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Abstract

PyDDRBG is a Python framework for generating tunable test problems for
static and dynamic multimodal optimization. It allows for quick and sim-
ple generation of a set of predefined problems for non-experienced users, as
well as highly customized problems for more experienced users. It easily
integrates with an arbitrary optimization method. It can calculate the op-
timization performance when measured according to the robust mean peak
ratio. PyDDRBG is expected to advance the fields of static and dynamic
multimodal optimization by providing a common platform to facilitate the
numerical analysis, evaluation, and comparison in these fields.
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Table 1: Code metadata (mandatory)

1. Motivation and Significance1

Many real-world problems are dynamic, which means that some aspects2

of the problem change over time. Finding the optimal solutions to such prob-3

lems requires dynamic optimization. In the most recent decade, there has4

been a lot of research work on formulating dynamic problems [1, 2] and devel-5

oping evolutionary algorithms and swarm intelligence methods for dynamic6

optimization [3, 4], some of which have been applied to real-world problems7

such as optimal control [5] and vehicle routing [6].8

A successful dynamic optimization method should be able to track all9

good local minima since the change in the depth of the minima may result in10

a substantial change in the location of the global minimum [7]. This means11

that even though the problem asks for one global optimum at each time,12

optimization methods should employ a multimodal optimization [8] strategy13

to detect and track distinct global and local minima. Consequently, this field14

of research is known as dynamic multimodal optimization (DMMO) [9].15

There are a few benchmark generator for DMMO. The most well-known16

and widely used one is the Moving Peak Benchmark (MPB) [7, 9] and its17

variants and extensions [10, 11, 12, 13]. The Real Rotation Dynamic Bench-18

mark Generator (RRDBG) [14] applies rotation to change the location for the19

optima. Real Composition Dynamic Benchmark Generator (RCDBG) [14]20
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allows for employing more complex functions instead of a unimodal spherical21

function to form the fitness landscape around each optimum.22

A more recent perspective to DMMO asks for multiple (near-) global23

optimum at the problem level at each time [15, 16, 17]. The aforementioned24

benchmark generators can be extended to this type of problems with some25

minor modification, e.g., the modified MPB in [16] which can simulate an26

arbitrary number of global optima.27

A comprehensive benchmark generator for DMMO should reflect the di-28

verse challenges associated with DMMO. In particular, these challenges can29

be divided into three groups [18]:30

� global optimization, which determines how hard it is to find each global31

optimum. Intervening factors are the depth of local optima, correlation32

among variables, and badly scaled problems [19].33

� multimodal optimization, which determines how difficult it is to detect34

distinct global optima. The factors involved are the irregularity in the35

distribution of global optima, their shapes and sizes36

� dynamic optimization, which is affected by the change frequency, change37

severity, and irregularities in the pattern of the change in the fitness38

landscape.39

Such classification measures the difficulty of DMMO from three distinct40

perspectives, each associated with a distinguishable type of challenges. This41

allows for analyzing the pros and cons of each DMMO method more reli-42

ably. The recently proposed Dynamic Distortion and Rotation Benchmark43

(DDRB) generator [18] allows for simulation and control of these challenges.44

When compared with exiting benchmark generators for DMMO, it can sim-45

ulate more diverse features or at least has the advantages of easy integration46

with existing static multimodal optimization problems and deterministic and47

thus platform independent nature (see [18] for in-depth analysis and compar-48

ison with other benchmark generators for DMMO).49

It is possible to analyze the characteristics of landscape using landscape50

metrics such as those defined and used in [20, 21] for deceptiveness of local51

optima and in [22] for irregularity of distribution and sizes of global optima;52

however, user-defined parameters that control the difficulty of each aspect53

of the problem eliminates the need for performing such analysis for each54

generated problems. This is the case with DDRB, in which:55

� the parameter (hGO) controls the difficulty of reaching each global op-56

timum (global optimization difficulty) either by increasing the depth of57

local optima or by increasing the condition number of the landscape.58
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� the parameter ec controls the difficulty of multimodal optimization by59

