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In this paper, we perform a comparative study of different heuristics used to design combinational
logic circuits. This study mainly emphasizes the use of local search hybridized with a genetic al-
gorithm and the impact of introducing parallelism. Our results indicate that a hybridization of a
genetic algorithm with a local search algorithm (simulated annealing) is beneficial and that the use
of parallelism not only introduces a speedup in the algorithms compared (as expected), but also
allows to improve the quality of the solutions found.
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1 Introduction

There are several standard graphical aids widely used by humans to de-
sign combinational logic circuits (e.g., Karnaugh Maps [1,2], and the Quine-
McCluskey Method [3,4]). Despite their advantages, these methods do not
guarantee that an optimum circuit can be found given an arbitrary truth ta-
ble. Additionally, some of these methods (e.g., Karnaugh Maps) have some
well-known scalability problems, and can be used only in circuits with very
few inputs (normally no more than five or six).

In this paper, we see the design of combinational logic circuits as an opti-
mization problem in which we aim to find Boolean expressions that produce
the outputs required given a set of inputs (as defined by the truth table of a
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circuit). Seen as an optimization problem, the design of combinational circuits
has several interesting features:

e It is a discrete optimization problem in which the decision variables are
either integers or binary numbers (as in this paper). The solutions produced
are Boolean expressions that can be graphically depicted.

o The size of the search space grows very rapidly as we increase the number
of inputs and/or outputs of a circuit.

e Since it is required to produce circuits that match exactly all the outputs
of the truth table given over all the inputs provided, this problem can be
considered as having (a usually large number of) hard equality constraints.

e Several parameters of the problem may be modified in order to produce
different variations whose degree of difficulty may be higher than that of
the original problem. For example, we may vary the types of gates available
and the number of inputs that each of them may have.

Because of its complexity, the design of combinational circuits has been tack-
led with a variety of heuristics (mainly evolutionary algorithms) in the last
few years [5,6]. Despite their good results on small and medium-size circuits,
heuristics tend to be victims of the “dimensionality curse”. Over the years,
however, a different goal was envisioned for evolutionary algorithms applied
to the solution of combinational logic circuits. The new goal aims to opti-
mize (small and medium-size) circuits (using a certain metric) such that novel
designs (since there is no human intervention) can arise. Such novel designs
have been shown in the past in a number of studies [5-8]. In fact, some re-
searchers have pointed out the usefulness of extracting design patterns from
such evolutionary-generated solutions. This could lead to a practical design
process in which a small (optimal) circuit is used as a building block to pro-
duce complex circuits.

This paper presents a comparative study among a traditional genetic al-
gorithm, simulated annealing, and three heuristics powered by local search
capabilities. The rationale behind adopting these approaches is to determine
if the design of combinational logic circuits (operating on a binary encoding)
can benefit from local search strategies that are not included in a traditional
genetic algorithm. For the study, we use both serial and parallel versions of
each algorithm, so that we can analyze if the use of parallelism brings any ben-
efits in terms of performance, other than the obvious computational speedup.

The remainder of the paper is organized as follows. In Section 2 we pro-
vide the statement of the problem of interest to us. In Section 3, we briefly
discuss the matrix encoding adopted to represent a combinational logic cir-
cuit in the heuristics compared. Section 4 briefly describes the most relevant
previous related work. In Section 5, we provide a brief description of the ap-
proaches adopted in our study. Section 6 contains the examples and the results



Enrique Alba et al. 3

of the comparative study. Then, there is a further discussion of the results in
Section 7. Finally, we provide some conclusions and possible ideas of future
research in Section 8. The truth tables and graphical representations of the
best circuits found are included in an Appendix, at the end of this paper.

2 Statement of the Problem

The problem of interest to us consists of designing a circuit that performs a
desired function (specified by a truth table), given a certain specified set of
available logic gates. This problem is treated, however, as a discrete optimiza-
tion problem.

In circuit design, it is possible to use various criteria to be minimized. For
example, from a mathematical perspective, it is possible to minimize the total
number of literals or the total number of binary operations or the total number
of symbols in an expression. The minimization problem is difficult for all such
cost criteria.

The complexity of a combinational logic circuit is related to the number of
gates in the circuit. The complexity of a gate generally is related to the number
of inputs to it. Because a logic circuit is a realization (implementation) of a
Boolean function in hardware, reducing the number of literals in the function
should reduce the number of inputs to each gate and the number of gates in
the circuit—thus reducing the complexity of the circuit.

Thus, our overall measure of circuit optimality is the total number of gates
used, regardless of their kind. This is approximately proportional to the total
part cost of the circuit. Obviously, this minimization criterion is applied only to
fully functional circuits (i.e., those that completely match the outputs defined
in the corresponding truth table), since it is evidently irrelevant to attempt
to minimize infeasible circuits. A feasible circuit is one that produces ezactly
all the outputs required for each set of inputs, as indicated in its truth table.
To exemplify this, let’s consider the circuit shown in Table Al. In this case,
we have as a solution the following Boolean expression: F = (WX + (Y &
W)) & (X +Y) + Z). So, in order to check feasibility of this circuit, we
have to replace each of its inputs (Z, W, X and Y) by each of the sets of
values depicted in Table Al. So, in row 1, we have Z=0, W=0, X=0, Y=0.
By replacing these values in F (as defined before), we obtain that F=1. This
is precisely the value indicated at the end of row 1. Thus, our circuit matches
its first output. This same procedure has to be repeated for each of the rows.
If the circuit doesn’t match any of its required values (e.g., if the output is 1
when it’s required to be 0), the circuit is considered to be infeasible.

Two popular minimization techniques used by electrical engineers are the
Karnaugh Map [1], which is based on a graphical representation of Boolean
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Figure 1. Matrix used to represent a circuit. Each gate gets its inputs from either of the gates in
the previous column. Note the encoding adopted for each element of the matrix as well as the set of
available gates used.
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functions, and the Quine-McCluskey Procedure [3,4], which is a tabular
method. Both of these methods are mechanical in nature. Karnaugh Maps
are useful in minimizing the number of literals with up to five or six variables.
The Quine-McCluskey Procedure is useful for functions of any number of vari-
ables and can easily be programmed to run on a digital computer. Generally,
several Boolean function with a minimum number of literals can be obtained
for a given truth table using either method, based on the choices made dur-
ing the minimization process. All minimum functions with the same number
of literals yield circuits of the same complexity; hence, any of them can be
selected for implementation.

Note that the algebraic simplification process depends entirely on one’s fa-
miliarity with the postulates and theorems and one’s ability to recognize their
application. Of course, this ability varies from individual to individual. De-
pending on the sequence in which the theorems and postulates are applied,
more than one simplified form of the expression may be obtained. Usually all
such simplified forms are valid and acceptable. Thus, there is (in the general
case) no single, unique minimized form of a Boolean expression. However, the
solutions that will be shown later on (in Section 6) as corresponding to human
designers, are really the best solution (based on the minimization of the num-
ber of gates, which is our optimization criterion) chosen from a set produced
by individuals who can be considered as “expert designers” of combinational
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logic circuits. Nevertheless, this does not mean that a human cannot improve
any of the solutions that we will provide, mainly if we consider that the global
optimum of all of the problems adopted remains unknown.

