A Modified Version of a T-Cell
Algorithm for Constrained Optimization
Problems

Victoria S. Aragén, Susana C. Esquivel
Laboratorio de Investigacién y Desarrollo en Inteligencia Computacional*
Universidad Nacional de San Luis
Ejército de los Andes 950
(5700) San Luis, ARGENTINA

{vsaragon, esquivel}@unsl.edu.ar

Carlos A. Coello Coellof
CINVESTAV-IPN (Evolutionary Computation Group)
Computer Science Department
Av. IPN No. 2508, Col. San Pedro Zacatenco
México D.F. 07300, MEXICO

ccoello@cs.cinvestav.mx

March 2, 2010

Abstract

In this paper, we present a heuristic inspired on the T-Cell model of
the immune system (i.e., an artificial immune system). The proposed
approach (called T-Cell) is used for solving constrained (numerical) op-
timization problems, and is validated using several test functions taken
from the specialized literature on evolutionary optimization. Addition-
ally, several engineering optimization problems are also used for assessing
the performance of the proposed approach. Results are compared with
respect to approaches representative of the state-of-the-art in constrained
evolutionary optimization.

Keywords: Artificial immune systems, constrained optimization, metaheuris-
tics, engineering optimization.

*LIDIC is financed by the Universidad Nacional de San Luis and ANPCyT (Agencia Na-
cional para promover la Ciencia y Tecnologia).
TThe third author is also affiliated to the UMI 3175 CNRS at CINVESTAV-IPN.

1 Introduction

In recent years, a bio-inspired metaheuristic known as the “artificial immune
system” (AIS) has gained popularity in a wide variety of tasks [34]. AISs are
inspired on our natural immune system, which has a number of very interesting
features, from a computational point of view, that make it a very good candidate
to be modelled in a computer. For example, it is a distributed system, it is fault-
tolerant, it has memory, it is able to distinguish between its own components
and those which are foreign, and it learns by experience.

AISs have been used for solving optimization problems (see for example
[13, 17, 42]), but in most cases, it has been applied only to unconstrained prob-
lems. The main reason for this is that this approach, in its original form (like in
the case of evolutionary algorithms) is an unconstrained search and optimiza-
tion technique. Relatively few proposals exist for coupling constraint-handling
mechanisms to an AIS (see for example [14]), in spite of the importance that
constraints have in real-world problems. In this paper, we precisely focus on
solving constrained optimization problems with an AIS that we have proposed,
and which we believe that can be a viable alternative for solving engineering
optimization problems.

The remainder of the paper is organized as follows. In Section 2, we define
the general type of problem we want to solve. Sections 3 and 4 provide some
general concepts regarding the existing AISs as well as the previous work related
to our own, respectively. In Section 5, we describe our proposed AIS, which is
based on the T-Cell Model. In Section 6, we present our experimental setup, our
results and we discuss them. Finally, in Section 7, we present our conclusions
and some possible paths for future research.

2 Statement of the Problem

We are interested in solving problems of the form?:

minimize
f(X) (1)

subject to
g;(X) <0 j=1,...m (2)
hie(X)=0 k=1,...,p (3)
xh < < ¥ i=1,...,n (4)
here f designates the objective function and X = (21, s,...,2,)7 is a vector

containing the design variables. The remaining functions correspond to inequal-
ity constraints (g), equality constraints (h) and side constraints with lower and

IWithout loss of generality, we will assume only minimization problems.

upper limits indicated by the superscripts | and u, respectively. Both the ob-
jective function and the constraints could be linear or nonlinear.

When an inequality constraint takes a zero value at the optimum, we say
that it is active. By definition, all the equality constraints are active.

3 AIS Models

According to [18] the main computational models of an Artificial Immune Sys-
tem in current use are: Negative Selection, Clonal Selection and Immune Net-
work Models. Each of them is briefly described next.

Forrest et al. [16] proposed the Negative Selection model for detection of
changes in an environment. This model is based on the discrimination principle
that the immune system adopts to distinguish between self and nonself. This
model generates random detectors and discards the detectors that are unable to
recognize themselves. Thus, it maintains the detectors that identify any nonself.
It performs a probabilistic detection and it is robust because it searches any
foreign action instead of a particular action. Typical applications of negative
selection include computer security [16, 20] and classification [19], among others.

