

dominates z1 ≺ z2 z1 is not worse than z2 in all objectives
and better in at least one objective

weakly dominates z1 � z2 z1 is not worse than z2 in all objectives
incomparable z1||z2 neither z1 � z2 nor z2 � z1

indifferent z1 ∼ z2 z1 has the same value as z2 in each objective

Please note that the corresponding relations on decision vectors are defined
on the basis of the associated objective vectors, i.e.,
x1 rel x2 ⇔ f(x1) rel f(x2).

Please note that the relations �, �� and � are used accordingly with
reverse order of the arguments, e.g., z1 � z2 is equivalent to z2 ≺ z1.

Note that the indifference relation only makes sense with regards to decision
space; in objective space, it simply means equality.
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relation interpretation in objective space
strictly dominates A ≺≺ B every z2 ∈ B is strictly dominated by at least

one z1 ∈ A
dominates A ≺ B every z2 ∈ B is dominated by at least

one z1 ∈ A
better A C B every z2 ∈ B is weakly dominated by at least one z1 ∈ A and A � B

weakly dominates A � B every z2 ∈ B is weakly dominated by at least one z1 ∈ A
incomparable A||B neither A � B nor B � A

indifferent A ∼ B A � B and B � A

Selected preference relations on Pareto front approximations; the
corresponding relations on Pareto set approximations are defined by
considering the associated Pareto front approximations.

The relations �, ��, � and B are used accordingly with reversed order of
the arguments, e.g., A � B is equivalent to B ≺ A.

Notice that (1) A ≺≺ B ⇒ A ≺ B ⇒ A C B and (ii) two indifferent Pareto front
approximations are identical, while this does not need to hold for two
indifferent Pareto set approximations.
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We will now analyze several performance indicators. For this analysis, we will
follow the paper from Knowles and Corne [2002].

In that work, they follow Hansen and Jaszkiewicz [1998], who considered the
problem of evaluating approximations to the true Pareto front. For that sake,
they define a number of outperformance relations that express the
relationship between two sets of internally nondominated objective vectors, A
and B.

In the following, ND(S) denotes the nondominated points in S:

Weak Outperformance: AOW B ⇐⇒ ND(A ∪ B) = A and A 6= B. For
example, A weakly outperforms B if all points in B are ‘covered’ by those in
A (where ‘covered’ means is equal to or dominates) and there is at least one
point in A that is not contained in B.
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Strong Outperformance: AOSB ⇐⇒ ND(A ∪ B) = A and
B \ ND(A ∪ B) 6= ∅. In words, A strongly outperforms B if all points in B are
covered by those in A and some point in B is dominated by a point in A.

Complete Outperformance: AOCB ⇐⇒ ND(A ∪ B) = A and
B ∩ ND(A ∪ B) = ∅. In words, A completely outperforms B if each point in
B is dominated by a point in A.

Notice that AOCB ⇒ AOSB ⇒ AOW B. In other words, complete
outperformance is the strongest and weak outperformance is the weakest of
the relations.

All of these relations describe relationships between approximations to the
true Pareto front since they are compatible with, and only depend upon,
standard Pareto dominance. They are not metrics of performance, but we can
use them to assess the usefulness of nondominated set comparison metrics.
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Hansen and Jaszkiewicz [1998] formally define compatibility and weak
compatibility with an outperformance relation, as follows:

Weak Compatibility: A comparison metric R is weakly compatible with an
outperformance relation ≤ if for each pair of nondominated sets A, B with
A ≤ B, R will evaluate A as being no worse than B.

Compatibility: A comparison metric R is compatible with an
outperformance relation ≤ if for each pair of nondominated sets A and B,
such that A ≤ B, R will evaluate A as being better than B.

These definitions will be used to compare and contrast different
nondominated set comparison metrics.

Carlos A. Coello Coello Multi-Objective Optimization



Performance Indicators

For each of the performance measures that we will discuss
next, we will analyze three things:

1 Pareto compatibility
2 Advantages
3 Disadvantages

In the analysis, the purpose of the corresponding performance
measure will be provided, as well as the way in which it actually
compares two approximations A and B.
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It is worth noting that there are several possible ways of doing
this. A “direct comparative” measure compares A and B directly
using a scalar measure R(A,B) to describe how much better A
is than B.

If R(A,B) = c − R(A,B) for some constant c for all pairs of
nondominated sets A, B, then R is “symmetric”.

Another option is a “reference measure”, which uses a
reference set (perhaps the true Pareto front), and then it scores
both approximation sets (A and B) against this reference set
and compares the results.
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Any direct comparative measure can also be used as a
reference measure by specifying a particular reference set.
However, the converse is not true because their definition
depends on a particular reference set (normally the true Pareto
front).

Finally, we have the “independent measure”, which measures
some property of each set that is not dependent on any other,
or on any reference set.

Another important feature of a performance measure is
whether it induces a complete ordering of all possible
nondominated sets. This ensures transitivity, so that when A, B
and C are compared, if A beats B and B beats C, then it is
always true that A beats C.
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It is often the case that direct comparative measures do not
induce a complete ordering, and the relations between different
sets may be intransitive.

Using reference sets in such cases would ensure transitivity.

Transitivity is not generally a problem with independent
measures, as they all induce a complete ordering.

Finally, it will also be noted if a measure is a cardinal measure
(based on counting the number of vectors in some set) or a
non-cardinal measure.
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Pareto compatibility is concerned with compatibility with the outperformance
relations OW , OS and OC .

The less compatible the measure is, the more misleading it may be, giving
scores for nondominated sets that do not accurately reflect their relative
worth in a Pareto sense.

The hardest relation to be (weakly) compatible with is OW , and the easiest is
OC . Compatibility with OW is necessary and sufficient to ensure monotony
and sufficient but not necessary for ensuring relativity, which are defined as
follows:

(weak) monotony: Given a nondominated set A, adding a
nondominated point improves (does not degrade) its evaluation.

(weak) relativity: The evaluation of the true Pareto front is
(non)-uniquely optimal (i.e., all other nondominated sets have a strictly
inferior (non-superior) evaluation).

