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Abstract—The aim of any data mining technique is to build
an efficient predictive or descriptive model of a large amoun of
data. Applications of evolutionary algorithms have been fand to
be particularly useful for automatic processing of large quantities
of raw noisy data for optimal parameter setting and to discoer
significant and meaningful information. Many real-life data
mining problems involve multiple conflicting measures of peor-
mance, or objectives, which need to be optimized simultanesly.
Under this context, multi-objective evolutionary algorithms are
gradually finding more and more applications in the domain of
data mining since the beginning of the last decade. In this te+
part article, we have made a comprehensive survey on the reat
developments of multi-objective evolutionary algorithmsfor data
mining problems. In this Part-I, some basic concepts relatg
to multi-objective optimization and data mining are provided.
Subsequently, various multi-objective evolutionary apppaches
for two major data mining tasks, namely feature selection ad
classification are surveyed. In Part-1I of the article [1], we have
surveyed different multi-objective evolutionary algorithms for
clustering, association rule mining and several other datamining
tasks, and provided a general discussion on the scopes forttue
research in this domain.

Index Terms—Multi-objective evolutionary algorithms, Pareto
optimality, feature selection, classification.

I. INTRODUCTION

Data mining involves discovering novel, interesting, antp

Traditionally, evolutionary algorithms (EAS) [4] were uke
to solve single objective problems. However, many real-lif
problems have multiple conflicting performance measures or
objectives, which must be optimized simultaneously to exghi
a trade-off. Optimum performance in one objective often
results in unacceptably low performance in one or more of
the other objectives, creating the necessity for a commemi
to be reached [2]. This facet of multi-objective optimipatis
highly applicable in the data mining domain. For example, in
association rule mining, a rule may be evaluated in terms of
both its support and confidence, while a clustering solution
may be evaluated in terms of several conflicting measures
of cluster validity. Such problems thus have a natural multi
objective characteristic, the goal being to simultangoogti-
mize all the conflicting objectives. A number of EAs have
been proposed in the literature for solving multi-objeetiv
optimization (MOO) problems [5], [6]. Unlike single objé&at
EAs, where a single optimum solution is generated in the final
generation, the definition of optimality is not straightf@rd
for the multi-objective case due to the presence of multiple
objective functions. In MOO, the final generation yields & se
of non-dominated solutions none of which can be improved on
any one objective without degrading it in at least one otBgr [
]. Multi-objective evolutionary algorithms (MOEAS) [5]

potentially useful patterns from large data sets. The dijec (0] have become increasingly popular in the domain of data

of any data mining process is to build an efficient predictive

mining over the last few years. Typical data mining tasks

descriptive model of a large amount of data that not only pdBelude feature selection, classification, clusteringjiistering,

fits or explains it, but is also able to generalize to new da

very important to optimize the model parameters for sudaéss
application of any data mining approach. Often such proble

s association rule mining, deviation detection, etc. A vgrief

MOEAs for solving such data mining tasks can be found in

nihe literature. However, no previous effort has been made fo

due to their complex nature, cannot be solved using stand&yi€Wing such methods in a systematic way.
mathematical techniques. Moreover, due to the large size of

the input data, the problems sometimes become intractable’

Therefore, designing efficient deterministic algorithm®iten

not feasible. Applications of evolutionary algorithms,thvi
their inherent parallel architecture, have been found to IB%
potentially useful for automatic processing of large anteun

Motivated by this, in this two-part paper, we attempt to make
a comprehensive survey of the important recent development
of MOEAs for solving data mining problems. This survey
cuses on the primary data mining tasks, namely feature
selection, classification, clustering and associatioa mihing,

of raw noisy data for optimal parameter setting and to discoySiNce Most of the multi-objective algorithms that are agpli

significant and meaningful information [2], [3].
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to data mining have dealt with these tasks. In this Part-I,
we discuss the basic concepts of multi-objective optinorat
and MOEAs, followed by fundamentals of data mining tasks
and motivation for applying MOEAs for solving these data
mining tasks. Subsequently we review different MOEAs used
for feature selection and classification tasks of data rginin
In Part-11 of the paper [1], different MOEAs used for cluster
ing, association rule mining and other data mining tasks are
surveyed followed by a discussion on future scope of rebearc



Il. MULTI-OBJECTIVEOPTIMIZATION B. Multi-objective Evolutionary Algorithms

In this section, some basic concepts of MOO are first intro- Traditional search and optimization methods such as
duced. Then, an overview of available MOEAs is provided.gradient-based methods are difficult to extend to the multi-
objective case because their basic design precludes the con

A. Concepts of Multi-objective Optimization sideration of multiple solutions. In contrast, populatioased

In many real-world situations, there may be several obje@€thods such as Evolutionary Algorithms are well-suited fo
tives that must be optimized simultaneously in order tosaly handling such situations. There are different approacbes f
certain problem. This is in contrast to the problems tackied Solving multi-objective optimization problems [5], [6].
conventional EAs, which involve optimization of just a sisg MOEAs have evolved over several years, starting from
criterion. The main difficulty in considering multi-objeee  traditional aggregating approaches to the elitist Papetsed
optimization is that there is no accepted definition of optim approaches and, more recently, to the indicator-based al-
in this case, and therefore it is difficult to compare on@orithms. In the aggregating approaches, multiple ohjecti
solution with another one. In general, these problems adrftifictions are combined into a single scalar value using htsig
multiple solutions, each of which is considered acceptaht and the resulting single-objective function is then optieai
equivalent when the relative importance of the objectiwes {¥sing conventional evolutionary algorithms. In populatio
unknown. The best solution is subjective and depends on #@sed non-Pareto approaches such as the Vector Evaluated

need of the designer or decision maker [2], [5], [6]. Genetic Algorithm (VEGA) [7], a special selection operator
We are interested in the multi-objective optimization prodS used and a number of subpopulations are generated by
lem (MOP), which can be stated as folldws], [6]: applying proportional selection based on each objectine-fu

tion in turn. Among the Pareto-based approaches, Multiple
minimize ﬁ(f) = [f1(), fo(D), ..., fu(T)] (1) Objective GA (MOGA) [8], Niched Pareto GA (NPGA) [9],
and Non-dominated Sorting GA (NSGA) [10] are the most

subject to: . ) representative non-elitist MOEAs. Although these techag]
gi(#) <0 i=1,2....m (@) take into account the concept of Pareto-optimality in their
hi(Z)=0 i=1,2,...,p (3) selection mechanism, they do not incorporate elitism and,
where 7 = [z, 22 . ]T is the vector of decision the_refore, they canr_lot guarantee that the nondominated so-
. ey ..~ lutions obtained during the search are preserved. In tlee lat
variables, f; : R" — R, ¢ = 1,...,k are the objective

1990s, a number of elitist models of Pareto-based multi-
objective evolutionary algorithms were proposed. The most
representative elitist MOEAs include Strength Pareto Evo-
rIutionary Algorithm (SPEA) [11] and SPEA2 [12], Pareto
Archived Evolutionary Strategy (PAES) [13], Pareto Enyalo
Based Selection Algorithm (PESA) [14] and PESA-II [15],
and Non-dominated Sorting Genetic Algorithm-11 (NSGA-II)
[16]. Most of the recent applications of MOEAs for data
mining problems have used one of these Pareto-based elitist
approaches as their underlying optimization strategy. Aeano
recent trend regarding the design of MOEAs is to adopt a
gglection mechanism based on some performance measure. For
example, the Indicator-Based Evolutionary Algorithm (IBE
[17] is intended to be adapted to the user’s preferences by
formalizing such preferences in terms of continuous gdnera
Definition 3. For a given MOP,F(z), the Pareto Optimal izations of the dominance relation. Sin<_:e then, (_)ther mtdmc
Set P, is defined as: basgd appr(_)aches,_sqch as the S Metrlc Selection Evolggiona
. L . Multi-objective Optimization Algorithm (SMS-EMOA) [18]
P :={T7eF| -3z €F F@) < F@)} (4) (which is based on the hypervolume [19]) have also been pro-

Definition 4. For a given MOPF(:E), and Pareto Optimal Set, posed. The main advantage of indicator-based MOEASs such as

functions andg;,h; : R" - R, i=1,...,m, j=1,...,p are
the constraint functions of the problem.

To describe the concept of optimality in which we a
interested, we will introduce next a few definitions.

Definition 1. A vector @ = (u1,...,ux) is said todominate

(in a Pareto sense) another vectoe (v1,...,v;) (denoted
by @ < ¥) if and only if @ is partially less tharv, i.e., Vi €

{1,...,/€}, u; <wv; ANJi € {1,...,k}:ui < ;.

Definition 2. A solution ¥ € F (where F is the feasible
region, in which the constraints are satisfied) is said to
Pareto Optimal with respect toF if and only if (iff) there
is no«’ € F for which ¢ = F(2) = (fi(«), ..., fu(2'))

dominatesi = F(Z) = (f1(), ..., fx(%)).