The Immune Network Model was proposed by Jerne [26], and it is a mathe-
matical model of the immune system. This model assumes that lymphocytes are
an interconnected network, and the dynamics of such lymphocytes is simulated
using differential equations. Several computational models have been derived
from this mathematical theory (see for example [21, 25]). Typical applications
of immune network models are: detection of gene promoter sequences [22], data
mining [23], diagnosis [24] and cluster analysis [39], among others.

Clonal Selection is based on the way in which both B-cells and T-cells adapt
in order to match and kill foreign cells [34]. Clonal Selection involves: 1) the
ATS’ ability to adapt its B-cells to new types of antigens and 2) the affinity
maturation by hypermutation. CLONALG is a popular AIS based on clonal
selection proposed by Nunes de Castro and Von Zuben [32], which was origi-
nally used to solve pattern recognition and multimodal optimization problems.
A few extensions of CLONALG are available for dealing with constrained op-
timization problems. CLONALG works in the following way: first, it creates
a random population of antibodies, it sorts such antibodies according to some
affinity function (this affinity function is analogous to the fitness function used
in evolutionary algorithms), it clones them, it hypermutates each clone, and it
selects the antibodies with greatest affinity. Then, it replaces the worst anti-
bodies in the population by antibodies that are randomly generated. Typical
applications of clonal selection are described in [32, 33, 40].

4 Previous Related Work

As indicated before, the use of AIS for solving constrained (numerical) opti-
mization problems is less commom in the literature, when compared to other

nature-inspired techniques. The most relevant references in this regard are
briefly discussed next.

Hajela and Yoo [41, 42] proposed a hybrid between a Genetic Algorithm
(GA) and an AIS for solving constrained optimization problems. This approach
works on two populations. The first is composed by the antigens (which are the
feasible solutions to the problem), and the other is composed by the antibodies
(which are the infeasible solutions to the problem). The idea is to have a GA
embedded into another GA. The outer GA performs the optimization of the
original (constrained) problem. The second GA uses as its fitness function a
Hamming distance so that the antibodies are evolved to become very similar to
the antigens, without becoming identical. An interesting aspect of this work was
that the infeasible individuals would normally become feasible as a consequence
of the evolutionary process performed which, however, did not use the amount of
constraint violation to guide the search. This approach was successfully applied
to some structural optimization problems.

Coello Coello and Cruz-Cortés [13] proposed an extension of Hajela and
Yoo’s algorithm. In this proposal, no penalty function is needed, and some
extra mechanisms are defined to allow the approach to work in cases in which
there are no feasible solutions in the initial population. Additionally, the authors
proposed a parallel version of the algorithm and validated it using some standard
test functions reported in the specialized literature.

Balicki [4] made a proposal very similar to the approach of Coello Coello
and Cruz-Cortés. Its main difference is the way in which the antibodies’ fitness
is computed. In this case, a ranking procedure is adopted. This approach was
validated using a constrained three-objective optimization problem.

Luh and Chueh [17, 29] proposed an algorithm (called CMOIA, or Con-
strained Multi Objective Immune Algorithm) for solving constrained multiob-
jective optimization problems. In this case, the antibodies are the potential
solutions to the problem, whereas antigens are the objective functions. CMOIA
transforms a constrained problem into an unconstrained one by associating an
interleukine (IL) value with all the constraints violated. IL is a function of both
the number of constraints violated and the total magnitude of this constraint
violation. Then, feasible individuals are rewarded and infeasible individuals are
penalized. Other features of the approach are based on clonal selection theory
and other immunological mechanisms. CMOIA was evaluated using six test
functions and two structural optimization problems.

Coello Coello and Cruz-Cortés [14] proposed an algorithm based on clonal
selection theory for solving constrained optimization problems. The authors ex-
perimented with both binary and real-numbers encoding, considering Gaussian-
distributed and Cauchy-distributed mutations. Furthermore, they proposed a
controlled and uniform mutation operator. This approach was tested with a
set of 13 test functions taken from the specialized literature on evolutionary
constrained optimization.