Weak compatibility with OW is sufficient for the weak versions to be exhibited.
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For the analysis of advantages and disadvantages of the
performance measures, several issues will be considered,
including: compatibility with the outperformance relations,
computational cost, whether or not they are scaling
independent (is the ordering of approximations affected if one
objective is scaled relative to the others?), and whether it relies
on knowledge of the true Pareto front or any other reference set
or point, and whether it can differentiate between different
levels of complete outperformance.

This means that given three approximation sets A, B and C,
with AOCB, and BOCC, would the measure give a different
evaluation if A and B were compared than if A and C were
compared?
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The Hypervolume or the S metric
The hypervolume indicator was proposed by Zitzler [1999] and it is defined as
the area of coverage of PFknown with respect to the objective space.

This equates to the summation of all the rectangular areas, bounded by some
reference point and (f1(~x), f2(~x)) (for the bi-objective case). Mathematically,
this is described as follows:

HV ,

{⋃
i

voli |veci ∈ PFknown

}
(1)

This is an independent indicator (although needs a reference point to be
chosen), so it induces a complete ordering and is non-cardinal.

Eckart Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications”, PhD thesis, Swiss Federal Institute of
Technology (ETH), Zürich, Switzerland, November 1999.
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The Hypervolume or the S metric
Pareto Compatibility: Compatible with OW provided that the reference point
is set so that all feasible nondominated sets are evaluated as positive.
Normally, the worst objective function values are used to define this reference
point.

Advantages: Compatible with the outperformance relations, independent,
differentiates between different degrees of complete outperformance of two
sets, scaling independent, and its meaning is intuitive.

Disadvantages: It requires defining some upper boundary of the regions
within which all feasible points will lie. This choice does not affect the
ordering of nondominated sets, and is relatively arbitrary. It has a large
computational overhead O(nk+1), which makes it impossible to use it for
many-objective optimization. However, in recent years, a lot of research has
been done regarding the design of more efficient algorithms to compute it.
Another more subtle caveat of the hypervolume is that it multiplies different
objectives together, although this is not supposed to matter, since this
indicator is scaling independent anyway, and the units are irrelevant.
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Suggested Readings on the Hypervolume
Nicola Beume, Carlos M. Fonseca, Manuel Lopez-Ibañez, Luis Paquete and
Jan Vahrenhold, “On the Complexity of Computing the Hypervolume
Indicator”, IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5,
pp. 1075–1082, October 2009.

Lucas Bradstreet, Lyndon While and Luigi Barone, “A Fast Incremental
Hypervolume Algorithm”, IEEE Transactions on Evolutionary Computation,
Vol. 12, No. 6, pp. 714–723, December 2008.

Karl Bringmann and Tobias Friedrich, “An Efficient Algorithm for
Computing Hypervolume Contributions”, Evolutionary Computation, Vol.
18, No. 3, pp. 383–402, Fall 2010.

Hisao Ishibuchi, Noritaka Tsukamoto, Yuji Sakane and Yusuke Nojima,
“Hypervolume Approximation Using Achievement Scalarizing Functions
for Evolutionary Many-Objective Optimization”, in 2009 IEEE Congress
on Evolutionary Computation (CEC’2009), pp. 530–537, IEEE Press,
Trondheim, Norway, May 2009.
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Error Ratio
This indicator was proposed by Van Veldhuizen [1999] and is defined as:

ER ,

∑n
i=1 ei

n
(2)

where n is the number of vectors in the true Pareto front. In this case, ei = 0
if vector i is in the true Pareto front and 1 otherwise. Lower values or ER
represent better nondominated sets.

ER is the proportion of non true Pareto points in our approximation. It is a
reference indicator using as a reference set to the true Pareto front. It
induces a total ordering and is cardinal.

David A. Van Veldhuizen, “Multiobjective Evolutionary Algorithms:
Classifications, Analyses and New Innovations”, PhD thesis, Department
of Electrical and Computer Engineering. Graduate School of Engineering, Air
Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.
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Error Ratio
Pareto Compatibility: It is only weakly compatible with OC . It is not weakly
compatible with OS or OW . For example, if an algorithm finds two
nondominated vectors, one in the true Pareto front, and other far from the
true Pareto front, then its error ratio is 0.5.

If it finds one hundred solutions, 99 of which are very close to the true Pareto
front (and perhaps uniformly distributed along objective function space), and
one (as before) which is in the true Pareto front, then its error ratio will be
0.99.

Clearly, the second set of points is better, but the first has a much better ER.
It strongly violates monotony; given a nondominated set A with one ore more
Pareto optimal points in it, addition of more nondominated but non-Pareto
optimal points makes the ER score worse.

It violates relativity too, since any non-empty subset of the Pareto optimal set
has an optimal error ratio. However, it exhibits weak relativity because the
Pareto front itself is evaluated not worse than any other set.
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Error Ratio
Advantages: It is easy to understand and easy to calculate. It is scaling
independent. For test problems, it can be used as a quick and rough means
of assessing progress towards the true Pareto front.

Disadvantages: It is required to know the true Pareto front. It is incompatible
with the outperformance relations.
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Generational Distance
The Generational Distance (GD) reports how far, on average, PFknown (our
approximation of the Pareto front) is from PFtrue (the true Pareto front). It is
mathematically defined as [Veldhuizen, 1999]:

GD 4=
(
∑n

i=1 dp
i )1/p

n
(3)

where n is the number of vectors in PFknown, p = 2, and di is the Euclidean
distance in objective space between each member, i , of PFknown and the
closest member in PFtrue to that member, i . When GD = 0, PFknown = PFtrue

and, in general, lower values of GD represent better approximations to the
true Pareto front.

It is a reference measure which uses the true Pareto front as a reference. It
induces a total ordering and is non-cardinal. It can be quite misleading, since
it is very easy to produce an example in which it provides an inappropriate
result.
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Generational Distance
Pareto compatibility: It is not weakly compatible with OW , but is compatible
with OS . It violates weak monotony. For example, the GD score favors one
vector close to the true Pareto front over a set containing that vector plus
others, as long as the others are not closer on average to the true Pareto
front than the first one. It does exhibit weak relativity, since any subset of the
true Pareto front has an optimal GD.