3 The Encoding Adopted

In order to allow a fair comparison, all of the heuristics compared in this
paper adopted a matrix to represent a circuit as in our previous work [5,9]
(see Figure 1).

More formally, we can say that any circuit can be represented as a bidimen-
sional array of gates S; ;, where j indicates the level of a gate, so that those
gates closer to the inputs have lower values of j. (Level values are incremented
from left to right in Figure 1). For a fixed j, the index i varies with respect to
the gates that are “next” to each other in the circuit, but without being nec-
essarily connected. Each matrix element is a gate (there are 5 types of gates:
AND, NOT, OR, XOR and WIRE!) that receives its 2 inputs from any gate
at the previous column as shown in Figure 1. It is important to clarify that
the number of rows and columns of the matrix used to encode a circuit are
values defined by the user. Given a circuit to be optimized, we suggest to use
the following procedure in order to define the matrix size (i.e., number of rows
and columns) to encode it:

(i) Start with a square matrix of size 5 (i.e., number of rows = number of
columns = 5).

(ii) If no feasible solution is found using this matrix, then increase the number
of columns by one, without changing the number of rows.

(iii) If no feasible solution is found using this matrix, then increase the number
of rows by one, without changing the number of columns.

(iv) Repeat steps 2 and 3 until a suitable matrix is produced. In each case,
at least 10 independent runs (using different random seeds for the initial
population) must be performed in order to determine feasibility. If none
of these runs produces at least one feasible solution, then it is considered
that “no feasible solution was found”.

As we will see in Table 6 from Section 6, it is normally the case that for small
circuits a matrix of 5 x 5 is sufficient. However, in two of the examples reported
in Section 6, we reached a matrix size of 6 x 7. This situation normally arises
with circuits having several outputs, although in some cases, such as in the

IWIRE basically indicates a null operation, or in other words, the absence of gate, and it is used
just to keep regularity in the representation used. Otherwise, we would have to use variable-length
strings.
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Input 1 | Input2 | Gate Type

Figure 2. Encoding used for each of the matrix elements that represent a circuit.

2-bit multiplier described in Section 6, even a 5 X 5 matrix is enough to find
the best known circuit. The above guidelines have been successfully adopted
with a variety of circuits in some of our previous work [5].

A chromosomic string encodes the matrix shown in Figure 1 by using triplets
in which the 2 first elements refer to each of the inputs used, and the third is
the corresponding gate from the available set (see Figure 2).

The matrix representation adopted in this work was originally proposed by
Louis [10-12]. He applied his approach to a 2-bit adder and to the n-parity
check problem (for n = 4,5, 6). This representation has also been adopted by
Miller et al. [6,13] in the so-called Cartesian Genetic Programming with some
differences. For example, the restrictions regarding the source of a certain
input to be fed in a matrix element varies in each of the three approaches:
Louis [10] has strong restrictions, Miller et al. [13] have no restrictions and we
have relatively light restrictions. Although our representation allows the case
with no restrictions, we decided to keep its original restrictions as to allow a
fair comparison with some of our previous work.

It is worth emphasizing that the use of matrix-based encodings such as
the one adopted here results particularly useful for designing combinational
logic circuits, since they do not allow bloat (i.e., the uncontrolled tree growth
normally associated with traditional genetic programming [14]) [5, 6].

The following formula is used to compute the fitness of an individual x for
all the heuristics compared in this paper:

P fi(x) if f(x) is not feasible
fitness(x) = {Z%:i fj(x) + w(x) otherwise 1)

where p is the number of entries of the truth table (normally, p = 2", being n
the number of inputs of the truth table, but p can also be assigned a certain
value directly, in case the truth table has “don’t cares”), and the value of
fj(x) depends on the outcomes produced by the circuit x encoded (whenever
the solution produced matches the corresponding entry of the truth table at
location j, a value of one is assigned to f;(x); otherwise, a value of zero is as-
signed). The function w(x) returns an integer equal to the number of WIREs
present in the circuit x encoded. The solutions produced are Boolean expres-
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Figure 3. Symbols used to represent a circuit. In the first column, we show the graphical symbol
for each gate. In the second column, we show the mathematical symbol adopted in the Boolean
expressions. In the third column, we show the name of each of the Boolean operators adopted.

sions which will be made of Boolean operators (AND, OR, NOT, XOR) and of
variables which take only binary values (either zero or one). The solutions (i.e.,
the circuits obtained) will be expressed in two forms: (1) through its Boolean
expression(s) and (2) by showing its graphical representation. In order to un-
derstand both, the Boolean expressions and the graphical representations of
the circuits, the reader must rely on the symbols shown in Figure 3. Note that
the AND operator is assumed by default in the Boolean expressions. Thus,
AB must be interpreted as: A AND B.

In words, we can say that our fitness function works in two stages [5]: first, it
maximizes the number of matches (as in Louis’ case). However, once feasible
solutions (i.e., the circuit generated by the solution computes the objective
truth table) are found, we maximize the number of WIREs in the circuit. By
doing this, we actually optimize the circuit in terms of the number of gates
that it uses.

Thus, we can say that our goal is to produce a fully functional design (i.e.,
one that produces all the expected outputs for any combination of inputs ac-
cording to the truth table given for the problem) which maximizes the number
of WIREs.

4 Previous Work
Despite the considerable amount of work currently available on the use of

genetic algorithms, genetic programming and evolution strategies to design
combinational logic circuits in the last few years (see for example [5, 6,10]),
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there have been few attempts to compare different heuristics in this problem.
Here, the main motivation for such a comparative study is to analyze whether
certain types of heuristics (namely, hybrid approaches and local search meth-
ods) could be more suitable for this type of problems than the use of traditional
genetic algorithms.

Previous work has found, among other things, that designing combinational
logic circuits is highly sensitive to the encoding [10,15,16], and to the degree
of interconectivity allowed among gates [17]. There have also been studies on
the fitness landscapes of these problems that finally rate the problem as be-
ing quite difficult for an evolutionary algorithm [18,19]. However, this sort of
analysis has been conducted only on a single type of heuristics (e.g., a ge-
netic algorithm [5], an evolution strategy [6], simulated evolution [15], the ant
colony [20,21], or particle swarm optimization [22,23]). Additionally, given the
scalability problem associated with the design of combinational logic circuits
using evolutionary algorithms, the use of parallelism seems a capital issue [24].
Remarkably, however, few studies available in the literature have considered
parallelism in the past. Thus, we also consider in this paper the use of parallel
versions of the algorithms compared as to analyze the way in which paral-
lelization affects the exploration of the search space in the specific domain of
our interest.