Bernardino et al. [9, 10] proposed a genetic algorithm hybridized with an
artificial immune system (AIS-GA). The AIS is inspired on the clonal selec-
tion principle and it is embedded into a standard GA search engine in order to

help moving the population into the feasible region. AIS-GA uses binary tour-
naments in which the rules of the tournament are those normally adopted for
constrained problems. The authors argued that their AIS-GA performed very
well in problems presenting continuous design variables, that it reached good
results in problems with mixed design variables and that it presented a poor per-
formance in problems with discrete design variables. The authors also presented
an AIS-GA with a clearing procedure, which is called AIS-GA®. This procedure
is applied to the union of the new population and the previous one, in order
to create the new population. Both approaches are applied to six mechanical
engineering optimization problems.

Bernardino et al. presented in [8] a modified version of the algorithms in
[9] and [10]. The main difference with respect to these previous versions is that
the new one calculates the affinity taking into account the sum of the constraint
violations.

Previous versions of the T-Cell Algorithm presented in this paper have been
published before (see [1, 2, 3]) and validated with constrained optimization
problems. There are, however, significant differences between this paper and
those previous publications, which we explain next.

The algorithm proposed in [1] uses a similar mutation operator for the mem-
ory cells, but not the same as here; additionally, it also keeps fixed the number
of cells in the virgin cells during all the search process. The algorithms proposed
in [2, 3] utilize random probabilities for the mutation operators of the effector
cells. Also, those previous approaches keep fixed the number of cells in the vir-
gin cells during all the search process. It is also worth noting that these previous
approaches had not been applied to engineering optimization problems such as
those reported here. Finally, another important difference with respect to these
previous publications is that here, we do not adopt any dynamic tolerance factor
for the constraints. Such factor allows to expand the feasible region such that
equality constraints can be handled in a better way, but has the disadvantage
of adding one extra parameter to our approach [1, 2, 3].

5 Our Proposed Approach

In this paper we propose an adaptive immune system model, called TCELL,
which is based on the immune responses mediated by the T-cell. Our model
considers many of the processes that suffer the T-cells from their origin in the
hematopoietic stem cells in the bone marrow until they become memory cells.

The T-cells belong to a group of white blood cells known as lymphocytes.
They play a central role in cell-mediated immunity. They present a special
receptor on their cell surface called T-cell receptors (TCR?). All T-cells originate
from hematopoietic stem cells in the bone marrow. Hematopoietic progenitor
derived from hematopoietic stem cells populate the thymus and expand by cell
division to generate a large population of immature thymocyte [37].

2The TCRs are responsible for recognizing the antigens bound to major histocompatibility
complex (MHC) molecules.

T-cells can be divided into three groups, according to their maturation or
development level: virgin cells, effector cells and memory cells (phylogenies of
the T cells [15]). Virgin cells are those that were never activated (this means
that they did not suffer proliferation or differentiation).

Effector cells are a type of cells that can be activated by the recognition
of an antigen [11, 30]. The activation of an effector cell implies that it will
be proliferated and differentiated. The proliferation process has as its goal to
replicate the cells and the differentiation process changes the clones in order to
acquire specialized functional properties.

Finally, the memory cells are cells that persist into the host even when the
infection or danger has been overtaken so that, in the future, they are able to be
stimulated by the same (or a similar) antigen. Usually, they respond through
proliferation and differentiation, faster with a low dosage of an antigen than the
memory B cells. Note that although effector and memory cells are proliferated,
they do not suffer somatic hypermutation.

Thus, during the immunological response, the T-cells pass through different
phases: initiation, reaction and elimination. After the initiation phase, the
virgin cells become effector cells. They are activated (the cells change in order
to improve) and undergo a process called apoptosis. This process eliminates any
undesirable cells. The surviving cells become memory cells.

