
A T-Cell Algorithm for Solving

Dynamic Optimization Problems

Victoria S. Aragón, Susana C. Esquivel
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional∗

Universidad Nacional de San Luis
Ejército de los Andes 950

(5700) San Luis, ARGENTINA
{vsaragon, esquivel}@unsl.edu.ar

Carlos A. Coello Coello†

CINVESTAV-IPN (Evolutionary Computation Group)
Computer Science Department

Av. IPN No. 2508, Col. San Pedro Zacatenco

México D.F. 07300, MÉXICO
ccoello@cs.cinvestav.mx

November 2, 2010

Abstract

In this paper, a metaheuristic inspired on the T-Cell model of the
immune system (i.e., an artificial immune system) is introduced. The
proposed approach (called DTC, for Dynamic T-Cell) is used to solve dy-
namic optimization problems, and is validated using test problems taken
from the specialized literature on dynamic optimization. Results are com-
pared with respect to artificial immune approaches representative of the
state-of-the-art in the area. Some statistical analyses are also performed,
in order to determine the sensitivity of the proposed approach to its pa-
rameters.

Keywords: Artificial immune systems, dynamic optimization, metaheuristics.

1 Introduction

In general, the conditions of an optimization problem change by one of the
following reasons (or a combination of both) [16]: 1) The objective function

∗LIDIC is financed by the Universidad Nacional de San Luis and ANPCyT (Agencia Na-
cional para promover la Ciencia y Tecnoloǵıa).

†The third author is also affiliated to the UMI 1375 CNRS at CINVESTAV-IPN.

1

changes itself, or 2) the constraints change. A change in the objective function
appears when the purpose of the problem changes. In this case, conditions
which were considered desirable before can become undesirable after a change
and viceversa. Changes in the constraints, which modify the feasibility of the
solutions, are related to resources and their availability. Changes can be small
or big, soft or abrupt, chaotic, etc. When changes are big, abrupt or chaotic, the
similarity between the solutions found so far and the new ones can be practically
null. Even under these hard environments, population-based approaches offer
advantages, which are absent in other heuristics when searching for solutions to
non-stationary problems. The main advantage relies on the fact that population-
based search keeps a set of solutions. Consequently, facing the change, such a
population allows the heuristic to move from a solution to another one, in order
to determine if any of them has enough merit to continue the search from it,
instead of doing it from scratch [5].

Another type of approach are the so-called multipopulation heuristic algo-
rithms, which have been found to be particularly suitable for solving dynamic
optimization problems (see for example [13]). Multipopulation approaches are
based on the idea of simultaneously tracking a set of local optima. This way, the
probability that the new global optimum after the change belongs to the group of
those already tracked by the algorithm is higher. The strategy adopted by mul-
tipopulation approaches is to split the population into as many sub-populations
as possible, so that as many local optima as possible, can be tracked at the same
time. Of course, the sub-populations cannot be too small since minimum search
capabilities of a single sub-population are required for them to achieve their
goal (i.e., to track a local optimum). Individually, each of the sub-populations
represents an average optimizer, which, however, should be good enough to fol-
low its local optimum from change to change. During the entire search process,
each sub-population controls its local optimum hoping that it could eventually
become the global optimum. Thus, it can be said, that the effectiveness of a
multipopulation approach comes more from successful gambling than from a
flexible (and well-coordinated) optimization process. In any case, as indicated
before, this sort of approach has become relatively popular for solving dynamic
optimization problems, particularly when using a heuristic known as particle
swarm optimization [12] as the main search engine (see [13, 3, 27]).

In recent years, a bio-inspired metaheuristic known as the “artificial immune
system” (AIS) has gained popularity in a wide variety of tasks [19, 32, 2, 10, 31].
The AIS is inspired on natural immune systems, which have a number of very
interesting features, from a computational point of view, that make them very
good candidates to be modelled in a computer. For example, natural immune
systems are distributed systems, they are fault-tolerant, they have memory,
they are able to distinguish between their own components and those which are
foreign, and they learn by experience.

A few AISs have been used before for solving dynamic optimization problems
(see for example [30, 9, 25]), but the work in this area is still scarce and there
is plenty of room to innovate. Taking this into account, in this paper, the use
of a new AIS for solving dynamic optimization problems is introduced, aiming

2

to improve the results obtained by previously proposed AISs for this type of
problems.

The remainder of the paper is organized as follows. Section 2 defines what
is a dynamic problem. In Sections 3 and 4, the benchmarks used to validate the
approach are described. Section 5 describes the AISs that have been previously
proposed to solve dynamic optimization problems. In Section 6, the T-Cell
Model adopted for this work is described, together with its application to the
solution of dynamic optimization problems. In Section 7, an efficiency measure
proposed to assess performance of an algorithm adopted to solve dynamic opti-
mization problems is introduced. In Section 8, the experimental setup adopted
and the results obtained are discussed. Such results are also compared with
respect to other AISs that have been proposed before for dynamic optimization.
Additionally, a statistical analysis of results is also presented. Finally, in Sec-
tion 9, the general conclusions of the paper and some possible paths for future
research are provided.

2 Dynamic Problem or Environment

Any time dependent problem can be considered as a dynamic problem. However,
from a practical point of view not all dynamic problems cause the same interest.
The problems treated in this paper are those where the fitness landscape shows
similarities before and after a change occurs. If the problem completely changes,
without reference to history, then there is only a sequence of independent prob-
lems that have to be solved from scratch. In other words, nothing from the
previous search can be used to find the next optimum.

A dynamic fitness landscape or environment is a search space, in which the
topological features of the peaks or cones could change over time. Dynamic
fitness landscapes present a challenge to any search technique due to the fact
that the total or partial number of topological features or problem constraints,
or both, could change. So, new cones could appear, and these should be located
quickly in order to avoid the loss of potentially good solutions. Consequently, an
algorithm working on these landscapes must be able to adapt quickly, and locate
and keep the current and the new optimal solutions that arise. For the changes,
there may be a variety of dynamic properties. For example, the magnitude of a
change could be small, large or chaotic and the speed of a change can be rapid
or slow.

Despite the advantages of population-based algorithms, they eventually con-
verge to an optimum and thereby lose the diversity required for efficiently ex-
ploring the search space, as well as their ability to react to a change in the
environment when such a change occurs. Thus, these approaches often need
additional mechanisms to keep diversity in the population.

3

2.1 Classification of Dynamic Environments

Several classifications of dynamic environments exist. One of them is based on
the regularity of the changes:

1. random: a change does not dependent of the previous one, and

2. non-random and predictable: changes are deterministic. This class
can be subdivided into Cyclic (after a constant time, the optimum is rep-
resented again by the same solution) or Acyclic (changes are non-periodic).

The environments, also, can be classified taking into account if the changes
are continuous or discrete. If changes are continuous in time and space, then
the environment changes little every time one measures it and the optimum
is moved from a location to another one, which is sufficiently close from the
original one, as to allow that the optimum can be found by performing local
search. Now, if the changes are discrete in time and space, they show up and
the environment remains stable for a certain period of time. Then, the location
of the optimum is modified in such a way that the use of local search is not
sufficient to find it [23].

Two test-case generators were selected to validate the approach presented
in this paper: STCG [28] and MPB [4]. The reasons for adopting them are as
follows. On the one hand, with STCG one can change, cyclically or acyclically,
the heights of some peaks from the landscape while the locations of them are
fixed. On the other hand, MPB allows to change, in a random way, the loca-
tions, heights and slopes from a set of peaks or cones, when these changes are
discrete. Thus, these test-case generators provide sufficient flexibility to assess
different aspects of the algorithm introduced in this paper. Additionally, these
test-case generators have also been used by other authors, which facilitates the
comparison of results with respect to other approaches.