5 Description of the Approaches Adopted

In this paper, we compare five heuristics for the design of circuits:

(i) A genetic algorithm (GA) with binary representation such as the one de-
scribed in [5,9]. The main motivation for using this approach was our
previous experience (and relative success) applying this heuristics to de-
sign combinational logic circuits [5]. Genetic Algorithms (GAs) [25,26] are
stochastic search methods that have been successfully applied in many
real applications of high complexity. A GA is an iterative technique that
applies stochastic operators on a pool of individuals (tentative solutions).
An evaluation function associates a value to every individual indicating
its suitability to the problem. A GA usually applies a recombination op-
erator on two solutions, plus a mutation operator that randomly modifies
the individual contents to promote diversity. In our experiments we use
the uniform crossover (UX) and the Bit-Flip mutation. The UX consists
in creating two offspring with each allele in the new offspring taken ran-
domly from one parent. The Bit-Flip mutation works by probabilistically
changing every position (allele) to its complementary value. For full details
about this operators see [25,27,28]. The pseudo-code of the GA adopted is
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t=20
initialize P(t)
evaluate structures in P(t)
while not end do
t =t+1
C(t) = selectFrom(P(t-1))
C’(t) = recombine(C(t))
C’(t) = mutate(C’(t))
evaluate structures in C’(t)
10 replace P(t) from C’(t) and P(t-1)
11  endwhile
12 return best found solution

OO U W~

Figure 4. Scheme of the GA adopted.

shown in Figure 4. In all the pseudo-codes, the evaluation phase represents
that the fitness function (Eq. 1) is evaluated on the respective population.
A CHC [29] which is a variant of the genetic algorithm with a particular
way of promoting diversity. It uses a highly disruptive crossover operator
to produce new individuals maximally different from their parents. It is
combined with a conservative selection strategy which introduces a kind
of inherent elitism. Figure 5 shows a scheme of the CHC algorithm, whose
main features are:

The mating is not restricted to the best individuals, but parents are
randomly paired in a mating pool C(t) (line 6 of Figure 5). However,
recombination is only applied if the Hamming distance between the par-
ents is above a certain threshold, a mechanism of incest prevention (line
8 of Figure 5).

CHC uses a half-uniform crossover (HUX), which exchanges exactly half
of the differing parental genes (line 9 of Figure 5). HUX guarantees that
the children are always at the maximum Hamming distance from their
two parents.

Traditional selection methods do not guarantee the survival of best in-
dividuals, though they have a higher probability to survive. On the con-
trary, CHC guarantees survival of the best individuals selected from the
set of parents (P(t — 1)) and offspring (C’(¢)) put together (line 11 of
Figure 5).

e Mutation is not applied directly as an operator.
e CHC applies a re-start mechanism if the population remains unchanged

for some number of generations (lines 12-13 of Figure 5). The new pop-
ulation includes one copy of the best individual, while the rest of the
population is generated by mutating some percentage of bits of such
best individual. The main motivation for using CHC was to see if the
use of a highly disruptive crossover operator would have a positive effect
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1 t=0

2 initialize P(t)

3 evaluate structures in P(t)

4  while not end do

5 t=t+1

6 select: C(t) = P(t-1)

7 for each pair (pl,p2) in C(t)

8 if ‘incest prevention condition’
9 add to C’(t) HUX(p1,p2)
10 evaluate structures in C’(t)

11 replace P(t) from C’(t) and P(t-1)
12 if convergence(P(t))

13 re-start P(t)

14 endwhile

15 return best found solution

Figure 5. Scheme of the CHC algorithm.

on a genetic algorithm when optimizing combinational circuits.

(iii) A simulated annealing (SA) algorithm. The simulated annealing algorithm
was first proposed in 1983 [30] based on a mathematical model originated
in the mid-1950s. SA [31,32] is a stochastic relaxation technique that can be
seen as a hill-climber with an internal mechanism to escape local optima. It
is based upon a cooling procedure used in the metallurgical industry. This
procedure heats the material to a high temperature so that it becomes a
liquid and the atoms can move relatively freely. The temperature is then
slowly lowered so that at each temperature the atoms can move enough to
begin adopting the most stable configuration. In principle, if the material
is cooled slowly enough, the atoms are able to reach the most stable (op-
timum) configuration. This smooth cooling process is known as annealing.
Figure 6 shows a scheme of SA. First at all, the parameter T', called the
temperature, and the solution, are initialized (lines 2-4). The solution s1
is accepted as the new current solution if § = f(s1) — f(s0) > 0. Stag-
nations in local optima are prevented by accepting also solutions which
increase the objective function value with a probability exp(§/T') if 6 < 0.
This process is repeated several times to obtain good sampling statistics
for the current temperature. The number of such iterations is given by the
parameter Markov_Chain_length, whose name alludes the fact that the
sequence of accepted solutions is a Markov chain (a sequence of states in
which each state only depends on the previous one). Then the temperature
is decremented (line 14) and the entire process is repeated until a frozen
state is achieved at T}, (line 15). The value of T usually varies from a rel-
atively large value to a small value close to zero. Here, we are using the Fast
SA scheme (T = Tp/(1 + k)) for updating the temperature. Considering
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1 t=20

2 initialize(T)

3 s0 = Initial_Solution()

4 v0 = Evaluate(s0)

5 repeat

6 repeat

7 t =t+1

8 sl = Generate(s0,T)

9 vl = Evaluate(s0,T)

10 if Accept(v0,v1,T)

11 sO0 = sl

12 vl =vl

13 until t mod Markov_Chain_length == 0
14 T = Update(T)

15  until "loop stop criterion’ satisfied
16 return best found solution

Figure 6. Scheme of the Simulated Annealing (SA) algorithm.

the well-known success of simulated annealing in a variety of optimization
problems (both on combinatorial and on continuous search spaces), the
main motivation to adopt it in this problem was clearly to see if its local
search capabilities would be better than the global search capabilities of a
genetic algorithm in the design of combinational logic circuits.

Finally, we define two hybrid algorithms. In its broadest sense, hybridiza-
tion refers to the inclusion of problem-dependent knowledge in a general
search algorithm [28] in one of two ways: strong hybrids, where problem-
knowledge is included as problem-dependent representation and/or oper-
ators, and weak hybrids, where several algorithms are combined in some
manner to yield the new hybrid algorithm. First, we define a weak hy-
brid called GASA1, where a GA uses SA as an evolutionary operator. The
figure and the pseudo-code of this approach is shown in Figure 7. In the
main loop of this method after the traditional recombination and muta-
tion operators are applied (lines 7 and 8), several solutions are randomly
selected (according to a low probability) from the current offspring and
they are improved using the local search algorithm (line 9). The rationale
for this sort of hybridization is that, while the GA locates “good” regions
of the search space (exploration), SA allows for exploitation in the best
regions found by its partner. Evidently, the motivation in this case was to
see if by taking the best of these two heuristics (i.e., the genetic algorithm
and simulated annealing), we could produce another heuristic which would
perform better than any of the two approaches from which it was created.
A second weak hybrid scheme called GASA2, which executes a GASA1
until the algorithm completely finishes. Then the hybrid selects (by tour-
nament [25]) some individuals from the final population and starts a SA
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t=20

initialize P(t)

evaluate structures in P(t)

while not end do
t =t+1
C(t) = selectFrom(P(t-1))
C’(t) = recombine(C(t))
C’(t) = mutate(C’(t))
C’(t) = applySA(C’(t))
evaluate structures in C’(t)
replace P(t) from C’(t) and P(t-1)

endwhile

return best found solution

(b)

