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This paper presents the use of Particle Swarm Optimization (PSO) for a class of non-stationary
environments. The dynamic problems studied in this work are restricted to one of the possible
types of changes that can be produced over the fitness landscape. A hybrid PSO approach (called
HPSO_dyn) is proposed, which uses a dynamic macromutation operator whose aim is to maintain
diversity. In order to validate the approach, a test case generator previously proposed in the spe-
cialized literature was adopted. Such a test case generator allows the creation of different types of
dynamic environments with a varying degree of complexity. The main goals of this research were to
analyze the ability of HPSO_dyn to react to the changes in the environment, to study the influence
of the dynamic macromutation operator on the algorithm’s performance and finally, to analyze the
algorithm’s behavior in the presence of high multimodality.
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1 Introduction

Many real-world optimization problems are non-stationary. Such problems
arise when either the resources (constraints) or the optimization criteria change
(or both), and they are common in engineering, production planning, and eco-



nomics (Michalewicz and Fogel 2000). In the last decade, heuristics that can
adapt to changes have attracted the interest of researchers, particularly those
that operate on a population of solutions. From these heuristics, most of the
research has concentrated on evolutionary algorithms (Angeline 1997, Branke
2002), and several promising results have been obtained within the last few
years.

It is worth noticing that several metaheuristics based on swarm intelligence
have been adopted in the last few years to solve dynamic optimization prob-
lems. Particularly, the use of ant colony optimization (ACO) has increasingly
generated interest among researchers (see for example (Béck et al. 1997, Caro
and Dorigo 1998, Schoonderwoerd et al. 1996, Guntsch and Middendorf 2001,
Guntsch et al. 2001, Guntsch and Middendorf 2002a,b)).

Another technique that has recently been adopted for dealing with non-
stationary environments is Particle Swarm Optimization (PSO) (Kennedy and
Eberhart 2001, Carlisle 2002), which is precisely the approach adopted in the
work reported in this paper.

The remainder of the paper is organized as follows. Section 2 provides a short
introduction to the so-called “classical” particle swarm optimization model.
Section 3 reviews the previous related work. Section 4 describes the proposed
approach. Since the test case generator (of dynamic test functions) proposed by
Morrison & De Jong (1999) was adopted, in Section 5 a brief description of such
generator is given in order to make this paper self-contained. The experimental
design adopted for the study is described in Section 6. The metrics adopted
to evaluate the approach performance are described in Section 7. The analysis
of results is presented in Section 8. Finally, the conclusions and some possible
paths for future research are provided in Section 9.

2 Particle Swarm Optimization

The PSO model (now considered “classical”) was originally proposed by James
Kennedy and Russell Eberhart (Kennedy and Eberhart 1995), and has had
several further extensions in the next few years (Kennedy and Eberhart 2001).
The PSO model is inspired on the acting of communities that present both
an individual and a social behavior, from which the main socio-cognitive ideas
may be applied to the development of efficient algorithms that solve opti-
mization problems (this is the so-called “swarm intelligence” (Kennedy and
Eberhart 2001)). Although PSO is considered by its authors as an evolutionary
algorithm, it does not incorporate the traditional genetic operators (crossover
and mutation) that evolutionary algorithms normally adopt. Instead, in PSO
each particle adjusts its flight over the search space based on its own flight
experience and that of its neighbors (i.e., the other particles of its swarm).



Each particle represents a possible solution to the problem at hand and is
treated as a point in an n-dimensional search space (where n refers to the
number of decision variables of the problem). A particle is characterized by its
position and its current velocity. Furthermore, a particle has a memory where
it stores the best position that it has found so far. Particles adjust their flight
trajectories using the following equations (Shi and Eberhart 1998):

Vij =W X 5+ c1 X711 X (Pij — Tig) +ca X 12 X (Pgj — Tij) (1)