P*. the Pareto Front P.F* is defined as: SMS-EMOA is_that they seem to scale better in the presence
i} . of many objectives (four or more). However, approachesdase
PF*={u=F(Z)|2€P} (5)  on the hypervolume are very computationally expensiveceSin

We thus wish to determine the Pareto optimal set from the ¥¢ don’t review any application of an indicator-based MOEA
F of all the decision variable vectors that satisfy (2) and (3} data mining, these approaches are not discussed further
Note however that in practice, not all the Pareto optimal sé this paper, and they are mentioned only for the sake of
is normally desirable (e.g., it may not be desirable to haf@@mpleteness.

different solutions that map to the same values in objective I1l. DATA MINING FUNDAMENTALS

function space) or achievable. L . o .
Data mining involves discoveringnteresting and poten-

Lwithout loss of generality, we will assume only minimizatiproblems.  tially useful patterns of different types such as associations,



summaries, rules, changes, outliers and significant strest into the subspace of dimensialy = |F| < d defined byF.
Commonly, data mining and knowledge discovery are treatétlis used to judge the quality of this subspace.
as synonymous, although some scientists consider datagnini Feature selection can be either supervised or unsupervised
to be an integral step in the knowledge discovery proce$®r the supervised case, the actual class labels of the data
In general, data mining techniques comprise of three comeints are known. In filter approaches for supervised featur
ponents [20]: a model, a preference criterion and a seardiection, features are selected based on their discrionina
algorithm. Association rule mining, classification, ckriétg, power with regard to the target classes. In wrapper appesach
regression, sequence and link analysis and dependency nfodsupervised feature selection, the utility/fis usually mea-
eling are some of the most common functions in current dagared in terms of the performance of a classifier by comparing
mining techniques. Model representation determines bah the class labels predicted by the classifier for featureespac
flexibility of the model for representing the underlying aatwith the actual class labels. For the unsupervised casealact
and the interpretability of the model in human terms. class labels are not available. Hence, in filter approaches,
Data mining tasks can broadly be classified into two cafieatures are selected based on the distribution of theiregal
egories, predictive or supervised and descriptive or unsaeross the set of point vectors available. In wrapper-based
pervised [3], [21]. The predictive techniques learn frore thunsupervised feature selection, the utility of a featuressti
current data in order to make predictions about the behavibris generally computed in terms of the performance of a
of new datasets. On the other hand, the descriptive tecasiqualustering algorithm when applied to the input dataset i th
provide a summary of the data. The most commonly uséshture spacé-.
tasks in the domain of data mining include feature selection
classification, regression, clustering, association mieing,
deviation detection, etc. In this article we have mainly f
cused on the four tasks, i.e., feature selection, classiica  The problem of classification is basically one of partitiani
clustering and association rule mining. This is becauset mdise feature space into regions, one region for each catexgjory
of the multi-objective algorithms applied to data mining/@a inputs [22]. Thus, it attempts to assign every data poinhén t
dealt with these tasks. MOEAs have thoroughly been appliedtire feature space to one of the possible (44y,classes.
in these four primary fields of data mining. These are briefl@lassifiers are usually, but not always, designed with &dbel
described in the Part-l (feature selection and classifioati data, in which case these problems are sometimes referred
and Part-ll [1] (clustering and association rule mining) dfo as supervised classification (where the parameters of a
the paper. However, for the sake of completeness, other dal@ssifier function are learned). Supervised classifiessiras
mining tasks, where MOEAs have found applications are altfiat a set of training data is available. The training ddtase
discussed in Part-11 of the paper. consists of a set of instances that are properly labeled with
the correct class labels. A learning algorithm then geesrat
a model that attempts to minimize the prediction error on the

. , . training instances as much as possible, and also geneaalize
Feature selection problem deals with selection of an opf, o possible to new data

mum relevant set of features or at_tr_ibut_es that are NeoEssarThe problem of supervised classification can formally be

for the recognition process (cl_aSS|f|cat|on or clusterinig) stated as follows: Given an unknown functign: X' — ¥

helps reducing the dimensionality of the measurement spa&ﬁe ground truth) which maps input instancese X to

The goal of feature selegtlon is magnly threefold. Fwsﬂlys output class labelyy € Y, and a training dataseD —

practically and computationally difficult to work with alhé (%1, 91) (Xn,yn)} which is assumed to represent ac-
) AR ) n

features if the number of features is too large. Secondly;ynacurate examples of the mapping produce a functiorh, :

of the given features may be noisy, redundant and irreleva/pt ; ;
e . ' L that approximates the correct mappings closel
to the classification or clustering task at hand. Finallysia — PP Ao y

ible. The | i Igorithms help in identifying th
problem when the number of features becomes much IaralS possible e learning algorithms help in identifying

%dss boundaries in the training set as correctly as pesbipl
than the number of input data points [2]. For such Caserﬁinimizing the training error d y as pasbip
reduction in dimensionality is required to permit meanigf Various classification algorithms are available in the lit-

data ar;allj);5|sl[3]._![:heatufre S?_fl_e(_:t'otn 1;a0|ll_:f1te§ the u$_:tﬂy erature. Some common examples of the supervised pattern
computable aigoriinms for eflicient classiiication or 9- classification techniques are the nearest neighbor (NN, rul

In generalf the feature sgle_cho_n problem, I_D) can f_or- the Bayes maximum likelihood classifier, Support Vector Ma-
mally be defined as an optimization problem: determine ﬂ&%ines (SVM), and neural networks [3], [22], [23]. A number
feature set™ for which of applications of evolutionary algorithms for classifioat

P(F*) = gngp(p, X), (6) purposes can also be found in the literature [22].
[S

B. Classification

A. Feature Selection

where() is the set of possible feature subsdisrefers to a
feature subset an® : Q x ¢» — (R) denotes a criterion to
measure the quality of a feature subset with respect toilityut ~ Clustering [24] is an important unsupervised classificatio

in classifying/clustering the set of poiniS € . The elements technique where a set of patterns, usually vectors in a mul-
of X, which are vectors ini-dimensional space are projectedidimensional space, are grouped into clusters in such a way

C. Clustering



that patterns in the same cluster are similar in some sertse anThus, support of an itemséf is the number of transactions
patterns in different clusters are dissimilar in the samesse where all the items inX appear in each transaction. The
Clustering in ad-dimensional Euclidean spad®® is the frequency of an itemset is the probability of its occurreimca
process of partitioning a given set afpoints into a number, transaction ifil". An itemset is called frequent if its support in
say K, of groups (or clusters]{Ci,Cs,...,Ck} based on T is greater than some threshotdin_sup. The collection of
some similarity/dissimilarity metric. The value df may frequentitemsets with respect to a minimum suppeht_sup
or may not be known a priori. The main objective of anyn T, denoted byF (T, min_sup) is defined as
clustering technique is to producefa x n partition matrix
U(X) of the given dataseX consisting ofn patterns,X =
{z1,x9,...,z,}. The partition matrix may be represented as
U=lugl, k=1,...,K andj =1,...,n, whereuy; is the
membership of patterm; to clusterC. In the case of hard
or crisp partitioning,

F(T,min_sup) = {X C I, support(X,T) > min_sup}.
(14)
The objective of ARM is to find all rules of the form
X = Y, XOY = 0 with probability ¢%, indicating that
if itemsetX occurs in a transaction, the itemdétalso occurs
with probability ¢%. X andY are called theantecedentaind
1 if z; € Cy, consequenof the rule, respectively. Support of a rule denotes
Ukj = 0 if z; ¢ Cy. (M) the percentage of transactions i that contains bothX
! and Y. This is taken to be the probabilitP(X JY). An
On the other hand, for probabilistic fuzzy partitioning bt association rule (AR) is calleflequentif its support exceeds
data, the following conditions hold ol (representing non- a minimum valuemin_sup.

degenerate clustering): The confidence of a rul& = Y in T' denotes the percent-
n age of the transactions il containing X that also contains
Vke{l,2,....,K}, 0< Z“’W’ <n, (8) Y. Itis taken to be the conditional probability(X|Y’). In
J=1 other words,

support(X JY,T)

K .
d X=YT) = 15
vie{l,2,...on} Yy =1, 9) confidence( )= support (X, 1) 15)
k=1 A rule is called confidentif its confidence value exceeds a
and threshold min_conf. Formally, the ARM problem can be
K& o 10 defined as follows: Find the set of all rulg® of the form
> D uk=n. (19) ¥ — vy such that
k=1 j=1
Several clustering methods are available in the literature R= X =YX,y CLXNY =0,
These can be broadly categorized into hierarchical (agglom XUY C F(T, min_sup),
erative and divisional), partitional (K-means, fuzzy Cane confidence(X = Y,T) > min_conf}. (16)

etc.) and density-based (Density-Based Spatial Clugtesin ] _
Applications with Noise (DBSCAN), Clustering for LargeGenerally, the ARM process consists of the following two
Applications (CLARA), etc.) clustering [2], [3]. Evolutiary Steps [26]:
algorithms have also widely been used for clustering [25]. 1) Find all frequent itemsets.