The previous concepts served as our inspiration to develop a T-Cell Algo-
rithm (when considering constrained problems). Our approach operates on four
populations: (1) Virgin Cells (VC), (2) Effector Cells (EC), which are subdi-
vided into: (2.a) Effector Feasible Cells (EC_f) and (2.b) Effector Infeasible Cells
(EC.nf), and (3) Memory Cells (MC). Each of them has a specific function.
VC has as its main goal to provide diversity. EC tries to explore the conflicting
zones of the search space. MC has to explore the neighborhood of the best
solutions found so far. The apoptosis is modeled through the insertion of VC
into EC and EC into MC. VC and EC represent their cells with binary strings
using Gray coding and MC adopt vectors of real numbers. These representa-
tions were chosen in order to be benefited with their corresponding properties.
This also has a biological justification, since in biology, memory cells have a
heterogeneous structure such as the one adopted in our model.

5.1 Handling Constraints

In our T-Cell Algorithm, the constraint-handling method needs to calculate,
for each cell (solution), regardless of the population to which it belongs, the
following: 1) the value of each constraint function, 2) the sum of constraint
violations (sum_res)® and 3) the value of the objective function (only if the cell
is feasible).

3This is a positive value determined by g;(z)t fori =1,...,m and |hg(z)| fork =1,...,p.

5.2 Incorporating Domain Knowledge

As indicated before, the effector cells are subdivided into EC_f and EC_inf (fea-
sible and infeasible solutions, respectively) in order to explore the boundary
between the feasible and the infeasible regions. Also, we introduce domain
knowledge through the mutation operators, which modify the decision variables
involved in a particular constraint (either the constraint with the highest viola-
tion, or the one with the most negative value, depending on whether the cell is
infeasible or not, respectively).

5.3 Mutation Operators

Each population that reacts (EC_f, EC_inf and MC) has its own mutation op-
erator. These operators are described next.

The mutation operator for EC_inf works in the following way: first, it iden-
tifies the most highly violated constraint, say c. If this constraint value (¢) is
larger than sum_res divided by the total number of constraints, then we change
each bit from each decision variable involved in ¢ with probability prob,,,+. Oth-
erwise, we change each bit from one decision variable involved in ¢, randomly
selected, with probability prob,.:-

There are two mutation operators for EC_f, which generate two mutated
cells (one per operator). The best of these cells passes to the following iteration.
These operators work in the following way:

First operator: it identifies the constraint with the most negative value (keep
in mind that this population has only feasible cells), and changes each bit (from
0 to 1 or viceversa) from each decision variable involved in that constraint, with
probability prob,,,:. This operator tries to reduce the distance between the cell
and the boundary with the infeasible region. In other words, the operator tries
to find solutions close to the frontier between the feasible and the infeasible
regions.

Second operator: it changes each bit from all the decision variables, with
probability prob,,.:. This operator tries to perform a global search.

If, after applying either of the mutation operators, a cell becomes feasible,
it is inserted in EC_f according to an elitist selection. Otherwise, if after apply-
ing the mutation operator, a cell becomes infeasible, it is inserted into EC_inf
according to an elitist selection (see Subsection 5.4).

The mutation operator for MC applies the following equation to all decision
variables:

U(0,2)
,—xj:< U0,1)(l, — 1) > (5)

Tr =
10iter|const||dv|

where z and z’ are the original and mutated decision variables, respectively.
U(0,1) and U(0,2) refer to a randomly generated number, produced with a
uniform distribution in the range [0,1] and [0,2], respectively. [, and [; are the
upper and lower limits of . |const| refers to the number of constraints of the

problem. |dv| refers to the number of decision variables of the problem and iter
is the current outer iteration number.

These operators work on continuous decision variables, but sometimes, the
problems include discrete variables. In those cases, when the decision variable is
discrete, we used the following equation before evaluating the constraints and/or
the objective function:

dv' = { Lj if|l; — dv| < [lj41 — dv (6)

lj+1 otherwise

where dv is the continuous variable, dv’ is the discrete variable corresponding
to dv, I, € S and S is the sorted set of discrete values for dv’.

5.4 Replacement Mechanisms

The replacement mechanisms are always applied in an elitist way, both within
a population and between different populations. They take into account the
value of the objective function or the sum of constraints violation, depending
on whether the cell is feasible or infeasible, respectively. Additionally, it always
considers a feasible cell better than an infeasible one.

