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SUMMARY

In this paper, we introduce MRMOGA (Multiple Resolution Multi-Objective Genetic
Algorithm), a new parallel multi-objective evolutionary algorithm which is based on
an injection island approach. This approach is characterized by adopting an encoding
of solutions which uses a different resolution for each island. This approach allow us
to divide the decision variable space into well-defined overlapped regions to achieve an
efficient use of multiple processors. Also, this approach guarantees that the processors
only generate solutions within their assigned region. In order to assess the performance of
our proposed approach, we compare it with respect to a parallel version of an algorithm

that is representative of the state-of-the-art in the area, using standard test functions
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2 MRMOGA: A NEW PARALLEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM %

and performance measures reported in the specialized literature. Our results indicate
that our proposed approach is a viable alternative to solve multi-objective optimization

problems in parallel, particularly when dealing with large search spaces.

KEY WORDS: Parallel processing; multi-objective evolutionary algorithms; parallel multi-objective

evolutionary algorithms; multi-objective optimization; evolutionary algorithms

1. INTRODUCTION

Evolutionary algorithms are heuristic search techniques inspired on Darwin’s evolutionary
theory (namely, the “survival of the fittest” principle) [11]. The idea of using techniques based
on the emulation of the mechanism of natural selection to solve problems can be traced as
long back as the 1930s [19]. However, it was not until the 1960s that the three main techniques
based on this notion were developed: genetic algorithms [24], evolution strategies [42] and
evolutionary programming [20].

Evolutionary algorithms have become very popular as optimizers in the last few years [22, 3].
As a consequence of this popularity, their use has spanned several new areas. One of these
new areas is multi-objective optimization, which refers to the simultaneous optimization of
two or more objective functions which are normally in conflict with each other. The first
implementation of a multi-objective evolutionary algorithm (MOEA) dates back to the mid-
1980s [39, 40]. Since then, a considerable amount of research has been done in this area, now

known as evolutionary multi-objective optimization (EMOO for short). The growing importance
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of this field is reflected by a significant increment (mainly during the last ten years) of technical

papers in international conferences and peer-reviewed journals, books, special sessions in
international conferences and interest groups on the Internet [9].*
Evolutionary algorithms have been found to be particularly suitable to solve multi-objective

optimization problems due to several of their features [7, 9]:

e They deal simultaneously with a set of possible solutions (called “population”), which
allows them to find several members of the Pareto optimal set (see definition 5) in a
single run.

e They are less susceptible to the shape or continuity of the Pareto front than traditional
mathematical programming techniques.

e They do not require information about the derivatives of the objective functions or
an initial solution to start the search (in contrast to many traditional mathematical

programming techniques).

Nowadays MOEAs have shown an acceptable performance in many real-world problems with
their origins in engineering, scientific and industrial areas [9, 35, 14, 45, 10]. Nonetheless, in
some of these problems, it is required to evaluate a huge number of objective functions or to
use a very large population size in order to reach a desired effectiveness. Additionally, it is
normally the case in real-world applications that the CPU time required to perform a single
evaluation of the objective function(s) is too high as to make it impossible to find an acceptable

solution in a reasonable time.

*The second author maintains an EMOO repository with over 2100 bibliographical entries at:
http://delta.cs.cinvestav.mx/"ccoello/EMO0, with a mirror at http://www.lania.mx/"ccoello/EMO0/
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The use of parallelism is an obvious choice to solve these problems in a reasonable amount
of time [47]. Besides the time reduction that they can achieve, parallel MOEAs (pMOEAs) are
attractive for many other reasons: (1) they can use more memory to cope with more difficult
problems, (2) they allow the use of larger population sizes, (3) they improve the population
diversity, (4) they reduce the probability of finding suboptimal solutions, (5) and they can

cooperate in parallel with another search technique (including non-evolutionary techniques).

During the last three decades parallel Evolutionary Algorithms used for global optimization
(pEAs) have been widely studied [2, 6, 38, 46]. However, due to the peculiarities of multi-
objective optimization there are some issues that require the use of novel approaches. From
these issues, the most relevant is the fact that the evaluation of each particular solution
to a multi-objective optimization problem implies the evaluation of k (k > 2) objective
functions. This implies a much higher computational cost and, therefore, motivates the need
of parallelizing a MOEA. Additionally, real-world multi-objective optimization problems tend
to have high-dimensionality (i.e., a large number of decision variables) which also normally
requires a much higher computational cost in order to find a reasonably good approximation
of the Pareto optimal set. Finally, the use of archiving, clustering or niching techniques (which
are commonly adopted with MOEAs [28, 53, 16]) also adds to the computational overhead of

a MOEA, which is one more reason to justify their parallelization.

This paper presents a scheme to split up the decision variable space in order to distribute
it among different processors. The proposed algorithm, called Multiple Resolution Multi-
Objective Genetic Algorithm (MRMOGA), is based on the injection island strategy proposed by

Lin et al. [33]. In this strategy there is a number of sub-populations that encode the problem
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using different resolutions in each island. This approach leads to the division of the decision

variable space into different regions. Thus, each processor is able to concentrate its effort
on exploring a different region of the search space. Additionally, using this approach, each

processor can only generate solutions within its constrained region.

In order to evaluate the performance of the proposed approach we consider both its
effectiveness and its efficiency. To evaluate the effectiveness we use well-known metrics normally
adopted to evaluate serial MOEAs, namely: success counting, inverted generational distance,
spacing, and two set coverage. On the other hand, efficiency is evaluated using the following
well-known metrics from parallel computing: speedup, efficiency and serial fraction. The results
of the proposed algorithm were compared against those of a parallel version of the NSGA-1I [17].
Our experiments attempt to illustrate the pMOEAs’ scalability as the number of processors

increases. Our study involves the analysis of both the gains in convergence and the speedup.

The remainder of the paper is organized as follows. Section 2 provides some basic concepts
required to understand the rest of the paper. In Section 3, we describe the major parallelization
models adopted with MOEAs. In Section 4, we review the most significant previous related work.
Section 5 is devoted to describing our proposed approach. The validation of our approach is
provided in Section 7. Finally, Section 8 draws our conclusions and some possible paths for

future research.
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2. BASIC CONCEPTS

Definition 1 (Global Minimum:) Given a function f : Q CR™ - R, Q # 0, for T € Q

the value f* £ f(#*) > —oc0 is called a global minimum if and only if

VEeQ: f(&) < f(D) . (1)

Then, T* is the global minimum solution, and the set Q is the feasible region (U € S), where

S represents the whole search space. O

Definition 2 (General Multi-objective Optimization Problem (MOP):) Find the

vector T = [z}, 25, . .,me]T which will satisfy the m inequality constraints:

the p equality constraints

and will optimize the vector function

= s e 1T
f(@) = [(@), f2(D), - .-, fu(@)] (4)
where & = [x1,%a, ... ,xn]T is the vector of decision variables. O
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Definition 3 (Pareto Optimality:) A point £* € 1 is Pareto optimal if for every & € Q

and I ={1,2,...,k}

Vier(fi(€*) < fi(%)) (5)

and, there is at least one i € I such that

fi(Z) < fi(&) (6)

O

In words, this definition says that #* is Pareto optimal if there exists no feasible vector &
which would decrease some criterion without causing a simultaneous increase in at least one
other criterion. The phrase “Pareto optimal” is considered to mean with respect to the entire

decision variable space unless otherwise specified.

Definition 4 (Pareto Dominance:) A vector @ = (ui,...,u) is said to dominate
7 = (v1,...,v;) (denoted by @& < ¥) if and only if @ is partially less than 0, i.e., Vi €
{1,..,k}, uys <vi AT e{l,...,k}:u; <w;. O
Definition 5 (Pareto Optimal Set:) For a given MOP f(z), the Pareto optimal set (P*)

is defined as:

-

P i={zeQ|-32 €Q f(@') =< f(z)} (7)
O
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8 MRMOGA: A NEW PARALLEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM %

Pareto optimal solutions are also termed non-inferior, admissible, or efficient solutions [25];

their corresponding vectors are termed non-dominated.

-

Definition 6 (Pareto Front:) For a given MOP f(x) and Pareto optimal set P*, the

Pareto front (PF*) is defined as:

PF* = {f = (fi(),..., fu(@)) | z € P*}. (8)

O

In the general case, it is impossible to find an analytical expression of the line or surface
that contains these points. The normal procedure to generate the Pareto front is to compute
the feasible points Q and their corresponding f(£2). When there is a sufficient number of these,

it is then possible to determine the non-dominated points and to produce the Pareto front.