Tij = Tij + Vi (2)

where w is the inertia factor, whose goal is to control the impact of the history
of the velocities of a particle over the current velocity, by influencing the local
and global exploration abilities of the algorithm. v;; is the velocity of the
particle ¢ in the j-th dimension, ¢; and ¢y are weights applied to the influence
of the best position found so far by particle ¢ and by the best particle in the
swarm g. r; and 7o are random values (with a uniform distribution) generated
within the interval [0, 1]. After the velocity is updated, the new position of
the particle ¢ in its jth dimension is recomputed. This process is repeated
for each dimension of the particle ¢ and for all the particles in the swarm.
Kennedy and Mendes (2002) proposed different neighborhood techniques to
be considered when updating the velocity of a particle. In this paper, the most
simple neighborhood scheme available was adopted, which only includes the
closest neighbors in terms of the indices of the particles. Under this scheme,
the equation to update the velocity of a particle becomes:

Vi =W X vij+c1 X 11X (Pij — Tij) + 2 X 12 X (Prj — Tij) (3)

where p; ; represents the best particle in the neighborhood I. The formula used
to update a particle remains the same as before.

Despite the popularity of PSO as an (static) optimizer (see for example
(Kennedy and Eberhart 2001, van den Bergh 2002, Ray and Liew 2002, He
et al. 2004, Fan et al. 2004)), its use in dynamic environments has been fairly
limited, as we will see in the next section.



3 Previous Work

An algorithm capable of dealing with non-stationary environments normally
considers two main aspects (Branke 2002): the detection of the change and the
reaction of the algorithm to such change, such that the (moving) optimum can
be tracked as closely as possible. There is some previous research on the use
of particle swarm optimization for dynamic optimization that involves these
two aspects previously discussed. Such previous work will be briefly reviewed
in this section.

Carlisle & Dozier (2000) used a sentry particle that is evaluated at each it-
eration, comparing the previous fitness value with the new one (if they differ,
this means that the environment has changed). Hu & Eberhart (2002) pro-
posed the re-evaluation of two gpes; particles in order to detect the movement
of the location of the optimum.

In further work, Carlisle & Dozier (2002) suggested periodic re-evaluation
of the personal best and the swarm fitness values, but only when a change has
occurred. Janson and Middendorf (2004) proposed a Hierarchical PSO (PH-
PSO) in which, whenever a change is detected by the algorithm, the rank (or
hierarchy) is split in a number of sub-swarms. The detection of a change is
produced by re-evaluating the position of the best particle (g_best) at each
flight cycle. If the function value at such position has changes with respect to
the previous value, then a change has occurred and the algorithm starts its
reactive stage which consists of re-randomizing a portion of the swarm and
re-evaluating the rest.

Blackwell and Branke (2004) extended both the basic (single population)
PSO and the so-called CPSO (Charged Particle Swarm Optimization, which
was proposed by the same authors (Blackwell 2003)) by building interactive
multi-swarms. The underlying idea is that the charged multi-swarms maintain
diversity in the population, which allows that the changes can be automatically
detected and also allows the swarm to adapt to such changes.

Parrot & Li (2004) use PSO to tackle peaks of a function in dynamic en-
vironments. They also adopt the dynamic functions generator proposed by
Morrison & De Jong (1999). In their paper, they compare four approaches:
classical PSO, FGPSO (Fine-grained PSO), PSO-R20 and PSO-R50. Although
not clearly stated in the paper, both PSO-R20 and PSO-R50 use a macro-
mutation operator taken from the evolutionary computation literature. They
adopt the strategy of Random Immigrants which replaces a portion of the
population with randomly generated particles. PSO-R20 replaces 20% of the
population, whereas PSO-R50 replaces 50% of the population. FGPSO works
with a neighborhood, using a grid topology in which each particle has four
neighbors: located up, down, right and left. In this work, the authors used a
single measure of performance (the distance between the best particle found



in each interval within changes and the value of the optimum particle). Note
however, that the use of only this measure of performance may be misleading
in some cases since this measure may provide good values even if the approach
never reaches the optimum peaks.

Despite the encouraging results reported in the papers previously indicated,
most of these authors focus their work on unimodal fitness landscapes (Black-
well 2003, Carlisle and Dozier 2002) which is rather unrealistic considering the
complexity of real-world problems, which tend to present multimodality. This
is precisely the issue addressed in this paper. Aiming to provide a framework
for performing further comparative studies, the test case generator originally
developed by Morrison & De Jong (1999) was adopted, which shares several
similarities with the proposal of Branke (2002). This test case generator allows
to define non-stationary environments of different degrees of complexity both
regarding the morphology of the fitness landscapes as well as regarding the
type of changes that can be produced and their severity.