When a cell from EC_f or EC_inf has to be inserted into MC, the cell first has
to be converted into a real-value vector through the application of the following
formula:

S0 25 vl (Luy —)
25? —1

dv; = l;; + (7)
where dv; is the j* decision variable with j = 1,...,|dv | (| dv | is the number
of decision variables), L; is the number of bits for the j* decision variable, l,;
and [;; are the upper and lower bounds for the continuous decision variable dvy,
and dvgj is the 7t"-bit of the binary string that represents dv;.

The algorithm works in the following way. At the beginning, virgin cells are
initialized in a random way. Then, the constraints and the objective function
are evaluated, in order to determine which cells are feasible and which are infea-
sible. Next, they are divided into the two populations EC_f (feasible solutions)
and EC_inf (infeasible solutions) The size of each population is fixed. But, at
first, EC_f and EC_inf are empty. If, at the beginning, EC_f can not be filled
up with feasible cells from VC, the size of EC_f must be less than a maximum
(predefined) value. In this case, further iterations could fill up EC_f. This situa-
tion occurs for EC_inf, too, but considering infeasible cells from VC. Once EC_f
and EC_inf have cells, they undergo mutation (using the operators previously
described).

The algorithm tries first to find feasible solutions using infeasible cells from
EC_inf. Then, all the feasible cells generated by the application of the mutation
operator for EC_inf do the following: 1) replace the cells with highest objective
function values in EC_{, if they are better or 2) complete EC_{, if the size of EC_f

is less than its maximum (predefined) value. Then, the T-Cell tries to find solu-
tions close to the boundary between the feasible and infeasible regions by using
feasible cells from EC_f. Thus, all infeasible cells generated by the application
of the mutation operators for EC_f: 1) replace the cells with the highest sums
of constraint violations from EC_inf if they are better or 2) complete EC_inf, if
the size of EC_inf is less than its maximum (predefined) value.

Once the EC_f and EC_inf populations have reacted during a (predeter-
mined) number of times (rep_EC) the best solutions from these populations are
inserted (if MC is empty) or the solutions replace the worst solutions in MC (if
MC has solutions). First, the cells from EC_f are considered, and then, the cells
from EC_inf are considered, if deemed necessary, until the maximum allowable
size of MC is reached.

Next, the cells from MC are mutated and evaluated a fixed number of times
(rep-MC).

Every 5 iterations (from the outer loop), VC’s size is reduced by half and
the number of cells to be replaced in EC_f and EC_inf is reduced by two. This
aims to provide enough diversity at the beginning of the search as well as to
retain the best solutions in the ECs by the end of the search.

The algorithm finishes when a fixed number of evaluations of the objective
function is reached.

The general structure of our proposed T-Cell approach is shown in Algo-
rithm 1.

The most relevant aspects of the T-Cell model are the following:

e The fitness of a cell is determined by the objective function value (if the cell
is feasible) or by the sum of constraints violation (if the cell is infeasible).

e All the equality constraints are transformed into inequality constraints,
using a tolerance factor §, |h(Z)| —§ < 0, with § = 0.0001.

e VC and MC are sorted using the following criterion: the feasible cells
whose objective function values are the best are placed first. Then, we
place the infeasible cells that have the lowest sum of constraint violation.

e EC_fare sorted in ascending order based on their objective function values.

e EC.inf are sorted in ascending order based on their sums of constraint
violation.

e The required parameters for T-Cell are the following:

1. Size of VC: This is the size of the population of virgin cells. We
tested the algorithm with 10, 50 and 100 cells. In general, the best
results were obtained with 100 cells.

2. Size of the EC_f population: This is the size of the population of
effector feasible cells. We tested the algorithm with 5 and 20 cells.
In general, the best results were obtained with 20 cells.