3 Simple Test-Case Generator (STCG)

Trojanowski et al. proposed [28] a Simple Test-Case Generator (STCG) for
dynamic optimization. Here, the fitness landscape is composed by a set of
peaks, such that the best peak heights are modified, cyclically or acyclically,
but the location of all the peaks remains fixed. Formally, STCG defines a
dynamically changing fitness landscape f : X × T −→ ℜ, where T stands for
the (discrete) time, and X = (x1, x2) is the set of admissible solutions. The
range of the ith variable, Xi = [loi, hii], is divided into ni disjoint subintervals
[ai

j , b
i
j], j = 1, . . . , ni. Thus,

Aij = [a1
i , b

1
i]× [a2

j , b
2
j], i = 1, . . . , n1, j = 1, . . . , n2, (1)

The domain X is decomposed into a family of disjoint subsets Aij , i.e., X = ∪i∪j

Aij . On each subset Aij , it is defined a unimodal function fij of paraboloidal
shape:

4

fij(x1, x2) =

{

α(b1
i − x1)(x1 − a1

i)(b2
j − x2)(x2 − a2

j) if(x1, x2) ∈ Aij

0 otherwise
(2)

where α = 16/[(b1
i − a1

i)2(b2
i − a2

i)2] is a normalizing constant such that

1. fij(x) ∈ [0, 1] for all x ∈ Aij ,

2. fij = 1 if x is located in the center of Aij ,

Then, the value of the fitness function f(x, t) is computed according to the
equation:

f(x, t) =

n1
∑

i=1

n2
∑

j=1

pij(t) · fij(x), (3)

where pij ∈ [0, pmax] controls the height of ijth peak in the fitness landscape.
The term pij(t) is in charge of generating cyclical or acyclical changes on

the peak heights. STCG allows to change the height of the peaks localized on:
1) the main diagonal or 2) on both diagonal paths of a chess board. The height
of all the remaining peaks is kept unchanged and is kept small in comparison
with the height of the varying peaks [28].

4 Moving Peaks Benchmark (MPB)

Branke proposed in [4] the so-called Moving Peaks Benchmark (MPB). Here,
the fitness landscape is composed by a set of peaks or cones where location,
height and width of each element (peak or cone) can change in a random way.
This could cause that the optimum disappears after a change occurs. Formally,
MPB defines a dynamically changing fitness landscape f : X × T −→ ℜ, where
T stands for the (discrete) time, and X = (x1, . . . , x5) is the set of admissible
solutions. Every ith peak or cone, of the landscape, has its height hi, width wi,
and the coordinates of its maximum cmaxi. All the parameters characterizing
each peak are generated randomly from the corresponding interval. The fitness
function for the ith peak is evaluated as follows:

fi(x1, . . . , x5) =
hi

1 + wi

∏5
j=1(xj − cmaxi[j])2

(4)

while the equation for an ith cone is:

fi(x1, . . . , x5) = hi − wi

√

√

√

√

5
∏

j=1

(xj − cmaxi[j])2 (5)

Then, the value of the overall fitness function f(x1, . . . , x5) is computed as:

f(x1, . . . , x5) = maxi=1,...,N fi(x1, . . . , x5)

where N is the number of peaks or cones defined in the landscape [30].

5

5 Previous Related Work

Several bio-inspired heuristics such as Evolutionary Algorithms or Particle Swarm
Optimization, have been used to solve dynamic problems (see for example
[13, 3, 8, 27]). However, the use of artificial immune systems to deal with
dynamic optimization problems has been relatively scarce. Next, the most rep-
resentative work found in the specialized literature regarding the use of arti-
ficial immune systems to deal with dynamic optimization problems is briefly
discussed.

Olivetti de França et al. [21] proposed a multimodal optimization algorithm
inspired by the human immune system, which was called OPT-AINET. They
encoded the solutions using real number values in an Euclidean shaped space.
OPT-AINET is based on the clonal selection principle and it was validated using
18 test functions taken from the specialized literature. In this paper, the authors
also modified OPT-AINET in order to make it work in dynamic optimization
problems. This version was called DOPT-AINET.

Gaspar and Collard [9] proposed a Simple Artificial Immune System (SAIS).
This is an oversimplified model of the immune system designed to be minimal
while still capturing the essential mechanisms by which immune systems per-
form primary and secondary responses to dynamically changing complex envi-
ronments. SAIS starts with an initially random population of so-called B-Cells,
each of which is able to detect a given antigen specified by a binary string. Then,
it applies at each generation three operators: Evaluation, Clonal Selection and
Recruitment (elimination of undesirable B-cells). SAIS was validated using a
pattern tracking problem.

Trojanowski [26] analyzed the efficiency of two mutation operators adopted
in a clonal selection based optimization algorithm reported in [24], and called Ar-
tificial Immune Iterated Algorithm (AIIA), when used for non-stationary tasks.
Both operators use an α−stable random number generator. The author argues
that appropriate tuning of the α parameter allows to outperform the results
of algorithms that use traditional operators. The algorithms were tested with
six environments generated with two test-benchmarks: the Simple Test-Case
Generator benchmark [28] and the Moving Peaks benchmark [4].

Nanas and De Roeck [18] compared several evolutionary algorithms and
artificial immune systems that have been used to solve multimodal dynamic
optimization problems. They reviewed several basic evolutionary and immune-
inspired approaches available to solve multimodal dynamic optimization prob-
lems and identified correspondences and differences among them. They also
pointed out the essential computational elements of such approaches.

In another paper, Trojanowski [25] analyzed the efficiency of the B-Cell
algorithm when applied to the Moving Peaks benchmark [4]. In this case, the
algorithm starts with a randomly generated population of solutions and then
performs the process of iterated improvement of the solutions by the repetition
of: 1) affinity evaluation and 2) clonal selection and expansion.

Trojanowski et al. [30] compared five types of AISs in dynamic optimiza-
tion problems: 1) Artificial Immune Iterated Algorithm (AIIA) [29], 2) B-Cell

6

Algorithm (BCA) [11], 3) Clonal Selection Algorithm (CLONALG) [20], 4) opt-
Ainet algorithm [17], and a Simple Artificial Immune System (SAIS) [9]. All of
them implement non-deterministic iterated processes of search and all of them
work with a population of solutions called antibodies or B-cells. Recall that
the antibodies represent candidate solutions to the problem, i.e., points in an
n-dimensional real valued search space. The coordinates of these points are
represented by real numbers or can be coded as bitstrings. Each algorithm
starts with a population of random solutions which are iteratively improved
[30]. These approaches were tested with seven types of mutation operators (M1

to M7). M1 changes each coordinate of the antibody by a uniformly distributed
value defined by the range of the decision variables and the distance from the
position of the point in the search space to the boundary of the space [30].
M2 uses a Gaussian random numbers generator which is also controlled by the
mutation range parameter, but in this case, the new solution candidates can
be located in the entire search space [30]. The operator M3 operates on single
elements of the floating point representation, and consists of several steps. In
the first step, the operator has to select a position and length of the sequence
of elements to be mutated in a string s. It randomly selects an element in s
which will be a starting point of the sequence of elements to be mutated. Then,
the length of the sequence is randomly generated, too. Finally, every element
of the sequence is mutated individually [30]. M4 is very close to the well-known
classical mutation operator in which the subsequent coordinates of a solution
are modified by independent Gaussian random variates. But, here, instead of
the Gaussian random number generator, the authors adopt the α-stable distri-
bution generator. This distribution is controlled by four parameters [30]. The
mutation operator M5 is a modified version of M4. Here, the range parame-
ter in the generator is not constant but proportional to the exponent of the
normalized fitness of the mutated solution [30]. The range parameter in M6

is defined in a similar way as for M4, where the range parameter is constant
for all solutions during the entire search process. In M7, the range parameter
varies according to the same rules used in M5, i.e., it is directly proportional
to the exponent of the normalized fitness of the mutated solution (see [30] for
futher details). These algorithms were tested with six environments generated
with two test-benchmarks: the Simple Test-Case Generator [28] and the Moving
Peaks Benchmark [4].