4 The Proposed Approach

The proposal presented in this paper uses the equations (2) and (3) to update
the particle positions and its velocities, respectively. The local PSO model
was selected because in a previous work (Esquivel and Coello Coello 2003),
it was shown that this model works better than the global PSO model for
functions with high multimodality.

When a PSO algorithm is executing and it converges to an optimum, the
swarm loses the diversity necessary for exploring the search space and conse-
quently, it loses its ability to react to a change when such a change occurs.

Together with the proposal to maintain diversity at every interval between
changes, a dynamic mutation operator was also introduced. This operator is
initialized with a high mutation probability (pmaz) at the beginning of each
interval, and then it is decreased over the interval until reaching its lowest
allowable value (pmin). This operation causes a more explorative behavior at
the beginning of the search and a more focused behavior (i.e., narrowing the
search to a much smaller region of the search space) at the end, right before
a change occurs. The dynamic mutation operator is described next.
Mutation: Each coordinate of the particle is independently mutated with a
probability pp,.¢- The coordinate value is replaced by another value which is
randomly generated within its allowable range. The mutation probability is
dynamically adjusted taking values within the interval [pmin, Pmaz| during the
execution of the algorithm. Thus, P, is defined as follows:



1. Initialize(Swarm)

2. Initialize(velocities)

3. Evaluate(Swarm, Fy)

4. Copy(Swarm, Swarm_bests)
5.t=0

6. do

7. Calculate(pymut)

8.  if (occurred_change)

9. Report_dynamic_statistics()
10. Change_function()

11. Evaluate(Swarm, Fy)

12. Evaluate(Swarm_bests, Fy)
13. Update(Swarm_bests) if appropriate
14. Calculate(pmut)

15. end if

16. Mutate(Swarm)

17.  Update(velocities)

18.  Update(Swarm)

19.  Evaluate(Swarm, Fy)

20. Update(Swarm_bests) if appropriate
21, t=t+1

22. while (—termination)

Figure 1. General outline of our HPSO_dyn Algorithm

(Pmaz — Pmin) X (interval — iter yprent mod interval)

Pmut =

; 4
interval +Pmin - (4)

where the values Py, and pp,q. are the lower and upper bounds of the vari-
ation interval of the probability, interval indicates the number of iterations
between changes and itercyrrent corresponds to the current flight cycle of the
particles. Each time a change takes place in the environment, the value of p,,,¢
is initialized to pyqz and the end of the interval of Py, is set to Pin.-

The pseudo-code of the approach (called Hybrid PSO for dynamic optimiza-
tion, or HPSO_dyn, for short) is shown in Figure 1.

Once the swarm and the velocities are initialized (lines 1-2), the swarm
is evaluated with the base function Fy. Then, the memory of the particles
(Swarm_bests) is initialized (line 4). After that, the algorithm enters the flight
loop (line 6) which is executed while the termination condition (line 22) is true.
This condition indicates the total number of iterations, that depends of the



number of changes to be performed and the lenght of the interval between
such changes (for example, if the number of changes that will take place in
a run is 20 and each change is produced every 30 iterations, then the total
number of iterations is 20 x 30). Then, in line 7, we compute the value for
Pmut (according to equation (4)) and the function occurred changes deter-
mines if a change is required within the current flight cycle. In order to do this,
the function checks if the current cycle number is a multiple of the number
of cycles between changes. The changes in the environment are produced at
constant intervals. If the environment must change, the dynamical statistics
are stored (i.e.,the data necessary to compute the metrics defined in Section
7), the function is modified and both the Swarm and the Swarm_ bests are
re-evaluated with the new fitness function (lines 9 to 12). These re-evaluations
are necessary since the current fitnesses of the particles do not correspond to
the new function. Once the two swarms have been re-evaluated, for each par-
ticle is verified that Swarm_bests really contains the best particle positions
for the new environment, as to maintain the consistency of the algorithm. By
doing this, the memory of all the particles is not lost, but only the memory
of those for which their current positions (in Swarm) are the best (Carlisle
and Dozier 2002). Then, the transition function for the probability of muta-
tion is recomputed setting Pyt t0 Pmaz- Next, the algorithm proceeds with
the normal PSO processing, which implies: mutate the particles, update their
velocities, update the positions of the particles, evaluate the particles and, if
applicable, modify their position in Swarm_bests (lines 16-20). This process
is done asynchronously, since there is evidence of the efficiency of this type
of processing when working with neighborhoods in PSO (Esquivel and Coello
Coello 2003, Carlisle 2002).