determining the distortion of the landscape during dynamic changes60

(see [18] for details), which is the extent of the changes in the shapes,61

sizes, and irregularity in the distribution of global minima62

� three other parameters control dynamic aspects of the problem, which63

are the severity of the change (one parameter), change frequency (one64

parameter), and randomness in the pattern of the change (one parame-65

ter). The former two are shared features of most dynamic test problems66

(e.g., see [23]).67

This study provides a user-friendly Python framework for the DDRB gen-68

erator [18]. This framework, called PyDDRBG, also provides a method that69

calculates the performance of a static or dynamic multimodal optimization70

method, which will be explained in Subsection 3.5. This framework has been71

structured such that:72

� It is easy to use and understand by non-expert users, allowing them to73

simulate the exact problems employed in [18].74

� It allows for detailed control and customization for more experienced75

users who wish to create different benchmark problems.76

� It can be easily and simply integrated with any arbitrary optimization77

method.78

2. Software Description79

The problems generated by PyDDRBG can be static (no change in the80

problem landscape) or dynamic (the problem landscape changes at predefined81

intervals). For static problems, a promising optimization method should be82

able to correctly identify as many global minima as possible, while in dynamic83

problems, it should also be able to track these minima over time. In PyD-84

DRBG, a DMMO problem is formed by first generating a static multimodal85

optimization (SMMO) problem and then simulating dynamic behavior by86

distortion and rigid rotation of the fitness landscape at predefined intervals.87

PyDDRBG has five predefined static parametric composite multimodal88

optimization functions (Gi, i = 11, 12, . . . , 15), each formulated by a com-89

bination of three basic functions. Each composite function has a tunable90

parameter denoted by D I, which controls the number of global minima91

(numGlobMin) in the problem. For each composite function, two values92

of D I have been considered by default, resulting in 10 standard problems93

(PID = 1, 2, . . . , 10). Table 2 presents the properties of these problems.94
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The user can further control the properties of the static problem by chang-95

ing the corresponding attributes of statAttr, including:96

� +dim: int, which defines the search space dimensionality. See Table 297

for allowable values of dim for each PID,98

� +h GO: float (0 ≤ h GO ≤ 1), which controls the difficulty of global op-99

timization in the problem. This parameter does not change the location100

of the global minima but makes finding them harder by increasing the101

depths of undesirable local minima or increasing the condition number102

of the basic functions that form the parametric composite function (see103

[18] for more details.)104

� +maxEvalCoeff: float (maxEvalCoeff > 0), which controls the evaluation105

budget of the static problem or the zeroth time step if the problem is106

dynamic. This budget is maxEvalCoeff× dim× numGlobMin.107

� +rotAngle: float (rotAngle ∈ R), which defines the rotation angle for108

the rigid rotation of the search space (static problem).109

Dynamic problems are formed by simulating a dynamic behavior to the110

defined static problems, which results in some change in the problem land-111

scape after a certain time. This time is measured in terms of the used function112

evaluations, i.e., the number of calls to the objective function. PyDDRBG113

allows for a lower level control of dynamic properties of the benchmark prob-114

lem, including the following attributes of dynaAttr:115

� +chSevReg: float (chSevReg > 0), which defines the severity of the116

regular (patterned) change. A greater value means a less severe change.117

� +chSevIrreg : float (chSevIrreg > 0), which defines the severity of irreg-118

ular (patternless) change. A greater value means a less severe change.119

� +chFrCoeff: float (chFrCoef > 0), which controls the change frequency120

for the first time step onward (the change frequency is chFrCoeff ×dim×121

numGlobMin). The change frequency is the duration of the interval in122

which the problem remains unchanged. Each interval is called a time123

step (timeStep = 0, 1, . . . , numTimeStep− 1).124

� +numTimeStep: int (numTimeStep ≥ 0), which is the number of time125

steps in the dynamic problem (one if the problem is static).126

� +e c: float (e c > 0 ), which is the eccentricity for the scaling function127

to control the intensity of dynamic distortion in the landscape. A128

greater value means a less severe distortion in the problem landscape.129
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PID Function statAttr.D I numGlobMin Valid dimensionality
1 G11 2 4 2k + 2
2 G12 2 2 2k + 2
3 G13 2 3 2k + 2
4 G14 1 3 k + 1
5 G15 2 4 2k + 2
6 G11 4 16 2k + 4
7 G12 6 8 2k + 6
8 G13 4 9 2k + 4
9 G14 2 18 k + 2
10 G15 4 16 2k + 4