6 T Cell Theory

In this paper, an adaptive immune system model based on the immune responses
mediated by the T cells is adopted. Originally, this approach was used to solve
static optimization problems [1]. The model is called TCELL, and it considers
many of the processes that T cells suffer from their origin in the hematopoietic
stem cells in the bone marrow until they become memory cells.

T cells belong to a group of white blood cells known as lymphocytes. They
play a central role in cell-mediated immunity. They present special receptors on

7

their cell surface called T cell receptors (TCR1). All the T cells originate from
hematopoietic stem cells in the bone marrow. The hematopoietic progenitor
derived from hematopoietic stem cells populate the thymus and expands by cell
division to generate a large population of immature thymocytes [22].

Several subsets of the T cells have been discovered, each with a distinct
function. Thus, they can be classified in different populations according to the
antigen receptor they express. These antigens receptors could be TCR-1 or
TCR-2. Additionally, TCR-2 cells express CD4 or CD8.2

Also, T cells can be divided into three groups according to their maturation
or development level (phylogenies of the T cells [7]): virgin, effector and memory
cells. Virgin cells are those which have never been activated (i.e., they have not
suffered proliferation or differentiation). At the beginning, these cells do not
express CD4 nor CD8. However, later on, they develop and express both marks,
CD4 and CD8. Finally, virgin cells mature and express only one mark, either
CD4 or CD8. Before these cells release the thymus, they are subject to both
positive selection [14] and negative selection [14]. Positive selection guarantees
that the only survivors are the cells with TCRs that present a moderate affinity
with respect to the self MHC. Negative selection eliminates the cells with TCRs
that recognize self components unrelated to the MHC.

Effector cells are a type of cells that express only one mark, CD4 or CD8.
They can be activated by co-stimulating signals plus their ability to recognize an
antigen [6, 15]. The immune cells interact through the secretion of cytokines.3

Cytokines allow cellular comunication. Thus, an immune cell ci influences the
activities (proliferation and differentiation) of another cell cj through the se-
cretion of cytokines, modulating the production and secretion of cytokines by
cj [7]. In order to activate an effector cell, a co-stimulated signal is necessary.
Such signal corresponds to the cytokines secreted from another effector cell.
The activation of an effector cell implies that it will be replicated and differen-
tiated. Thus, the proliferation process has as its goal to replicate the cells and
the differentiation process changes the clones so that they acquire specialized
functional properties.

Finally, the memory cells are those that persist into the host even when the
infection or danger has been overtaken, so that in the future, they are able to get
stimulated by the same or by a similar antigen. Usually, they respond through
proliferation and differentiation, faster with a low dosage of antigens than the
memory B cells. It is worth noting that, although the effector and memory cells
are replicated, they are not subject to somatic hypermutation. For the effector
cells, the differentiation process is subject to the cytokines released by another
effector cell. In the model adopted in the work reported here, the differentiation

1TCRs are responsible for recognizing antigens bound to major histocompatibility complex
(MHC) molecules.

2Lymphocytes express a large number of surface molecules that can be used to mark
different cellular populations. CD means Cluster Denomination and indicates the group to
which lymphocytes belong.

3Proteins act as signal transmitters between cells, and also induce growth, differentiation,
activation, etc.

8

process of the memory cells relies on their own cytokines.
The immune response consists of two phases: the first (called recognizing

phase) involves the processes that suffer only the virgin cells and the second
(called effector phase) is related to the processes that suffer the effector and
memory cells. The recognizing phase has to provide some diversity so that the
next phase can produce a cell to eliminate the antigen. Meanwhile, the effector
phase is in charge of doing this job.

6.1 Proposed Algorithm Based on TCELL

DTC (Dynamic T-Cell) is an algorithm inspired on the TCELL model, which
is proposed in this paper to solve dynamic optimization problems. DTC op-
erates on four populations, corresponding to the groups in which the T-cells
are divided: (1) Virgin Cells (VC), (2) Effector Cells with cluster denomination
CD4 (CD4), (3) Effector Cells with cluster denomination CD8 (CD8) and (4)
Memory Cells (MC). Each population is composed by a set of T cells whose
characteristics are subject to the population to which they belong.

Virgin Cells (VC) do not suffer the activation process. They have to provide
diversity. This is reached through the random acquisition of TCR receptors.
Virgin cells are represented by: 1) a TCR represented by a bitstring using Gray
coding (called TCRb) and 2) a TCR represented by a vector of real numbers
(called TCRr).

Into the natural immune system, the positive and negative selections have
to remove the potentially harmful cells. Thus, in DTC, positive selection is in
charge of eliminating the cells that recognize the antigen with a low matching.
On the other hand, negative selection has to eliminate the cells that have a
similar TCR, according to a Hamming or an Euclidean distance, depending on
whether the TCR is represented by a TCRb or by a TCRr.

Effector Cells are composed by: 1) a TCRb or TCRr, if they belong to CD4
or CD8, respectively, 2) a proliferation level and 3) a differentiation level. The
goal of this type of cell is to explore in a global way the search space. Thus,
CD4 explores the search space, taking advantage of the Gray coding properties
(there is only one bit of difference between two consecutive numbers), while
CD8 uses real numbers representation (big or small jumps).

The goal of the memory cells is to explore the neighborhood of the best
found solutions. These cells are represented by the same components that CD8.

In DTC, the TCR identifies the decision variables of the problem, indepen-
dently of the TCR representation. The proliferation level indicates the number
of clones that will be assigned to a cell and the differentiation level indicates
the number of bits or decision variables (according to the TCR representation
adopted) that will be changed, when the differentiation process is applied.

The activation of an effector cell, called cei, implies the random selection of
a set of potential activator (or stimulating) cells. The closest cell to cei (using
Hamming or Euclidean distance), according to the TCR in the set, is chosen to
become the stimulating cell, say cej. Then, cei proliferates and differentiates.

9

At the beginning, the proliferation level of each stimulated cell, cei, is given
by a random value within [1, 5],4 but then, it is determined taking into account
the proliferation level of its stimulating cell (cej). If the cei is better than cej ,
then cei keeps its own proliferation level; otherwise, cei receives a level which is
10% lower than the level of cej .

Memory cells proliferate and differentiate according to their proliferation
level (randomly between 1 and the size of MC5) and differentiation level (ran-
domly between 1 and the 90% of the number of decision variables6), respectively.
Both levels are independent from the other memory cells.

Each type of cell has its own differentiation process, which is blind to their
representation and population.