3. PARALLELIZATION OF MULTI-OBJECTIVE EVOLUTIONARY ALGO-

RITHMS

The parallelization schemes that have been proposed for MOEAs are derived from the well-
known models designed for single-objective optimization: the master-slave model, the island
model and the diffusion model. Nevertheless, currently there is no standard way to extend
these models to the multi-objective field. In [47], the authors provide a detailed discussion of
the generic versions of these models when applied to MOEAs. Next, we will briefly discuss each

of them.
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Master-Slave model. The master-slave model is one of the simplest ways to parallelize

a MOEA and hence the most popular among practitioners. Here, a master processor executes
the MOEA, and the objective function evaluations are distributed among a number of slave
processes. As soon as the slaves complete the evaluations they return the objective values to
the master and remain idle until the next generation. In addition to the evolutionary operators
(selection, recombination and mutation), the master processor executes other tasks such as
Pareto ranking, and archiving. This model is depicted in Figure 1(a). A master-slave pMOEA
explores the search space in the same way as a serial MOEA does, therefore it finds the same
solutions as those found by its serial counterpart. However, the execution time is reduced
(ideally p times with p processors). It is important to note that the time required to evaluate
the objective functions needs to be greater than the communication time in order to get a

significant gain in speed with this sort of model [6].

Diffusion model. Like the master-slave model, the diffusion model considers a unique
population, but in this case the population is spatially distributed onto a neighborhood
structure. Usually this structure is a two dimensional rectangular grid, and there is one
individual per grid point (Figure 1(b)). Ideally, there is one processor per individual, and
therefore this model is sometimes called fine-grained. This kind of pMOEA is also known as a
cellular pMOEA because the model is similar to a cellular automaton with stochastic transition
rules. The selection and mating is confined to a small neighborhood around each individual.
The neighborhoods are overlapped (as depicted by the dotted lines in Figure 1(b)) so that
the good traits are spread or “diffused” throughout the whole population. The communication

costs tend to be high, since the individuals who take part in the selection are distributed
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among several processors. For this reason, this model is appropriate for shared-memory MIMD

computers, or massively parallel SIMD computers.

Island model. This model was inspired by the natural phenomenon in which a number
of spatially isolated populations are linked together by dispersal and migration. In an island
PMOEA, the population is divided into several small sub-populations, called islands or demes,
which evolve independently of each other. In each of these islands a serial pMOEA is executed
for a number of generations called an epoch. At the end of each epoch, individuals migrate
between neighboring islands. The neighbors are given by the migration topology, which
determines the migration paths along which individuals can move to other islands. A typical
representation of the island model is shown in the Figure 1(c), in which a ring topology
is adopted, although other migration topologies are possible (2-D and 3-D meshes, tori,
hypercubes or trees). Island pMOEAs are also known as distributed pMOEAs, as they are
usually implemented on distributed memory MIMD computers. In particular, due to the low
inter-processor communication frequency, this model is well-suited for clusters of computers.
This model is very popular among researchers, but it requires many parameters and design
decisions. The main issues to consider with this sort of model include the migration topology,
the migration frequency, the number of individuals to migrate, and the decision regarding the
individuals which will migrate and those which will be replaced by the immigrants. The model
allows each island to have their own parameter setting. Depending on the homogeneity of the

islands, we can recognize two variants of the island model:
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Design

variables

1. Island pMOEA with homogeneous nodes. The MOEAs performed in every island

have all the same parameter values (e.g., population size, mutation, crossover and

Objective
values

(a) Master-slave

(b) Island

(c) Diffusion

Figure 1. Diagrams of the three major models used to parallelize MOEAs.

migration rate).

2. Island pMOEA with heterogeneous nodes. Each island applies a MOEA which has a

different parameter setting, or uses its own evolutionary operators and solution encoding
technique. In addition, each island may be explicitly instructed to explore a particular

region of decision variable or objective function space.

4. PREVIOUS RELATED WORK

Although several researchers have reported the use of parallel MOEAs, not many of them

have actually proposed novel schemes to parallelize a MOEA. Next, we will review the most

representative work along these lines that we were able to find in the specialized literature.

The Divided Range Multi-Objective Genetic Algorithm (DRMOGA) was proposed by

Hiroyasu et al. [23]. Here, the global population is sorted according to one of the objective
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12 MRMOGA: A NEW PARALLEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM %

functions (which is changed after a number generations). Then, the population is divided
into equally-sized sub-populations. Each of these sub-populations is allocated to a different
processor in which a serial MOEA is applied. At the end of a specific number of generations,
the sub-populations are gathered and the process is repeated, but this time using some other
objective function as the sorting criterion. The main goal of this approach is to focus the search
effort of the population on different regions of the objective space. However, in this approach
we cannot guarantee that the sub-populations will remain in their assigned region. A similar

approach is followed in [12].

Zhu & Leung proposed the Asynchronous Self-Adjustable Island Genetic Algorithm (aSAIGA)
[50]. In aSAIGA, rather than migrating a set of individuals, the islands exchange information
related to their current explored region. Based on the information coming from other islands,
a “self-adjusting” operation modifies the fitness of the individuals in the island to prevent two
islands from exploring the same region. In a similar way to DRMOGA, this approach cannot
guarantee that the sub-populations move tightly together throughout the search space, hence

the information about the explored region may be meaningless.

Another island pMOEA was introduced by Deb et al. [18]. In this case, although all processors
search on the entire decision variable space, the approach assigns each processor a different
search region of the Pareto-optimal front. In order to steer the search towards the assigned
region, the authors adopt a “guided domination” based on a concept defined in [5]. This concept
uses a weighted function of the objectives in order to achieve a larger dominated region for
each vector. Therefore, each processor using this new concept only finds a region of the real

Pareto front. The weakness of this approach is that we must have a priori knowledge of the
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shape of the Pareto front in order to define accurately the search directions. Furthermore, this

technique can only deal with convex Pareto fronts.

Streichert et al. [44] recently proposed an approach that partitions the overall population
using a clustering algorithm aiming to specialize the exploration of each island on different
areas of the Pareto front. Periodically (after a specified number of generations) the islands
are gathered, clustered and redistributed onto the available processors. The individuals are
kept within their region by considering this as their feasible zone and using the constrained
dominance principle defined in [15]. That is, any individual generated outside its constrained
region is marked as “invalid”. The main drawback of the approach is that the repeated
gathering of all sub-populations produces a high communication overhead, which is increased

with the number of processors.

5. MULTIPLE RESOLUTION SCHEME

In most of the approaches that use a “divide and conquer” strategy, the division has been
made in the objective function space [18, 23, 49, 50]. To the best of our knowledge, only
Streichert et al. [44] carried out such division in the decision variable space. Nonetheless, none
of these approaches guarantees the generated individuals belong to their assigned region. On
the other hand, the secondary population (external archive), if any, does not interact in the
search process in any of the approaches previously described.

Taking care of these observations, we designed a model called Multiple Resolution Multi-
Objective Genetic Algorithm (MRMOGA). Our approach is based on the pMOEA island model

with heterogeneous nodes and is characterized by the following:
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e FEach island encodes the solutions with a different resolution (i.e., different number of
precision digits after the decimal point). This implies a partition of the decision variable
space in such a way that every new individual belongs to its assigned region.

e It uses a migration strategy that considers both the primary population and the
secondary population (or external archive).

e It uses a strategy to detect the nominal convergence of the islands in order to increase

the initial resolution adopted.

We describe the MRMOGA in Algorithm 1. In each island, we execute a serial MOEA which
is initialized as usual. However, the MOEA of each island uses a different resolution. At the
time of migration each processor takes some individuals from its archive (P Fgpnown (;), where
i denotes the processor number and ¢ the generation number) to send them to the primary
population of its neighbors. At the end of the search process, the root process combines the
non-dominated front of each processor PFlpnown (2) Figure 2 shows a schematic view of the

algorithm. In the next sections all the components of the approach are described in detail.

5.1. The Principle of Multiple Resolutions

The idea behind the proposed approach is based on the following assumption: the Pareto
optimal solutions are found in fewer iterations using low resolution representations than using
higher resolution representations. This is a rather obvious idea, since the search space is smaller
as the resolution decreases (when adopting a discrete search space), and hence we need to

explore fewer solutions to produce our approximation of the Pareto front (P Frpnown)-
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Input:
P;: Population of the i-th processor.
E: Maximum number of epochs.
G: Generations per epoch.

Randomly generate the population P; on each processor.
for ¢+ 1 until £ do
for g+ 1 until G do
SERIALMOEA(P;)
end for
if e# E then > Do not migrate in last epoch
> According to migration topology
for all outgoing neighbor j of processor ¢ do
MIGRATE (P Fypown (;) , Pj)
end for
for all incoming neighbor j of processor ¢ do
REPLACE(P;, PFhnown (; )
end for
end if
end for
Combine all PFjpoun (*) in processor 0.
Filter overall population through the grid and show F Pypoun-

Algorithm 1: MRMOGA pseudocode.

Replace the worst individuals " .
e from the primary population o Execute a seridl MOEA during an epoch

. ) primary pop.  archive
LI \b 0O o
T
e ' ' Migrate X randomly selected
b\ o Removed o 9 individuals from the archive
b\ N S o
FYRR °.
n el ~~o.
/"' Be. . ©-e._
New - @ primary pop. N\

archive

ElE)
00go
0 o

Figure 2. Schematic view of our MRMOGA.

primary pop.
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06 _@ ________ . ______ e Search space using 8-bits strings |_|

: O Search space using 4-bits strings
) R ST RSN SUS D R
T SR T S
Tt
02| @t @ @ @]
7] PSR SRNRS SANNE S S S -

o I S S S .