Figure 7. Model of Hybridization 1 (GASAL).

algorithm over them. The main motivation for this approach was to see
if simulated annealing could use its local search capabilities to improve
solutions generated by another approach, and which would presumably be
close to the global optimum. The pseudo-code of this approach is shown

in Figure 8.
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SA

SA
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t=0

initialize P(t)

evaluate structures in P(t)

while not end do
t =t+1
C(t) = selectFrom(P(t-1))
C’(t) = recombine(C(t))
C’(t) = mutate(C’(t))
C’(t) = applySA(C’(t))
evaluate structures in C’(t)
replace P(t) from C’(t) and P(t-1)

endwhile

fori =1 to MAX do
sol = select Tournament(P(t))
applySA(sol)

endfor

return best found solution

(b)

Figure 8. Model of Hybridization 2 (GASA2).

A parallel EA (PEA) is an algorithm having multiple component EAs, re-
gardless of their population structure. Each component (usually a traditional
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Figure 9. Scheme of the parallel heuristics compared in this paper.

(single population) EA) subalgorithm includes an additional phase of commu-
nication with a set of subalgorithms [33]. Different parallel algorithms differ
in the characteristics of their elementary heuristics and in the communication
details. Among the most widely known types of structured EAs, the distributed
(dEA) and cellular (cEA) ones are very popular optimization procedures [27].

In this work, we have chosen a kind of decentralized distributed search be-
cause of its popularity and because it can be easily implemented in clusters
of machines. In this parallel implementation separate subpopulations evolve
independently in a ring with sparse asynchronous exchanges of one individual
with a certain given frequency (see Figure 9). The selection of the emigrant is
through binary tournament in the evolutionary algorithms, and the arriving
immigrant replaces the worst one in the population only if the new one is
better than this current worst individual.

For the parallel SA there also exist multiple asynchronous component SAs.
Each component SA periodically exchanges the best solution found (coopera-
tion phase) with its neighbor SA in the ring.

Although many other hybrid approaches for optimization exist (see for ex-
ample [34-38]), we decided to adopt only the approaches previously described
because the optimization problem of our interest is discrete, subject to a (usu-
ally large) set of equality constraints and in which the decision variables are
actually binary numbers. Most of the hybrids (particularly those involving
simulated annealing) that we found in the literature have been applied either
to combinatorial optimization problems (in which the decision variables are
permutations of integers), or to global optimization problems (in which the de-
cision variables are real numbers). In fact, although many heuristics have been
applied to the design of combinational logic circuits (e.g., [5,6,15,20,22,23]), no
hybrid approach has been previously adopted in this problem, to the authors’
best knowledge, mainly because of the peculiar features of this problem (when
seen as an optimization task). As previously discussed, the approaches adopted
for our comparative study were carefully designed to tackle the problem of our
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interest. However, this is not to say that these are the only approaches that
can be applied to the design of circuits, since many other heuristics and many
other hybrids may be designed for that purpose.

6 Comparison of Results

We compare our binary GA with respect to SA, CHC, GASA1 and GASA2
both in serial and parallel versions. In Table 6 we summarize the features of
the problem instances that we use in our experiments.

Table 1. Features of the circuits. size = matrix size in rows X columns, codesize = length of the
binary string, BKS = best known solution (i.e., the fitness value of the best solution reported in
the literature for the corresponding circuit).

name inputs outputs size codesize BKS

Sasao 4 1 5x5 225 34 [39]
Catherine 5 1 6x7 278 67 [40]
Katz 1 4 3 6x7 278 81 [39]
2-bit multiplier 4 4 5x5 225 82 [39]
Katz 2 5 3 5x5 225 114 [41]

Since our main goal was to analyze the behavior of different heuristics and
the impact of parallelism, no particular effort was placed in fine-tuning the
parameters for each of the circuits tried. The population sizes, mutation, and
crossover rates used correspond to the values previously reported for a tradi-
tional (binary) GA [9]. In all the evolutionary algorithms, the population is
composed of 320 individuals for the first example, while 600 individuals are
used for the other four. All experiments use a crossover rate of 60% and a
mutation rate of 50% of the chromosomic length. The CHC method restarts
the population (an uniform mutation (p,, = 0.7) is applied to the 35% of the
population) whenever convergence is detected. The hybrid GASA1 uses the
SA operator (100 iterations for the first and third examples and 500 itera-
tions for the rest) with probability 0.01, i.e., this improvement process only
is applied to approximately one of each 100 solutions of the current offspring.
The second hybrid (GASA2) executes a SA (with 3000 iterations for the first
instance and 10000 for the rest) when GASA1 finishes. The migration in dEAs
occurs in a unidirectional ring manner, sending one single individual (chosen
by binary tournament) to the neighboring sub-population. The target popu-
lation incorporates this individual only if it is better than its presently worst
solution. The migration step is performed every 20 iterations in every island
in an asynchronous way. The selected migration policy configuration allows to
maintain a global good diversity, and to lead the global search to good regions
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of the search space. The asynchronous communications that we used provokes
that the communication overhead was insignificant. Since we want to compare
against the sequential EAs, dEAs use the same population size, but now the
whole population of the sequential EA is split into as many subpopulations
as processes involved in the parallel computation. Qur parallel algorithms are
composed of eight subpopulations. Finally, the number of iterations of the SA
has been chosen in order to compute a similar number of evaluations as to
the GA, and the Markov chain length is preset to maz_iter/10. We performed
20 independent runs per algorithm per circuit per version (either serial or
parallel) using the parameters summarized above.

The most relevant aspects that were measured in this comparison are the fol-
lowing: best fitness value obtained (we call this opt), the number of times that
the approach found the best fitness value (we call this hits), the average final
fitness (called avg), and the average number of fitness function evaluations
required to find the best fitness value reported (#evals).

A short note regarding the stopping criteria adopted is in place. Each al-
gorithm stops when reaching the target fitness or a maximum (predefined)
number of generations. At the end of each generation, the algorithm checks
if the stopping criterion is satisfied, i.e., if the current generation number ex-
ceeds the predefined limit or if an end signal has been received (for parallel
executions).