Table 2: Specifications of the predefined static problems in PyDDRBG. For
all functions, the search range is [−5, 5]D, and k∈ Z≥0)

� +performDynaRot: bool (False/True), which determines if dynamic ro-130

tation should be performed.131

For multimodal optimization, the peak ratio (PR) [24] is the most com-132

monly adopted indicator for performance evaluation. It simply calculates133

the fraction of global minima that has been detected given a predefined tar-134

get tolerance for the solution value and a niche radius. The robust peak135

ratio (RPR), as introduced in [18], provides a more robust indicator which136

eliminates the need to specify the niche radius for performance evaluation.137

For each detected global minimum, a partial score in [0, 1] is calculated with138

respect to the predefined loosest and tightest tolerances. RPR is then calcu-139

lated as the average of these partial scores.140

2.1. Software Functionalities141

The use cases of the PyDDRBG framework are as follows:142

� A simple way to set all problem properties to predefined values is by143

choosing PID (see Table 2) and dynaScn 3.144

� Customization of problem properties to create diverse test problems.145

This customization is optional and might be preferable for more ex-146

perienced users. The problem properties that can be customized are147

attributes of statAttr and dynaAttr.148

� Calculation of the problem data required for a solution evaluation and149

performance evaluation.150
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Feature
0 False 0.3 0.5 30 ∞ 2000 1 Base Scenario (Static)
1 True 0.3 0.5 30 ∞ 2000 40 Base Scenario (Dynamic)
2 True 0.6 0.5 30 ∞ 2000 40 Hard global optimization
3 True 0.3 0.1 30 ∞ 2000 40 Hard niching problem
4 True 0.3 0.5 10 ∞ 2000 40 Severe changes
5 True 0.3 0.5 30 5 2000 40 Irregular changes
6 True 0.3 0.5 30 ∞ 500 40 Fast-changing problem

Table 3: Dynamic scenarios predefined for the PyDDRBG. In all scenar-
ios, statAttr.dim=10, statAttr.maxEvalCoeff=4000, statAttr.rotAngle=π/6, dy-
naAttr.numTimeStep=40, and dynaAttr.performDynaRot=True. The user may
customize these properties to generate new problems.

� Integration with an arbitrary optimization method. problem has all the151

required data and methods for optimization.152

� Static and dynamic multimodal optimization with an exemplary method,153

which has been provided to demonstrate how to integrate an arbitrary154

optimization method with a test problem generated by PyDDRBG.155

� A static method to calculate robust mean peak ratio for static and156

dynamic problems given the tightest and loosest tolerances on the ob-157

jective function.158

2.2. Software Architecture159

Figure 1 depicts the class diagram of PyDDRBG in the Unified Modeling160

Language (UML). It also illustrates how it interacts with an external static or161

dynamic multimodal optimization method. DDRB.py is the main file of Py-162

DDRBG which enables the user to generate a static or dynamic multimodal163

optimization problem and evaluate a solution. Methods and attributes of164

this class are presented in Table 4. Notably, statAttr and dynaAttr include165

all control parameters of the problem that can be customized by the user,166

and the boolean attribute isDynamic determines if the problem is dynamic.167
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Figure 1: UML class diagram of PyDDRBG and its interaction with an external static or
dynamic multimodal optimization method

A set of predefined static problems and dynamic scenarios have already been168

configured in PyDDRBG. These scenarios are presented in Table 3. The user169

can start from one of these predefined scenarios and then customize some pa-170

rameters of the problem by changing the corresponding attribute in statAttr171

or dynaAttr.172

3. Implementation Steps173

The steps to generate and employ a test problem from PyDDRBG are174

explained in this section.175

3.1. Create the problem object176

First, the user should create the problem object by creating an object
from the DDRB class:

problem=DDRB(PID,dynaScn). (1)