Figure 3. Search space for resolutions r; and 72 achieved with 4 and 8 bits, respectively.

Taking advantage of this idea, we can design an island model in which each node encodes the
solutions with a different resolution. The low resolution islands have the purpose of approaching
quickly towards the true Pareto front (PFyy.), thus finding individuals with high fitness with
a relatively low number of evaluations. Afterwards, these individuals are migrated into higher

resolution nodes for exploiting the regions nearby these highly fit individuals.

Our approach can be considered as a partition of the decision variable space. In such a
partition there are well-defined overlapped solutions as is illustrated in Figure 3. As the figure
shows, all solutions of the search space generated with 4 bits (circles) are contained within the
8-bits search space (dots). That is, the search space of a low-resolution island is contained in

the search space of a higher resolution island.
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The interpretation of “resolution” is problem dependant. For instance, in numerical

optimization problems, the resolution is given by the number of digits after the decimal
point. However for discrete optimization problems, like the traveling salesperson problem,
the interpretation is not straightforward. The implementation of MRMOGA for this study was
intended for numerical optimization, and we thus adopted a binary string representation.
However, it is possible to use another type of representation/encoding depending on the nature
of the problem. For instance, Lin et al. [33] proposed an encoding scheme for a problem
described by discrete variables (i.e., the graph-partitioning problem). Note however, that the
use of other types of representation (e.g., real numbers), although possible, may raise issues

not dealt with in this paper.

5.2. Topology and Migration/Replacement Scheme

The search space of an island is contained within the search space of any island with higher
resolution. However, the converse is not true (see Figure 3). The underlying assumption here
is that low resolution islands approach faster to PFj,.,. than high resolution islands. Thus,
the natural choice is that the migration flow can only go from low resolution islands to high
resolution islands. Although it is possible to exchange individuals from high to low resolution
islands, this could cause some problems due to the loss of precision digits, and also adds
communication overhead. For instance, a feasible solution may become infeasible. Also, it
is worth noting that if migration from high resolution islands to low resolution islands is
performed, it is unlikely that incoming individuals are closer to PFy,,. than the low resolution

individuals.
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Minimum precision Maximum precision

>

Figure 4. Strict topology.

Minimum precision Maximum precision

>

Figure 5. Complete topology.

The migration from low to high resolutions imposes a hierarchical migration topology. That
is, a parent island has as children all the islands with higher resolution. The root of the topology
is the island with the smallest binary strings. Taking care of this, we implemented the two

following topologies, which are similar to those defined in [33]:

e Strict topology. Each island migrates only solutions to its direct child (Figure 4). The
degree of this topology (i.e., the number of incoming neighbors of each node) is §(i) = 1
for every node i = 0,...,n.

e Complete topology. Each island migrates solutions to all of its children in the hierarchy

(Figure 5). This topology has degree §(:) = 1 for every node i =0, ...,n.
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Both the primary population and the external archive are involved in the

migration /replacement scheme. Algorithm 2 shows the pseudocode of the migration and

replacement schemes.

e Migration scheme. This scheme is similar to the elitist random scheme suggested
in [47]. Our scheme migrates x randomly selected members from the archive (i.e., the
known Pareto front). If the archive size is less than z, the required individuals to complete
z are randomly selected from the primary population.

¢ Replacement scheme. Initially, the members of the primary population are ranked in
non-dominated levels by the method used in the NsGa-11 [15]. Later, = individuals are

“worst” individuals). If the size of the

replaced from the last ranked Pareto front (the
last front is less than z, a sufficient number of individuals are taken from the next ranked

fronts until the z individuals are completed. Finally, the procedure of the Algorithm 3

is applied to the incoming individuals to adapt its chromosomes to the new length.

5.3. Need for Conversion in Migration

Since in the migration process of our approach we exchange chromosomes (binary strings) with
different lengths, £ and £' (£ < £'), we need to adapt the smaller length string into a larger

length string. Such adaptation must fulfill the following requirements:

e It should be possible to apply the evolutionary operators to the re-encoded string with

the new length ¢'.
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procedure MIGRATE(P Fypouwn (;), ™m)
if |PFinown(})| > m then
migrants < m randomly selected members of PFy,oun (z)
else
migrants < PFynown (2) + (m — |PFynown (;) |) randomly selected members of P;
end if
Send migrants to neighbor
end procedure

procedure REPLACE(PFyoun (;), m)
Receive m individuals (immigrants) from the neighboring processors
Sort P; into non-dominated levels
Replace m individuals of the last ranked front of P; with immigrants
for all decision vector x of the immigrants do
CONVERT(x, z7V", ge (')
end for
end procedure

Algorithm 2: Pseudocode of the migration and replacement procedures.

e The re-encoded string must represent the same phenotype (decoded variable vector) as

the original string with length £.

The expression adopted to obtain a real value, z; € [z, £"%*], from a binary string, s;,

is the following:

d;
26 _1

mazr

(.731 - m:mn)v (9)

x; = .,L,gn'm, +

where /; is the length of the string s; that encodes the i-th variable and d; is the decoded
integer value of the string s;.
In the proposed approach only the phenotypes of the individuals are migrated, i.e., the

vector of the decoded variables, x = [z1, 22, ...,z,]. To carry out the conversion, we need to
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find the strings s (with the new length /) that produce the decision values z;. For this, we

need to solve equation (9) for d;, which gives us:

min

df = —— o (24 - 1), (10)

in
pmaer _ ximz

where df is the nearest real value to d;, which is obtained with a precision of £} bits. Now,
we round up this value to its nearest integer. Finally, we encode the rounded up value of d} to
obtain the binary string with length ¢'. In Algorithm 3, we depict the pseudocode for mapping
a chromosome of length £ into another one of length ¢'. Note that the vector x* generated
from string s’ (by equation (9)) is not exactly the same as the original vector x. However, the

mapping guarantees to keep a precision of at least p} (p; < pj) digits after the decimal point.

Input:
x: Decoded variable vector.
z™": Lower bound for the i-th variable.
x***: Upper bound for the i-th variable.
¢'; Vector with the lengths of the new strings s;.

Output:
s': Resulting binary string of length £'.

function CONVERT(x, z7"", % (')
s ¢
for each variable ¢ encoded in the chromosome s’ do
d; < ROUND ((a:,- — ) (26 — 1)/ (2o — x;m'"))
s}  DECIMAL2BINARY(d}, ¢})
s s+ s} D> String concatenation
end for
end function

Algorithm 3: Procedure to map a binary string s of length £ into a string s’ of length ¢’
(£<).
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5.4. The serial MOEA applied on each sub-population

In each processor, we perform the serial MOEA described in Algorithm 4. In the following

sections, we describe the elements that integrate the serial MOEA.

procedure SERIALMOEA(maz Resolution, P;)
Evaluate objective values
Assign rank based on Pareto dominance
Assign linearly scaled fitness
Filter vectors of P; through the adaptive grid
if PFErnown (z) has converged and resolution; < maxResolution then
Increment the resolution of P;
end if
Generate offspring (selection, crossover and mutation)
end procedure

Algorithm 4: Pseudocode of the serial MOEA of each processor.

5.4.1.  Fitness Assignment

The fitness assignment is based on the strategy used by MOGA [21]. The rank of an individual
is given by:

rank(z;,t) =1+ pgt)

where z; is an individual at generation ¢, which is dominated by pgt) individuals in the

current generation. The fitness is assigned by the following steps:

1. Sort the population according to rank.
2. Assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank

n < M).
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3. Average the fitness of individuals with the same rank, so that all of them are sampled

at the same rate.

5.4.2. Genetic operators

The genetic operators adopted are among the simplest and most commonly used in the

Evolutionary Computation community:

Selection. The selection technique used was the Stochastic Universal Selection proposed
by Baker [4]. This technique reduces the differences between the expected values and
the actual number of copies adopted for an individual, with respect to the values
obtained with other proportional selection techniques such as the roulette wheel [34].

The pseudocode of this technique is shown in the Algorithm 5.

Input:
‘P: The current population.

procedure SELECTION(P)
r + RANDOM() > Generates a random number between 0.0 and 1.0
sum < 0
for all individual ¢ in population P do
sum < sum + e(7) > e(i) denotes the expected number of copies of individual
in the next generation
while sum > r do
SELECT(i)
rr+1
end while
end for
end procedure

Algorithm 5: Stochastic Universal Selection.

Crossover. We adopted two-point crossover. In this technique two crossover points are

randomly selected and the substrings between those points are exchanged to produce
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Figure 6. Example of the two-point crossover.

H B BER
>

T
HE BER

Figure 7. Uniform mutation where each string’s value has a 50% probability of being changed.

two children. Two-point crossover tends to produce a better convergence than one-point
crossover [34], and therefore our decision to adopt it. Figure 6 shows an example of this

technique.