6.1 Example 1

Our first example has 4 inputs and one output, as shown in Table Al. Our
comparison of results for this example is shown in Table 2. In this case both
GASA1 and GASA2 were able to converge to the best known solution for
this circuit (which has 7 gates and a fitness of 34) [39]. The best solution
found is graphically depicted in Figure A1 and its Boolean expression is: F =
WX+ Y aeW))e (X +Y) + Z). Note that both, GASA1 and GASA2,
required the highest number of evaluations to reach their best fitness value,
but their final solution was significantly better than the solutions found by the
other algorithms. Also note that the parallel versions of GASA1 and GASA2
increased the average fitness value and the number of hits. However, the av-
erage number of fitness function evaluations to find the best fitness value did
not decrease in the parallel versions of GASA1 and GASA2, as it occurred for
the parallel versions of the traditional GA, CHC, and SA. Finally, we observed
that the average fitness value of parallel SA was slightly worse than the value
of the serial version, which indicates that the parallel algorithm behavior is
not adequate for this instance. Interestingly, SA was the only approach whose
average fitness did not increase when using parallelism.

Another aspect that is worth analyzing is the percentage of feasible solutions
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Table 2. Comparison of results for the first example.

Algorithm sequential parallel
opt hits avg F#evals opt hits avg #evals
GA 31 10% 15.8 96806 33 5%  18.1 79107
CHC 27 5% 15.1 107680 32 5%  16.4 75804
SA 30 35% 15.6 70724 31 5%  15.2 69652
GASAl 34 10% 23.2 145121 34 20% 25.5 151327
GASA2 34 10% 24.2 147381 34 30% 27.8 155293

that each algorithm maintains along the evolutionary process. Such a percent-
age gives an idea of how difficult is for each approach to reach the feasible
region and to maintain feasibility. Figure 10 shows the (average) percentage
of feasible solutions present in the population over time (i.e., generations) for
each of the algorithms compared. It is particularly interesting to note how the
parallel version of GASAZ2 starts increasing its percentage of feasible solutions
rather quickly and reaches 100% feasibility in less than 100 generations. It is
also worth commenting on the GA, which was never able to reach a feasibility
rate of 100% (in any of its two versions). All the other approaches were able
to reach 100% feasibility, but much later than the parallel version of GASA2.
Thus, we can conclude that, in this example, GASA2 was the best overall per-
former in its two versions. GASA2 produced the highest average fitness, the
highest number of hits and was the fastest to reach the feasible region and to
reach 100% feasibility.
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Figure 10. Percentage of feasible solutions per generation for the circuit of the first example.
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Table 3. Comparison of the best solutions found for the first example by GASA2, the n-cardinality
genetic algorithm (NGA) [9], a human designer (HD 1) who used Karnaugh maps and theorems
from Boolean algebra, and Sasao [42], who used this circuit to illustrate his circuit simplification
technique based on the use of ANDs & XORs.

GASA2 NGA HD 1 Sasao

7 gates 10 gates 11 gates 12 gates

Just to give an idea on how good is the solution found by GASA2, we show
in Table 3 a comparison of the best solution found by GASA2 with respect to
existing approaches for the first problem. This second comparison is only in
terms of the Boolean expression found. Note that the n-cardinality GA (NGA)
used the same parameters as its binary counterpart. We can see that GASA2
found a solution significantly better than the other approaches with respect to
which it was compared (the n-cardinality GA, Sasao’s simplification technique
based on the use of ANDs & XORs [42], and a human designer using Karnaugh
maps).

6.2 FExample 2

Our second example has 5 inputs and one output, as shown in Table A2. Our
comparison of results is shown in Table 4. Again, GASA2 found the best so-
lution, but in this case, the parallel version produced a slightly better result
(opt column) than its serial counterpart. The best solution found for this ex-
ample is graphically depicted in Figure A2 and its Boolean expression is: F' =
((A4),(A2A0 + Al)(AQ + AO)),((A2A0 + Al)(AQ + A()) + A3) Note also that the
average fitness was increased both for GASA1 and GASA2 in their parallel
versions. Furthermore, it is worth noticing that in this case the use of paral-
lelism decreased the average number of evaluations required to find the best
possible fitness value produced by each of the algorithms under study. Except
for CHC, all the other approaches improved their average fitness when using
parallelism. Another important detail is that the sequential SA outperformed
the GA in locating a larger final best fitness value with a significant reduction
in evaluations, although the SA obtained a worse average fitness than the GA.

Table 4. Comparison of results for the second example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals
GA 60 5% 36.5 432170 62 10% 41.0 345578
CHC 58 15%  29.8 312482 61 5%  28.9 246090
SA 61 5% 33.1 175633 62 5% 34.2 154064
GASA1l 63 40% 45.1 694897 65 5%  50.6 593517

GASA2 64 10% 47.3 720106 65 10% 52.9 609485
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Figure 11. Percentage of feasible solutions per generation for the circuit of the second example.

Figure 11 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.
Again, the parallel version of GASAZ2 starts increasing its percentage of feasible
solutions rather quickly. In this case, it reaches 100% feasibility in less than 300
generations. The second best performer in this case was the parallel version
of GASA1, reaching 100% feasibility in about 500 generations. The sequential
version of the GA was the only approach unable to reach 100% feasibility.

Table 5. Comparison of the best solutions found for the second example by GASA2, the n-
cardinality genetic algorithm (NGA) [9], and a human designer (HD 1) who used Karnaugh maps
and theorems from Boolean algebra.

GASA2 NGA HD 1

9 gates 10 gates 12 gates

To give an idea on how good is the solution found by GASA2, we show in
Table 5 a comparison of the best solution found by GASA2 with respect to
the solutions found by other approaches. GASA2 improved the best solution
found both by the NGA and by a human designer (using Karnaugh maps).
Clearly, GASA2 was the best overall performer in this example as well. It is
also important to mention that the best solution found by GASA2, which has
9 gates, is not the best possible solution for this circuit (there is another one
with only 7 gates: F = (A+BC)(D&FE)(B+C)® D), which has been obtained
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with genetic programming [40]. However, as indicated before, no attempt was
made to fine-tune the parameters of the algorithms used as to achieve a better
solution.

6.3 FExample 3

Our third example has 4 inputs and 3 outputs, as shown in Table A3. Our
comparison of results is shown in Table 6. In this case, both GASA1 and
GASA2 found the best solution reported in the literature for this circuit [39],
which has 9 gates and fitness 81. However, note that GASA2 had a better
hit rate (in the parallel version). The best solution found for this example is
graphically depicted in Figure A3 and its Boolean expression is: F; = ((D &
B)+(AaC)),F,b=(DeB)+(Aa(0))(Co((AdC)+(A®B)))a (Do
B)+(A9C)),F3=(Ce(A9C)+(A®B)))((D® B)+ (A® ()). In this
case, the use of parallelism produced a noticeable increment in the average
fitness of GASA1 and GASA2, but the best solution was only rarely found. It
is also interesting to see how GASA1 and GASA2 both have a computational
cost of twice that of the traditional GA. Also note that, as in the previous
example, in this case the use of parallelism decreased the average number of
evaluations required to find the best possible fitness value produced by each of
the algorithms under study. All the approaches improved their average fitness
when using parallelism. The behavior of parallel SA was slightly different to
the rest of algorithms for this instance, always showing a very small number
of evaluations at the price of a medium-low hit rate.