Advantages: For a constant size of the nondominated set, GD is compatible
with OS . It is relatively cheap to calculate.

Disadvantages: Since it is not compatible with OW it cannot be used
confidently for nondominated sets that are changing in cardinality (which is
something typical of the nondominated portion of a MOEA population over
time). It cannot reliably differentiate between different levels of complete
outperformance. It is required to know the true Pareto front of the problem.
The distance metric will either add or multiply different objectives together,
introducing scaling and normalization issues that cannot be properly solved
without reference to additional preference information.
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Inverted Generational Distance
The Inverted Generational Distance (GD) reports how far, on average, is
PFtrue (the true Pareto front) from PFknown (our approximation of the Pareto
front). It is an apparently trivial variant of GD, which is mathematically defined
as [Coello, 2005]:

IGD 4=
(
∑n

i=1 dp
i )1/p

n
(4)

where n is the number of vectors in PFtrue, p = 2, and di is the Euclidean
distance in objective space between each member, i , of PFtrue and the closest
member in PFknown to that member, i . When IGD = 0, PFknown = PFtrue and, in
general, lower values of IGD represent better approximations to the true
Pareto front.

It is worth noting, however, that by measuring the average distance from the
true Pareto front to our Pareto front approximation, many of the problems of
the original GD are solved, although this indicator is not free of problems. In
fact, it is not Pareto-compliant [Zitzler, 2003].
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Inverted Generational Distance
Something interesting is that IGD can assess not only convergence, but also
spread of solutions along the Pareto front. Due to its simplicity, several
authors have used it in many-objective optimization during the last few years,
in spite of the criticism that it has received. This is mainly due to the high
computational cost of the hypervolume in many-objective optimization, which
makes it unaffordable.

Carlos A. Coello Coello and Nareli Cruz Cortés, “Solving Multiobjective
Optimization Problems using an Artificial Immune System”, Genetic
Programming and Evolvable Machines, Vol. 6, No. 2, pp. 163–190, June
2005.
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Inverted Generational Distance+
Recently, Ishibuchi [2015] proposed a variant of IGD which is weakly Pareto
compliant. His idea is very simple: he proposed modifying the distance
calculation between a solution and a reference point in the GD and IGD
indicators by taking into account the Pareto dominance relation between
them. If a solution is dominated by a reference point, then he uses the
Euclidean distance with no modification. However, if they are non-dominated
with respect to each other, he calculates the minimum distance from the
reference point to the dominated region by the solution.
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Inverted Generational Distance+
This distance can be viewed as an amount of the inferiority of the solution
(i.e., the insufficiency of its objective values) in comparison with the reference
point. Only inferior objective values of the solution to the reference point are
used in their distance calculation.

This indicator, which is called IGD+ requires the definition of an inferiority
(i.e., insufficiency) vector d+ = (d+

1 , d
+
2 , . . . d

+
m ) as follows:

d+
i = max {ai − zi , 0} , i = 1, 2, . . . ,m (5)

When z � a holds, d+ is the same as d = a− z, where z is our reference
point set (the true Pareto front, in this case). However, when z � a does not
hold, d+ is different from d = a− z, since only the positive elements of d
remain in d+. Thus, the indicator is defined as (assuming minimization):

IGD+(z, a) =

√
d+

1
2

+ . . .+ d+
m

2
=√

(max {a1 − zi , 0})2 + . . .+ (max {am − zm, 0})2 (6)
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Inverted Generational Distance+
This is, with no doubt, a very interesting indicator that, however, has some
resemblance with the additive version of the ε indicator [Zitzler, 2003], which
is used for all elements of all reference points. In other words, the maximum
distance over all reference points (and over all objective of each reference
point) is calculated in the ε indicator, instead of the average distance as done
in IGD+.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki and Yusuke Nojima,
“Modified Distance Calculation in Generational Distance and Inverted
Generational Distance”, in António Gaspar-Cunha et al. (Eds), Evolutionary
Multi-Criterion Optimization, 8th International Conference, EMO 2015, pp.
110–125, Springer. Lecture Notes in Computer Science Vol. 9019,
Guimarães, Portugal, March 29 - April 1, 2015.

Carlos A. Coello Coello Multi-Objective Optimization



Performance Indicators

∆p

Another interesting variant of GD and IGD is the ∆p indicator proposed by
Schütze et al. [2012].

Oliver Schütze, Xavier Esquivel, Adriana Lara and Carlos A. Coello Coello,
“Using the Averaged Hausdorff Distance as a Performance Measure in
Evolutionary Multiobjective Optimization”, IEEE Transactions on
Evolutionary Computation, Vol. 16, No. 4, pp. 504–522, August 2012.
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∆p

The ∆p indicator, which can be viewed as an averaged Hausdorff distance
between an approximation set and the Pareto front of a MOP, is composed of
two (slightly modified) quality indicators: Generational Distance (GD) and
Inverted Generational Distance (IGD).

Given an approximation set A and a discretized Pareto front
PF= (p1, p2, . . . , p|PF|) of a MOP, the (slightly modified) GD indicator is
defined as:

IGDp =

 1
|A|

|A|∑
i=1

dp
i

 1
p

(7)

where di is the Euclidean distance from ai to its nearest member of PFtrue.
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∆p

Given an approximation set A and a discretized Pareto front
PF= (p1, p2, . . . , p|PF|) of a MOP, the (slightly modified) IGD indicator is
defined as:

IIGDp =

 1
|PF|

|PF|∑
i=1

d̃p
i

 1
p

(8)

where di is the Euclidean distance from pfi to its nearest member of A.

Both IGDp and IIGDp have (weak) metric properties:

IGDp and IIGDp are non-negative

IGDp and IIGDp are non-symmetric

IGDp and IIGDp don’t satisfy the (relaxed) triangle inequality
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∆p

Given an approximation set A and a discretized Pareto front
PF= (p1, p2, . . . , p|PF|) of a MOP, the ∆p indicator is defined as:

I∆p = max
(
IGDp , IIGDp

)
(9)

The ∆p indicator has better metric properties than either the GD or the IGD
indicators:

It is positive and symmetric: I∆p is a semi-metric.