Mutation. We adopted uniform mutation, which is the most common mutation approach
used with binary encoding [22]. In this technique each value of the chromosomic string
is interchanged by its inverse according to the mutation probability. This technique is

depicted in Figure 7.
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Figure 8. Hypergrid used to maintain the archive diversity.

5.4.8.  Technique to maintain diversity

In order to retain the non-dominated solutions and to distribute them evenly along the Pareto
front, MRMOGA uses an adaptive grid similar to the one proposed in [29]. Before the archive
has reached its maximum capacity, the non-dominated solutions are added to the archive if
they are not dominated by some member of the archive. When the archive is full, then the
adaptive grid is used.

The adaptive grid divides the objective function space into regions called hypercubes. Every
non-dominated solution occupies only one hypercube, as is shown in Figure 8. The basic idea
is that a non-dominated solution is accepted only if it belongs to a hypercube that has fewer
individuals than the most crowded hypercube. Although the number of regions is constant over

time, the location and extension of the grid may change (i.e., adapt) over time (see Figure 8).
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5.4.4.  Constraint-handling strategy

Although the aim of this work was not to propose a specialized constraint-handling technique,
in order to explore extensively the MRMOGA’s abilities, we incorporated a simple strategy to
handle constraints. The main reason for providing such a mechanism is the fact that among the
six test problems included in our experimental study, there are two well-known test problems

with constraints (see Sections 6.3.3 and 6.3.4).

In our constraint-handling strategy the dominance between two solutions is determined by
comparing the number of constraints violated by each solution. A solution with a smaller
number of violated constraints dominates the other. In the case that both individuals violate
the same number of constraints, Pareto dominance is applied as usual. This strategy is used
in the ranking process, and at the moment of deciding whether or not a solution is accepted

into the external archive.

5.4.5. Increasing an island’s resolution

MRMOGA has the capability of generating solutions only within the decision subspace that each
island was devoted for. Unfortunately, this approach has some drawbacks since the regions are
assigned statically: For instance, the Pareto optimal solutions may be concentrated within a
small area of the search space so that some regions could contain few or no Pareto optimal
solutions. This leads to an imbalance in the contribution of each processor to find the true
Pareto front. In terms of efficiency, the power of some processors is wasted, while in terms of

effectiveness, the probability of finding optimal solutions is decreased. In fact, Shonkwiler [43]
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has shown that the probability of finding a solution increases by running a genetic algorithm

on several processors instead of just one.

In the case of MRMOGA we recognize the following difficulties:

e The search space of the low resolution islands is proportionally smaller. Therefore, the
true Pareto front is found in this case, in fewer iterations than in higher resolution
islands. Thus, once the low resolution islands have converged, they spend the remainder
of time oscillating around the Pareto front without any real contribution regarding the
generation of other regions of the Pareto front. This issue was originally identified by
Parmee and Vekeria [37] when they used an injection island strategy to solve a single-
objective engineering optimization problem.

e For some MOPSs, the P Fj,0n Obtained with certain resolutions (particularly when using
low resolutions) do not belong to PFj.,., thus, the islands with those resolutions do
not contribute at all to finding solutions that are part of PF}.,.. This implies losing
these islands from the beginning of the search process. In Figure 9, we illustrate this
situation. As can be seen, the known Pareto front obtained with a 10-bit resolution (i.e.,

one decimal precision) does not belong to the true Pareto front of the problem.

In order to cope with these difficulties, we use a similar strategy to that used in [37], namely,
to increase the resolution of each island once it has reached nominal convergence. In this way,
at every moment the processors’ utilization is kept high, and the islands that have already

converged will keep contributing to find other regions of the true Pareto front.
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Figure 9. Known Pareto optimal set (a) using 10-bits chromosomes (one decimal precision), and its
corresponding known Pareto front (b).

5.4.6.  Criterion to Detect Nominal Convergence

The detection of the nominal converge in the islands is achieved by monitoring the movements
in the external archive. In the process to determine whether or not an individual is inserted

into the known Pareto front (PFnown(t)), one of the following situations occur:

1. Regardless of whether the individual belongs or not to PFgpewn(t), the solutions
dominated by the individual are removed from the archive. In this case, we can interpret
that P Finown(t) is getting closer to PFyye.

2. The individual is inserted into P Fjy,oun(t) without dominating any individual of the
archive. The archive is still growing, which means new regions of PFj.,. are being

discovered.
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3. The individual does not dominate any member of P F},, 0, (t), but replaces the individual

located in the most crowded hypercube. The search has arrived at a phase where is mainly

concentrated on achieving a better distribution of P Fj,pun ().

To illustrate the three above situations, let us track the progress of a simulation run of the
algorithm on a single processor. In Figure 10(a), we illustrate the number of dominated vectors
of PFinown(t) and the number of vectors added to P Fjpoun (t) at each generation. On the other
hand, Figure 10(b) shows PFipnown(t) at two distinct stages of the search process. In the first
30 generations there is a large number of dominated vectors of PF,un(t < 30) (Fig. 10(a)),
hence we can infer that the population still advances towards P Fj,.,.. This fact is reflected
in the known Pareto front found at generation 30 in which there are few individuals nearby
PPF;pye. In contrast, after generation 30, the number of dominated vectors of the known Pareto
front begins to decrease down to almost zero. At this moment, PFpouwn(t = 80) is located
exactly on PFy.,. (Fig. 10(b)).

The population of an island is near to reaching nominal convergence if at each generation
most of the movements belong to case 3. To detect convergence, at each generation, we keep
a record of the number of dominated individuals in PFj, g, (i) (case 1) at generation i
(dominated;).

Depending on dominated;, we decide whether or not an island has reached convergence such
that it is ready to increase the resolution of the population. At each generation, we check if in

the k last generations the following condition was satisfied:

domz:atedi <e (1)

i=1
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Figure 10. The plot (a) shows the number of solutions inserted into the archive and the number of
dominated members of PFypoun (t). The plot (b) shows PFlpown(t) at generations t = 30 and ¢t = 80.

where € is the average of dominated individuals of PFj,,p, in the last k generations. The
constant € was experimentally set to 0.05. If the condition (11) is met, then the island resolution
is increased to the next resolution. The resolution change is accomplished in the following way:
one half of the population is randomly reinitialized taking into account the new resolution.
The other half is a random sample taken from the archive. The conversion of the individuals
from the second half to the new resolution is performed using the same procedure adopted for

migration.
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6. METRICS AND TEST PROBLEMS

The metrics we used are divided in two parts. Metrics to evaluate effectiveness and metrics to

evaluate efficiency.

6.1. Metrics to evaluate effectiveness

In evolutionary multi-objective optimization, it is generally accepted that the quality of the
Pareto front obtained by an algorithm must be evaluated taking into consideration three goals:
(i) to minimize the distance between the approximation obtained and the true Pareto front
(normally obtained by enumeration); (i) to achieve a good distribution of the non-dominated

solutions obtained; (%#4) to maximize the spread of the Pareto front obtained.

In order evaluate these three aspects, we adopted four metrics in our comparative study.
To measure the distribution we used the spacing metric, for evaluating the closeness to the
Pareto-optimal front we used the inverted generational distance, the success counting, and the
two set coverage metrics. Finally, to evaluate the spread we also used the inverted generational
distance. Additionally, visual comparisons of the generated non-dominated sets are made in
order to verify if the actual behavior of the algorithm correspond to what the metrics indicate.

Each of the metrics adopted is defined next.

e Success Counting (SC). This metric, introduced in [8], counts the number of vectors

in PFypown that belong to PFy.y.. This metric is formally described as:

n
SC =Y s, (12)
i=1
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where n = [PFinown| and

1 if vector u'D € PFjpown i in PFjye,
§; =

0 otherwise.
It should be clear that SC' = n represents the ideal behavior, since every vector reported
in PFypown by the MOEA is member! of PFj,.. SC = 0 indicates that no reported
vector belongs to PFypye-
e Inverted Generational Distance (IGD). The main goal of this metric is to measure

the overall progress of P Flown towards PFy.,.. This metric is defined by:

?