Table 6. Comparison of results for the third example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals
GA 71 10% 51.2 552486 76 15% 54.5 498512
CHC 64 20%  47.3 362745 70 5%  49.3 252969
SA 67 15%  46.3 194573 71 5%  51.3 197315
GASAL1L 78 35% 70.0 1090472 81 5%  76.1 963482
GASA2 78 5%  69.3 1143853 81 10% 77.9 1009713

Figure 12 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.
Interestingly, the sequential version of the GA was the approach that reached
the feasible region more quickly in this example, being able to reach 100%
feasibility before generation 200. The sequential version of GASA2 was the
second best performer. However, all the approaches were able to reach 100%
feasibility before generation 500, which is an indicative of the fact that the
search space of this problem is not as accidented as that of the previous exam-
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Figure 12. Percentage of feasible solutions per generation for the circuit of the third example.

ples. Once more, GASA2 can be considered the best overall performer, since it
produced the highest average fitness and was able to reach more consistently
(in its parallel version) the best known solution for this example.

Table 7. Comparison of the best solutions found for the second example by GASA2, the n-
cardinality genetic algorithm (NGA) [9], a human designer (HD 1) who used Karnaugh maps
and theorems from Boolean algebra and a second human designer (HD 2) who used the Quine-
McCluskey method.

GASA2 NGA HD 1 HD 2

9 gates 12 gates 19 gates 13 gates

When performing a comparison of these results with respect to other ap-
proaches (Table 7), it is worth indicating that GASA2 again improved on the
best solution found by two human designers (one using Karnaugh maps and
the other one using the Quine-McCluskey method), and by the NGA.

6.4 Example 4

Our fourth example has 4 inputs and 4 outputs, as shown in Table A4. Our
comparison of results is shown in Table 8. In this case, GASA2 found the best
solution reported in the literature for this circuit [39], which has 7 gates and
a fitness value of 82. The best solution found for this example is graphically
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depicted in Figure A4 and its Boolean expression is: C5 = (ByA1)(B14o),
Cy = (AlBl) D (BoAl)(Ble), Ch = (B()Al) D (Ble), Coy = AgBgy. The use
of parallelism for this instance produced only a slight increase in the average
fitness of GASA1 and GASA2, but allowed GASA2 to converge to the best
solution reported in the literature. In fact, all the approaches improved their
average fitness when using parallelism. It is also interesting to see how GASA1
and GASA2 both have a computational cost much higher than the traditional
GA. Note however, that the parallel version of the parallel GA was able to
converge to a better solution than the parallel version of GASA1, although the
average fitness of the GA was still slightly below GASA1. The GA obtained
better results (opt and avg columns) than the other pure algorithms (SA and
CHC), but it required a higher number of evaluations.

Table 8. Comparison of results for the fourth example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg F#evals
GA 78 15% 71.8 528390 81 5%  76.3 425100
CHC 76 5%  72.7 417930 80 10%  74.2 246090
SA 77 5%  68.6 268954 7 10%  69.3 234562
GASA1l 78 25% T74.1 711675 80 20% 76.9 852120
GASA2 80 10% 75.4 817245 82 20%  78.7 927845

Figure 13 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared. In
this case, the parallel version of GASA2 was, once more, the fastest approach
to reach both the feasible region and a 100% feasibility (this was achieved
before generation 200). The second best performer in terms of feasibility was
the sequential version of the GA, which reached 100% by generation 400.
However, its sequential counterpart was the worst performer. Note however
that in this example, all the approaches were able to reach 100% feasibility.
GASA2 was again the best overall performer. In its parallel version, GASA2
was the only approach able to reach the best known solution for this example.

We show in Table 9 a comparison of the best solution found by GASA2 with
respect to other approaches previously used to design the circuit of the fourth
example. This second comparison is only in terms of the Boolean expression
found. In this case, GASA2 again improved on the best solution found by
two human designers (one using Karnaugh maps and the other one using the
Quine-McCluskey method), by the NGA and by the cartesian genetic pro-
gramming of [13]. It should be mentioned that Miller et al. [13] considered
their solution to contain only 7 gates because of the way in which they en-
coded their Boolean functions (the reason is that they encoded NAND gates
in their representation). However, since we considered each gate as a separate
chromosomic element, we count each of them, including NOTs that are asso-
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Figure 13. Percentage of feasible solutions per generation for the circuit of the fourth example.

ciated with AND & OR gates. It is also worth noticing that Miller et al. [13]
found their solution with runs of 3,000,000 fitness function evaluations each.

Table 9. Comparison of the best solutions found for the fourth example by GASA2, the n-
cardinality genetic algorithm (NGA) [9], a human designer (HD 1) who used Karnaugh maps and
theorems from Boolean algebra, a second human designer (HD 2) who used the Quine-McCluskey
method and Miller et al. [13], who used cartesian genetic programming.

GASA2 NGA HD 1 HD 2 Miller et al.

7 gates 9 gates 8 gates 12 gates 9 gates

6.5 FExample 5

Our fifth example has 5 inputs and 3 outputs, as shown in Table A5. Note that
despite the size of the truth table, a 5 X 5 matrix was also adopted in this case.
Our comparison of results is shown in Table 10. In this case, both GASA1 and
GASA2 found the best solution reported in the literature for this circuit [41],
which has 7 gates and a fitness value of 114. The best solution found for this
example is graphically depicted in Figure A5 and its Boolean expression is:
So = E'+DC, S = A"+ BC, S = C @ BC. Note that GASA2 has a
slightly better average performance than GASA1. The use of parallelism for
this instance produced only a slight increase in the average fitness of GASA1
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and GASA2 and also helped these two algorithms to increase their hit rate. In
fact, the use of parallelism increased the average fitness of all the approaches
compared. It is also worth noticing that the use of parallelism helped the GA
to converge to the best known solution for this circuit, although its hit rate
was low (5%).

Table 10. Comparison of results for the fifth example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals
GA 113 5% 100.20 933120 114 5% 102.55 825603
CHC 102 5% 89.35 546240 104 10% 90.76 540632
SA 111 10% 94.85 280883 112 5% 98.64 256234

GASA1L 114  10% 101.94 1013040 114 20% 104.52 1010962
GASA2 114 20% 106.75 1382540 114 35% 106.90 1313568

Figure 14 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.
In this case, the parallel version of the GA was the best performer (reaching
100% feasiblity before generation 200), closely followed by both the sequential
and the parallel versions of GASA1 (which reached 100% feasibility before
generation 300). The worst performer was the sequential version of the GA.
However, all the approaches were able to reach 100% feasibility. GASA2 was
also the best overall performer in this case, reaching the highest average fitness.
GASA2 also converged more consistently to the best known solution.