Differentiation for CD4: the differentiation level of cei is determined by the
Hamming distance between the stimulated (cei) and stimulating (cej)
cells. It indicates the number of bits to be changed. Each decision vari-
able and the bit to be inverted are chosen in a random way. The bits
change according to a probability probdiff−CD4. The pseudo-code for the
proliferation and differentiation of cell cei is shown next:

for np = 1 to Proliferation Level of cei do

clonenp ← cei

for nd = 1 to Differentiation Level of cei do

if probdiff−CD4 then

k ← U(1, | vd |)
l ← U(1, | bitsk |)
Invert the lth-bit of vdk of the clonenp

end if

end for

end for

where U(1, w) refers to a random number with a uniform distribution in
the range (1,w), | vd | is the number of decision variables of the problem,
| bitsk | is the number of bits to represent the kth decision variable and
vdk indicates the kth decision variable.

Differentiation for CD8: the differentiation level for cell cei is related to its
stimulating cell (cej). If the TCRr of the cej is better than the TCRr

of the stimulated cell cei (according to the objective function value), then
the level (for cei) is a random number within [1, | dv |7]; otherwise, it
is a random value within [1, | dv | /2], where | dv | is the number of
decision variables of the problem. Each variable to be changed is chosen
in a random way and it is modified according to the following equation:

4This value was derived after numerous experiments.
5This is an arbitrary value adopted in order to avoid overloading the number of required

parameters.
6This value was set thinking on performing an intensive local search.
7If the stimulating cell is better, then cei should change more decision variables

10

x
′

= x± U(0, lu− ll)U(0,1) (6)

where x and x
′

are the original and the mutated decision variables, re-
spectively. lu and ll are the upper and lower bounds of x, respectively. At
the moment of the differentiation of a cell (cei), the value of the objective
function of its stimulating cell (cej) is taken into account. In order to
determine if r = U(0, lu− ll)U(0,1), will be added or subtracted to x, the
following criteria are considered: if cej is better than cei and the decision
variable value of cej is less than the value of cei, or if cei is better than
cej and the decision variable value of cei is less than the value of cej , then
r is subtracted from x; otherwise, r is added to x. Both criteria aim to
guide the search towards the best solutions found so far. The pseudo-code
for the proliferation and differentiation of the cell cei with the stimulating
cell cej is shown next:

for np = 1 to Proliferation Level of cei do

clonenp ← cei

for nd = 1 to Differentiation Level of cei do

k ← U(1, | vd |)
r ← U(0, lu− ll)U(0,1)

if f(cejTCRr
) is better than f(ceiTCRr

) and cejTCRrk
< ceiTCRrk

o f(ceiTCRr
) is better than f(cejTCRr

) and cejTCRrk
> ceiTCRrk

then

clonnpTCRrk
← ceiTCRrk

− r
else if f(cejTCRr

) is better than f(ceiTCRr
) and cejTCRrk

> ceiTCRrk

o f(ceiTCRr
) is better than f(cejTCRr

) and cejTCRrk
< ceiTCRrk

then

clonenpTCRrk
← ceiTCRrk

+ r
else

add or subtract r with probability 50%
end if

end for

end for

where U(w1, w2) refers to a random number with a uniform distribution
in the range (w1,w2), | vd | is the number of decision variables of the
problem, lux and llx are the upper and lower bounds of x, respectively. iter
indicates the number of iterations until reaching the maximum number of
evaluations for a change. f(cehTCRr

) is the objective function value for
the TCRr of the cell ceh, and cehTCRrk

indicates the kth decision variable
of the cell h.

Differentiation for MC: the number of decision variables to be changed is
determined by the differentiation level of the cell to differentiate. Each
variable to be changed is chosen in a random way and it is modified ac-
cording to the following equation:

11

x
′

= x±

(

U(0, lux − llx)

100iter

)U(0,1)

(7)

where x and x
′

are the original and the mutated decision variables, re-
spectively. U(0, w) refers to a random number with a uniform distribu-
tion in the range (0,w). lux and llx are the upper and lower bounds of
x, respectively. iter indicates the number of iterations until reaching the
maximum number of evaluations for a change. In a random way, it is

decided if r =
(

U(0,lux−llx)
100iter

)U(0,1)

will be added or subtracted to x.

The general structure of the algorithm proposed here for dynamic optimiza-
tion problems is given in Algorithm 1. Figure 1 shows the transit of cells. Each
arrow indicates the direction in which the cells are inserted into each population.

Algorithm 1 DTC Algorithm

1: Initialize VC();
2: Evaluate VC();
3: Assign Proliferation();
4: Divide CDs();
5: Positive Selection CD4();// eliminate the cells in CD4 with worst objective

function value
6: Positive Selection CD8();// eliminate the cells in CD8 with worst objective

function value
7: Negative Selection CD4();// eliminate the most similar cells in CD4
8: Negative Selection CD8();// eliminate the most similar cells in CD8
9: while A predetermined number of change has not been reached do

10: while A predetermined number of evaluations has not been performed
do

11: Active CD4();
12: Sort CD4();
13: Comunication CD4 CD8();
14: Active CD8();
15: Sort CD8();
16: Insert CDs en MC();
17: for i = 1 to repMC do

18: Active MC();
19: end for

20: Sort CM();
21: end while

22: Statistics();
23: Change Function();
24: Re-evaluate Populations();
25: end while

12

Figure 1: Transit of cells.

The algorithm works in the following way. At the beginning, the TCRb and
TCRr from the virgin cells are initialized in a random way, according to the
TCR’s encoding (step 1). Then, each TCR of a virgin cell is evaluated (step 2).
In step 3, the proliferation levels are assigned. Then, in step 4, the virgin cells
are divided. Virgin cells with the best TCRb will conform CD4, while virgin
cells with the best TCRr will conform CD8. Each effector cell will inherit the
proliferation level of the virgin cell which received the TCR.

The negative and positive selections are applied to each effector population
(CD4 and CD8). The first selection eliminates 10% of the worst cells and the
second selection eliminates cells that are similar between them (keeping the
best from them). This mechanism works in the following way: for each effector
cell, one searches inside its population for the closest cell (using Hamming or
Euclidean distance according to the TCR cell) and the worst between them is
eliminated. This process reduces the effector’s population sizes.

The first iteration (step 9) is controlled by the number of changes of the
objective function. Besides, for each change, a maximum number of objective
function evaluations is allowed (step 10). The steps inside the last iteration
are: to activate the CD4 population; in other words, to perform proliferation
and differentiation of all the cells from CD4 (step 11). Then, these cells are
sorted in a descending way in order to get the best cell (step 12). There exists a
comunication process between CD4 and CD8 (step 13), where the best cell from
CD4 replaces the worst cell from CD8. Since the representation schemes of the
TCR, for CD4 and CD8, are different, before the insertion of the best cell from

13

CD4 (with TCRb) into CD8, the receptor has to be converted into a real-values
vector (TCRr). For this process, the following equation is used, which takes as
input a bitstring generated with Gray coding and returns a real number (this
process is applied as many times as decision variables has the problem):

dvj = llj +

∑Lj

i=0 2Lj−idv′ij(luj − llj)

2L
j − 1

(8)

where dvj is the jth decision variable with j = 1, . . . , number of decision vari-
ables of the problem, Lj is the number of bits for the jth decision variable, luj

and llj are the upper and lower limits for the decision variable dvj , respectively.
And dv′ij is the ith bit of the bitstring that represents dvj . Also, equation (8) is
used when a cell from CD4 has to be decoded in order to be evaluated.

After the above communication process, the CD8 population is activated.
This means that proliferation and differentiation of all the cells are performed
from CD8 (step 14), which are sorted in descending order (step 15).