LN
16D = V2iz1 & (13)
n

where n = |PF}e| and d; is the Euclidian distance between each vector of PFj.,. and
the nearest member of PF}y,0un- In addition, this metric measures the spread of PFpouwn
onto PFy... That is, a non-dominated set whose vectors are located on a reduced area
of the Pareto-optimal set, will be penalized in the value of this metric even though its
vectors belong (or are near) to PFy.,.. Lower values are preferred for this metric. This
way, IGD = 0 indicates PFypnown C PFirye and its elements are well spread throughout
PF;ye. Any other value in IGD means PFjy,on deviates from PFy...

e Two Set Coverage (C). This metric was suggested in [51] to compare the overall quality

of two non-dominated sets. If A and B are two non-dominated sets, the coverage metric

T1n this paper is assumed that a vector, u, belongs to PFiyy. if and only if there is no vector in P Fipye which
dominates u.
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C(A4, B) calculates the fraction of vectors in B which are weakly dominated* by A:

C(A7B):|{b€B|3c|zB€|A:ajb}| (14)

The value C(A, B) = 1 reflects that all members of B are dominated by or equal to some
member of A (A is said to cover B). The opposite, C(A, B) = 0, represents the situation
where none of the solutions in B is covered by A. It is required to calculate both C(A, B)
and C(B, A), because in general, C(A, B) differs from 1 — C(B, A).

e Spacing (SP). The spacing metric was proposed by [41] as a way of measuring the range

(distance) variance of neighboring vectors in P Fj0y5- This metric is defined by:

1 — 7 2
5=\ o1 - (15)

where d; = min;(|fi(x) — fI(®)| + |fi(x) = fA(x)]), i,5 = 1,...,n, d is the average of
all d; and n is the number of vectors in PFypoun- A value of SP = 0 indicates that
all vectors in PFjpown are equidistantly spaced. It is worth mentioning that a PFypnown
set with a good value in SP is not necessarily well spread throughout the whole front.
Additionally, note that only the shortest distance from each vector to its neighbors is
used. Therefore, if we have a PF},.,. composed of two or more Pareto regions with more
than one vector (MOP in section 6.3.1), then the distance between these regions will not

be taken into account to compute the metric.

tA vector u is said to weakly dominate v (denoted by u < v) iff Vi € {1,...,k} : u; < v;.

Copyright © 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2006; 00:1-7

Prepared using cpeauth.cls



34 MRMOGA: A NEW PARALLEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM %

6.2. Metrics to evaluate efficiency

In order to evaluate the efficiency of our MRMOGA we took three well-known metrics from the
parallel computing literature: speedup, efficiency and serial fraction. Each of them is defined

next.

e Speedup (5). In this study, we used the orthodoz speedup suggested by Alba [1]. This
speedup allows a fair comparison since both the serial and the parallel MOEA are stopped
when they have reached the same target solution “quality”. This speedup is calculated
by the expression:

Sp ==, (16)

1=

AS]

where T'; is the average execution time of the pMOEA with p sub-populations running
on a single processor and 7', denotes the average execution time of the same pMOEA run
on p processors.

e Efficiency (F). This metric [30] measures the fraction of time that a processor is
effectively utilized. It is defined by the ratio between the speedup and the number of
processors used. This metric is defined as:

Sp

B, =" (17)

where S, is the speedup achieved with p processors. In an ideal system, the efficiency is
equal to 1. In reality, due to the communications costs, and the idle time caused by the

synchronization, the efficiency oscillates between 0 and 1.
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e Serial Fraction (F'). This metric was defined by Karp and Flatt [26] to estimate the

serial fraction’ for measuring the performance of a parallel algorithm on a fixed-size
problem. Mathematically is defined as:

p ].—]./p - (18)

where S, the speedup achieved with p processors. Smaller values of F' are considered
better. If F' increases with the number of processors, then it is a symptom of growing
communications costs, and therefore an indicator of poor scalability. Thus, if the speedup
of an algorithm is small, we can still say that is efficient if F}, remains constant when
increasing p. In this case, the efficiency drops due to the limited parallelism of the
algorithm. On the other hand, if the value of F' decreases with p, Karp and Flatt [26]

consider that the speedup tends to be superlinear.

6.3. MOPs used to test MRMOGA

The assessment of MRMOGA was carried out using six multi-objective problems that have
some recognized features which may cause difficulties for MOEAs, namely: converging to the
real Pareto front, and maintaining population diversity [13]. This group of problems was chosen
because they have a large search space that make them suitable to solve them by a pMOEA. One

problem was selected by having a disconnected real Pareto front that challenges the pMOEA’s

§The ratio of the time taken by the inherently serial component of an algorithm to its execution time on one
processor.
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ability to maintain diversity within the population. Finally, we selected two multi-objective

test problems with constraints.

6.3.1. Test problem KUR

This two-objective problem was defined by Kursawe [31]:

Minimize F' = (f;(x), f2(x)), where

Il

M- 1M

fi(x)

(—IOexp (-0.2\/3?5[;3“)), (19)

fa(x) = (lz:|**® + 5sin(a7)) , (20)

i=1

subject to

—5<z;<5,  i=123

This problem is difficult because it presents a discontinuous non-convex Pareto front. Note
that this problem is discontinuous both in the objective function space and in decision variable

space.

6.3.2. Test suit ZDT

The next three problems belong to the test suite proposed by Zitzler et al. [52]. These problems
are designed with emphasis on some characteristics that traditionally cause difficulties to any
MOEA. Problem zDT1 presents a convex Pareto front, problem zZDT2 has a non-convex Pareto

front, and problem zDT3 presents a discontinuous Pareto front.

e This problem has a convex Pareto front:
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Minimize F' = (f1(x), fa(x)), where

fix) =, (21)
b)) = g (1= Vs, (22)
g(x) = 1+9x§;m‘”’_"1, (23)
where m = 30 and z; € [0, 1] for ¢ = 1,...,m. The true Pareto front is formed with

9(x) =1.
e This problem has a non-convex Pareto front:

Minimize F' = (f1(x), f2(x)), where

fi(x) = 2, (24)
fx) = g(x) (1-(fi/9(x))?), (25)
g(x) = 1+9xgma’_i1, (26)
where m = 30 and z; € [0,1] for i = 1,...,m. The true Pareto front is formed with

9(x) =1.
e This problem has a Pareto front composed of five discontinuous convex regions:

Minimize F' = (f1(x), f2(x)), where

fix) =, (27)
fio.
R0 = 960 (1= Vi - S sinaoms) 28)
_ i
g(x) = 1+9X,Zm—1’ (29)
=2
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where m = 30y z; € [0, 1] for ¢ = 1,...,m. The true Pareto front is formed with
g(x) = 1. The sine function in f» produces a discontinuity. Nonetheless, there are no

discontinuities in the decision variable space.

6.3.8. Test problem OSY

Osyczka and Kundu [36] suggested the next problem which has six decision variables and six

side constraints:

Minimize F' = (f1(x), f2(x)), where

fl(X) = —(25(1‘1 - 2)2 + (1172 - 2)2 + (.733 — ].)2 + (.’L‘4 - 4)2 + (55'5 - 1)2),

2 2 2 2 2 2
1 + 25 + x5 + x4 + x5 + 5.

f2(x)

Subject to
0 < =,z2,26 <10,
1 < z3,Ts5 < 5:
0 S T4 < 6,
and
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0 < z14+22—2,

0 S 6—1‘1—372,

0 S 2—$2+SL“1,

0 < 2—1z1+4 3x,,

0 S 4—(1’3—3)2—1’4,

0 < (z5—3)+az6—4

Both P;ye and PFy,.,. are disconnected in problem 0sY. Its Pareto front is composed by

five segments situated in some frontier imposed by the constraints. This problem is difficult

because it requires a MOEA to generate and maintain individuals on the boundaries between

the feasible and the infeasible region.

6.3.4. Test problem KIT

The problem KIT was introduced in [27]:

Maximize F = (f1(z,y), f2(z,y)), where

fl(may) = _1.2 +y7
1
Llay) = Fo+y+l
Subject to
z,y > 0,
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t 13
0o > 6.’11'4'2/—7, (32)

1 15

> = _ =
0o > 2w+y 5 (33)
0 > 5z+y—30. (34)
(35)

This problem is characterized by being concave and disconnected both in Py, and PFy .
The main difficulty of KIT is that members of P, are situated on the boundary between the

feasible and the infeasible regions.

6.4. The reference pMOEA

As a reference point to evaluate the performance of our proposal, we consider an island model
implementation of the NSGA-II (called PNSGA-II). According to a study done by von Lucken [48],
in which several modern MOEAs were involved, the parallel counterpart of the NSGA-II was the
best algorithm in most of the test problems adopted, and therefore our motivation to adopt it
in as a basis for comparison in our own work.

The only extensions done to the NSGA-1I are the operations to exchange individuals and the
mechanism to build the PF,own set from the PEypown (f) set of each processor p.

The migration topology of this algorithm is a ring. In the algorithm, z individuals taken
from the first front of the non-dominated sorted population are migrated, and xz randomly
selected individuals are replaced.

To present the final PFypoun, we used a similar procedure to that used by the NSGA-I1 to

choose the new population from the combination of the parent and offspring populations. In
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the case of the PNSGA-1I, the root processor combines the PFjpoun (}) sets of each processor

p. The resulting population is sorted into different non-dominated levels. To construct the
PFypown set from the best front, we consecutively choose each front until the population is
completed. If the size of the last front exceeds the size of the population, then this front is
sorted according to the <, operator defined in [15] and then the best solutions are chosen to

complete the PFlpown set.