We show in Table 11 a comparison of the best solution found by GASA2 with
respect to other approaches previously used to design the circuit of the fourth
example. This second comparison is only in terms of the Boolean expression
found. In this case, GASA2 matched the solutions produced by a multiob-
jective genetic algorithm [43] and an approach based on particle swarm opti-
mization [41]. Note that all of these approaches performed about one million
fitness function evaluations each.

Table 11. Comparison of the best solutions found for the fifth example by GASA2, the multiob-
jective genetic algorithm (MGA) [43], and particle swarm optimization [41] (PSO).

GASA2 MGA PSO

7 gates 7 gates 7 gates
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Figure 14. Percentage of feasible solutions per generation for the circuit of the fifth example.

7 Discussion of Results

After this study, a few general conclusions can be inferred from our results.
First, the hybridization of a genetic algorithm with simulated annealing seems
to be beneficial for designing combinational logic circuits, at least when com-
pared to pure separated GA and SA algorithms. From the two hybrids consid-
ered, GASA2 had the best performance. This is apparently due to its use of
simulated annealing over the final population of GASA1, which allows to focus
the search on more specific regions (something hard to do with the traditional
genetic operators).

On the other hand, despite our belief that the highly disruptive recombina-
tion operator of CHC would be beneficial in circuit design, our results indicate
that this approach has the worst overall performance of all the heuristics tried.
Apparently, the mating restrictions of CHC (incest prevention) and its restart
process were not sufficient to compensate for the lack of diversity due to its
elitist selection, and the approach had difficulties to converge to feasible solu-
tions.

SA also presented poor results compared to the hybrids and the GA. Al-
though, in several problems, SA obtained similar final best fitness values as to
the GA, its average fitness is often lower than the other methods. The reason
for this is that SA rapidly finds a local optimum from which it can not escape,
in spite of the internal mechanism explicitly added to the algorithm to avoid
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them. However, this method gets fairly accurate results with a fewer number
of evaluations than the other algorithms.

Finally, we also found that, in most cases, the use of parallelism improves the
average fitness of the approaches compared. This is something interesting, since
it constitutes an additional motivation to parallelize the heuristics adopted
to design combinational logic circuits. However, it was also found that this
increase in the average fitness of the approaches was normally accompanied
by a decrease in the hit rate. In other words, some consistency (or robustness)
was sacrificed at the expense of achieving solutions of a higher quality.

8 Conclusions and Future Work

The comparative study conducted in this paper has shown that the hybridiza-
tion of an evolutionary algorithm with simulated annealing may bring benefits
when designing combinational logic circuits. Emphasis is placed on the fact
that the GA hybridized is using binary encoding. Additionally, the use of par-
allelism also brought benefits in terms of the quality of solutions produced,
but it did not necessarily improve the hit rate (i.e., the number of times that
an algorithm converged to its best found solution). Note however, that the use
of parallelism tended to decrease the average number of evaluations required
by each algorithm to achieve their best possible fitness value. Nevertheless,
a more in-depth study of the impact of parallelism in combinational circuit
design remains as an open research area.

As part of our future work, we are interested in using a population-based
multiobjective optimization approach (the so-called MGA that we proposed
in [39]) hybridized with a SA. Intuitively, this sort of approach should produce
better results when hybridized, since by itself is a very powerful search engine
for combinational circuit design. However, we ignore the possible bias that
could arise from combining the local search capabilities of simulated annealing
with the population-based selection mechanism of the MGA. Alternatively,
the use of Pareto-based selection mechanisms [43] also constitutes a promising
topic that deserves further study.

Acknowledgements

The authors thank the anonymous reviewer for their comments, which greatly
helped us to improve the contents of this paper. The two first author are par-
tially supported by the Ministry of Science and Technology and FEDER under
contract TIN2005-08818-C04-01 (the OPLINK project). The third author ac-
knowledges support from CONACyT through project 42435-Y.



26 A Study of Serial and Parallel Heuristics Used to Design Combinational Logic Circuits

References

[1] M. Karnaugh. A map method for synthesis of combinational logic circuits. Transactions of the
AIEE, Communications and Electronics, 1(72):593-599, November 1953.

[2] E. W. Veitch. A chart method for simplifying boolean functions. In Proceedings of the ACM,
pages 127-133. IEEE Service Center, May 1952.

[3] E.J. McCluskey. Minimization of boolean functions. Bell Systems Technical Journal, 35(5):1417—
1444, November 1956.

[4] W. V. Quine. A way to simplify truth functions. American Mathematical Monthly, 62(9):627—
631, 1955.

[5] C. A. Coello Coello, A. D. Christiansen, and A. Herndndez Aguirre. Use of Evolutionary Tech-
niques to Automate the Design of Combinational Circuits. International Journal of Smart En-
gineering System Design, 2(4):299-314, June 2000.

[6] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the Evolutionary Design of Digital
Circuits—Part I. Genetic Programming and Evolvable Machines, 1(1/2):7-35, April 2000.

[7] Eduardo Islas Pérez, Carlos A. Coello Coello, and Arturo Herndndez Aguirre. Extracting and
re-using design patterns from genetic algorithms using case-based reasoning. Engineering Opti-
mization, 35(2):121-141, April 2003.

[8] J. Miller, T. Kalganova, N. Lipnitskaya, and D. Job. The Genetic Algorithm as a Discovery
Engine: Strange Circuits and New Principles. In Proceedings of the AISB Symposium on Creative
Evolutionary Systems (CES’99), Edinburgh, UK, 1999.

[9] C. A. Coello Coello, A. D. Christiansen, and A. Herndndez Aguirre. Automated Design of
Combinational Logic Circuits using Genetic Algorithms. In D. G. Smith, N. C. Steele, and R. F.
Albrecht, editors, Proceedings of the International Conference on Artificial Neural Nets and
Genetic Algorithms, pages 335-338. Springer-Verlag, University of East Anglia, England, April
1997.

[10] S. J. Louis. Genetic Algorithms as a Computational Tool for Design. PhD thesis, Department
of Computer Science, Indiana University, August 1993.

[11] S. J. Louis and G. J. Rawlins. Using Genetic Algorithms to Design Structures. Technical Report
326, Computer Science Department, Indiana University, Bloomington, Indiana, February 1991.

[12] Sushil J. Louis. Genetic Algorithms as a Computational Tool for Design. PhD thesis, Depart-
ment of Computer Science, Indiana University, August 1993.

[13] J. F. Miller, P. Thomson, and T. Fogarty. Designing Electronic Circuits Using EAs. Arithmetic
Circuits: A Case Study. In D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Ge-
netic Algorithms and Evolution Strategy in Engineering and Computer Science, pages 105-131.
Morgan Kaufmann, 1998.

[14] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Program-
ming. An Introduction. On the Automatic Evolution of Computer Programs and Its Applica-
tions. Morgan Kaufmann Publishers, San Francisco, California, 1998.

[15] Uthman Salem Al-Saiari. Digital circuit design through simulated evolution. Master’s thesis,
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, November 2003.