5 DF1 Generator

In this section, the Test Function Generator proposed by Morrison & De Jong
(1999) is briefly described. This generator uses a morphology that the authors
denominate “field of cones”. Such cones can have different heights and slopes
and are randomly distributed along the landscape. The static base function
(Fp), for the two-dimensional case, is defined as:

Fy(z,y) = {I:l?fL[Hi —Ri x\/(z — )2+ (y — 4:)?] (5)

where n indicates the number of cones in the landscape and each cone is in-
dependently specified by its coordinates (z;,y;) that belong to the interval
[—1,1], its height (H;) and its slope (R;). The cones independently defined



are grouped using the function maz. Each time the generator is invoked, it
randomly generates a morphology with the characteristics given. The function
F can be defined for any number of dimensions. The user can create a wide
variety of shapes for the fitness landscape by specifying the range of allow-
able values for the height, slope and location of the cones. Furthermore, the
generator allows to re-write the values randomly generated in order to cre-
ate landscapes with controlled characteristics. The severity of the changes is
controlled through the logistic function:

Yi= AxYi1 x (1-Y1) (6)

where A is a constant defined within the interval [1,4] and Y; is the value at
the iteration ¢. Thus, the procedure to obtain the dynamic behavior that the
user wants is the following: 1) choose the number of cones and 2) determine
what characteristics the user wishes to change (height, location, slope of one
or all the cones). The severity of the change is controlled by the values that are
assigned to the constant A, which influences the movement produced, either at
small, large or chaotic steps. For further details on this generator, the reader
should refer to (Morrison and De Jong 1999).

6 Experimental Design

The goal of this research was triple: first, to determine if the proposed
algorithm could track down the optimum once a change has occurred. Second,
to verify the influence of the dynamic mutation operator on the algorithm’s
performance and, finally, to analyze the algorithm’s behavior upon scaling
both the number of dimensions and the number of cones. Thus, this article
aims to extend the scenarios proposed by Morrison (2002) in order to achieve
the required conditions to perform the study. Such scenarios are described
next: 1) by the shapes of the fitness landscape and 2) by the dynamics applied.

Description of the structure of the static landscape

(i) E1: 2 dimensions, 5 cones (2d-5¢).

(ii) E2: 2 dimensions, 14 cones (2d-14c).
(iii) E3: 5 dimensions, 5 cones (5d-5c).

(iv) E4: 5 dimensions, 14 cones (5d-14c).
(v) E5: 10 dimensions, 5 cones (10d-5c¢).
(vi) E6: 10 dimensions, 14 cones (10d-14c).

In all the scenarios, the maximum value was assigned to a single peak. Such



Table 1. DF1 Parameters for Scenarios E1,

E3 and E5
Parameter Small Large Chaotic

Hbase 60.0 6.0 60.0
Hrange 0.0 0.0 0.0
Rbase 70.0 70.0 70.0
Rrange 0.0 0.0 0.0

A 1.5 1.5 3.8

Scale 0.3 0.99 0.5
OptH 90.0 90.0 90.0
OptR 90.0 90.0 90.0

Table 2. DF1 Parameters for Scenarios E2,

E4 and E6
Parameter Small Large Chaotic

Hbase 1.0 1.0 1.0
Hrange 9.0 9.0 9.0
Rbase 8.0 8.0 8.0
Rrange 12.0 12.0 12.0

A 1.5 1.5 3.8

Scale 0.3 0.99 0.5
OptH 15.0 15.0 15.0
OptR 20.0 20.0 20.0

a value is greater than that of the other peaks (to make sure that there is a
single global optimum).

Dynamics Applied

The type of change implemented consisted of modifying the location of all
the cones simultaneously and in all the scenarios was applied the following
severity: small, large, and chaotic. For the scenarios E1 to FE4, the changes
take place at every 10, 30 and 50 iterations. For scenarios E4 and FE5,
given their complexity, changes take place at every 30, 60 and 90 iterations.
Furthermore, at each run, 20 changes took place on the location of all the
cones.