2) Generate strong ARs from the frequent itemsets.

The number of itemsets grows exponentially with the num-
o o o . ber of items|I|. A commonly used algorithm for generating
The principle of association rule mining (ARM) [26] liestequent itemsets is thapriori algorithm [26], [27]. This is

in the market basket or transaction data analysis. Assogiatyssed on the concept of downward closure property which
analysis is the discovery of rules showing attribute—vals®d- iates that if even one subset of an itemXeis not frequent,

ciations that occur frequently. Lét= {iy,i2,...,i,} be @St than y cannot be frequent. It starts from all itemsets of size
of n items andX be an itemset wher& C I. A k-itemsetis ,ne and proceeds in a recursive fashion. If any itemigés

a set ofk items. LetT’ = {({1, X1), (t2, X2), ..., (tm; X))} not frequent, then that branch of the tree is pruned, singe an
be a set ofn transactions, wherg and X;, i = 1,2,...,m, possible superset o can never be frequent.
are the transaction identifier and the associated itemspéce

tively. The coverof an itemsetX in T is defined as follows:

D. Association Rule Mining

E. Why to use Multi-Objective Data Mining?

cover(X, T) = {ti|(ti, X;) € T, X C Xi}. (11) The most important question in data mining problems
is how to evaluate a candidate model, and, obviously, this
guestion depends on the type of data mining task in hand. For
support(X,T) = |cover(X,T)| (12) example, a feature selection model may be evaluated based on
its performance in correctly classifying the dataset, wher

a clustering model can be evaluated based on some cluster
validity index. Thus, most of the data mining problems can be
thought as optimization problems, where the aim is to evolve

The supportof an itemsetX in T is

and thefrequencyof an itemset is
support(X,T)

frequency(X,T) =
T

(13)



a candidate model that optimizes certain performancerieite features classify (for the supervised case) or cluster tffer
However, the majority of data mining problems have multiplansupervised case) the dataset. However, evaluationetfted
criteria to be optimized. For example, a feature selectidaatures by a single criterion does not work equally well for
problem may try to maximize the classification accuracy a/hikll datasets. Therefore, the need of simultaneously opitigi
minimizing the size of the feature subset. Similarly, a rulsultiple such criteria arose. Multi-objective featureesion
mining problem may optimize several rule interestingne$®lps improve the robustness of the feature selection rdstho
measures such as support, confidence, comprehensibitity, Ih the recent past, a number of MOEAs, both in supervised and
[28], etc. at the same time. Similar cases may arise foruasupervised domains, have been proposed. Next, we review
clustering problem also where one tries to optimize sevethkese methods.

cluster validity indices simultaneously to obtain robusta

improved clustering, because no single validity indexeris A. Underlying MOEAs

well for all types of datasets [2]. Hence, most of the data Several MOEAs have been used as the underlying optimiza-
mining problems are multi-objective in nature. Therefdte, tion tool for a number of different feature selection algfamis.

is natural to pose the data mining problems as multi-objectiln [33], [34] NPGA has been adopted. An elitist version of
ones. For this reason, over the past decade, several resesardNPGA, called ENPGA has been employed in [36]. NSGA
have applied MOEAs for different data mining problems. has been adopted in [39], [44], [63], [64]. In [40], [42],

A MOEA provides a set of non-dominated solutions, whic6], NSGA-II has been used as the MOO tool. In [35], a
the user can compare (it's important to keep in mind that tiReduced Pareto Set Genetic Algorithm (elitist) (RPSGAB) [6
set of non-dominated solutions represents the best pessifths been employed as the optimization method. In RPSGAe,
trade-offs among the objectives). Then, a single solutiomf a clustering algorithm is applied to reduce the size of the
this set can be chosen, based on the user’s preferences. TRereto optimal set. In [66], an Evolutionary Local Search
are several possible schemes for selecting a single solutidlgorithm (ELSA) has been used. ELSA works on each
For example, one can generate a consensus solution thasshaljective separately [67]. In [45], PESA-II has been used fo
the knowledges contained in all the non-dominated solstionmulti-objective feature selection.

This method has been successfully used in clustering [29] )

and classifier ensemble [30] problems. Some other appreacBe Chromosome Representation

for choosing the final solution from the non-dominated front The first and foremost step for solving a feature selection
are discussed in this survey in subsequent sections. Itpi®blem using MOEASs is to encode a possible feature subset
worth noting, however, that for some problems, all the noia the form of a chromosome. Almost all the MOEA-based
dominated solutions are considered as final solutions withdeature selection algorithms have used a binary chromosome
having to choose a single solution from the set. For exampte, encode a feature subset. The length of each chromosome
in the problem of association rule mining [31] or biclusteri is taken asd, whered is the total number of features. Each
[32], all the non-dominated solutions, representing ra@ed position of the chromosome can take either a ‘1’ or a ‘0’ value
biclusters, respectively are considered as the final solget. If position: has value ‘1’, then the featuies considered to be

Due to the above reasons, MOEAs have been popularly usepart of the selected feature subset. If positibas a value of
for data mining problems. In this two-part article, we haue s ‘0, then the corresponding feature is ignored. For exarxiple
veyed a number of different MOEAs techniques applied to dada= 10, then the chromosoni#10110101 encodes the feature
mining problems mainly focusing on encoding techniquesubset{3,5,6,8,10}. This approach has been used in both
objective functions, evolutionary operators and final 8olu supervised [33], [35], [38], [39], [40] and unsupervise®]4
selection strategies. In this part of the article, we havieveed [44], [45] feature selection techniques using MOEAS. Inecas
different MOEAs used for feature selection and classifieati of unsupervised methods, the goodness of the candidatedeat
problems. In Fig. 1, we have outlined the different MOEAsubset encoded in a chromosome is measured in terms of the
based feature selection and classification approachesaredi performance of some clustering algorithm on the projected
in this part along with their corresponding references.ha t subspace of the input dataset. As the number of clusters
subsequent sections, these approaches are reviewed ih detas significant impact on the performance of a clustering
algorithm, hence it is also encoded in the chromosome in some
works [44], [45].

One possible criticism of binary encoding could be that

The feature selection problem can be easily posed asthe chromosome lengths for binary encoding may be very
optimization problem where the goal is to select a subdatge if the dimension of the input dataset is large. The use
of features for which some feature-subset evaluation -critef binary encoding may lead to longer decoding times and
rion is optimized. Therefore, genetic and other evolutignaslower convergence, but has the advantage of being a ualvers
algorithms have been widely used for the feature selectiencoding, that can be used to represent any sort of decision
problem [61], [62]. Evolutionary algorithms for feature-sevariables. The use of alternative encodings, such as irgege
lection techniques mostly take a wrapper approach wheseuld lead to a reduced chromosome length, but requires
a subset of features are encoded in a chromosome andpacial operators for recombination and mutation, and may
feature evaluation criterion is used as the fithess funclibe also require additional mechanisms (for example, rematfon
feature subsets are evaluated based on how well the seleckeglicate individuals).

IV. MOEAS FORFEATURE SELECTION



[ Supervised- [33], [34], [35], [36], [37], [38], [39], [40], [41], [42]
Feature
MOEAs for selection
feature selection Unsupervised- [43], [44], [45], [46]
& classification o
[ Classification rules- [47], [48], [49], [50], [51], [52], [53], [54]
Classification |  Class boundaries [55]
| Model building — [56], [30], [57], [58], [59], [60]

Fig. 1. MOEAs for feature selection and classification teslsreyed in this part of the article (with references)

C. Obijective Functions First, is the minimization of misclassification rate, setds

f th lti-obiect luti ¢ leati the minimization of imbalance in class sizes, and the thsrd i
Most of the muiti-objective evolutionary feature se €0lioyhe minimization of number of features. 70% of the training

approaches in current use have addressed the supervisedh g are used to train a feature correlation-basesifitas
problem, i.e., when the class label of the tr_amlng objects a(GS-cIassifier) [68], [69] and the above measures are cagdput
known. However, there are a few unsupervised approaches,gSe remaining 30%. In [37], the two objective functions to
well. Here, we briefly discuss the different objective fuans o inimized are the misclassification error and the sizéef t

tha}t hf'jwe been simultqneously pptimized by diﬁereqt Mullyee using a C4.5 decision tree classifier built using thecsed
objective feature selection algorithms for both the sujsed feature subset. Two objectives, the number of featurestaad t

and the unsupervised cases. misclassification rate (using a neural network classifierjeh