7. RESULTS AND DISCUSSION

Besides showing the viability of the proposed approach, we are interested in analyzing the
gain in convergence when increasing the number of processors. For this purpose, we set the
sub-population size of each processor to the minimum allowable such that the algorithms still
achieve an acceptable effectiveness. In this way, we may add as many processors as desired,
while maintaining a good effectiveness of the algorithm. In the experiments performed, both
algorithms were run 30 times (using different random seeds for the initial populations in each
case), varying the number of processors (we used 1, 4, 8, 12 and 16 processors). Also, to allow
a fair comparison of results (and be able to assess the effectiveness of each approach), for each
run, the total number of evaluations was fixed to the same value. For each number of processors,
the performance of both algorithms is compared using all the metrics described in the previous
section. For each algorithm, the best parameter setting was determined experimentally. For
the sake of a fair comparison, we used the same parameter settings in all problems. In Table I,

we show the parameter values used in all the test problems adopted.
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MRMOGA | PNSGA-II
Parameter value value
Epochs 60 24
Generations per epoch 10 15
Island size 30 50
Number of migrants 20 25
Evaluations per island 18000 18000
Known Pareto front size 100 100
Decimals of precision 5 5
Crossover rate 0.9 0.9
Mutation rate 1/¢; 1/k

Table I. Paremeters used in all the experiments performed.

Characteristic Description
CPU Intel Xeon; 2.45MHz
Number of nodes 16 (2 processors per node)
Memory 2 GB per node
Operating System Red Hat Linux 3.2.2-5
Communications network FastEthernet
Communications library MPICH 1.12
Table II. Characteristics of the cluster used in the experiments.

For the PNSGA-11, k is the required chromosome length to represent solutions with 5 decimals
of precision. For our MRMOGA, #; is the chromosome length corresponding to the resolution of
each island. For the highest resolution island we have that £5; = k.

The PNSGA-II was implemented using the source code provided by Prof. Kalyanmoy Deb¥.
The MRMOGA implementation was written in C++. For the inter-process communication, we
used the MPICH library. The simulation runs were carried out in a cluster of 16 dual nodes

which has the characteristics described in Table II.

T The nsGa-11 source code is available at http://www.iitk.ac.in/kangal /soft.htm.
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7.1. Results for problem KUR

As can be seen in Figure 11(a), using less than 12 processors, the PNSGA-II achieves the
best results in SC. But this is not sufficient to conclude that the PNSGA-II has better
convergence than our MRMOGA, since for every number of processors, our MRMOGA yields,
by far, the best values for IGD (Fig. 11(b)). Furthermore, it is worth mentioning that the
MRMOGA convergence improves as more processors are used. On the contrary, based on SC,
the convergence of the PNSGA-I1 reached its maximum at around 4 processors and then began to
decrease. The best SC value was obtained by MRMOGA-16 followed by PNSGA-11-4. The results
of the C metric (see Table IIT) agree with those of the SC metric in the sense that the fraction of
weakly dominated solutions of the PNSGA-IT augments after 4 processors, whereas the fraction
of covered solutions of the MRMOGA has a tendency to drop as more processors are used
(excluding 1 to 4). However, for any number of processors, the PNSGA-1I-n (n = 1, .., 16) weakly
dominates a greater fraction of the MRMOGA-n outcomes than when doing the comparison in
the opposite direction. In this case, there is no clear evidence that one algorithm outperforms
the other, although our MRMOGA seems to improve its convergence steadily. Considering a
cost/performance tradeoff, the PNSGA-1I is the winner since it achieves a good convergence
using few processors. On the other hand, if we need leading effectiveness and we can afford
the use of more processors, our MRMOGA will certainly be a better choice.

With respect to distribution, it is important to note that our MRMOGA covers all the regions
composing the Pareto-optimal front of KUR (see Figure 12). Conversely, independently of the
number of processors, the PNSGA-II is not able to totally cover the bottom right region of

PFypye nor the point (—20,0) (see Figure 13). The metric IGD reflects this situation. The
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C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.394667 0.270000 0.277667 0.309667 0.306667
MRMOGA-s-4 0.416000 0.280000 0.286000 0.318667 0.313000
MRMOGA-s-8 0.454667 0.357000 0.357000 0.385333 0.384000

MRMOGA-s-12 0.463333 0.350000 0.369000 0.379000 0.385667
MRMOGA-s-16 0.474667 0.374333 0.389000 0.404000 0.405333
C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA-s-8 | MRMOGA-s-12 | MRMOGA-5-16
PNSGA-II-1 0.505333 0.453333 0.373000 0.356667 0.321667
PNSGA-II-4 0.587000 0.542667 0.482667 0.470667 0.444333
PNSGA-II-8 0.610667 0.557667 0.499000 0.492333 0.448333
PNSGA-II-12 0.625333 0.573000 0.506000 0.501000 0.456000
PNSGA-II-16 0.644667 0.594333 0.527333 0.513667 0.474667

Table III. Direct comparison between our MRMOGA and the PNSGA-II using the C
metric for problem KUR (in the coverage tables M stands for MRMOGA and P for
PNSGA).

vectors of the regions of PFj.,. not covered by the PNSGA-II are far away from the nearest
vectors of its PFlpown, which produces substantially worse values than those achieved by our
MRMOGA, which is able to cover all regions of PFy.e.

In terms of SP, the PNSGA-II provided a better distribution of solutions (Fig. 11(c)).
However, it is worth noting that the distance from vector (—20,0) to all other vectors is
greater than the average distance of the vectors in PFj,.,.. Since the PNSGA-II, on average, is

not capable of finding this vector, its value on SP does not get affected.

7.2. Results for Test Suite ZDT

The intrinsic size of the search space in these three problems is 2510 ~ 3.352x 10153, considering
the use of binary encoding and the decimals of precision adopted to discretize the decision
variables. The overall performance (regarding all metrics) of each of the algorithms is similar
both in zDT1 and zZDT2. From the SC graphs illustrated in Figures 14(a) and 17(a) it is

clear that our MRMOGA outperforms the PNSGA-1T when more than one processor is used. The
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Figure 11. Effectiveness of MRMOGA and PNSGA-II according to the number of processors for the
problem KUR.

IGD values (Figures 14(b), 17(b) and 20(b)) of both algorithms are very similar for the three

problems, which indicates that the algorithms converged very closely to the true Pareto front.

With one processor, our MRMOGA has a poor performance in both problems as reflected by

the C metric presented in Tables IV and V. On problems zDT1 and zZDT2, the non-dominated

fronts reported by MRMOGA-s-1 are 100% covered by PNSGA-1I-1, while the former covers
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(a) PFgpown Obtained with 1 processor. (b) PFypown obtained with 16 processors.

Figure 12. PFjpown Obtained by our MRMOGA using 1 and 16 processors for the problem KUR.
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(a) PFypown Obtained with 1 processor. (b) PFynown obtained with 16 processors.

Figure 13. PFjpown obtained by the PNSGA-II using 1 and 16 processors for the problem KUR.
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0% of the PNSGA-II-1 outcomes. However, when more processors are used, the improvement

of our MRMOGA is remarkable with respect to all the metrics adopted, especially regarding
convergence since from 1 to 4 processors SC' is improved about 100 times in zDT1 and around
1000 times in zDT2. It is important to note that when our MRMOGA uses one processor, there
is no division of the search space and, therefore, its poor performance is somehow expected in
this case. After one processor, our MRMOGA substantially outperforms the PNSGA-1I both in
zDT1 and zDT2. Comparing the best results achieved by each algorithm for zDT1 (Table IV),
PNSGA-1I-16 weakly dominates less than 6% of the MRMOGA-s-16 outcomes. In contrast, the
non-dominated fronts produced by the latter cover about 65% of the PNSGA-1I-16 outcomes. A
similar behavior is observed using 4 to 12 processors. In ZDT2, the difference in convergence is
more noticeable. For example, PNSGA-1I-16 (its best performance) weakly dominates at most
21% of the MRMOGA-s-4 outcomes (its worst performance using more than one processor). In
contrast, using only 4 processors, MRMOGA-s-4 covers about 74% of the generated fronts of
PNSGA-TI-16. This difference in convergence is practically impossible to detect from visually
examining the PFy, 0y sets. However, the magnification of the region shown in Figures 15(b)

and 16(b) allows us to identify this difference.

In zZDT3, a similar situation to that observed in KUR occurs. With respect to SC (Fig. 20(a)),
our MRMOGA has better convergence than the PNSGA-II after 8 processors are used. Considering
SC and the C comparison presented in Table VI, it can be noted that only when our MRMOGA
uses 1 or 4 processors, the PNSGA-1I performs better. When both algorithms use 8 or more
processors, our MRMOGA weakly dominates a larger fraction of the generated fronts of the

PNSGA-II. Again, it is interesting to see the improvement in the convergence of our MRMOGA
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C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.000668 0.000667 0.000000 0.000000 0.000000
MRMOGA-s-4 0.923848 0.703667 0.540000 0.517667 0.506000
MRMOGA-s-8 0.939880 0.735333 0.601000 0.577333 0.562000

MRMOGA-s-12 0.949900 0.750000 0.636333 0.591000 0.577667
MRMOGA-s-16 0.965932 0.794667 0.705333 0.659333 0.650667
C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA-s-8 | MRMOGA-s-12 | MRMOGA-5-16
PNSGA-II-1 1.000000 0.221333 0.019667 0.006667 0.005333
PNSGA-II-4 1.000000 0.363000 0.077000 0.050333 0.033333
PNSGA-II-8 1.000000 0.399000 0.101000 0.069333 0.044000
PNSGA-II-12 1.000000 0.406667 0.099000 0.073667 0.051000
PNSGA-II-16 1.000000 0.416667 0.111000 0.080000 0.056000

Table IV. Direct comparison between our MRMOGA and the PNSGA-II using the C
metric for problem zDT1.