Parameters of the DF1 Generator

The parameters of DF1 that correspond to the dynamics implemented are
defined in Tables 1 and 2, according to the proposal by (Morrison 2002),
where Hbase, Hrange, Rbase and Rrange correspond to the ranges of the
heights and slopes of the cones that do not contain the global optimum.
OptH and OptR correspond to the cone containing the global optimum. A
and Scale control the severity of the changes. In all the experiments, the
variable Y in equation (6) is initialized with the value 0.45 (this is the default
value provided with the generator).
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(a) (b)

Figure 3. (a) Base Function: 2 Dimensions, 5 Cones - (b) Large Change

In Figures 2, 3 and 4, examples of the types of static landscapes that can be
generated with DF1 when subject to changes with different degrees of severity
are shown.

Figure 2 (a), shows a static base function of two dimensions and five cones.

In Figure 2 (b), the landscape modified by a small change can be observed.
Figure 3 (b) illustrates the landscape modified by a large change and finally,
Figures 4 (b) and 4 (c), display two successive chaotic changes. A similar
example but for static base functions of two dimensions and fourteen peaks
is shown in Figures 5, 6 and 7.

Parameters of the Classical PSO algorithm

In (van den Bergh 2002), the influence of the parameter settings on the
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Figure 4. (a) Base Function: 2 dimensions, 5 Cones - (b) Chaotic Change (1) - (c) Chaotic Change
(2

(a) (b)

Figure 5. (a) Base Function: 2 dimensions, 14 Cones - (b) Small Change

Table 3. Parameter Configuration

Parameters Values
w 1.0 09 08 07 06 05 04 0.3
c1, €2 20 19 1.8 1.7 16 15 14 1.3

performance and convergence of the PSO algorithm were both empirically
and theoretically studied. As suggested in this study, in the present work a set
of previous experiments were performed in order to select the best combination
of values for w, c¢1, and ¢ for the problem under consideration. The settings
considered are listed in Table 3.

Note that all the configurations hold the convergence relation defined in (van
den Bergh 2002):

c1+co



12

(a) (b) ()
Figure 7. (a) Base Function: 2 dimensions, 14 Cones - (b) Chaotic Change (1) - (¢) Chaotic
Change (2)

Table 4. PSO Algorithm Parameter Settings
Scenarios w C1 = C2 SWaTMygjse

E1-E2 0.5 1.5 50
E3-E4 0.5 1.5 200
E5-E6 0.5 1.5 500

This preliminary experimentation showed that the best performance of PSO
was obtained with the combination of parameter values listed in Table 4.
Analogously, different neighborhood radius were analyzed resulting the best,
for this problem class, a neighborhood radius of size 4.

In each experiment, 30 runs were performed, all of them with the same base
function and the same initial population. The rationale to work with the
same initial population was to verify the robustness of the algorithms with
respect to the results obtained.

Parameters of the HPSO_dyn algorithm
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Table 5. E1 (2d-5c¢): Probability interval
and changes tracked down
Interval Small Large Chaotic

0.0,0.0 50 30 10
0.1,0.2 510 500 498
0.1,0.3 600 593 583
0.1,0.4 600 600 600
Table 6. E3 (5d-5¢): probability interval
and changes tracked down
Interval Small Large Chaotic
0.1,0.4 593 583 581
0.1,0.5 597 597 587
0.1,0.6 599 596 588
0.2,0.4 600 599 585
0.2,0.5 594 599 585
0.2,0.6 594 596 590
0.3,0.4 600 597 587
0.3,0.5 600 595 591
0.3,0.6 600 600 600

Table 7. E5 (10d-5¢): probability interval
and changes tracked down
Interval Small Large Chaotic

0.3,0.6 390 294 299
0.4,0.7 475 448 424
0.5,0.8 600 596 542

As indicated in Section 4, the classical PSO algorithm was hybridized with
a dynamic macromutation operator. A set of preliminary experiments were
performed with two purposes: a) to determine which were the most appro-
priate values for the p,,;;, and Py macromutation operator parameters, and
b) to study the way in which the modification of these values influenced the
algorithm’s reaction to changes in the environment. These preliminary exper-
iments were performed considering the most unfavorable cases, that is, when
the changes are produced at every 10 iterations for scenarios £1 and E3, and
at every 30 iterations for scenario E5. Only the five peaks functions were
taken into account because in some previous work of the authors (Esquivel
and Coello Coello 2004), it was found that the algorithm had more difficulties
when increasing dimensionality rather than when increasing multimodality.