1) Supervised CaseSupervised approaches assume th@sg peen minimized in [39], [63]. In [41], these two crieri
existence of a training set of objects for which actual clagge optimized but they have used a logistic regression (LR)
labels are known. Therefore, in these cases, usually sogi®) SvM classifier. To find out the most relevant and non-
classification algorithms are used to measure the goodngsgundant feature subset, in [40], the two objective fuomti
of the selected feature subset based on how well they Ggfbpted were the minimization of correlation among the
classify the training examples using a certain classifi®e Tselected features and the maximization of correlation amon
performance of the feature subset is evaluated using SOfRg selected features and class labels of training patterns
classification performance metrics. One of the pioneering [42], different combinations of feature evaluation erig,
works in this regard was done by Emmanouilidis et al. [33ych as the number of inconsistent pattern pairs, feature vs
where the two objective functions correspond to the migtass correlation, Laplacian score, representation pytand
classification rate and the number of features. Both objectiintra- and inter-class distances have been used as thetiobjec

functions are minimized with the expectation of reducing thyynctions. They have used a filtering approach for computing
misclassification rate as much as possible, with a minimuiRese criteria independent of a classifier.

set of features. Two classifiers, namely probabilistic akur Althoudah . hes h b din th

network (PNN) and multilayer perceptron (MLP) are used t]0 ough various approaches have Deen proposed in the
: e ! e iterature, it is worth noting that feature selection résul

compute the m|scla55|f|f:at|on rate. The mlscla35|f|catu;a rn avily depend on the chosen classification algorithm that

for a subset of features is computed by randomly breaking t|s%used as the wrapper. Moreover, the number of objective

input training set into three subsets. The three subsetssaa : . ’ T

for training, validation and testing, respectively. Seesuch functions and their choice play an important role on the

. - .. _gelection of the final feature subset. It would be therefore a
cycles are performed and the average misclassificatiorigate .

computed. In a similar approach, the authors have compu{" e idea to perform a comparative study of the performance

. : Jihe proposed techniques based on some benchmark datasets
the same objective values based on the Generalized Remes%) the authors’ best knowledae no comparative study of this
Neural Network (GRNN) classifier [34]. The authors have also u wiedg paratlve study !

used a 1-NN classifier in [36] for optimizing three objectivgort has been reported so far in the specialized literature.
functions, viz., number of features, sensitivity and speity 2) Unsupervised CaseThere have been a few works
of the classification result. In [35], a support vector maehi related to the development of evolutionary algorithms for
(SVM) classifier with Radial Basis Function (RBF) kernel hasulti-objective unsupervised feature selection as welt. the
been used for evaluating the encoded feature subset. $evensupervised case, the algorithms do not assume the easten
objective functions regarding classification performarsteh of true class labels, and, therefore, there is no trainihgFse

as accuracy, false positive rate (FPR), false negative r#tés case, usually a clustering algorithm is used to evaluat
(FNR), precision, recall, F-measure and number of featares a feature subset on the basis of how well these features are
considered and different combinations are tested. Theiegsetrable to identify the clustering structure of the datasethin

are computed based on 10-fold cross-validation on theitigin regard, some cluster validity index [70] is used to evaluage
set. In [38], three objective functions have been optimizedoodness of the clustering solution generated by the featur



subset. One of the first studies in this direction was done hye provided with respect to standard crossover operatals a
Kim et al. in [43]. K-means and Expectation Maximizatiortherefore, it is not possible to judge the actual improvetsien
(EM) clustering are used to evaluate a feature subset edcodehieved by its use.

in a chromosome. Different clustering objectives, all ofieth
are a function of the number of clusters, the number of fe
tures, the intra-class similarity and the inter-classidigarity
are simultaneously optimized. The MOEA adopted in this As stated before, MOEAs produce a set of non-dominated
case is the Evolutionary Local Search Algorithm (ELSA)solutions in the final generation. Each of these solutions
In a similar work, Morita et al. [44] also used K-means agencodes a possible feature subset. None of the non-domiinate
the wrapper clustering algorithm, but they minimized twsolutions can be said to be better than the others. Howerer, f
objective functions, viz., the number of features and thHeractical reasons, itis necessary to select a single ealértom
cluster validity indexDB [71]. In [45], Handl and Knowles the final non-dominated set. In many of the multi-objective
examined different combinations of objective functiongtie feature selection approaches that were reviewed for tinegu
context of multi-objective evolutionary feature selenti®ne this issue has been properly addressed.

objective was taken as the number of selected featureshwhic 1) Supervised Casefor the supervised case, identification

is optimized along with one of théDB, normalized DB of the final solution is a relatively easy task, since a ladbele
or silhouette indices (wrapper approach), or with an emtropraining set, which can guide this selection, is available.
measure (filter approach). The K-means algorithm is usedlas[37], an internal cross-validation approach is adopted t
the wrapper clustering algorithm. In [46], again, the numbeelect the final feature subset. Each non-dominated soligio

of features and thé)B index / normalizedDB index are evaluated byk-fold cross-validation and the solutions, which
simultaneously optimized. stay non-dominated at each fold, are returned as the seélecte

For the unsupervised case, the output of the algorithmpagomising solutions. However, this internal cross-vdiioia
heavily depends (as in the supervised case) on the choicésofomputationally expensive. Therefore, they have used th
the objective functions. Moreover, the choice of the cliistge only in the final generation, instead of employing it at every
algorithm as a wrapper evaluator of the candidate featuse sgeneration. Moreover, it is to be noted that this methodltesu
set also plays a major role in deciding the final feature subsi multiple final solutions, from which the user must choose
In [45], a preliminary effort has been made to compare thme, subjectively. In [38], a simple aggregation of the otie
performance of different combinations of objective fuong function values is used as the criterion for selecting thal fin
for multi-objective unsupervised feature selection. Hesve solution from the non-dominated front. This is one of the
a more detailed effort considering different combinatiafis simplest methods, and is computationally inexpensive. How
clustering algorithms and objective functions could be enoever, the final selection depends on the aggregation functio
beneficial to researchers. used. The authors have not clearly explained the aggregatio
function used to find theraw fitnessof the individuals.
However, aggregation of the fithess values to decide the final
solution may raise question on the requirement of geneyatin

The evolutionary operators, crossover and mutation, afe complete Pareto front, because one can optimize the ag-
used to produce the population of the following generation gregated fitness function directly. In [39], a validatiortatzet
a MOEA. Since the MOEAs reviewed in this paper use binaig used for measuring the performance of each non-dominated
encoding, this explains that single-point and uniform soe®r solution on independent data. The solution that provides th
had been the most popular choices in such references. Singlest performance on the validation set is chosen as the final
point crossover has been adopted in [37], [39], [40], [42%olution. This is done with the expectation of selecting the
[44], [64], [63], whereas uniform crossover has been emgdioy solution with the best generalization power to an unknown
in [45], [46]. A few exceptions are also noticed. In [34]yalidation dataset. In [40], a combination of the objective
a two-point crossover operator is employed. In [33], [36functions, feature correlation and feature vs. class tation,

[43], a commonality-based crossover operation is useds Tlealled relative overall correlation is used to select thalfin
operator takes two agents, a parergnd a random mate, andfeature subset from the non-dominated front. However, the
then it scans each bit of both agents. Whenever the bits arghors have not explained well why this relative overall
different, one of the two bits is randomly chosen to obtaim thtcorrelation is not directly used for optimization. In [42,
corresponding offspring bit. Thus, the mate contributdg tm compromise programming-based approach is used to select
obtain the bit string of the offspring, in which all the commo the final solution from the non-dominated front. As the ausho
features of the parents are inherited. In all the above warkshave not explained the method in detail, it is difficult toadiss
standard bit-flip mutation operator has been adopted. its merits or possible drawbacks any further.