This sets the control parameters of the problem according to the static prob-177

lem ID (see Table 2 ) and the selected dynamic scenario (see Table 3).178

3.2. Customize the problem properties179

This step is optional and can be useful for an experienced user, who can180

change properties of the problem by changing the corresponding attributes181

in statAttr and dynaAttr. For example, the hardness of the problem from the182

global optimization perspective can be intensified by increasing h GO:183

problem.statAttr.h GO = 1.0. (2)
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DDRB Role of the attribute/method

+statAttr: StaticAttribute Determines static properties of the problem

+dynaAttr: DynamicAttribute Determines dynamic properties of the problem

+statData: StaticData Calculates and stores the data related to static
aspects of the problem

+dynaData: DynamicData Calculates and stores the data related to dy-
namic aspects of the problem

+maxEvalTotal: int Defines the evaluation budget of the problem

+isDynamic: bool Determines if the problem is dynamic

+numCallObj: int Tracks the number of calls to the objective
function

+DDRB(int PID, int dynaScn) Constructs the problem object and sets
statAttr and dynaAttr

+calc problem data() Calculates problem data and stores them in
statData and dynaData

+func eval(float[] x): float Calculates and returns the value of solution x

+func eval static(float[] x, Stat-
icAttribute statAttr, Dynami-
cAttribute dynaAttr): float

Calculates and returns the value of solution x
excluding the effect of dynamic distortion and
rotation

Table 4: Methods and attributes of the DDRB class
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3.3. Generate the problem data184

After customization of the problem parameters, problem data should be185

calculated and stored in the problem object as follows:186

problem.calc problem data(). (3)

problem has all the data required for a solution evaluation, which are stored in187

statData (data related to static aspects of the problem) and dynaData (data188

related to dynamic aspects of the problem). No further change to problem is189

allowed.190

3.4. Solution evaluation191

Given problem, an arbitrary solution x can be easily calculated for both192

static and dynamic problems using the following method:193

y=problem.func eval(x), (4)

in which y is the value of solution x. It is worth indicating that problem keeps194

track of the number of calls to the objective function in problem.numCallObj.195

Besides, problem has all the information and methods required for optimiza-196

tion. Therefore, for integration with an optimization method, it is sufficient197

to provide problem for that method. Integration with a sample optimization198

method will be demonstrated in Section 4.199

3.5. Performance evaluation200

Although there are many performance indicators for multimodal opti-201

mization [25], Peak Ratio (PR) is the most widely accepted one which has202

also been employed in competitions on niching methods for multimodal op-203

timization [24]. PyDDRBG can calculate Robust Peak Ratio (RPR) [18].204

When compared with PR, RPR is less sensitive to predefined function tol-205

erance as it can assign partial credits for a solution if its value is between206

the predefined loosest and tightest tolerances. It also eliminates the sensi-207

tivity of PR and its need for the preset niche radius. Given the results of208

static/dynamic multimodal optimization, RPR is calculated using the fol-209

lowing static method:210

RPR, valDiff=PerformIndic.calc RPR(X,foundEval,tolFunScore,problem), (5)

in which:211

� X (2D float array) is the set of near-optimal solutions reported by the212

optimization method.213
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� foundeEval (1D int array) stores the function evaluations at which these214