The results are presented in Tables 5 to 7.

As can be observed in Table 5, the HPSO_dyn algorithm was able to react
only to a very limited number of changes when the macromutation operator
was not adopted.

The results from Table 6 show that for changes produced with small and
large severity, the values assigned to ppmin and pmez do not significantly increase
the number of changes at which the algorithm properly reacts. However, it
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Table 8. Definitive
Probability Intervals
Scenarios  Interval
E1-E2 0.1,0.4
E3-E4 0.3,0.6
E5-E6 0.5,0.8

can be observed, in the case of changes produced with chaotic severity, that
when p;n and pp,q, are increased, the algorithm reacts better to the changes.
This observation allows to infer that the algorithm requires a high diversity
in the swarm not only at the first iterations, but also during the full interval,
including the iteration just before the change occurs.

In scenario E5, considering the complexity of the landscape studied, the
results obtained are considered very satisfactory for changes of small and large
severity. The behavior is also considered satisfactory for the chaotic case, since
the algorithm was not able to react properly in less than 10% of the changes
performed.

The minimum and maximum values for the macromutation operator, for
each scenario, are summarized in Table 8.

7 Performance Metrics

The performance of the HPSO_dyn was evaluated using three performance
metrics: the first one considers the quality of the solutions obtained, the second
one computes the error between the best fitness value found by the algorithm
and the optimum value (the test function generator facilitates this value) and
the last one indicates the number of changes to which the algorithm reacts
appropriately. The description of these 3 performance metrics is provided next.

Average Mean Best Fitness (AMBF): This metric provides the average mean
value of the best particle values at the iteration “just before a change occurs”.
It is defined as:

1 ™ 1 cn
AMBF = — — ij
- jz_jl(cn 2_; fbesti;) (8)

where rn is the number of runs, c¢n is the number of changes performed in
one run, and fbest;; is the fitness value of the best particle found at the i-th
change at the j-th run.

Average Mean Error (AME): In this case, the metric gives the average of



Table 9. AC Metric for 2D Functions

15

E1:2d - 5¢ E2:2d - T4c
Interval Small Large Chaotic Small Large Chaotic
10 600 600 600 600 600 600
30 600 600 600 600 600 600
50 600 600 600 600 600 600
Table 10. AC Metric for 5D Functions
E3: 5d - 5¢ E4: 5d - 14c
Interval Small Large Chaotic Small Large Chaotic
10 600 600 600 588 581 575
30 600 600 600 600 598 599
50 600 600 600 600 600 600

the mean error value, i.e., considering the error as the difference between the
optimum value and the best value found by the algorithm at the iteration
“just before a change occurs”. It is defined as:

™ cn

1 1
AME = E;(E ZZ:;(opt — fbest;;)) 9)

where opt is the optimum value.

Amount of Changes (AC): To be sure that our HPSO _dyn successfully tracks
down the cone that contains the optimum value when it is moving on the
landscape and to ensure that there is no misinterpretation of the results, for
each cone in any function, the test generator DF1 allows to know its location,
height and slope. Thus, it is possible to know if the best particle belongs to
the optimum peak. Therefore, this metric computes the number of times in
which the best particle was located on the optimum cone. In one experiment
the algorithm can detect a maximum of 600 changes (20 changes per run times
30 runs).