It is to be noted that most of the MOEAs reported in the 2) Unsupervised Caselor the unsupervised case, the
papers reviewed depend on standard crossover and mutasielection of the final solution is more difficult, since no
operators, without having to rely on more sophisticatedr-opdabeled data is available. In [44], the authors computed the
ators. In the only references in which a non-standard operatlassification accuracy using the feature subset encoded in
is adopted (i.e., the commonality-based crossover prslyjoueach non-dominated solution, and then selected the solutio
indicated, which is adopted in [33], [36], [43]), no comatis providing maximum classification accuracy. Therefore,sit i

E_. Obtaining a Final Solution

D. Evolutionary Operators



evident that here the authors used a supervised techniquecmmpared their proposed approaches with different existin
choosing the final solution. This approach is not obviouslyon-evolutionary algorithms, or with different modificatis
acceptable when class labels of the samples are unknownofrthe proposed approaches. Some of the possible reasons for
[45], a knee-based approach is adopted. Here, a MOEAnst comparing different approaches may be unavailabilfty o
applied first on the original dataset in order to obtain a nonede/software and limited information for reproducingstixig
dominated front. Thereafter, the same algorithm is appliedsults.

on a random dataset that is created with the same boundnterestingly, in different works, the authors have usesirth

of the original dataset. The resulting non-dominated froproposed MOEA-based feature selection technique in variou
is called thecontrol front Finally, the authors compare thereal-life applications. For example, in [35], the authoewéd
solutions of the actual front with those of the control frontapplied their method in cardiac Single Proton Emission Com-
for each feature, and the solution which is most distant froputed Tomography (SPECT) diagnosis. In [36], the proposed
its corresponding control solution is identified as the fkrsde evolutionary multi-objective feature selection (EMOF8gH-
solution. This approach is able to identify the best traffe-nique has been used for industrial machinery fault diagnosi
solution from the non-dominated front. However, applyihg t Multi-objective feature selection has been applied inrifioi-
feature selection algorithm on random datasets to generatatics, too. For example, in [38], the authors have applied
the control fronts is time consuming. Hence, this method ikeir method in selecting informative genes from microgarra
computationally expensive. In another knee-based aphro@ene expression data. In [39], multi-objective featurect@n
[46], the authors first sort the non-dominated solutions dras been employed for handwritten digit string recognition
the basis of one of the objectives, and then they find tenother interesting application, viz., bankruptcy préidia,
slope of each solution by computing the ratio of differencdsas been addressed in [41] using multi-objective evolatign

of the first objective function to the difference of the settonfeature selection. This discussion shows that MOEA-based
objective function in two consecutive solutions. Next, ythefeature selection approaches have potential to be used for a
select the solution for which the change of slope is maximumwide variety of real-life problems.

This approach is very straightforward in comparison wité th

control front generation, and this is also more computatign V. MOEAS FORCLASSIFICATION

efficient. However, it may not be easy to extend this method MOEAs have been widely used for classification. There

if the number of objective _functlons is more than two. are mainly three different approaches. The most commonly
Although a number of different approaches have been pigyjieq approach is the use of MOEAs for evolving a good
]E)osed for sglgct:ng the flna][ S?]IUt'on f.rllom dtheh nop—fdomﬂgteset of classification rules. The second approach is to employ
ront,_su(;pnsnr:g Y, no?e c:c t e"f]f Ut! 'Zf the in c;]rmanrMOEAs to define the class boundaries (hyperplanes) in the
c?ntalT_e kl)n t € comp e_te ront € el;:lnve Y- D”uehto t E'; nﬁ"‘tutraining data. The final approach is to use MOEAs for training
of multi-objective optimization problems, all the SOlUt® 5,4 nodel the construction of well-known classifiers such as
of the final front share some information of the underlyinge, o) networks and decision tree classifiers. Here, wevevi

dataset. But none of the solution selection methods hayg,q representative algorithms adopted in these thres tfpe
tried to combine this information from all the non—domlrdatea h
ipproaches.

solutions through some kind of ensemble. This approachimig
be, indeed, effective to exploit knowledge from the solugio ) o
obtained. Additionally, to the authors’ best knowledge, 4- Evolving Classification Rules
systematic comparison of methods used for selecting the finaA classification rule can be represented as an If-Then rule
solution from the Pareto front is also missing in the litarat of the formIf <conditior> Then<class>. The <conditior>
represents the antecedent of the rule which usually demotes
set of attribute-value pairs combined with and operator. For
example, a classification rule may be as followsheight >

For the purposes of getting an overview of all the MOEA6 feet and weight>- 70 kg Then class=Biglt is to be noted
based methods that we have reviewed for feature selection,that these attribute-value pairs are generated on catedjori
provide in Table | a comparative description of them in termslues. Therefore, if some attribute consists of contirsuou
of the underlying MOO tool, type of approach (supervisedvalues, that must be first discretized to make it categorical
unsupervised), encoding strategy, objective functioms|ue before using the attribute in a classification rule. The cije
tionary operators and method for obtaining the final sofutioof any rule-based classification system is to identify a geetd
We have arranged the approaches in ascending order of dfi€lassification rules that can properly represent thenimgi
publication year, and for better understanding, we dististy dataset, i.e., that provides a good classification perfooma
between the supervised and the unsupervised cases. The namehe training data.
of the algorithms are mentioned if they are found in the 1) Underlying MOO Algorithms:In the majority of the
corresponding publications. It is evident from the tablatth MOEA-based classification approaches, NSGA-Il has been
variety of MOEAs have been used to design feature selectiadopted as the underlying MOO algorithm for optimization.
techniques. It is also worth noting that a systematic compdor example, NSGA-Il has been used in a series of works
ison of all the MOEA-based feature selection algorithms sy Ishibuchi et al. for fuzzy classification rule mining [47]
missing. However, in different publications, the authoasdn [48], [49], [72], [73]. NSGA-Il has also been employed in

F. Relative Comparison and Applications



TABLE |
COMPARISON OF DIFFERENTMOEAS FOR FEATURE SELECTION
Algorithm Underlying Type Encoding Wrapper/ Objective fun ctions Evolutionary operators  Final solution from
MOO tool filter non-dominated front
Emmanouilidis et. al. [33], NPGA Supervised Binary PNN, MLP Misclassification rate, Commonality crossover, None
2000 (Features) claasifiers number of selected features bit¥flipation
Emmanouilidis et. al. [34], NPGA Supervised Binary GRNN RS Two-point crossover, None
2001 (Features) classifier number of selected features bit-flipation
Gaspar-Cunha [35], RPSGAe Supervised Binary SVM Diffe@binations of Not mentioned None
2001 (Features) classifier Classification accuracy, FPR,

FNR, F-measure,
number of selected features

Emmanouilidis [36], ENPGA Supervised Binary 1-NN Sendijivspecificity Commonality crossover,  None

2002 (EMOFS) (Features) classifier number of selected features bit-flipation

Pappa et. al. [37], Non-standard Supervised Binary C45 clefisification rate, Bit-swapping crossover, Internal

2002 (MOFSS) (Features) classifier size of C4.5 classification tree iptrfiutation cross-validation

Liu and Iba [38], NPGA variant ~ Supervised Binary GS Miscifisation rate, Not mentioned Aggregated objective

2002 (Features) classifier class imbalance values (raw fitness)
number of selected features

Oliveira and Sabourin [39], NSGA Supervised Binary MLP Messification rate, One-point crossover, Validation dasab

2003 (Features) classifier number of selected features bit-flipation

Wang and Huang [40], NSGA-II Supervised Binary Filter agmiv  Correlation among features, One-point crossover, Base

2009 (Features) (no classifier) feature vs. class correlation t-flipimutation relative overall correlation

Mendes et. al. [41], RPSGA Supervised Binary LR and SVM Qfiession accuracy, Not mentioned None

2010 (Features) classifiers number of features

Venkatadri and Rao [42], NSGA-II Supervised Binary Filtgpeoach Different combinations of One-point crossover, mPmmise

2010 (Features) (no classifier) number of inconsistent patteirsp  bit-flip mutation programming

feature vs. class correlation,
Laplacian score, representation
entropy, intra- and inter-class distance

Kim et. al. [43], ELSA Unsupervised  Binary K-means & EM  Fupat of number of features, Commonality crossover, None
2002 (Features) clustering function of number of clusters, fliptmutation
(ELSA/KM, ELSA/EM) intra- and inter-cluster similarities
Morita et. al. [44], NSGA Unsupervised  Binary (features leans DB index, One-point crossover, Classification
2003 + no. of clusters)  clustering number of selected features t-flipimutation accuracy (supervised)
Handl and Knowles [45], PESA-II Unsupervised  Binary (featu K-means Combinations of number of selected Uniformsenee, Select knee solution
2006 + no. of clusters), clustering and features, and one of DBmabzed bit-flip mutation using control front
(only features Filter approach DB, silhouette and entromlex
in filter approach)
Mierswa and Wurst [46], NSGA-II Unsupervised  Binary K-mean Number of selected features and Uniform crossover, Skiext solution
2006 (Features) clustering DB / normalized DB bit-flip mutation askd on slope

fuzzy classification rule discovery in [51], [52], [53]. I5Q], If-Then classification rule takes the form [47]

a non-fuzzy categorical classification rule mining alduorit ) _

is proposed using an elitist multi-objective genetic aiton Ry =1f x1is Ap and ... and n is Agn
(EMOGA). Another multi-objective fuzzy classification eul _ .

mining approach has been presented in [54], where PAES has Then Class = Cq with CFy,

been utilized for optimizing the evolved rules. where R, is the gth fuzzy rule,z = (zy,...,z,) is ann-
dimensional pattern vectod,; is the antecedent fuzzy set of

2) Chromosome Representatidfor evolving classification the ith attribute,C,; denotes the consequent class &, is
rules using MOEAs, one has to first encode the classificatifie weight (certainty grade) of the rule [47]. The antecéden
rules in the chromosomes. There are mainly two approaciégzy setsA,; can either represent a linguistic value of the
in this regard. The first one is the Pittsburgh approach, @®rresponding attribute, or don't care condition. When the
which a set of rules is encoded in a single chromosome. TABtecedent part of the fuzzy rule is provided, the consequen
second one is the Michigan approach, where each chromosdi@ss and the rule weight are obtained in a heuristic manner
encodes one rule. From the classification point of view, tfeom compatible training patterns.