If the magnitudes of the sets are bounded, the relaxed triangle
inequality is satisfied and I∆p is a pseudo-metric.

If p =∞ then I∆p is a metric (the Hausdorff distance).

The ∆p indicator is not Pareto compliant but its properties can be exploited
by a MOEA to guide its search.

Cynthia A. Rodrı́guez Villalobos and Carlos A. Coello Coello, “A New Multi-Objective Evolutionary Algorithm
Based on a Performance Assessment Indicator”, in 2012 Genetic and Evolutionary Computation Conference
(GECCO’2012), pp. 505–512, ACM Press, Philadelphia, USA, July 2012, ISBN: 978-1-4503-1177-9.
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Maximum Pareto Front Error
It was proposed by Van Veldhuizen [1999] and it measures the largest
distance between any vector in our Pareto front approximation and the
corresponding closest vector in the true Pareto front.

It is defined as follows:

MPFE = max
j

(min
i
|f i

1(~x)− f j
1(~x)|p + |f i

2(~x)− f j
2(~x)|p)

1
p (10)

where p = 2, i = 1, . . . , n1 and j = 1, . . . , n2 are index vectors in our Pareto
front approximation (PFknown) and the true Pareto front (PFtrue), respectively.

A value of 0 indicates PFknown ⊆ PFtrue. Any other value indicates that at least
one vector of PFknown is not in PFtrue.

It is a reference measure that uses the true Pareto front as a reference. It
induces a complete ordering and is non-cardinal.
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Maximum Pareto Front Error
Pareto Compatibility: It is not weakly compatible with any outperformance
relation. It violates weak monotony. It is better, according to MPFE, to find
one solution close to the true Pareto front than to find ten solutions, nine of
which are in the true Pareto front, and one which is some distance away. This
does not sit well with typical intuitions about the quality of a nondominated
set. It exhibits weak relativity because any subset of the true Pareto front is
optimal.

Advantages: It is cheap to compute. It provides information about whether
any points found are far from the true Pareto front.

Disadvantages: Even if a nondominated set has a very low value of MPFE,
it does not make it a good front, and doesn’t necessarily make it better than
another one with a much worse value of MPFE. As with other distance
measures, different objectives must be combined to get a single figure of
merit, bringing in scaling and normalization issues. Also, it is required to
know the true Pareto front of the problem.
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Average Pareto Front Error
This is a variant of MPFE that was also proposed by Van
Veldhuizen [1999]. It also attempts to measure the convergence
property of a MOEA by using distance to the true Pareto front.

From each solution in our Pareto front approximation, its
perpendicular distance to the true Pareto front is determined by
approximating the true Pareto front as a combination of
piece-wise linear segments with the average of these distances
defining the metric value (e.g., Deb [2002] used 500 segments).

It has the same problems as MPFE.
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Overall Nondominated Vector Generation
The Overall Nondominated Vector Generation (ONVG) measures the total
number of nondominated vectors found during MOEA execution [Veldhuizen,
1999].

It is defined as:
ONVG , |PFknown| (11)

Measuring the number of distinct nondominated points produced makes of
this an independent measure.

Additionally, ONVG induces a complete ordering on the set of
approximations, and it is a cardinal measure.
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Overall Nondominated Vector Generation
Pareto Compatibility: It is not weakly compatible with any outperformance
relation. It does not exhibit either weak monotony or weak relativity.

Advantages: It is easy to compute. It is scaling independent. There are a
few pathological cases where this measure can be used to gauge the quality
of a nondominated set, for example, if the entire search space contains only
nondominated points.

Disadvantages: Its lack of Pareto compatibility. In general, it is
straightforward to come up with scenarios in which A outperforms B on this
measure, but in which B is clearly ‘better’ than A. For example, let’s assume
that A has one million nondominated points and B contains just 1, but this
point dominates all of those in A.
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Overall Nondominated Vector Generation Ratio
The Overall Nondominated Vector Generation Ratio (ONVGR) was also
proposed by Van Veldhuizen [1999]. It measures the ratio of the total number
of nondominated vectors found PFknown during MOEA execution to the
number of vectors found in PFtrue.

It is defined as:
ONVGR ,

|PFknown|
|PFtrue|

(12)

When ONVGR = 1, this states only that the same number of points have
been found in both PFtrue and PFknown. It does not infer that PFtrue = PFknown.

It requires that we know PFtrue. Schott [1995], used this performance indicator
(although defined over the Pareto optimal set, i.e., | Pknown |). Genotypically or
phenotypically defining this indicator is probably a matter of preference, but
again note multiple solutions may map to an identical vector, or put another
way, | Pknown |≥| PFknown |.
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Overall Nondominated Vector Generation Ratio
Although counting the number of nondominated solutions gives some feeling
for how effective the MOEA is in generating desired solutions, it does not
reflect on how “far” from the true Pareto front the vectors in our Pareto front
approximation are. Additionally, too few vectors and the representation of our
Pareto front approximation may be poor; too many vectors may overwhelm
the distance measure.

It is difficult to determine what good values for ONVG might be. The
cardinality of our Pareto front approximation may change at various
computational resolutions as well as differing (perhaps radically) between
MOPs. Reporting the ratio of the Pareto front approximation cardinality to the
discretized true Pareto front gives some feeling for the number of
nondominated vectors found versus how many exist to be found.

It is a reference measure that uses the true Pareto front as its reference set.
It induces a complete ordering on the set of approximations and it is a
cardinal measure.
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Overall Nondominated Vector Generation Ratio
Pareto Compatibility: It is not weakly compatible with any
outperformance relation. It does not exhibit weak monotony or
weak relativity.

Advantages: It is easy to compute. It is scaling independent.

Disadvantages: The true (discretized) Pareto front is required.
It is not compatible with any outperformance relation. This
indicator is useful in the pathological case when the whole
search space is the Pareto front. However, other than this
pathological case, it is difficult to thing of a possible situation in
which this indicator can be useful.