Algorithm 1 Pseudocode of our proposed T-Cell Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

while the maximum number of evaluations has not been reached do

Randomly generate Virgin Cells (VC)

Evaluate VC

Divide VC into feasible and infeasible cells

Replace a percentage of Effector Cells (EC) with cells from VC

while rep_EC has not been reached do
Make the Effector Cells in EC_inf react by generating EC_inf_new
Evaluate EC_inf_new
Replace cells in EC_.inf by their corresponding mutated cells in
EC_inf_new, only if the mutated cells are better
Sort EC_inf_new with respect to the sum of constraints violation
Insert feasible cells from EC_inf_new into EC_f if required
Make the Effector Cells in EC_f react by generating EC_f new
Evaluate EC_f new
Replace cells in EC_f by their corresponding mutated cells in EC_f new
only if the mutated cells are better
Sort EC_f_new with respect to the objective function values
Insert infeasible cells from EC_f_new into EC_inf if required

end while

Replace a percentage of Memory Cells with Effector Cells

while rep_MC has not been reached do
Make the Memory Cells (MC) react
Evaluate MC

end while

Decrement the number of cells in VC and EC

Compute Statistics

25: end while
26: Report Statistics

3. Size of the EC_inf population: This is the size of the population
of effector infeasible cells. We tested the algorithm with 5 and 20
cells. In general, the best results were obtained with 20 cells.

4. Size of the MC population: This is the size of the population of
memory cells. We tested the algorithm with 5, 10 and 20 cells. In
general, the best results were obtained with 20 cells.

5. Number of repetitions for EC (rep_EC): This is the number of
times the cells from EC_f and EC_inf react, are evaluated and selected
to pass to the next iteration. We tested the algorithm with values
between 10 and 100. In general, the best results were obtained with
100 repetitions.

6. Number of repetitions for MC (rep-MC): This is the number
of times the cells from MC react, are evaluated and selected to pass
to the next iteration. We tested the algorithm with values between

10

10 and 100. In general, the best results were obtained with 100
repetitions.

7. Percentage of replacement for EC: This is the percentage of
cells of EC_f and EC_inf that are replaced by cells from VC. Here,
we recommend a 100% replacement policy.

8. Percentage of replacement for MC: This is the percentage of
cells of MC that are replaced by cells from EC_f (and EC_inf if it is
necessary). Here, we recommend a 50% replacement policy.

9. Probability of mutation (prob,,,:): This is the probability for
the mutation operators applied to the effector cells. We tested the
algorithm with 0.01, 0.1 and 0.5. In general, the best results were
obtained with 0.1.

6 Numerical Experiments

In order to validate our proposed T-Cell algorithm we adopted: 1) a benchmark
of 20 test functions taken from the specialized literature (these problems are
described in [36] and [28]) and 2) seven engineering optimization problems (de-
scribed in the Appendix at the end of this paper) which have been previously
tackled using metaheuristics.

For all the experiments, we adopted the following parameters, which were
empirically derived alter numerous experiments:

1.
2.

- W

© ® N = o

Size of VC: 100.

Size of the EC_f population: 20

Size of the EC_inf population: 20

Size of the MC population: 20

Number of repetitions for EC (rep_EC): 100
Number of repetitions for MC (rep-MC): 100
Percentage of replacement for EC: 100%
Percentage of replacement for MC: 50%

Probability of mutation (prob,,,.): 0.1

30 and 50 independents runs were performed for the benchmark and the
engineering problems, respectively. All the statistical measures reported were
taken only with respect to the runs in which a feasible solution was reached at
the end.

11

Function BKS Best ‘Worst Mean Std.Dev
g01 -15.0 -15.0 -15.0 -15.0 0.0
g02 -0.803619 -0.801367 -0.687827 -0.752975 0.032095
g03 -1.0 -1.0 -1.0 -1.0 0.0
g04 -30665.5386 -30665.5385 -30665.5382 | -30665.5384 0.0001
g05* 5126.4967 5126.6255 6112.1181 5378.2678 298.0173
g06 -6961.81387 | -6961.81387 | -6961.81365 | -6961.81386 0.000039
g07 24.3062 24.3209 25.1347 24.6534 0.219815
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0
g09 680.63 680.63 680.70 680.65 0.0167
gl0 7049.24 7050.8342 9054.2923 8020.7551 621.7231
gll 0.7499 0.7499 0.7499 0.7499 0.0
gl2 -1.0 -1.0 -1.0 -1.0 0.0
gl3 0.0539498 0.054638 0.994983 0.458857 0.344995
gld -47.7648 -47.5171 -43.272382 -45.3108 1.1156
glh 961.71502 961.71502 970.59467 963.37482 2.27562
gl6 -1.905155 -1.905155 -1.905155 -1.905155 0.0

gl7 ** 8853.539 8861.821 9231.201 8990.997 106.193174
gl8 -0.86602 -0.86596 -0.62977 -0.78455 0.09746
gl9 32.655 33.39078 48.48763 38.92761 3.19102
220 -5.508013 -5.508013 -5.508013 -5.508013 0.0