Pittsburgh approach is more useful since here each chromoThe Pittsburgh encoding strategy for classification rule
some represents a complete classifier system. The num@eneration can be broadly divided into two categories. Gne i
of rules encoded in a chromosome can either be fixed e selection and the other is rule learning. In the firsttetyy,
variable. Therefore, from the final non-dominated soluionthe aim is to select a subset of predefined rules and, in the
one particular solution must be picked up to representsgcond, the objective is to learn the rules through evaiatip
complete classification system. Most of the MOEAs availabigorithms. While the first strategy has been adopted in, [47]
for building rule-based classifiers use this approach [@4]. [48], [49], the second strategy is employed in [51], [52B]l5
the other hand, the Michigan approach is usually much easier{54], a combination of these approaches is proposed.
and less complex, because each chromosome encodes only ofghibuchi et al. have studied the use of MOEAs for fuzzy
rule. Thus, in this approach, the final solution is compoded ©lassification rule extraction in a series of works [47],][48
the full non-dominated set of classification rules [74]. [49]. In all these works, the authors used the Pittsburgh
approach. Here, the authors first generate a set of rulessthat

Most of the multi-objective evolutionary classificationeu constructed using some heuristic rule generator. Theneatt
based systems are focused on evolving fuzzy classificatiffDEA is used to select a suitable set of rules for classificati
rules. Let's assume that the training set containgatterns The length of a chromosome is equal to the number of rules
of the formz, = {zp1,2p2,...,2pn}, p = 1,...,m, i.e., in the rule-based system. A chromosome encodes a subset
each pattern isi-dimensional. There ar@/ classes. A fuzzy of rules represented by ‘1’ bits of the chromosome. The
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rules corresponding to the ‘0’ bits are ignored (i.e., a binadiscrete integer encoding to represent the rule attribates
encoding is adopted). Hence, in this approach, chromosontiesir corresponding categorical values. However, the Migh
can encode a variable number of predefined rules. One pess#dpproach of encoding for classification is less appropfiate
disadvantage of this approach is that as the set of rulesclassification problems since they usually produce a ‘set of
predefined, the job of the MOEA is only to select a subsgbod rules’ which may not be a ‘good set of rules’.
of rules, but it cannot manipulate the individual rules by 3) Objective Functionsin different works, different sets of
changing the fuzzy membership parameters. Moreover, if thbjective functions have been considered to be optimized. T
set of rules is very large, the length of the chromosome agdneral notion is to achieve a trade-off between accurady an
thus the search space becomes very large, too. However, cbmplexity of the candidate rule set. In [47], [48], [49]eth
advantage is that due to the use of binary encoding andchathors used three objective functions to be simultangousl
fixed chromosome length, standard crossover and mutatimptimized. These are the classification accuracy, number of
operators can be adopted. fuzzy rules, and number of antecedent conditions. The first
Another alternative approach for the Pittsburgh represenbne is maximized whereas the last two are simultaneously
tion is to directly encode the rules (i.e., attributes anezfu minimized. Hence, the objective is to obtain the minimum
sets) into the chromosomes. This approach is adopted in [Sdfmber of short rules that maximize the prediction accuracy
where each chromosome directly encodes rules by encodigimilar set of objectives has also been optimized in [51],
the attributes and the corresponding fuzzy set parameterswhere classification accuracy is just replaced by misdiassi
each rule. Real-valued encoding is used here for this parposation error to transform this into a minimization probleim.
There are three parts in each chromosome. The first pgif], where a Michigan approach is employed, the objective
encodes the relevant attributes of the rules’ antecedemts #unctions chosen are predictive accuracy, compreheitgibil
their fuzzy sets. The second part encodes the parameteramd interestingness. Comprehensibility is a function @ th
the fuzzy sets. Finally, the third part encodes the consgquaumber of attributes in the rule that is to be minimized,
classes. as the number of attributes can vary in differamhereas interestingness in defined using information gaine
rules, and also the number of rules may vary in differemd quantify how interesting is the rule. Predictive accyrac
chromosomes, hence the chromosome lengths are variableisToomputed using the objects covered by that rule. In [52],
start with a good initial population, the initial populatiags the authors addressed the imbalanced class problem (binary
partially filled up by fuzzy classification rules obtaineddtigh classification) and thus maximized sensitivity and spatjfic
a decision tree built using the C4.5 algorithm. The remanirwhile minimizing rule length. In [53], an imbalanced class
population is filled up by randomly replacing some paranseteproblem is also considered and the two objectives are to
of the fuzzy classifier. This encoding method is very flexiblmaximize the area under the ROC curve and minimize the
but crossover and mutation operators need to handle varialdum of granularity levels of all the selected attributesug,h
length chromosomes. as per the second objective function, a rule wittattributes
Another Pittsburgh encoding strategy encodes a set of rutdsgranularity m is treated the same way as a rule wjth
and the fuzzy partitions (granularity levels) correspogdio attributes of granularity;, providedm x n = p x ¢. In [54],
each attribute of the rules in the chromosomes. Here, ttiee two objectives are the accuracy and the total number of
granularity levels are predefined and are represented by aaé&ributes (conditions). Hence, it is evident from thiscdission
of integers. This strategy has been adopted in [52] and [58)at the authors have posed the problem as the optimization
In these strategies, although the rule-base is not predefinef accuracy and complexity using various objective funtsio
the granularity levels of the fuzzy partitions for eachihttte 4) Evolutionary Operatorsin [47], [48], where the authors
are predefined. Therefore, this approach is less flexible thased a binary encoding of fixed length chromosomes, standard
the strategy adopted in [51]. uniform crossover and bit-flip mutation have been employed.
In [54], an effort has been made to combine the benefits lof [49], the authors introduced a new operator to remove
the rule selection and the rule learning strategies. As ule r overlapping rules. Using this, they ensured that the smisti
selection strategy deals with a simple encoding and a smalie the initial and subsequent populations are different in
search space but has less flexibility, and the rule learnitige objective space. The parents for uniform crossover are
strategy deals with higher flexibility but has a larger skarchosen to be similar as this has been shown to provide better
space, here the authors proposed an encoding strategy peaformance [75]. Moreover, the authors also proposedé¢o us
combines both approaches. In this technique, called rule ahe extreme solutions as one of the parents, whereas the othe
condition selection (RCS), the authors used a mixed (imtegeparent is chosen using binary tournament. Additionallyflip
real-value) encoding. The integer values represent tleetsel mutation with a biased mutation probability is proposed rehe
rules and granularity levels, whereas the real-valuesdmtite a larger probability is assigned to the mutation from 1 to 0
parameters of the fuzzy sets corresponding to the gratwlathan that from 0 to 1. This is done to introduce a bias to search
levels. Thus, this approach provides a good trade-off batwefor a lower number of rules. The authors have shown that the
flexibility and search space size. modified operators lead to improved solutions in comparison
In [50], a rule-based classifier is proposed based avith the standard operators used in [47], [48].
EMOGA, where the authors employed a Michigan encoding In [50], a hybrid crossover operator combining one-point
approach, i.e., one rule in one chromosome. In this approaahd uniform crossover is proposed. Here, the idea is to
the authors generated non-fuzzy categorical rules and aisecbombine the positional and distributional biases of onixpo
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and uniform crossover. However the authors did not perforbe extended in a straightforward way for multi-class protde
any sort of comparison with respect to the use of any of

these crossover operators in an independent way. For mmifatig Eyolving Class Boundaries

as the chromosome encodes categorical values, the autho

r - .
perform random replacement of categorical values and randg. Rno_ther promising approach for using MOEAs for clas_-
insertion/deletion of attributes. sification problems is to evolve appropriate class bouedari

. . . _which can successfully distinguish the various classe$. [55
For real-valued chromosomes in [51], simulated binary . . ;
) . Usually, the boundaries between different classes aremonl
crossover (SBX) [76] and standard polynomial mutation op- . ; .
ear. Any nonlinear surface can be approximated by using a
erators are employed. SBX has been shown fo be eﬁ%cu_mber of hyperplanes. Therefore, the classification prabl
tive in [76] for real-valued chromosomes. In [52], one- YPErp ' ’

; : . gan be viewed as that of searching for a number of linear
point crossover is employed and for mutation, random SUrfaces that can appropriately model the class boundaries
dition/deletion/modification of rules is performed. In [52 bprop y

mixed encoding (binary + integer) is used. Here, they adbpt\éVh'le providing a minimum number of misclassified data

standard one-point crossover. In the binary part, standird po!nts: In [5.5]’. th'.s problem has been posed as a m_ult|
. o . abjective optimization problem, where the three objedtive
flip mutation is employed, whereas a random increase/dserea - N ) .