Joshua D. Knowles, “Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization”, PhD Thesis,
The University of Reading, Reading, UK, January 2002.
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Generational Nondominated Vector Generation (GNVG)
It tracks how many nondominated vectors are produced at each
MOEA generation and is defined as [Veldhuizen, 1999]:

GNVG ,| PFcurrent (t) | . (13)

Nondominated Vector Addition (NVA)
As globally nondominated vectors are sought, one hopes to
add new nondominated vectors (that may or may not dominate
existing vectors) to the Pareto front approximation at each
generation. It is then defined as [Veldhuizen, 1999]:

NVA ,| PFknown(t) | − | PFknown(t − 1) | . (14)
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However, NVA may be misleading. A single vector added to
PFknown(t) may dominate and thus remove several others.
PFknown(t)’s size may also remain constant for several
successive generations even if GNVG 6= 0.

These two indicators (GNVG and NVA) are not Pareto
compatible and do not exhibit either weak relativity or weak
monotony.
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Schott’s Spacing
Schott [1995] proposed this indicator (which he called efficient set spacing)
that measures the distance variance of neighboring vectors in PFknown. It is
defined as:

SS ,

√√√√ 1
|PFknown| − 1

|PFknown|∑
i=1

(d̄− di)2 (15)

and
di = minj (|f i

1(~x)− f j
1(~x)|+ |f i

2(~x)− f j
2(~x)|) (16)

where di = minj (| f i
1(~x)− f j

1(~x) | + | f i
2(~x)− f j

2(~x) |), i , j = 1, . . . , n, d is the
mean of all di , and n is the number of vectors in PFknown. When S = 0, all
members are spaced evenly apart. This indicator is based on Holder’s metric
of degree one discussed by Horn [1993].

Jason R. Schott, “Fault Tolerant Design Using Single and Multicriteria
Genetic Algorithm Optimization”, Master’s thesis, Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1995.
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Schott’s Spacing
This indicator does not require to know PFtrue, although it is normally assumed
that a MOEA has already converged prior to applying this indicator. It is an
independent measure, it induces a complete ordering and it is cardinal.

Pareto Compatibility: It is not even weakly compatible with OW . It exhibits
neither monotony nor relativily, since the true Pareto front may be
non-uniform.

Advantages: Used in conjunction with other indicators (as it is designed to
be), it provides information about the distribution of vectors obtained. It has
low computational overhead. It can be generalized to more than two
objectives by extending the definition of di .

Disadvantages: Schott’s definition of di does not specify the use of
normalized distances, which may be problematic. Its incompatibility with the
outperformance relations and the fact that it violates both monotony and
relativity make it unreliable. It has to be properly adapted for special cases
(e.g., disjoint Pareto fronts).
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Deb’s Spacing
It was introduced in the original paper of the NSGA-II [Deb, 2000] and it’s
very similar to Schott’s spacing. It is defined as:

∆ =

|PFknown|∑
i=1

|di − d̄ |
|PFknown|

(17)

where di is the Euclidean distance between two consecutive vectors in the
Pareto front approximation and d̄ is the average of these distances.

The purpose of this indicator is to gauge how evenly the points in the
approximation set are distributed in the objective space.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap and T. Meyarivan, “A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II”, in Marc Schoenauer et al. (Eds), Proceedings of
the Parallel Problem Solving from Nature VI Conference, pp. 849–858.
Springer, 2000.
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Deb’s Spacing
It is an independent measure, it induces a complete ordering on the set of
approximations, and it is a non-cardinal measure.

Pareto Compatibility: It is not weakly compatible with any outperformance
relation. It does not exhibit weak monotony or weak relativity. It is quite
possible that the true Pareto front has a non-uniform distribution of points.

Advantages: If used in conjunction with other indicators (as it is designed to
be), it may provide information about the distribution of vectors obtained. It
has low computational overhead.

Disadvantages: It is only suitable for two-dimensional objective spaces
because it is not clear how “consecutive” would be defined in the case of
more than two objectives. It suffers from normalization and scaling issues, as
with other indicators that combine objectives. The incompatibility of this
indicator with the outperformance relations and the properties of monotony
and relativity make it an unreliable means of making judgements about the
overall quality of a nondominated set.
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Relative Coverage Comparison of Two Sets
Zitzler et al. [2000] proposed a binary indicator termed relative coverage
comparison of two sets. Consider A,B ⊆ X as two sets of vectors. C is
defined as the mapping of the order pair (A,B) to the interval [0, 1] as follows:

C(A,B) =
| {b ∈ B|∃a ∈ A : a � b}

|B| (18)

The value C(A,B) = 1 means that all decision vectors in B are weakly
dominated by A. The opposite C(A,B) = 0, represents the situation when
none of the points in B is weakly dominated by A. Note that always both
orderings have to be considered, since C(A,B) is not necessarily equal to
1− C(B,A).

Eckart Zitzler, Kalyanmoy Deb and Lothar Thiele, “Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary
Computation, 8(2):173-195, Summer 2000.
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Relative Coverage Comparison of Two Sets
The purpose of this indicator is to compare two nondominated sets for overall
quality. It is a direct comparative approach giving a single figure of merit that
not symmetric. It is a cardinal measure. It is difficult to establish whether this
indicator induces a complete ordering on the set of approximations because
it is not clear how the pair of C values should be interpreted together.

Pareto Compatibility: Since this indicator gives two values when comparing
sets A and B, C(A,B) and C(B,A), it is more difficult to analyze whether it is
compatible with the outperformance relations. Its compatibility will depend on
how we interpret or combine the two outputs of the indicator.