solutions were found.215

� tolFunScore (1D float array) is the loosest and tightest tolerance for216

calculation of RPR (defined by the experimental setup).217

� 0 ≤ RPR ≤ 1 is the calculated RPR. If the problem is static, RPR is a218

scalar. If the problem is dynamic, RPR is a 1D array showing RPR at219

each time step.220

� valDiff ≥ 0: For a static problem, it is a 1D array showing the differ-221

ence between the global minimum value and the value of the reported222

approximate solution for that global minimum. If there is no approx-223

imate solution for a global minimum, the corresponding element of224

valDiff will be ∞. For dynamic problems, valDiff is a 2D array showing225

these differences for each time step.226

For DMMO problems, this method returns the calculated RPR at the227

end of each time step in the form of 1D array. The average of these values is228

the mean RPR, which is regarded as the performance measure.229

4. Illustrative Example230

The file example optim.py provides an illustrative example for generation231

of a test problem, optimizing it and evaluating the optimization results. The232

main steps performed for this purpose are as follows:233

� Create the problem object with predefined properties by specifying PID234

and DynaScn:235

PID=1236

dynaScn=6237

problem=DDRB(PID,dynaScn)238

� Change the values of attributes of problem.statAttr and/or problem.dynaAttr239

if desired. This step is optional and can be useful for experienced users.240

As an example, we change the problem’s dimensionality and the num-241

ber of time steps:242

problem.statAttr.dim=8243

problem.dynaAttr.numTimeStep=10244

� Calculate the problem data and store them in problem:245

problem.calc problem data()246
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� Optimize the problem using an external optimization method and get247

the reported optimal solutions and the time (number of evaluations) at248

which these solutions have been found. A simple optimization method249

is provided in the file example optim.py for demonstration, which is250

called as follows:251

foundEval, solution=optimize full(problem)252

� Calculate the performance after defining the loosest and tightest toler-253

ance for the objective value:254

tolFunScore=np.array([0.1, 1e− 5])255

RPR,valDiff=PerformIndicator.calc RPR(solution,foundEval,tolFunScore,problem)256

5. Impact257

SMMO is already a well-developed field of research. The importance of258

SMMO in real-world problems is already well-understood. The remarkable259

number of studies on SMMO [26, 8] and competitions on niching methods260

for SMMO, which have regularly been held at the Genetic and Evolutionary261

Computation Conference (GECCO) and at the IEEE Congress on Evolu-262

tionary Computation (CEC), is evidence for this claim. At the same time,263

a number of test suites have been proposed for performance evaluation and264

comparison of SMMO methods (see [22] for an example). In particular,the265

CEC’2013 test suite for static multimodal optimization[24] has served as a266

widely accepted tool for comparing SMMO methods since 2013, which has267

provided a substantial contribution to advancing the knowledge in this field.268

DMMO, when multiple global minima should be tracked over time, is269

a relatively new field of research with application to some real-world prob-270

lems. One familiar example is the problem of finding the fastest route to a271

destination by GPS. This problem demands multimodal optimization since272

the driver might be interested in multiple routes with similar estimated time273

of arrival (ETA) or even routes which might be slightly longer but may be274

preferable because of the familiarity for the driver with the road, safety, av-275

erage speed, and so on. At the same time, this problem is dynamic since the276

optimal routes may change because of changes in traffic conditions, accidents,277

or even a missed turn by the driver. In these situations, it is desirable that278

the route finding algorithm updates the optimal routes as fast as possible.279

Other real-world exemplary applications are finding solutions to a system of280

nonlinear time-dependent equations [27] and tracking multiple moving tar-281

gets [17].282
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Existing studies on DMMO (e.g. [16]) generally employ simple benchmark283

generators that may not be able to simulate all the challenges associated with284

DMMO. PyDDRBG provides a comprehensive test suite for both static and285

dynamic multimodal optimization. It is expected to become a widely adopted286

test suite for both static and dynamic multimodal optimization in the future.287

Ease of implementation, possibility for customization, deterministic nature288

of the problems, and lower-level control over the properties of the generated289

problems are good reasons to support this expectation.290

6. Conclusions291

Dynamic multimodal optimization (DMMO) is an emerging field of re-292

search with some practical applications. The developed python framework293

in this work provides an easy tool for benchmarking, analyzing and compar-294

ing arbitrary methods for both static multimodal optimization (SMMO) and295

DMMO. The ease of integration with optimization methods and the deter-296

ministic nature of the generated test problems should encourage researchers297

in the field of multimodal optimization (both dynamic and static) to employ298

this benchmark generator in their research. The parametric nature of these299

test problems allows the user to control the difficulty of different features of300

each problem to facilitate identification of the pros and cons of each method,301

which will illuminate the path to advancing knowledge in this field.302
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