The best solutions from CD4 and CD8 are inserted or are used to replace
the 50% of the worst solutions in MC (depending on whether or not, MC is
empty) (step 16). Again, equation (8) is used to convert the TCRb from CD4
cells before inserting them, as cells with TCRr, into MC. Next, the cells from
MC are activated a certain (predefined) number of times, rep MC (step 18).

It is assumed that the algorithm knows when the environment has changed
(step 23), since that information is required in order to re-evaluate the popula-
tions (step 24).

In order to corroborate if the differentiation operators work in the desired
way, a bi-dimensional point was generated in the range [0, 100] and the three
operators were applied to it in both dimensions, 1000 times. For binary Gray
coding (CD4), 40 bits were used to represent each decision variable. The number
of bits to be changed was set to 18 (differentiation level). Figure 2 shows the
results of the application of the differentiation operator for CD4 with different
probdiff−CD4. As the likelihood increases, the operator finds more different
solutions. Figure 3 shows the superposition of the generated points for each
operator. It can be seen that the distribution of CD8 points is similar to that
of the CD4 points with probdiff−CD4=0.3, which implies a good global search
capability. Furthermore, it should be clear how the operator for MC performs
an in-depth local search.

14

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
oo

rd
in

at
e

2

Coordinate 1

Prob=0.05

a)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
oo

rd
in

at
e

2

Coordinate 1

Prob=0.1

b)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
oo

rd
in

at
e

2

Coordinate 1

Prob=0.3

c)

Figure 2: Distribution of 1000 mutated points using the differentiation oper-
ator for CD4 (on the same original point) with: a) probdiff−CD4=0.05, b)
probdiff−CD4=0.1 and c) probdiff−CD4=0.3.

15

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
oo

rd
in

at
e

2

Coordinate 1

CD4
CD8
CM

Figure 3: Overlapping of 1000 mutated points generated by the application
of the three differentiation operators (CD4 with probdiff−CD4=0.1, CD8 and
CM).

7 Efficiency Measure

In order to assess the performance of the algorithm, the following measure,
which is relatively popular in the literature, was used [30]: Offline error (oe),
which represents the average deviation of the best individual evaluated since
the last change from the optimum. It is defined by:

oe =
1

Nc

Nc
∑

j=1

(
1

Ne(j)

Ne(j)
∑

i=1

(f∗

j − f∗

ji)) (9)

where Nc is the total number of fitness landscape changes within an experiment,
Ne(j) is the number of solution evaluations performed for the jth state of the
landscape, f∗

j is the value of the optimal solution for the jth landscape and f∗

ji

is the current best fitness value found for the jth landscape [30].
The ideal value for oe is zero, which would mean that the optimum was found

in the evaluation of the first solution for each state of the landscape. The first
ten oe values (corresponding to changes 1 to 10) from each run are discarded in
order to allow the algorithm to reach some stability.

16

Environment STCG12nc STCG10c STCG20c STCG20nc

Number of peaks 36 100 100 100
Number of moving peaks 12 10 20 20
Number of dimensions 2 2 2 2

Coordinate [0, 6] [0, 10] [0, 10] [0, 10]
Type of change non-cyclic cyclic cyclic non-cyclic

pmax 100 100 100 100
Change every x evaluations 5000 5000 5000 5000

Table 1: Parameters adopted for the environments generated by STCG.

8 Numerical Experiments

8.1 Dynamic Environments and Their Parameters

To validate the proposed DTC algorithm, six fitness landscapes created with
two test functions generators for dynamic environments were adopted. The
environments generated by STCG (see Section 3) and their features are the
following (Table 1 summarizes the parameters of each environment generated
by STCG):

1. STCG12nc: this environment has 2 dimensions, and 36 peaks where 12 of
them change their heights acyclically.

2. STCG10c: this environment has 2 dimensions, and 100 peaks where 10 of
them change their heights cyclically.

3. STCG20c: this environment has 2 dimensions, and 100 peaks where 20 of
them change their heights cyclically.

4. STCG20nc: this environment has 2 dimensions, and 100 peaks where 20
of them change their heights acyclically.

The environments generated by MPB (see Section 4) and their features are
the following (Table 2 describes the parameters adopted for them):

1. MPB5 (scenario 1): this environment has 5 dimensions, and 5 peaks where
all of them change, in a random way, their heights, widths and locations.

2. MPB50 (scenario 2): this environment has 5 dimensions, and 50 cones
where all of them change, in a random way, their heights, widths and
locations.

For MPB5 (scenario 1) and MPB50 (scenario 2), the standard settings given
in the web page: http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/movpeaks/
were adopted.

17

Environment MPB5 (scenario 1) MPB50 (scenario 2)
movrand 1 1

Number of peaks 5 50
Number of dimensions 5 5

Height [30, 70] [30, 70]
Stdheight 50 50

Width [0.0001, 0.2] [1.0, 12.0]
Stdwidth 0.1 0.0

Coordinate [0, 100] [0, 100]
Height severity - width severity - vlength 7.0 - 0.01 -1.0 7.0 - 1.0 - 1.0

Use basis function FALSE FALSE
Correlation lambda 0.0 0.0

Change every x evaluations 5000 5000
Peak function function1 cone

Change stepsize constant constant

Table 2: Parameters adopted for the environments generated by MPB.

8.2 Parameters for DTC

The required parameters for the proposed DTC are the following: size of VC,
CD4, CD8 and MC; number of repetitions for the activation of MC (rep MC)
and probability of application of the differentiation operator for CD4 (probdiff−

CD4).
Binary Gray encoding was adopted (for VC and CD4) with 40 bits for each

decision variable. 50 independent runs and 110 changes of the objective function
were performed for each environment.

The best compromises of parameter values, for each benchmark were empir-
ically derived and are as follows:

• For the environments generated by STCG: size of VC, CD4 and CD8 of 300
cells, size of MC of 3 cells, probdiff−CD4 = 0.3, rep MC = 10 repetitions,

• For the environments generated by MPB: size of VC, CD4 and CD8 of 300
cells, size of MC of 3 cells, probdiff−CD4 = 0.1, rep MC = 50 repetitions.

Results were compared with respect to those obtained by the best combi-
nation of AIS and a mutation operator presented in [30] for each environment,
and are as follows:

• For STCG12nc: AIIA - M7 - α = 0.5; CLONALG-M2; Sais-M2; BCA -
M5 - α = 2.0 and opt-Ainet -M1.

• For STCG10c: AIIA - M6 - α = 1.95 and α = 2.0; CLONALG-M2; Sais-
M2; BCA M6 - α = 1.75 and M7 - α = 1.0 to α = 1.90 and α = 2.0;
opt-Ainet -M1.

• For STCG20c: AIIA - M6 - α = 2.0; CLONALG-M2; Sais-M2; BCA M6 -
α = 2.0 and opt-Ainet -M1.

18

• For STCG20nc: AIIA - M7 - α = 0.5; CLONALG-M2; Sais-M2; BCA -
M5 - α = 2.0 and opt-Ainet -M1.

• For MPB5: AIIA - M6 - α = 2.0; CLONALG-M2; Sais-M2; BCA - M5 -
α = 1.75 and opt-Ainet -M2.

• For MPB50: AIIA - M5 - α = 2.0; CLONALG-M3; Sais-M2; BCA - M5 -
α = 2.0 and opt-Ainet -M1.

These approaches executed 50 independent runs. The problems experienced
110 changes of the fitness landscape and, approximately 5000 objective function
evaluations took place per change. For these problems, the authors of the other
methods with respect to which results were compared, reported the mean oe
value.