8 Analysis of Results

The optimum value for all the functions with 5 cones is 90.00 and all the other
cones have a maximum value of 60.00. For the functions with 14 cones, the
maximum value is 15.00 and all the other cones have a maximum of 10.00.
The performance of HPSO_dyn for the two-dimensional functions with 5 and
14 cones is very satisfactory, since in all cases, for all the changes performed,
the algorithm was able to react to the 100% of the changes (see Table 9).
Also, the algorithm was able to track down the global optimum with a very
acceptable average mean fitness (see Figures 8 (a) and 9 (a)) and average mean
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Table 11. AC Metric for 10D Functions

E1: 10d - 5¢ E2:10d - 14c
Interval Small Large Chaotic Small Large Chaotic
30 600 596 542 600 600 527
60 600 600 598 600 599 550
90 600 600 600 600 599 560
90.0
AmBE 89.8 AME ég
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59.4 07
B9.2 DD%
83.0 04
mSmall 888 B Small gg = -
mlarge 223 Olarge 0.1y A
m Chaotic 10 B Chante uu A o
30 50 10 30
50
Iterations Iterations
(a) (b)
Figure 8. (a) 2d-5¢ AMBF (b) 2d-5¢ AME
AMBF AME
HSmall W Small
mlarge OLlarge
W Chaotic | Chaotic
Iterations Iterations
(a) (b)

Figure 9. (a) 2d-14c AMBF (b) 2d-14c AME

error values (see Figures 8 (b) and 9 (b)).

For the case of the 5-dimensional functions with 5 and 14 cones the per-
formance of HPSO_dyn remains satisfactory regarding the number of changes
to which the algorithm reacts correctly. Table 10 shows that, even for the 14
peaks function when chaotic changes are performed at every 10 iterations, in
the worst case the algorithm reacts to 96% of the changes produced.

With respect to the metric AMBF (see Figures 10 (a) and 11 (a)), and AME
(see Figures 10 (b) and 11 (b)), an increase in the error can be observed, par-
ticularly when the changes are produced at every 10 iterations. This indicates
that even though the algorithm properly reacts to the changes, the values that
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Figure 10. (a) 5d-5¢ AMBF (b) 5d-5¢c AME

mSmall
msmal mlarge
mLarge | Chaotic
W Chaotic
Iterations Iterations
(a) (b)

Figure 11. (a) 5d-14c AMBF (b) 5d-14c AME

it finds are more distant from the optimum value.

For the more complex scenarios (10 dimensional functions), when the
changes are produced with small and large severities, the algorithm’s per-
formance was good if we consider the AC metric (see Table 11). For changes
produced with chaotic severity, the algorithm’s performance degraded, since
for the 14 cones case it could not succeed 100% of the time at tracking down
the optimun in any of the experiments. Nevertheless, the success rate oscillated
between 87.8% and 99.6%, which are reasonably good values.

It is also worth noticing the increase in values of the metrics AMBF and
AME, which is shown in Figures 12 and 13. This increase is produced as a
result of the ocurrence of more unsuccessful cases.
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9 Conclusions and Future Work

This paper presented an optimization algorithm for non-stationary environ-
ments. The algorithm is based on a particle swarm optimizer which was hy-
bridized with a dynamic macromutation operator. Although one could think
at first sight that the mutation probabilities adopted in the work are too high,
this is done to maintain the required diversity in the swarm. However this
operator does not disrupt the search process since the memory Swarm _bests
is not destroyed when the changes take place. Additionally Swarm_bests is
only updated when a particle from the Swarm obtains a better fitness than
the one stored in such memory.

Furthermore, some empirical evidence was provided to validate the hypothe-
sis that the algorithm without the dynamic macro-mutation operator adopted
would be able to react only to a fairly limited number of changes. This indi-
cates that the macro-mutation operator fulfilled its design goal, which was to
maintain the required diversity within the swarm.
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In the experiments, functions with 2, 5 and 10 dimensions and with 5 and 14
cones were involved. All of these functions were created with the DF1 genera-
tor, which allowed to study the behavior of the algorithm with more complex
fitness landscape structures than those normally adopted in the specialized lit-
erature (i.e., the sphere model). The changes produced consisted on changing
the location of all the cones, with step sizes that were from small to chaotic.
The results obtained show that the performance of the algorithm over mor-
phologies with several suboptima, is highly satisfactory when using either 2 or
5 dimensions and a number of cones between 5 and 14. However, the perfor-
mance degrades as we move to problems with 10 dimensions. Nevertheless, the
success rate of the algorithm in these cases remains reasonably good. Although
the scenarios presented in this paper were non-trivial, the future work adresses
two principal aspects: 1) to extend these scenarios to include other types of
landscape morphologies and 2) to study the other change types provided by
the DF1 generator. Additionally a mechanism for the automatic detection of
changes must be developed.
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