C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.005394 0.000667 0.000000 0.000000 0.000000
MRMOGA-s-4 0.997303 0.885000 0.806667 0.788000 0.753333
MRMOGA-s-8 0.992583 0.890333 0.789667 0.767667 0.731667

MRMOGA-s-12 0.987862 0.867333 0.766667 0.744667 0.733667
MRMOGA-s-16 0.991234 0.891333 0.790000 0.760000 0.736000
C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA-s-8 | MRMOGA-s-12 | MRMOGA-s-16
PNSGA-II-1 1.000000 0.069667 0.004333 0.001000 0.000333
PNSGA-II-4 1.000000 0.159000 0.024000 0.011000 0.005667
PNSGA-II-8 1.000000 0.196667 0.041667 0.020667 0.011000
PNSGA-II-12 1.000000 0.197000 0.043333 0.021333 0.011333
PNSGA-II-16 1.000000 0.206000 0.048333 0.028333 0.010667

Table V. Direct comparison between our MRMOGA and the PNSGA-II using the C metric
for problem zZDT2.

when using more than one processor (Figures 20(a) and 20(b)). As in the problem KUR, here
we must take in mind a cost/performance tradeoff. But this time, our MRMOGA achieves an
acceptable performance after using 8 processors instead of 12.

Concerning the metric SP, the PNSGA-II performs better than our MRMOGA in the three
problems. However, as can be seen in the plots of Figure 21 the distribution of our MRMOGA
is very competitive. Also, it is noted that both algorithm cover all regions of the true Pareto

front.
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Figure 14. Effectiveness of our MRMOGA and the PNSGA-II according to the number of processors for

the problem zDT1.

7.3. Results for Test problem OSY

In the plots of Figure 24, we show that our MRMOGA is able to maintain vectors near to

all regions composing the Pareto-optimal front of 0SY. On the contrary, the PNSGA-II, for

some runs, does not converge to certain regions of the front, particularly to the segment DE

(Fig. 25). Additionally, based on SC, our MRMOGA outperforms the PNSGA-II for every number
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Figure 15. PFpown Obtained by our MRMOGA using 1 and 16 processors for the problem zpT1.
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Figure 16. PFjpown obtained by the PNSGA-II using 1 and 16 processors for the problem zZDT1.
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Figure 17. Effectiveness of our MRMOGA and the PNSGA-II according to the number of processors for
the problem zDpT2.

of processors adopted, since the former obtains a larger number of vectors belonging to PFy;ye
(Fig. 23(a)). Nevertheless, it is interesting to note that the PNSGA-1I outperforms our MRMOGA
in the C comparison (see Table VII). For instance, the fronts of MRMOGA-s-n weakly dominate
around 50% of the PNSGA-11-16 outcomes (its best assessment), whereas PNSGA-1I-n, covers

at most 84% of the non-dominated fronts of MRMOGA-s-16 (its best assessment). A possible
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Figure 18. PFpown Obtained by our MRMOGA using 1 and 16 processors for the problem zpT2.
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Figure 19. PFjpown obtained by the PNSGA-II using 1 and 16 processors for the problem zZDT2.
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Figure 20. Effectiveness of our MRMOGA and the PNSGA-II according to the number of processors for

the problem zDT3.

reason for this discrepancy is that the vectors of PFj,own reported by our MRMOGA and

that do not belong to PFi.e (and maybe also some that do) are weakly dominated by the

PFypnown set generated by the PNSGA-11. This conjecture is reinforced by the fact that the

values of IGD obtained by the PNSGA-II are marginally better than those achieved by our

MRMOGA (Figure 23(b)).
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Figure 21. PFynown Obtained by our MRMOGA using 1 and 16 processors for the problem zDT3.
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Figure 22. PFjpown obtained by the PNSGA-II using 1 and 16 processors for the problem zZDT3.
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C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.029074 0.005667 0.000333 0.000000 0.000000
MRMOGA-s-4 0.669371 0.339333 0.275667 0.229000 0.237333
MRMOGA-s-8 0.826910 0.500333 0.401333 0.346000 0.341667
MRMOGA-s-12 0.818796 0.525333 0.442000 0.409667 0.391333
MRMOGA-5-16 0.818120 0.530333 0.435667 0.390000 0.384667

C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA -5-8 | MRMOGA-s-12 | MRMOGA-s-16

PNSGA-II-1 0.999466 0.367000 0.080000 0.044000 0.018667
PNSGA-II-4 1.000000 0.543667 0.229000 0.164333 0.073333
PNSGA-II-8 1.000000 0.561667 0.259667 0.188333 0.095667
PNSGA-II-12 1.000000 0.578667 0.280333 0.208333 0.098667
PNSGA-II-16 1.000000 0.580000 0.274667 0.208000 0.103333

Table VI. Direct comparison between our MRMOGA and the PNSGA-II using the C
metric for problem zDT3.

C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.767845 0.398333 0.168333 0.146000 0.120000
MRMOGA-s-4 0.869246 0.525333 0.312333 0.271000 0.251667
MRMOGA-s-8 0.934623 0.676333 0.549333 0.436000 0.439000
MRMOGA-s-12 0.931955 0.673667 0.548667 0.443000 0.441667
MRMOGA-s-16 0.947298 0.713000 0.612333 0.479000 0.490667

C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA-s-8 | MRMOGA-s-12 | MRMOGA-5-16

PNSGA-II-1 0.977097 0.702000 0.510333 0.393333 0.335000
PNSGA-II-4 0.991896 0.876333 0.821333 0.752333 0.733333
PNSGA-II-8 0.995419 0.916667 0.853333 0.810000 0.785667
PNSGA-II-12 0.994715 0.902000 0.872667 0.826667 0.817667
PNSGA-II-16 0.996124 0.931667 0.879000 0.837333 0.837000

Table VII. Direct comparison between our MRMOGA and the PNSGA-II using the C
metric for problem OsY.

It is worth mentioning that when using only one processor (that is, without exploring in
multiple resolutions), our MRMOGA was not able to find any vector that belongs to PFyye-
Conversely, with more than one processor, our MRMOGA reported some solutions that belong
to PFjpye. This is an indication that searching through different resolutions allows us to yield
solutions that would not be possible (or easy) to find without this scheme.

With respect to the distribution, the PNSGA-II obtains the best results in SP (Figure 23(c)),

although our MRMOGA remains competitive as can be seen in the graphs of the Figure 24.
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Figure 23. Effectiveness of our MRMOGA and the PNSGA-II according to the number of processors for
the problem 0SY.

7.4. Results for Test problem KIT

In this problem, according to the SC and IGD metrics, our MRMOGA showed better
convergence than the PNSGA-IT beginning from one processor as can be seen in Figure 26.

Using one processor, MRMOGA approaches quickly to the Pareto front as revealed by the
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(a) PFgpown Obtained with 8 processor. (b) PFypnown obtained with 16 processors.

Figure 24. PFjpnown Obtained by our MRMOGA using 1 and 16 processors for the problem 0syY.

f OSY
of PNSGA-II-8

(a) PFypown obtained with 8 processor. (b) PFypnown obtained with 16 processors.

Figure 25. PFypown Obtained by the PNSGA-1I using 8 and 16 processors for the problem 0sy.
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C(M, P) PNSGA-II-1 PNSGA-II-4 PNSGA-II-8 PNSGA-II-12 PNSGA-II-16
MRMOGA-s-1 0.880667 0.315667 0.222000 0.245667 0.211333
MRMOGA-s-4 0.964000 0.667333 0.557000 0.564333 0.537667
MRMOGA-s-8 0.967333 0.711667 0.620667 0.633333 0.599333
MRMOGA-s-12 0.977333 0.745333 0.668667 0.674667 0.649333
MRMOGA-s-16 0.980667 0.779000 0.703000 0.711000 0.690000

C(P,M) MRMOGA-s-1 | MRMOGA-s-4 | MRMOGA-s-8 | MRMOGA-s-12 | MRMOGA-5-16

PNSGA-II-1 0.744000 0.105667 0.037667 0.023000 0.015000
PNSGA-II-4 0.928333 0.592333 0.446667 0.327667 0.290667
PNSGA-II-8 0.946000 0.678000 0.523000 0.418000 0.382667
PNSGA-II-12 0.942667 0.675667 0.532667 0.406667 0.377333
PNSGA-II-16 0.955667 0.711667 0.553333 0.432000 0.395000
Table VIII. Direct comparison between our MRMOGA and the PNSGA-II using the C

metric for problem KIT.

comparison of the Figures 27(a) and 28(a) corresponding to the PFjy,0un sets generated by
each algorithm. This means that our MRMOGA is not affected by the fact that elements in
PF,ye of KIT are situated in the boundary of the feasible region. In the direct comparison
with respect to the C metric (Table VIII), our MRMOGA also clearly surpasses the PNSGA-II.
This problem is the only one, among the problems used in this study!l, where our MRMOGA
performs better using one processor.