8.3 Analysis of Results

Table 3 shows the best, worst and mean oe values obtained by DTC for the
environments under study. In Figures 4, 5 and 6, the best solution found in
each population is compared, before a change occurs, for each environment.
From Figures 4a) and 4b), it can be seen that cyclic changes do not seem to be
a challenge for DTC.

From Figures 5a) and 5b), it can be observed that acyclic changes affect
negatively the behavior of DTC, but before a change occurs, DTC can find
good solutions. However, its performance deteriorates as the number of changing
peaks in the landscape grows.

Environment Best oe Worst oe Mean oe

STCG10c 0.00 0.00 0.00
STCG20c 0.00 0.12 0.03
STCG12nc 0.30 1.1 0.59
STCG20nc 0.48 1.62 0.92

MPB5 0.81 1.33 1.07
MPB50 1.97 3.45 2.50

Table 3: Values of oe obtained by DTC for each environment.

19

 98

 98.5

 99

 99.5

 100

 100.5

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

a)

 98

 98.5

 99

 99.5

 100

 100.5

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

b)

Figure 4: Comparison between the best cell found, before a change, by each
population for: a) STCG10c, and b) STCG20c.

20

 98

 98.5

 99

 99.5

 100

 100.5

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

a)

 98

 98.5

 99

 99.5

 100

 100.5

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

b)

Figure 5: Comparison between the best cell found, before a change, by each
population for: a) STCG12nc, and b) STCG20nc.

From Figure 6, it can be seen that the presence of a change has more impact
when the landscape has fewer peaks. For MPB50 and MPB5, the solutions found
by CD4 seem to be a starting point in order for CD8 and MC to improve them.

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

O
bj

ec
tiv

e
V

al
ue

CD4
CD8
CM

Optimum

b)

Figure 6: Comparison between the best cell found, before a change, by each
population for: a) MPB5, and b) MPB50.

Figures 7, 8 and 9 support these findings. Here, it can be observed how the
offline errors are consistent with the facts presented before.

22

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

b)

Figure 7: Offline Error: a) STCG10c, b) STCG20c.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

b)

Figure 8: Offline Error: a) STCG12nc, b) STCG20nc.

24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120

O
ffl

in
e

E
rr

or

Changes

b)

Figure 9: Offline Error: a) MPB5, b) MPB50.

When comparing the proposed DTC with respect to the AIS presented in
[30] (see Table 4), it can be seen that DTC obtained better results in all the
environments, except for MPB5. If the approaches are ranked, according to
Table 4, the following ranking is obtained (from best to worst performance):
DTC, BCA, AIIA, opt-Ainet, CLONALG and Sais. It is worth noting that all
these approaches use real numbers representation, except for DTC, which uses

25

Approach STCG10c STCG20c STCG12nc STCG20nc MPB5 MPB50

AIIA 1.04 1.03 1.08 2.26 0.71 3.46
CLONALG 3.02 3.14 2.54 6.23 11.71 10.53

Sais 3.53 3.56 2.62 6.56 12.16 11.57
BCA 0.00 0.18 1.04 1.60 0.39 2.69

opt-Ainet 1.40 4.20 1.80 3.32 2.39 4.76
DTC 0.00 0.03 0.59 0.92 1.07 2.50

Table 4: Mean values of the oe obtained by each approach.

a mixed encoding consisting of both, binary and real numbers. Indeed, this
could be one of the main reasons for which DTC performs better than the other
approaches in the problems adopted. There are, however, other differences
between DTC and the other approaches with respect to which results were
compared. First, it is worth noting that DTC uses three differentiation operators
while the other approaches adopt a single mutation operator. On the other hand,
AIIA, CLONALG and Sais, clone and mutate only the best solutions and remove
the worst solutions at each iteration. In contrast, DTC only dismisses the worst
solutions at the beginning of the search process when positive selection is applied
to both CD4 and CD8, and then DTC clones all members of the populations
(even when the differentiation level is given by a random number). With respect
to BCA, DTC differs from it in that BCA inserts, at each iteration, a randomly
generated antibody and DTC never does it. Also, DTC uses two populations
to perform global search and a third population whose role is to act as a local
search engine. In contrast, BCA is a quasi-multipopulation approach. Finally,
opt-Ainet intoduces a randomly generated antibody at each iteration too but,
depending on the average fitness, it could, at each iteration, remove the worst of
the similar solutions and to insert a number of randomly generated antibodies.
However, DTC only removes the worst similar solutions at the beginning of the
search, when negative selection is applied to both CD4 and CD8. Thus, DTC is
able to keep diversity in the populations without adding any extra mechanisms.

8.4 Statistical Analysis

In order to statistically analyze the effect of each parameter on the behavior
of DTC, it was tested with different parameters settings. The settings adopted
were empirically derived after numerous experiments.

Since the VC population is initialized only once (it is not involved in the
search process, but only acts as the starting point of the search), its size was
fixed in 300 cells. The remaining parameters have different levels, which were
defined as follows:

• CD4 and CD8 have four levels: 50, 100, 200 and 300 cells;

• MC has two levels: 3 and 10 cells;

• probdiff−CD4 has three levels: 0.05, 0.1 and 0.3;

26

Parameters VC CD4 CD8 MC rep MC probdiff−CD4

Setting ID
01 300 50 50 3 10 0.05
02 300 50 50 3 10 0.1
03 300 50 50 3 10 0.3
04 300 50 50 10 10 0.05
05 300 50 50 10 10 0.1
06 300 50 50 10 10 0.3
07 300 50 50 3 50 0.05
08 300 50 50 3 50 0.1
09 300 50 50 3 50 0.3
10 300 50 50 10 50 0.05
11 300 50 50 10 50 0.1
12 300 50 50 10 50 0.3
13 300 100 100 3 10 0.05
14 300 100 100 3 10 0.1
15 300 100 100 3 10 0.3
16 300 100 100 10 10 0.05
17 300 100 100 10 10 0.1
18 300 100 100 10 10 0.3
19 300 100 100 3 50 0.05
20 300 100 100 3 50 0.1
21 300 100 100 3 50 0.3
22 300 100 100 10 50 0.05
23 300 100 100 10 50 0.1
24 300 100 100 10 50 0.3
25 300 200 200 3 10 0.05
26 300 200 200 3 10 0.1
27 300 200 200 3 10 0.3
28 300 200 200 10 10 0.05
29 300 200 200 10 10 0.1
30 300 200 200 10 10 0.3
31 300 200 200 3 50 0.05
32 300 200 200 3 50 0.1
33 300 200 200 3 50 0.3
34 300 200 200 10 50 0.05
35 300 200 200 10 50 0.1
36 300 200 200 10 50 0.3
37 300 300 300 3 10 0.05
38 300 300 300 3 10 0.1
39 300 300 300 3 10 0.3
40 300 300 300 10 10 0.05
41 300 300 300 10 10 0.1
42 300 300 300 10 10 0.3
43 300 300 300 3 50 0.05
44 300 300 300 3 50 0.1
45 300 300 300 3 50 0.3
46 300 300 300 10 50 0.05
47 300 300 300 10 50 0.1
48 300 300 300 10 50 0.3

Table 5: Parameters Settings and their IDs.

27

• rep MC has two levels: 10 and 50 repetitions.

Thus, there are 48 parameters settings for each environment. They are listed
and identified in Table 5.

The analyses performed have two phases. First, an analysis of variance
(ANOVA) was performed in order to determine the sensitivity of DTC to its
parameters. For that sake, the parameters settings provided in Table 5 were
adopted. The hypotheses considered were the following:

Null Hypothesis : there is no significant difference among the averages of the
offline errors (oe). If there are differences, they are due to random effects.