. . . ; are: to minimize the number of misclassified patterns and
of integer values (representing granularity levels) ifqrened.

. ; . tpe number of hyperplanes and to maximize the classification
In [54], the authors employed a mixed encoding (integer : o L
. . __accuracy. This ensures that overfitting/overlearning dead,
real-value) also. For the integer part (rules and condijion

one-point crossover is employed. On the other hand, in t EEnle classes of smaller size are not ignored during trginin

real-valued part (fuzzy set parameters), BbXén — 0.5) inary chromosomes of variable length are used to encode the

. . arameters of a variable number of hyperplanes. A consitain
crossover [77] is used. I_:or mutation, both random replaoem(g"tist version of NSGA-Il (CEMOGA) has been used as the
and complement mutation are used.

5) Obtaining a Final Solution:As stated earlier, an a _underlying MOO tool in this case. The final solution is se-

9 . o ' P lected based on an aggregation function defined by combining
proach based on Pittsburgh encoding needs to choose a Hﬁaer'objective functions. The performance of the CEMOGA
ticular solution, i.e., a rule set from the set of non-dortéda '

solutions provided by the MOEA. In different works, authorclassmer has been compared with that of NSGA-Il and PAES-

. . , a}sed classifiers in a similar framework. A comparison was
have proposed to use different metrics to choose the fl%ne with other state-of-art classifiers as well. Althoubé t
solution from the non-dominated front. In [47], [48], [49] X

the authors have used classification accuracy as the metrigPproaCh was a novel and promising one, this work was not

choose the final solution. Note that classification acculecy extended after the first attempt reported in [55].
also been used as one of the objective functions in theseswork o -~
The authors used classification accuracy over the complex§t- Model Building of Standard Classifiers
criteria (number of rules and rule length) as the final decisi There exist several approaches that use MOEAs for model
objective. In [53] and [54] the area under curve (AUC), whicbuilding or training of standard classifiers such as aréfici
has been used as one of the objective functions, is adoptediral networks (ANNSs), support vector machines (SVMs) and
to select the final solution. Moreover, here the authors aldecision trees. This section discusses some of these nsethod
reported the solutions with minimum value of AUC, and 1) Underlying MOEAs:The underlying MOEAs used for
intermediate value of AUC. training and model building of standard classifiers are as
In [51], the authors proposed a method to reduce the numiiaiows. NSGA-II is found to be the most commonly used ap-
of non-dominated solutions from which the final solution iproach. For example, NSGA-II is used for model building and
to be picked up. They only kept those solutions that wetemining for SVMs [56], [58], ANNs [57], [59] and decision
present in at least 50% of all generations during the executitrees [60]. Besides this, SPEA2 has also been used in [57]
of the MOEA. Thus, this method does not necessarily providad [60] for optimizing ANNs and decision tree classifiers.
a single solution, but usually a smaller set of solutionsithan [30], a single-front genetic algorithm (SFGA) was used
the complete non-dominated set. for designing the MG-Prop algorithm which is adopted for
Intuitively, it is more practical to use an independent neetr optimizing the parameters of a multi-layer perceptron (MLP
which is not adopted for optimization, to select the final 2) Chromosome Representatiolbtost papers dealing with
solution from the non-dominated set. In [52], such an apaodel building of standard classifiers adopt binary enagdin
proach is presented, where the authors first generated e thre [56], the chromosomes encode a feature subset (binary
dimensional non-dominated front (sensitivity, specificitle- vector) and also the parameters of a SVM kernel. In this case,
length) using a MOEA. Then, each point in the non-dominatedGaussian kernel is used and the problem of feature selectio
front is projected to the ROC plane (true positive rate valong with SVM parameter learning are considered. In [58],
false positive rate) and the area under the ROC convex hille authors proposed a MOEA called evoSVM in which a
(AUCH) is computed. The solution providing the best valu8VM's parameters are encoded using a vector of real numbers.
for AUCH is then chosen. This is an interesting approach butin [30], a MOEA (MG-Prop) is adopted for optimizing
maybe time consuming, because of the computation of AUCHhe topology and performance of a MLP. Here, the authors
However, this method is effective when dealing with twossla encode the topology and weights of the candidate MLP using
imbalanced class problems. However, the technique may meal numbers. In [57], the authors encode the topology and
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weights of a dynamic recurrent neural network (RNN) (thand the second one consists of a random addition/deletion of
Elman RNN) classifier adopting a mixed encoding (binary hidden layer neurons.
integer + real-values). The integer part encodes the nuwiber In [57], the authors used Wright's heuristic crossover [78]
hidden neurons, a binary mask is used to represent the acfive real-valued chromosomes. In this encoding technique,
and inactive connections, and the real-valued part encodles parent networks may have different sets of connections.
the connection weights. Thus, this encoding policy proside Therefore, if a network weight is not contained in both
very flexible way of representing a RNN. In [59], the networlparent networks, it is extended directly to the largestcchil
topology is considered to be fixed a priori. Hence, the realvright's heuristic crossover has been shown to perfornebett
valued chromosomes only encode the network weights atién standard crossover operations in [78]. The mutation is
biases. performed by random modifications of the weights (real-

In [60], a MOEA has been proposed for optimizingzalues) and connections (binary values).
oblique decision trees. Here, each chromosome contaiits realn [58], where the chromosomes encodg¢ (Lagrange’s
parameter values that represent the coefficients of a higwerp multipliers) parameters of a SVM, the authors employed a
that splits the dataset to form a node of the decision tree. Thybrid mutation approach. In this mutation, they check for
decision tree is represented as a binary tree of chromosoneshq,; with probability 1/n (n=number ofq;s) if the value

3) Objective FunctionsThe different objectives functions should be mutated at all. ; > 0, then its new value is set to
that have been used in different studies usually represeit vO. If a; = 0, then it's set to a random value between 0 &hd
ous classification performance metrics. In [56], three dibje  (the SVM generalization parameter). However, the authiats d
functions are used to minimize the false positive rate, #e=f not demonstrate the advantages of this mutation opera#r ov
negative rate and the number of support vectors. The numbestandard mutation operation. The crossover operatorinsed
of support vectors is minimized to reduce the complexity dhis work is not explicitly mentioned.
the model. In the study on SVM learning presented in [58], the In [59], a BLX-a crossover witha = 0.5 is employed.
authors maximized the margin between the hyperplanes whilere, the authors used a non-uniform mutation operator for
minimizing the training error. These two objective funaiso real-valued chromosomes [5]. This means that the mutation
help to control the overfitting of the SVM model. rate is decreased from one generation to the next one. In this

For the optimization of a MLP, the authors of [30] mini-mutation, the probability that the amount of mutation wid g
mized both the number of false positives (Type-I error) dred tto O at the next generation is increased. This favors diyersi
number of false negatives (Type-Il error). Note that heee ttat the early stages of the evolutionary process and incsease
authors did not include any complexity objective. Howevethe selection pressure towards the end. In [60], this narati
due to the use of these two objective functions instead s¢heme is also adopted. In this study, the authors adopted
using accuracy, the algorithm is capable of properly hawgdli standard arithmetic crossover.
the imbalanced class problem. In [57], the authors used bottb) Obtaining a Final Solution:As each chromosome of the
accuracy and complexity as the objective functions. Henepn-dominated set encodes a possible classifier model, it is
the authors minimized the output error while minimizing theecessary to obtain one final solution from this set. However
number of hidden units and the number of connections i [56], [57] and [60], the authors did not address this issue
order to reduce the complexity of the RNN model. In [59]They reported results based only on the non-dominated set
the authors divided the training set into different subsetd produced. Among the other works, two main approaches have
the classification accuracies in different subsets all oictvh been noticed. One is to use the non-dominated classifiers as
were maximized. an ensemble classifier system, and another is to use some

In [60], the authors preferred to optimize the accuracy amdetric to choose one particular solution from the set. In
complexity of the candidate decision trees. The authors-maf30] and [59] the first approach was taken, i.e., designing an
mized in this case the classification accuracy while miningiz ensemble classifier system using the non-dominated sotutio
the size of the decision tree. In general, it may be said tHat [30], three different ensemble techniques were studied.
considering only classification performance as the objectiFirst one is a simple majority voting among the classifiers.
function may provide a complex classifier. But if both th&he second method predicts the class considering the targes
classification performance and the complexity of the modattivation among all the outputs of the networks. The third
are taken into account, the algorithm may produce solutioapproach computes the average outputs for all the networks.
that provide a good trade-off between accuracy and contglexNotably, the third approach does not provide a particular
of the models. classification result, but only the average accuracy oftal t