Given two stes A and A′ such that A ⊂ A′ and ND(A′) = A′ (i.e., A′ is a
mutually nondominated set), then C(A,A′) < 1 and C(A′,A) = 1 so the
indicator evaluates A′ better than A if we take it that in general, a set C is
evaluated better than a set D according to this indicator if C(C,D) = 1 and
C(D,C) < 1. Accepting this convention, this indicator is compatible with the
weak outperformance relation.
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Relative Coverage Comparison of Two Sets
Clearly, this indicator can also be used with reference sets. Consider now the
sets A and A′ as previously defined, and a set R, where R is a reference set,
with ND(R) = R and A′ ⊆ R. Then, C(R,A) = C(R,A′) = 1 and
C(A,R) < C(A′,R). Now, for compatibility with OW we wish A to be evaluated
worse than A′, so we may simply make the convention for general sets C, D,
R with D ⊆ R, that if C(R,C) = C(R,D) = 1 and C(C,R) < C(D,R), then we
say C is evaluated ‘worse’ than D. Then all sets C, D where D OW C will be
correctly evaluated via a reference set R provided D ⊆ R.

Consider sets A, A′ and R again, with A ⊂ A′ as before, but this time A′ * R.
Consider the case where C(R,A) = C(R,A′) = 1. Now, in this case, it is
possible that C(A,R) = C(A′,R) even though A′ OW A. But we cannot have
C(A,R) > C(A′,R) since A ⊂ A′ so it is not possible that A can cover more of
R than A′. Thus, for a reference set R and two sets A, A′, with A′ OW A such
that C(R,A) = C(R,A′) = 1 then C(A,R) ≤ C(A′,R) and so for this case C is
weakly compatible with OW .
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Relative Coverage Comparison of Two Sets
But the C indicator cannot detect that O′ OW A using a general reference set
R, that is if it is not the case that C(R,A) = C(R,A′) = 1. C is not even weakly
compatible with OW for such general R.

Any pair of C indicator scores for a pair of sets A and B in which neither
C(A,B) = 1 nor C(B,A) = 1, indicates that the two sets are incompatible
according to the weak outperformance relation.

Drawing any further conclusions from the output of the C indicator in this case
is inadvisable.

Also, it is worth noticing that the C indicator does not give an output which is
even representative of our intuitions about the relative quality of two sets
unless the two sets contain very evenly distributed points, and are of very
similar cardinality.
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Relative Coverage Comparison of Two Sets
Advantages: It has low computational overhead compared to
the S indicator (hypervolume). It is compatible with OS. It is
scale and reference point independent. It does not require any
knowledge of the efficient set or ranges of the feasible set. For
two evenly-distributed sets, of the same cardinality, the C
indicator gives results compatible with intuitive notions of
quality, to some extent.

Disadvantages: Its incompatibility with OW . If two sets are of
different cardinality and/or the distribution of the sets are
non-uniform, the the C indicator gives unreliable results. It
cannot determine the degree of outperformance if one set
completely outperforms the other. The purpose of the C
indicator could be better served by simply using the
outperformance relations themselves.
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D1R

This indicator was proposed by Czyzak and Jaszkiewicz [1998] and is
defined as follows:

D1R(A,A) =
1
|R|

∑
r∈R

min
z∈A
{d(r, z)} (19)

where A is the approximation set, R is a reference set,
d(r, z) = maxk {λk (rk − zk )} and Λ = [λ1, λ2, . . . , λk ], λk = 1/Rk ,
k = 1, . . . ,K with Rk being the range of objective k in set R.

The purpose of D1R is to measure the mean distance, over the points in a
reference set, of the nearest point in an approximation set. This is a
reference indicator which induces a complete ordering on the set of
approximations. It is a non-cardinal measure.

P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing–a
metaheuristic technique for multiple-objective combinatorial
optimization”, Journal of Multi-Criteria Decision Analysis, 7:34-47, 1998.
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D1R

Pareto Compatibility: D1R is weakly compatible with OW . However, it is not
compatible even with OC .

Advantages: It is cheap to compute. Its weak compatibility with the
outperformance relations. It can differentiate between different levels of
complete outperformance but this will depend upon an appropriate choice of
reference set.

Disadvantages: This indicator effectively calculates a weighted average
where the reference points have equal weight. This means that the score is
strongly dependent upon the distribution of points in the reference set.
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R1 and R1R

These indicators were proposed by Hansen and Jaszkiewicz [1998]. R1 is
defined as follows:

R1(A,B,U, p) =

∫
u∈U

C(A,B, u)p(u)du, where

C(A,B, u) =


1 if u∗(A) > u∗(B)

1/2 if u∗(A) = u∗(B)
0 if u∗(A) < u∗(B)

where A and B are two approximation sets, U is some set of utility functions,
u : RK → R which maps each point in the objective space into a measure of
utility, p(u) is an intensity function expressing the probability density of the
utility u ∈ U, and u∗(A) = maxz∈A {u(z)} and similarly for u∗(B).

Michael Pilegaard Hansen and Andrzej Jaszkiewicz, “Evaluating the quality
of approximations to the non-dominated set”, Technical Report
IMM-REP-1998-7, Technical University of Denmark, March 1998.
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R1 and R1R

R1 is based on calculating the probability that approximation A is better than
B over an entire set of utility functions. It is a direct comparative indicator. It
does not induce a total ordering on the set of approximations. It is a
non-cardinal measure.

R1R is R1 when it is used with a reference set (i.e., as a reference indicator).
This indicator does not induce a total ordering on the set of approximations.

Pareto Compatibility: Making the convention that we are maximizing all
objectives, a utility function u is strictly compatible with the dominance
relation iff∀z1, z2, z1 > z2 ⇒ u(z1) > u(z2). The set of all utility functions that
are strictly compatible with the dominance relation is USC .

Let U(A > B) = {u ∈ U|u∗(A) > u∗(B)}. If the probability density function
p(u) is such that the probability of selecting a utility function u ∈ U(A > B) is
positive whenever U(A > B) 6= ∅ and U ⊆ USC then R1 is compatible with
OW .
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R1 and R1R

Under the same conditions, R1R is only weakly compatible with
OW and is not compatible even with OC .

Advantages: These indicators are scaling independent. They
have a lower computational overhead than the S indicator.
They are compatible with the outperformance relations. The
R1R indicator can differentiate between different levels of
complete outperformance provided that an appropriate
reference set is chosen.