Alternative Hypothesis : there is a combination of factor values for which
the averages of the offline errors (oe) are significatively different and they
are not due to random effects.

As the results (offline errors) do not follow a normal distribution, the Kruskal-
Wallis test was applied, to perform the ANOVA and then the Turkey method
in order to determine the experimental conditions for which significant differ-
ences exist. The results obtained by the ANOVA proved the Null Hypothesis for
several combinations of parameters. However, the Alternative Hypothesis was
proved, too. Figures 10, 11, 12, 13, 14 and 15 show in the x-axis the statistics
used by the Turkey method to determine significant differences and the y-axis
indicates the ID for the combination of parameter values (corresponding to Ta-
ble 5). When the two intervals are not overlapping, the results obtained with
these combinations of parameter values are significantly different; otherwise,
they are not significantly different. For instance, Figure 10 shows the ANOVA
for STCG12nc. Here, it can be seen that the results obtained with the parame-
ters setting 01 has no significant differences with respect to the results obtained
with the parameters settings 02 to 14 (the interval for 01 is overlapped with the
intervals from 02 to 14).

In the second phase of the statistical analysis, the box plot method was
adopted to visualize the distribution of the offline errors for each environment.
This allowed to determine the robustness of DTC. Figures 16, 17 and 18 show
in the x-axis the ID for a combination of parameter values (corresponding to
Table 5) and the y-axis indicates the offline errors for each environment.

Thus, these two phases are meant to answer the following questions:

1. Is probdiff−CD4 responsible for causing the significant differences in the
results?

2. Is the size of the effector populations responsible for causing the significant
differences in the results?

3. Is the number of memory cells responsible for causing the significant dif-
ferences in the results?

4. Is the number of activation of MC (rep MC) responsible for causing the
significant differences in the results?

28

After the statistical analysis of the results obtained by DTC, for the six
environments, with respect to the parameters settings provided in Table 5, the
following general conclusions can be derived:

• When the size of the populations and the number of activations of MC are
fixed, to vary the probability of application of the differentiation operator
for CD4 does not produce significant differences on the results. Thus,
probdiff−CD4 is not considered as a key parameter on the performance of
the DTC algorithm. However, although this is not a critical parameter, it
can be seen from Figures 16, 17 and 18 that better medians for STCG12nc

(when the sizes of CD4 and CD8 are 50, 100 or 200), STCG10c, STCG20c,
STCG20nc and MPB50 (with 3 memory cells) were obtained when this
probability is high.

• When the sizes of both CD4 and CD8 grow, the results show significant
differences. Thus, these parameters have a high impact on the performance
of the proposed DTC approach.

• The size of MC does not produce significant differences, when the rest of
the parameters remain fixed. When the size of MC is lower, rep MC does
not seem to affect or improve the results as the sizes of MC and rep MC
are larger. This means that DTC does not stagnate.

• To vary the number of activations of MC, when the rest of the parameters
remain fixed, does not produce significant differences, except for MPB50

when using a size of 300 cells for both CD4 and CD8.

29

−500 0 500 1000 1500 2000 2500 3000

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 10: ANOVA for STCG12nc.

30

−500 0 500 1000 1500 2000 2500 3000

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 11: ANOVA for STCG20nc.

31

−500 0 500 1000 1500 2000 2500 3000

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 12: ANOVA for STCG10c.

32

−500 0 500 1000 1500 2000 2500 3000

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 13: ANOVA for STCG20c.

33

−500 0 500 1000 1500 2000 2500

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 14: ANOVA for MPB5.

34

−500 0 500 1000 1500 2000 2500

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01

Figure 15: ANOVA for MPB50.

35

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

0

5

10

15

Va
lu

es

Column Number

a)

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

0

2

4

6

8

10

12

14

16

Va
lu

es

Column Number

b)

Figure 16: Boxplot: a) STCG12nc, b) STCG10c.

36

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

0

2

4

6

8

10

12

14

16

Va
lu

es

Column Number

a)

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

0

2

4

6

8

10

12

Va
lu

es

Column Number

b)

Figure 17: Boxplot: a) STCG10c, b) STCG20c.

37

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748
0

1

2

3

4

5

6

7

8

Va
lu

es

Column Number

a)

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

2

3

4

5

6

7

8

Va
lu

es

Column Number

b)

Figure 18: Boxplot: a) MPB5, b) MPB50.

Thus, the parameters can be ranked with respect to their influence on the
performance of DTC. In the first place, it is considered the size of both CD4

38

and CD8, since they have the highest influence on the performance of DTC.
In second place, it is considered probdiff−CD4. Finally, it is considered the
number of memory cells and the number of activations for MC. For five of
the six environments studied (all but MPB5) the best results were found when
using 200 and 300 effector cells. On the other hand, for MPB5, DTC presented
a better performance with 50 and 100 effector cells. For all the environments,
except for MPB50, DTC is robust when considering the appropriate parameters
settings.

These facts make us to recommend, in general, the following values for the
parameters required by the DTC algorithm:

1 For environments in which the differences among heights are big,

or when the landscape has many local optima

• |VC|= 300 cells

• |CD4|= 200 to 300 cells

• |CD8|= 200 to 300 cells

• |MC|= 3 or 10 cells

• rep MC = 10 or 50

• probdiff−CD4 = 0.3

2 For environments in which the differences among heights and the

optimum are small or when the landscape has only a few local

optima

• |VC|= 300 cells

• |CD4|= 50 to 100 cells

• |CD8|= 50 to 100 cells

• |MC|= 3 cells

• rep MC = 10

• probdiff−CD4 = 0.05 or 0.1

9 Conclusions and Future Work

In this paper, it has been presented an adaptation of an existing artificial im-
mune system based on the T-Cell model, to the solution of dynamic optimiza-
tion problems. The model that has been adopted is inspired on the processes
experienced by the T-Cells within our immune system.

The proposed approach has been tested with six environments taken from a
benchmark of dynamic functions commonly adopted in the specialized literature.
The results obtained by DTC were very competitive, even when it is not a
multipopulation algorithm, resulting better in five of the six cases adopted,
than those generated by other algorithms from the state-of-the-art with respect
to which it was compared.

39

Based on this evidence, the authors believe that the proposed approach
(called DTC) can be a viable alternative to solve dynamic optimization prob-
lems. Additionally, DTC is able to maintain diversity without using any extra
mechanisms.

As part of the future work to be undertaken, it would be interesting to
study mechanisms that allow to reduce the number of parameters that DTC
requires. It would also be interesting to explore techniques that can increase
the robustness and effectivity of DTC. For that sake, it would be important to
study, for example, the effect of the number of clones in the search process.

Acknowledgements

The authors would like to thank Dr. Krzysztof Trojanowski (Institute of Com-
puter Science, Polish Academy of Sciences), for kindly providing the source
code of the Simple Test-Case Generator (STCG). The authors also thank the
anonymous reviewers and the Editor-in-Chief for their valuable comments which
greatly helped them to improve the contents of this paper.

The third author acknowledges support from CONACyT project number
103570.

References

[1] Victoria S. Aragón, Susana C. Esquivel, and Carlos A. Coello Coello. Ar-
tificial Immune System for Solving Global Optimization Problems. In XIV
Congreso Argentino en Ciencias de la Computacion (CACIC 2008), pages
637–647, 2008. Chilecito, La Rioja, Argentina.

[2] Michal Bereta and Tadeusz Burczynski. Immune K-means and negative
selection algorithms for data analysis. Information Sciences, 179(10):1407–
1425, April 29 2009.