[16] Adam Slowik and Michal Bialko. Design and optimization of combinational digital circuits using
modified evolutionary algorithm. In Leszek Rutkowski, Jorg H. Siekmann, Ryszard Tadeusiewicz,
and Lotfi A. Zadeh, editors, 7th International Conference in Artificial Intelligence and Soft
Computing - ICAISC 2004, volume 3070 of Lecture Notes in Computer Science, pages 468-473,
Zakopane, Poland, June 2004. Springer-Verlag.

[17] V. K. Vassilev, J. F. Miller, and T. C. Fogarty. Digital Circuit Evolution and Fitness Landscapes.
In 1999 Congress on Evolutionary Computation, volume 2, pages 1299-1306, Washington, D.C.,
July 1999. IEEE Service Center.

(18] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the Evolutionary Design of Digital
Circuits—Part II. Genetic Programming and Evolvable Machines, 1(3):259-288, July 2000.

[19] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information Characteristics and the Structure
of Landscapes. Evolutionary Computation, 8(1):31-60, Spring 2000.

[20] Mostafa Abd-El-Barr, Sadiq M. Sait, Bambang A.B. Sarif, and Uthman Al-Saiari. A modified ant
colony algorithm for evolutionary design of digital circuits. In Proceedings of the 2008 Congress
on Evolutionary Computation (CEC’2003), pages 708-715, Canberra, Australia, December 2003.
IEEE Press.

[21] Carlos A. Coello Coello, Rosa L. Zavala Gutiérrez, Benito Mendoza Garcia, and Ar-
turo Herndndez Aguirre. Ant Colony System for the Design of Combinational Logic Circuits.
In Julian Miller, Adrian Thompson, Peter Thomson, and Terence C. Fogarty, editors, Evolvable
Systems: From Biology to Hardware, pages 21-30, Edinburgh, Scotland, April 2000. Springer-



Enrique Alba et al. 27

Verlag.

[22] Carlos A. Coello Coello, Erika Herndndez Luna, and Arturo Herndndez Aguirre. Use of particle
swarm optimization to design combinational logic circuits. In Pauline C. Haddow, Andy M.
Tyrell, and Jim Torresen, editors, 5th International Conference in Ewvolvable Systems: From
Biology to Hardware, ICES 2003, volume 2606 of Lecture Notes in Computer Science, pages
398-409, Trondheim, Norway, 2003. Springer-Verlag.

[23] Venu G. Gudise and Ganesh K. Venayagamoorthy. Evolving digital circuits using particle swarm.
In Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, pages
468-472, Porland, OR, USA, 2003.

[24] Timothy G. W. Gordon and Peter J. Bentley. On evolvable hardware. In S. Ovaska and L. Sz-
tandera, editors, Soft Computing in Industrial Electronics, pages 279-323, Heidelberg, Germany,
2003. Physica-Verlag.

[25] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, 1989.

[26] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press,
Ann Arbor, Michigan, 1975.

[27] E. Alba and J.M. Troya. A survey of parallel distributed genetic algorithms. Complezity, 4(4):31-
52, 1999.

[28] L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[29] L. J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search when Engaging
in Nontraditional Genetic Recombination. In G. E. Rawlins, editor, FOGA, pages 265-283.
Morgan Kaufmann Publishers, 1991.

[30] S. Kirkpatrick, C.D. Gellatt, and M.P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671-680, 1983.

[31] E. Aarts and J. Korst. Selected topics in simulated annealing. In C.C. Ribero and P. Hansen,
editors, Essays and Surveys un Metaheuristics, Boston, MA, 2002. Kluwer Academic Publishers.

[32] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated annealing: theory and applications.
Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[33] E. Alba and M. Tomassini. Parallelism and Evolutionary Algorithms. IEEE Transactions on
Ewvolutionary Computation, 6(5):443-462, October 2002.

[34] Rachid Chelouah and Patrick Siarry. Tabu search applied to global optimization. European
Journal of Operational Research, 123(2):256-270, 2000.

[35] S.-K. Fan, Y.-C. Liang, and E. Zahara. Hybrid simplex search and particle swarm optimization
for the global optimization of multimodal functions. Engineering Optimization, 36(4):401-418,
August 2004.

[36] Abdel-Rahman Hedar and Masao Fukushima. Hybrid simulated annealing and direct search
method for nonlinear unconstrained global optimization. Optimization Methods and Software,
17(5):891-912, 2002.

[37] Abdel-Rahman Hedar and Masao Fukushima. Heuristic pattern search and its hybridization
with simulated annealing for nonlinear global optimization. Optimization Methods and Software,
19(3-4):291-308, June—August 2004.

[38] V. Kvasniéka and J. Pospichal. A hybrid of simplex method and simulated annealing. Chemo-
metrics and Intelligent Laboratory Systems, 39:161-173, 1997.

[39] C. A. Coello Coello, A. Herndndez Aguirre, and B. P. Buckles. Evolutionary Multiobjective
Design of Combinational Logic Circuits. In J. Lohn, A. Stoica, D. Keymeulen, and S. Colombano,
editors, Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pages 161—
170. IEEE Computer Society, 2000.

[40] E. Serna Pérez. Disefio de Circuitos Ldgicos Combinatorios utilizando Programacién Genética.
Master’s thesis, Maestria en Inteligencia Artificial, Facultad de Fisica e Inteligencia Artificial,
Universidad Veracruzana, Enero 2001. (In Spanish).

[41] Erika Herndndez Luna. Disefio de circuitos 1égicos combinatorios usando optimizacién medi-
ante cimulos de particulas. Master’s thesis, Computer Science Section, Electrical Engineering
Department, CINVESTAV-IPN, Mexico, D.F., Mexico, February 2004. in Spanish.

[42] T. Sasao, editor. Logic Synthesis and Optimization. Kluwer Academic Press, 1993.

[43] Carlos A. Coello Coello and Arturo Herndndez Aguirre. Design of combinational logic circuits
through an evolutionary multiobjective optimization approach. Artificial Intelligence for Engi-
neering, Design, Analysis and Manufacture, 16(1):39-53, January 2002.



28 A Study of Serial and Parallel Heuristics Used to Design Combinational Logic Circuits

Appendix A: Truth Table and Best Solution Found for the Examples

Table Al. Truth table for
the circuit of the first exam-

ple.
Z W X Y F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0
W I
X & F
v VA

Figure Al. Graphical representation of the best solution found for the circuit of the first example.
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Truth table for the circuit

Table A2.

of the second example.
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Figure A2. Graphical representation of the best solution found for the circuit of the second

example.
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Table A3. Truth table for the circuit of
the third example.

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

!
ﬁ

o) >

N :

P 2

/1

Figure A3. Graphical representation of the best solution found for the circuit of the third example.

Table A4. Truth table for the 2-bit multiplier of the
fourth example.

A; Ay By By C3 C; C; (g
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1
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o

Figure A4. Graphical representation of the best solution found for the circuit of the fourth

example.

Truth table for the fifth example.

Table A5.
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E e——
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Figure A5. Graphical representation of the best solution found for the circuit of the fifth example.