Disadvantages: The R1 indicator cannot differentiate between
different levels of complete outperformance. It is cycle-inducing.
These indicators depend upon being able to define a set of
utility functions. In general, this can be achieved without any
knowledge of the Pareto front or the search space, however.
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R2 and R2R

These indicators were also defined by Hansen and Jaszkiewicz [1998]. R2 is
defined as follows:

R2(A,B,U, p) = E(u∗(A))− E(u∗(B))

=

∫
u∈U

u∗(A)p(u)d(u)−
∫

u∈U
u∗(B)p(u)du

=

∫
u∈U

(u∗(A)− u∗(B))p(u)du

where A and B are two approximation sets, U is some set of utility functions,
u : RK → R which maps each point in the objective space into a measure of
utility, p(u) is an intensity function expressing the probability density of the
utility u ∈ U, and u∗(A) = maxz∈A {u(z)} and similarly for u∗(B).

Where R1 just uses the function C(A,B, u) to decide which of two
approximations is better on utility function u, without measuring by how
much, R2 takes into account the expected values of the utility. R2 calculates
the expected difference in the utility of an approximation A with another one
B. It is a direct comparative indicator.
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R2 and R2R

R2 induces a complete ranking in the set of all approximations. It is a
non-cardinal measure. R2R is R2 when used as a reference indicator. It also
induces a complete ranking in the set of all approximations.

R2 is compatible with OW subject to the same set of conditions on the set of
utility functions used as outlined for R1. R2R is also compatible with OW

given this set of conditions.

Advantages: The advantages of R2 arise from its compatibility with all of the
outperformance relations and the fact that it can differentiate between
different levels of complete outperformance.

Disadvantages: The application of R2 depends upon the assumption that it
is meaningful to add the values of different utility functions from the set U.
This simply means that each utility function in U must be appropriately scaled
with respect to the others and its relative importance.
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R3 and R3R

Hansen and Jaszkiewicz [1998] also proposed a similar
indicator to R2 whereby the ratio of the best utility values is
calculated instead of the differences. These indicators are
called R3 and R3R. The latter is similar to the approach used in
single objective optimization, where an approximate solution is
evaluated by the ratio of its value to that of a fixed bound.
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Other Performance Indicators
Many other performance indicators exist. For example:

ε indicator
Distributed Spacing
Progress Measure
Attainment Functions
Size of the Space Covered
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ε indicator
Given two approximate sets, A and B, the ε-indicator measures the smallest
amount, ε, that must be used to translate the set, A, so that every point in B is
covered. This is a weakly Pareto compliant quality indicator.

Let A,B ⊆ X . Then, the ε-indicator Iε(A,B) is defined as the minimum ε ∈ R
such that any solution b ∈ B is ε-dominated by at least one solution a ∈ A:

Iε(A,B) = min{ε ∈ R|∀b ∈ B∃a ∈ A : a �ε b} (20)

So, when Iε(A,B) < 1, all solutions in B are dominated by a solution in A. If
Iε(A,B) = 1 and Iε(B,A) = 1, then A and B represent the same Pareto front
approximation. If Iε(A,B) > 1 and Iε(B,A) > 1, then A and B are
incomparable (i.e., they both contain solutions not dominated by the other
set).
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Distributed Spacing (ι)
Srinivas and Deb [1994], defined a measure expressing how well a MOEA
has distributed Pareto optimal solutions over a nondominated region (the
Pareto optimal set).

This indicator is defined as:

ι , (

q+1∑
i=1

(
ni − ni

σi
)p)1/p , (21)

where q is the number of desired optimal points and the (q + 1)-th subregion
is the dominated region, ni is the actual number of individuals in the i th
subregion (niche) of the nondominated region, ni is the expected number of
individuals in the i th subregion of the nondominated region, p = 2, and σ2

i is
the variance of individuals serving the i th subregion of the nondominated
region.

N. Srinivas and Kalyanmoy Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms”, Evolutionary Computation, 2(3):221-248, Fall 1994.
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Distributed Spacing (ι)

They show that if the distribution of points is ideal with ni
number of points in the i th subregion, the performance
measure ι = 0.

Thus, a low performance measure characterizes an algorithm
with a good distribution capacity. This indicator may be modified
to measure the distribution of vectors within the Pareto front.
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Progress Measure (P, RP)
Bäck defined a parameter used in assessing single-objective EA
convergence velocity called a Progress Measure [Bäck, 1996], which
quantifies relative rather than absolute convergence improvement by:

P , ln

√
fmax (0)

fmax (T )
, (22)

where fmax (i) is the best objective function value in the parent population at
generation i .

To account for the (possible) multiple solutions in our Pareto front
approximation, this definition is modified as follows:

RP , ln
√

G1

GT
, (23)

where G1 is the generational distance at generation 1, and GT the distance at
generation T .
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Attainment Functions
A set of nondominated points in objective space define a region that is
dominated by them. The boundary of this region is a “surface” called the
attainment surface [Fonseca, 1996].

By measuring the location and extent of this attainment surface, one can
judge how good the approximation to the true Pareto front is, in a way that is
consistent with our intuitive notions of quality.

However, its use in generating statistical distributions is reflected in a
graphical evaluation of performance based upon empirical data from the true
Pareto front.

Carlos M. Fonseca and Peter J. Fleming, “On the Performance Assessment and Comparison of Stochastic
Multiobjective Optimizers”, in Hans-Michael Voigt et al. (Eds), Parallel Problem Solving from Nature–PPSN IV,
Springer-Verlag, Lecture Notes in Computer Science, pages 584-593, Berlin, Germany, September 1996.
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Attainment Functions
Fonseca and Fleming [1996] note that when several runs of an optimizer are
performed it is possible to overlay the attainment surfaces from each
independent run. This overlaying of surfaces gives a far clearer picture of the
different runs than overlaying the points found themselves. Importantly, the
combination of the surfaces define a sample worst boundary and a sample
best boundary that can easily be identified. In fact, the individual surfaces
could be erased, leaving only the upper and lower boundary attainment
surfaces. This gives a very clear indication of the range of quality of the
approximation of an algorithm.