Based on the visual comparison between the non-dominated fronts obtained by each
algorithm and on the results in SP of Figure 26(c), we can state that our MRMOGA achieves

a better distribution.
7.5. Methodology to Evaluate the Efficiency

In the experiments presented in this section, the metrics will be calculated based on the

orthodox speedup. To define the stopping criterion required for calculating this speedup we

Il Alongside the six problems of this paper, three more problems were considered in the experiments but not
included here.

Copyright © 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2006; 00:1-7

Prepared using cpeauth.cls



LOPEZ JAIMES & COELLO COELLO 59

0.18 (E
80 /,/ 0.16
0.14
60
)/< 0.12
0.10
o 4 o y———
2] o 008 —8— MRMOGA
—O— PNSGA-II
—8— MRMOGA| 0.06
20 —O— PNSGA-II 004
0.02
0 \o\g
0.00 * -
i i ]
1 4 8 12 16 1 4 8 12 16
Number of processors Number of processors
(a) SC comparison (b) IGD comparison
0.22 T
0.20
0.18
0.16 N
o 014
[ —=8— MRMOGA
—O— PNSGA-II /

Number of processors

(c) SP comparison

Figure 26. Effectiveness of our MRMOGA and the PNSGA-II according to the number of processors for
the problem KIT.

must determine how to measure the “quality” of a PFypown set. For this purpose, we use
the hypervolume metric (HV') suggested in [51], which computes the volume of the region
dominated by PFlnown- In these experiments, the pMOEA is stopped when the value of HV

is equal or greater than a value previously set.
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Figure 27. PFypown Obtained by our MRMOGA using 1 and 16 processors for the problem KIT.
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Figure 28. PFjpown Obtained by the PNSGA-II using 1 and 16 processors for the problem KIT.
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If we want to obtain precisely the HV value of the PFyp0un(t), it is necessary to gather

all PFinown (’t’) sets from each processor p after each generation ¢. Nonetheless, this procedure
introduces an overhead due to the communications involved. This overhead is not present in
the serial algorithm which results in an unfair comparison. To overcome this problem, in our
experiments we considered that the PFinown (f) set of the higher resolution island reflects
closely to PFynown- Therefore, the HV metric is calculated only for the highest resolution
island. In this way, the cost to compute HV is compensated in the ratio of the speedup.
Unfortunately, for the PNSGA-II we cannot proceed in a similar way, since all the islands equally
contribute to form the known Pareto front. As a consequence, we decided not to include in

the paper an efficiency comparison between the PNSGA-II and our MRMOGA.

In the experiments described in the next sections, only the strict topology is considered.
Likewise, the metrics were computed only for the ZDT1 problem. A study considering more
problems is left for a future work. The orthodox speedup of our MRMOGA is calculated in
the following way: the serial algorithm is MRMOGA-s-16 (16 islands) running on a single
processor. On the other hand, the parallel algorithm is MRMOGA-s-16 on an increasing number
of processors (from 2 to 16). The population size of each island is set to 25 (16 x 25 = 400
individuals) for all runs. Note that MPI assigns cyclicly the processes (islands) to the available
processors. Therefore, it is possible that some processors have unequal workload depending
on the number of processors. This situation is exhibited with 6 and 10 to 14 processors. For
instance, with 10 processors there are 6 processors with 2 islands and 4 processors with only

one island.
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7.6. Evaluation Using the Orthodox Speedup

As can be seen in Figure 29(a), with any number of processors MRMOGA achieves a sublinear
speedup, but it is near-linear for some number of processors. From 2 to 8 processors the
speedup tends to be superlinear as reveals the F' metric, since this decreases with the number
of processors (Figure 29(c)). However, between 10 and 14 processors the speedup begins to
decay, and for 16 processors the speedup is again near to the linear speedup. This behavior
is due to the load imbalance when 10 to 14 processors are used. In a balanced situation the
low resolution islands are faster than the high resolution islands, but the imbalance causes
the low resolution islands to become the slowest ones (since there are two islands in the same
processor). Therefore, the high resolution islands stay idle waiting for the immigrants coming
from the low resolution islands, which causes the speedup drops.

If we consider a balanced environment (e.g., excluding 10 to 14 processors) the efficiency
seems to get better whenever a processor is added as shows the graph in Figure 29(b). In a
similar manner, F' decreases with an increasing number of processors. This behavior might
be caused by the addition of cache memory. Whichever this factor is, we can say that our
MRMOGA has very good scalability as reveals the decrement of F. Additionally, the overhead
due to communications and synchronization increases very slowly as more processors are used

as shows E.
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Figure 29. Results of the efficiency of our MRMOGA according to the orthodox speedup, efficiency, and
serial fraction for problem zDT1.

8. CONCLUSIONS AND FUTURE WORK

The main goal of this paper was to propose a novel parallel multi-objective evolutionary
algorithm whose design takes care of both effectiveness and efficiency. The proposed approach

is based on the island paradigm with heterogenous nodes and is characterized by dividing
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the decision variable space through an encoding of the solutions with a different resolution in
each sub-population. This scheme can be seen as a division of the decision variable space. The
performance assessment considered both effectiveness and efficiency. In order to evaluate the
performance of our proposal, its results were compared against those obtained by a parallel
version of the NSGA-II. The evaluation was carried out using 6 well-known multi-objective
test problems which embody different characteristics that cause difficulties for MOEAs. The
most important group of problems has a large search space that makes them well-suited to be
solved by a pMOEA. Other problems were selected for having a disconnected true Pareto front
that shows the capacity of a pMOEA to maintain a diverse population. Finally, the assessment
considered two constrained test problems.

Our proposal showed a good trade-off between effectiveness and the communications
overhead that impacts in the efficiency. Based on the obtained results, we can state that
to divide the decision variable space with different resolutions considerably improves the
effectiveness and efficiency of a parallel MOEA. In addition, the proposed algorithm has a
great exploratory ability, because in all the test functions, it was able to find solutions with
a better spread along the real Pareto front than the algorithm with respect to which it was
compared. Also, our MRMOGA showed good ability to solve constrained MOPs, even for those
problems recognized for their difficulty (such as 0sY).

From the comparative study we can conclude that the proposed scheme to divide the decision
variable space noticeably improves the convergence of a pMOEA. In all but one of the problems

considered, the PNSGA-II performs better than our MRMOGA when using only one processor**.

**By using only one processor each serial optimizer is isolated and, in consequence, our MRMOGA does not
divide the search space and the PNSGA-II is reduced to the original NSGA-II.
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However, using more than one processor, our MRMOGA surpasses the PNSGA-1I. Our approach

was also shown to maintain a well-spread P Fjpown Set, since in all the problems, it covered the
entire Pareto-optimal front. Throughout the empirical study performed, we observed that the
scheme of our MRMOGA has more value in problems with large search spaces such as the zDT
problems. In these problems, MRMOGA achieved better results in terms of effectiveness as well
as in terms of efficiency. The exploration of the search space by using multiple resolutions not
only improves convergence, but also makes it possible to yield solutions that would be difficult
to find otherwise. This was observed in the problem 0SY, in which some solutions were found
only when the decision variable space was divided. The main weakness of our approach is the
poor distribution at the “fine-grain level”. That is, although its PFjy,0wn covers all the extent
of the true Pareto front, the vectors are not equidistantly spaced. Also, it is interesting to
notice that in some problems the convergence (considering the SC metric) of an algorithm
reached its maximum with a certain number of processors and then dropped. This means that
in those cases it does not make any sense to use more processors because the convergence will
not increase. This implies that the algorithm is not able to take advantage of an increasing
number of processors or, in other words, the algorithm has poor scalability. This behavior
suggests the consideration of both the gains in convergence and the speedup to decide whether

or not a pMOEA has good scalability.

Since the spread of non-dominated solutions is the weakest point of our approach, as part
of our future work we want to integrate a new mechanism to achieve a better distribution. An
option to cope with this problem is the use the e-dominance mechanism [32], which is a relaxed

form of Pareto dominance that allows us to control convergence of a MOEA. This technique
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could be integrated to the optimizer of each island or applied at the end of the search process
when the root processor combines all the non-dominated fronts coming from all processors.
Due to the unexpected capacity shown by our MRMOGA for solving constrained problems, it
would be interesting to carry out a comparative study consisting of more constrained problems
to observe in more detail the performance of the approach on these problems. Our future work
also considers applying MRMOGA to real-world problems with very costly objective function
evaluations. This will allow us to have a more pragmatic assessment of the usefulness of our

MRMOGA.
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