4) Evolutionary Operators: A variety of crossover and non-dominated classifiers. In [59], two different ensemble
mutation operators have been adopted in different studiesethods are compared (majority voting and simple averaging
In [56], the authors didn’'t mention explicitly what type of In [58], instead of an ensemble among the non-dominated
crossover and mutation operators were adopted. Howewalutions, the authors chose one of them as the final classifie
as they used NSGA-II for optimizing, it is expected thabased on their performance on a hold-out validation set. A
they adopted its standard operators for binary encoding. hold-out validation set is kept aside from the training s&d a
[30], the authors used multi-point crossover for real-edlu is not used during the evolutionary process. Finally, tfzs<cl
chromosomes. The mutation operators are of two types. Téification accuracy on this hold-out set is computed for each
first consists of random modifications of connection weightson-dominated solution. The solution giving the maximum
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Algorithm Underlying  Type Encoding Objective functions Evolutionary operators Final solution from
MOO tool non-dominated front
Ishibuchi and Nojima [47], [48], NSGA-II Fuzzy rule-based inBry Accuracy, number of Uniform crossover, Based on amur
2005 (Pittsburgh) fuzzy rules, number of bit-flip mutation
antecedent conditions
Ishibuchi and Nojima [49], NSGA-II Fuzzy rule-based Binary Accuracy, number of Overlapping rule removal, Based on r@oyu
2005 (Piitsburgh) fuzzy rules, number of uniform crossover hsw
antecedent conditions parents, bit-flip mutation
(with biased probabilities)
Dehuri et. al. [50], EMOGA Non-fuzzy Discrete Predictivecaracy, Hybrid (one-point + uniform) None
2008 (EMOGA) rule-based (Michigan) comprehensibility, ossover, random value
interestingness replacement mutation,
insert/delete condition
Pulkkinen and Koivisto [51], NSGA-II Fuzzy rule-based Realued Misclassification eroor, Simulated binary crogspv Solutions that were
2008 (Pittsburgh) number of fuzzy rules, polynomial mutation egent in more than 50%
total rule length of all generations
Ducange et. al. [52], NSGA-II Fuzzy rule-based Integer Bieity, specificity, One-point crossover, Based on Areaden
2010 (Pittsburgh) total rule length mutations by adding rules, ongx Hull (AUCH)
deleting rules, changing rule
conditions
Villar et. al. [53], NSGA-II Fuzzy rule-based Mixed (binary Area Under Curve (AUC), One-point crossover, Based on
2011 (MGA-FS-GL) + integer) sum of granularity levels bit-flip mutation (bipgpart), AUC, complexity,
(Pittsburgh) (complexity) increase/decrease (integet) pa intermediate value
Antonelli et. al. [54], M-PAES Fuzzy rule-based Mixed (iges Accuracy, One-point and BLX- Based on
2012 (PAES-RCS) + real-valued) number of conditions crossover, randomacghent AUC, complexity,
(Pittsburgh) (complexity) and complement mutation intediate value
Bandyopadhyay et. al. [55], CEMOGA Class boundary Binary midar of misclassified One-point crossover, Based on agtpega
2004 (CEMOGA-classifier) (variable length) points, number of hyperplane,  bit-cleangutation function defined by
(Hyperplane classification accuracy combinations of objectives
parameters)
Suttorp and Igel [56], NSGA-II Optimizing Binary False pos rate, Standard None
2006 standard classifier  (SVM parameters) false negative rate, SGAI operators
(model building) number of support vectors
Castillo et. al. [30], SFGA Optimizing Real-valued numbérfalse positives, Multi-point crossover, Ensemble of rdwminated
2006 (MG-Prop) standard classifier  (Topology and numbeialskef negatives weight modification mutation, classifiers
(model building) weights of MLP) addition/deletion hidden neurons
Cuéllar et. al. [57], NSGA-II, Optimizing Mixed (binary + @put error, Wright's heuristic crossover, None
2007 SPEA2 standard classifier  integer + real) number ofemdehits, structure and weight modification
(model building) (Topology and number of connections matat
weights of RNN)
Mierswa [58], NSGA-II Optimizing Real-valued Hyperplaneargin, Crossover not mentioned, Based on error in
2007 standard classifier ~ (SVM parameters) training error hyhrigtation hold-out set
(model building)
Lahoz and Mateo [59], NSGA-II Optimizing Real-valued Cléisation errors in BLX-0.5 crossover, Ensemble of non-doated
2008 standard classifier ~ (weights of ANN) different subsets of n-naiform mutation classifiers
(model building) training patterns
Pangilinan et. al. [60], NSGA-II, Optimizing Real-valued laSsification accuracy, Arithmetic crossover, None
2011 SPEA2 standard classifier ~ (Coefficients of decisioa siee non-uniform mutation

(model building) hyperplanes corres-
ponding to decision

tree nodes

accuracy value for this hold-out set is finally selected. respect to the underlying MOEA, the encoding policy, the ob-
Due to the nature of multi-objective optimization problemgective functions, the evolutionary operators and the riégple
each of the generated non-dominated solutions (classifiersfor choosing the final solution from the non-dominated front
this case) shares some information about the input trainifie rule-based classification approaches are classified int
set. Therefore, it is more intuitive to combine the inforioat fuzzy and non-fuzzy and all of the methods in this category
contained in these classifiers by means of some ensembléddress the fuzzy classification rule generation excepirier
However, it would be interesting to compare the performanddiese fuzzy rule-based classifiers use a Pittsburgh ergodin
of individual non-dominated classifiers with the ensembkgrategy and a variety of objective functions and evolwdign
results on some unknown test dataset to judge their robsstn@perators. The methods for selecting the final solution from
To the authors’ best knowledge, such a comparative studytli® non-dominated front also vary in different algorithnss a
not available yet in the literature. discussed before. There is only one approach in the second
category, i.e., hyperplane optimization. This approacts wa
) ] o promising but did not mature after the first attempt. In the
D. Relative Comparison and Applications third category, as can be seen from the table, MOEAs have
To facilitate the comparative study of the proposed MOEAReen used for model building of different standard clagsifie
for classification problems, we have summarized all tt#ich as SVM, ANN and decision trees. In all the categories,
methods discussed in this section in Table 1l. The methol$GA-II has been found to be the most commonly adopted
have been categorized as rule-based approaches, hygerpM@EA, but some authors have also reported the use of other
optimization approaches and model building of standars-clalgorithms such as SPEA2, PAES, EMOGA, CEMOGA and
sifiers. Under each category, we have arranged the meth&#$3A. Also, there are not comparative studies of MOEA-
in increasing order of publication times to illustrate hdwet based classification methods in a systematic way.
methods have evolved over time. As with the feature selectio MOEA-based classifiers have been applied in various real-
case, here we have also characterized the algorithms wifh application domains. In [56], the authors used a MOEA-



optimized SVM for pedestrian detection in infrared imagegs]
for driver assistance systems. This real-world task hast str

real-time constraints that requires highly optimized sifders
and a reasonable trade-off between sensitivity and spiggific [9] J. Horn and N. Nafpliotis, “Multiobjective Optimizatio using the

The authors demonstrated the effectiveness of MOEASs in
optimizing SVMs for this purpose. In [30], the authors gen-
erated a MOEA-based classifier ensemble for breast canper
classification and bankruptcy prediction problems. In pthe
works, the researchers have applied their proposed tamemiq[ll]

in classifying different real-life datasets available e tUni-
versity of California at Irvine (UCI) machine learning regpo
tory (http://archive.ics.uci.edu/ m/). There are,
however, several possible applications that are not dlaila
in the literature yet. For example, the classifying samjihes
microarray gene expression data into different classels asc

benign and tumor, and classifying satellite and medicafiesa [13]

As most of the data mining tasks need the optimization @if4]
model parameters along with multiple performance criteria

VI. CONCLUSIONS

multi-objective optimization is the natural choice for tieg

with such tasks. MOEAs have become very popular withins]
the data mining community over the years because of their

flexibility in representing a data mining problem with rélat

ease. Therefore, over the past decade, a humber of MOE#g
have been proposed to solve a variety of data mining problems
In this Part-1 of the two-part paper, we have introduced SOMmEy

basic concepts related to multi-objective optimizationed

as the fundamentals of data mining followed by a description

of the main motivations for multi-objective data mining.é&m

different MOEAs that have been used to solve two major

data mining tasks namely feature selection and classtitati 007
have been d|scusse_d with a spemal focus on issues Sucr[l@jSE. Zitzler, “Evolutionary Algorithms for Multiobjedte Optimization:
chromosome encoding, evolutionary operators, the type of Methods and Applications,” Ph.D. dissertation, Swiss Faldmstitute
objective functions used for optimization and selectioffiudl

solution from the non-dominated set. In the next part (Rart-

of the paper [1], MOEAs employed for other data mining tasks
such clustering, association rule mining, ensemble legrni [21]

biclustering etc. are reviewed followed by a discussiontan t
future scope of research in this field.
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