However, although giving the best and worst that an optimizer attains over
some sample number of runs is indeed useful, and is certainly far more
informative than plotting the vectors from just one run for each optimizer, it
would be desirable if one could calculate a “typical” attainment surface, or a
representative range in which the attainment surface is expected to lie in
some proportion of the runs. Even better would be the ability to make use of
the whole distribution of runs to make some statistical inferences about them.
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Attainment Functions
Fortunately, these goals can be achieved, to a certain resolution, by sampling
the surfaces using lines angled in the direction of increasing value of all
objectives.

Fonseca and Fleming [1996] indicate several weaknesses of this approach.
One weakness is that the calculated percentile attainment surfaces do not
properly represent the probability of attaining the whole surface in the given
percentage of runs. Each point on the surface just independently represents
the level achieved in the given percentage of runs. This may be a serious
weakness if an algorithm were to generate alternatively one extreme or other
of the Pareto front in different runs, but never all extremes at once. This may
not be distinguishable from an algorithm that on some runs does find the
WHOLE extent of the Pareto front and on others, it does not.

It is also worth mentioning that Fonseca and Fleming [1996] do not indicate
that this approach could be used with reference surfaces to give quantitative,
statistical measures of performance for an individual algorithm. This
approach was proposed by Knowles [2002].
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Size of the Space Covered
Zitzler & Thiele [1999] proposed an indicator called Size of the Space
Covered (SSC).

This indicator estimates the size of the global dominated set in objective
function space. The core idea of this indicator is to compute the area of
objective function space covered by the nondominated vectors generated by
a MOEA.

Eckart Zitzler and Lothar Thiele, “Multiobjective Evolutionary Algorithms:
A Comparative Case Study and the Strength Pareto Approach”, IEEE
Transactions on Evolutionary Computation, 3(4):257-271, November 1999.
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Size of the Space Covered
For problems with two objective functions, each nondominated vector
represents a rectangle defined by the points (0,0) and (f1(xi ), f2(xi )), where
f1(xi ) and f2(xi ) are nondominated solutions.

Therefore, SSC is calculated as the union of the areas of all the rectangles
that correspond to the nondominated vectors that have been generated.

It is worth noting, however, that this indicator can produce erroneous results
when the Pareto front is non-convex.
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Size of the Space Covered
Laumanns et al. [1999], used the concept of “space covered” to compare
problems with more than two objectives.

For this sake, they adopted an m-dimensional cuboid as the reference set,
from which a MOEA must cover as much as possible of the dominated space.

Marco Laumanns, Günter Rudolph and Hans-Paul Schwefel,
“Approximating the Pareto Set: Concepts, Diversity Issues and
Performance Assessment”, Technical Report CI-72/99, Dortmund:
Department of Computer Science/LS11, University of Dortmund, Germany,
March 1999. ISSN 1433-3325.
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Size of the Space Covered
Each nondominated solution provides a cone of dominated solutions. The
intersection of this cone with the reference cuboid (which is also a cuboid) is
aggregated to the dominated volume. When computing the dominated
volume, we avoid counting multiple times the overlapped parts of the different
solutions available.

With this method, the reference cuboid is developed using the optimum
solutions considering each objective separately. This means that such
solutions must be known a priori, or must be relatively easy to generate. It is
worth noting, however, that in real-world problems, the cost associated with
generating the optima considering each objective separately, may be
prohibitively high.

The value of the space covered varies with the number of nondominated
solutions and their distribution along the Pareto front. This indicator attempts
to combine convergence, spread and number of Pareto optimal elements into
a single measure. Therefore, it doesn’t work properly when two algorithms
differ in more than one of these 3 elements.
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Other Indicators
There are many other interesting proposals. For example, Farhang-Menhr
[2003] proposed to use entropy as an index that can quantitatively assess the
distribution quality of a Pareto set. This index can be used to capture and
compare the capability of different population-based MOEAs in generating
well-distributed solution sets.

Lizárraga et al. [2008] proposed the G-metric, which takes m nondominated
sets as argument and assigns a real number to each of them based on its
convergence and dispersion-extension. This indicator is compatible with all
outperformance relations.

Ali Farhang-Mehr, “Entropy Approach to Meta-Modeling, Multi-Objective Genetic Algorithm and Quality
Assessment of Solution Sets for Design Optimization”, PhD thesis, Department of Mechanical Engineering,
University of Maryland, College Park, Maryland, USA, 2003.

Giovanni Lizárraga Lizárraga, Arturo Hernández Aguirre and Salvador Botello Rionda, “G-Metric: an M-ary Quality
Indicator for the Evaluation of Non-dominated Sets”, in 2008 Genetic and Evolutionary Computation Conference
(GECCO’2008), pp. 665–672, ACM Press, Atlanta, USA, July 2008, ISBN 978-1-60558-131-6.
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A Word of Caution
Zitzler et al. [2003] provided a careful analysis of performance indicators in
order to determine if they are appropriate or not. One of the key results of this
study is that the hypervolume is the only unary indicator (from the many unary
indicators adopted in the study) that fulfills the property of Pareto compliance.

The most astonishing result from this paper is, however, that they are able to
prove that even the combination of unary indicators does not allow to derive
solid conclusions about our results (e.g., algorithm A is better than algorithm
B). It is worth indicating, however, that this last result has been refuted by
other researchers (see [Lizárraga et al., 2008a]).
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978-3-540-88635-8.
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A Nice Tutorial
Another interesting document is a technical report generated from a tutorial
delivered at EMO’2005 and updated in 2006, in which the appropriate use of
performance measures is properly exemplified. Same as in the paper from
Zitzler et al. [2003], this tutorial favors the use of binary indicators.

If we can systematically apply binary performance measures (by pairs of
output files, corresponding to the executions of the two MOEAs being
compared), it is feasible to use nonparametric analysis afterwards, in order to
determine the confidence intervals of the results. Today, it is very common to
adopt Wilcoxon’s signed-rank test in order to report statistical significance of
the results obtained by a MOEA.

Joshua Knowles, Lothar Thiele and Eckart Zitzler, “A Tutorial on the
Performance Assessment of Stochastic Multiobjective Optimizers”,
Technical Report No. 214, Computer Engineering and Networks Laboratory
(TIK), ETH Zurich, Switzerland, February 2006 (revised version).
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