[3] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence
in dynamic environments. IEEE Transactions on Evolutionary Computa-
tion, 10(4):459–472, 2006.

[4] Jürgen Branke. Memory Enhanced Evolutionary Algorithms for Changing
Optimization Problems. In Proceedings of the 1999 Congress on Evolu-
tionary Computation (CEC’99), volume 3, pages 1875–1882, Washington,
D.C., July 1999. IEEE Service Center.

[5] Jürgen Branke. Evolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, 2002.

[6] Peter Bretscher and Melvin Cohn. A theory of self-nonself discrimination.
Science, 169(3950):1042–1049, September 1970.

40

[7] Dipankar Dasgupta and Luis Fernando Ni no. Immunological Computation:
Theory and Applications. Auerbach Publications, Boston, Massachusetts,
USA, 2008.

[8] Weilin Du and Bin Li. Multi-strategy ensemble particle swarm optimiza-
tion for dynamic optimization. Information Sciences, 178(15):3096–3109,
August 1 2008.

[9] Alessio Gaspar and Philippe Collard. From GAs to Artificial Immune Sys-
tems: Improving Adaptation in Time Dependent Optimization. In Proceed-
ings of the 1999 IEEE Congress on Evolutionary Computation (CEC’99),
volume 3, pages 1859–1866. IEEE Service Center, July 1999.

[10] Maoguo Gong, Licheng Jiao, and Lining Zhang. Baldwinian learning
in clonal selection algorithm for optimization. Information Sciences,
180(8):1218–1236, April 15 2010.

[11] Johnny Kelsey and Jon Timmis. Immune Inspired Somatic Contiguous Hy-
permutation for Function Optimisation. In Erick Cantú-Paz et al., editor,
Genetic and Evolutionary Computation - GECCO 2003, Genetic and Evo-
lutionary Computation Conference, pages 207–218, Chicago, Illinois, USA,
July 2003. Springer. Lecture Notes in Computer Science Vol. 2723.

[12] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan
Kaufmann Publishers, San Francisco, California, 2001.

[13] Xiaodong Li, Jürgen Branke, and Tim Blackwell. Particle swarm with
speciation and adaptation in a dynamic environment. In Maarten Kei-
jzer et al., editor, 2006 Genetic and Evolutionary Computation Conference
(GECCO’2006), volume 1, pages 51–58, Seattle, Washington, USA, July
2006. ACM Press. ISBN 1-59593-186-4.

[14] David Male, Jonathan Brostoff, David B. Roth, and Ivan Roitt. Inmunol-
ogy. Mosby, seventh edition, 2006.

[15] P. Matzinger. Tolerance, danger and the extended family. Annual Review
of Immunology, 12:991–1045, April 1994.

[16] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuris-
tics. Springer, second edition, 2004.

[17] Leandro N. de Castro and Jon Timmis. An artificial immune network
for multimodal function optimization. In Proccedings of the 2002 IEEE
Congress on Evolutionary Computation (CEC’2002), volume 1, pages 669–
674, Honolulu, Hawaii, USA, May 2002. IEEE Service Center.

[18] Nikolaos Nanas and Anne De Roeck. Multimodal Dynamic Optimization:
From Evolutionary Algorithms to Artificial Immune Systems. In Lean-
dro Nunes de Castro, Fernando José Von Zuben, and Helder Knidel, ed-
itors, Artificial Immune Systems, 6th International Conference, ICARIS

41

2007, pages 13–24. Springer. Lecture Notes in Computer Science Vol. 4628,
Santos, Brazil, August 2007.

[19] Leandro Nunes de Castro and Jonathan Timmis. Artificial Immune Sys-
tems: A New Computational Intelligence Approach. Springer-Verlag, New
York, 2002.

[20] Leandro Nunes de Castro and Fernando J. Von Zuben. The Clonal Se-
lection Algorithm with Engineering Applications. In Proceedings of Ge-
netic and Evolutionary Computation Conference, Workshop on Artificial
Immune Systems and Their Applications, pages 36–37, July 2000.

[21] Fabricio Olivetti de França, Fernando J. Von Zuben, and Leandro Nunes de
Castro. An artificial immune network for multimodal function optimization
on dynamic environments. In Proceedings of the 2005 Genetic and Evo-
lutionary Computation Conference (GECCO’2005), pages 289–296, New
York, NY, USA, 2005. ACM Press.

[22] Benjamin A. Schwarz and Avinash Bhandoola. Trafficking from the bone
marrow to the thymus: a prerequisite for thymopoiesis. Immunological
Reviews, 209(1):47–57, 2006.

[23] Krzysztof Trojanowski. Evolutionary Algorithms with Redundant Genetic
Material for Non - Stationary Environments. PhD thesis, Institute of Com-
puter Science, Warsaw University of Technology, Poland, 1994.

[24] Krzysztof Trojanowski. Clonal Selection Principle Based Approach to Non-
Stationary Optimization Tasks. In Jaros law Arabas, editor, Evolutionary
Computation and Global Optimization 2006, number 156 in Prace Naukowe,
Elektronika, z.156, pages 375–384. Warsaw University of Technology Pub-
lishing House, 2006.

[25] Krzysztof Trojanowski. B-Cell Algorithm as a Parallel Approach to Opti-
mization of Moving Peaks Benchmark Tasks. In International Conference
on Computer Information Systems and Industrial Management Applica-
tions, pages 143–148, Los Alamitos, CA, USA, 2007. IEEE Computer So-
ciety.

[26] Krzysztof Trojanowski. Clonal Selection Approach with Mutations Based
on Symmetric alpha Stable Distributions for Non-stationary Optimization
Tasks. In ICANNGA ’07: Proceedings of the 8th international conference
on Adaptive and Natural Computing Algorithms, Part I, pages 184–193,
Berlin, Heidelberg, 2007. Springer-Verlag.

[27] Krzysztof Trojanowski. Properties of Quantum Particles in Multi-Swarms
for Dynamic Optimization. Fundamenta Informaticae, 95(2-3):349–380,
2009.

42

[28] Krzysztof Trojanowski and Zbigniew Michalewicz. Searching for Optima in
Non-Stationary Environments. In Peter J. Angeline, Zbigniew Michalewicz,
Marc Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings of the 1999
IEEE Congress on Evolutionary Computation (CEC’99), volume 3, pages
1843–1850, Washington, USA, July 7-9, 1999. IEEE Press, Piscataway, NJ,
USA.

[29] Krzysztof Trojanowski and Slawomir T. Wierzchon. Studying Properties
of Multipopulation Heuristic Approach to Non-Stationary Optimisation
Tasks. In Mieczyslaw A. Klopotek, Slawomir T. Wierzchon, and Krzysztof
Trojanowski, editors, Intelligent Information Processing and Web Mining,
Proceedings of the International IIS: IIPWM’03, Advances in Soft Com-
puting, pages 23–32. Springer, 2003.

[30] Krzysztof Trojanowski and Slawomir T. Wierzchoń. Immune-based algo-
rithms for dynamic optimization. Information Sciences, 179(10):1495–1515,
April 29 2009.

[31] Huan Xu, Jianjun Wang, and Hyoung Joong Kim. Near-optimal solution to
pair-wise LSB matching via an immune programming strategy. Information
Sciences, 180(8):1201–1217, April 15 2010.

[32] Xinquan Zuo, Hongwei Mo, and Jianping Wu. A robust scheduling method
based on a multi-objective immune algorithm. Information Sciences,
179(19):3359–3369, September 9 2009.

43