Table 1: Results obtained by our proposed T-Cell Algorithm for 20 test prob-
lems previously reported in the specialized literature. Our proposed approach
performed 350,000 objective function evaluations in all cases. The asterisk (*)
indicates a case in which only 24 of the 30 runs converged to a feasible solution.
The double asterisk (**) indicates a case in which only 29 of the 30 runs con-
verged to a feasible solution. BKS refers to either the global optimum or the
best known solution. We show in boldface the results that match the optimum
value.

6.1 Analysis of Results for the Benchmark Problems

The test functions g02, g03, g08 and gl2 are maximization problems (for simplic-
ity, these problems were transformed into minimization problems using — f(x))
and the rest are minimization problems. It is worth noting that the test prob-
lems adopted are an extended version of the set originally proposed in [31]
(which contained 12 test problems) and extended (with one more problem) in
[36]. The 7 additional test problems adopted were originally introduced in [28].
These test problems contain characteristics that are representative of what can
be considered “difficult” global optimization problems for an evolutionary algo-
rithm. For all these benchmark problems, we adopted a binary representation
with Gray codes (for VCs and ECs) with the amount of bits required to obtain
an accuracy of 10 digits after the decimal point. All the approaches performed
350,000 objective function evaluations in all cases.

Our results, over the benchmark, are compared with respect to: 1) Stochas-
tic Ranking [36] (the results shown are those reported in [12], which correspond
to 19 of the 20 test problems adopted here), 2) an AIS approach for solving con-

12

Function BKS Best ‘Worst Mean Std.Dev
g01 -15.0 -15.0 -15.0 -15.0 -
g02 -0.803619 -0.803 -0.734 -0.784 -
g03 -1.0 -1.0 -1.0 -1.0 -
g04 -30665.5386 | -30665.539 | -30664.216 | -30665.480 -
g05 5126.4967 5126.497 5153.757 5130.752 -
g06 -6961.81387 -6961.814 -6267.787 -6863.645 -
g07 24.3062 24.310 24.830 24.417 -
g08 -0.095825 -0.095825 -0.095825 | -0.095825 -
g09 680.63 680.63 680.697 680.646 -
gl0 7049.24 7050.194 8867.844 7423.434 -
gll 0.7499 0.750 0.751 0.750 -
gl2 -1.0 -1.0 -1.0 -1.0 -
gl3 0.0539498 0.053 0.128 0.061 -
gld -47.7648 -41.551 -40.125 -41.551 -
glb 961.71502 961.715 962.008 961.731 -
gl6 -1.905155 -1.905 -1.587 -1.703 -
gl7 8853.539 8811.692 8559.613 8805.99 -
gl8 -0.86602 -0.86600 -0.45700 -0.78600 -
gl9 32.655 33.147 37.477 34.337 -

Table 2: Results obtained with Stochastic Ranking [36] in all, but one of the 20
test problems previously indicated. These results were reported in [12], since
the original source of the algorithm (see [36]) only reports results for the first 13
test problems (g01 to g13). Stochastic Ranking performed, in all cases, 350,000
objective function evaluations. BKS refers to either the global optimum or the
best known solution. We show in boldface the results that match the optimum
value. - indicates that this value is not reported by the authors.

strained problems, which is reported in [14] (this approach was only tested with
the first 13 test functions from the set adopted here) and 3) an AIS-GA approach
for solving constrained problems, which is reported in [9] (this approach was only
tested with the first 13 test functions from the set adopted here). Stochastic
ranking uses a multi-membered evolution strategy, gaussian mutation, and real-
numbers encoding. It is a very powerful algorithm for constrained optimization,
which is frequently adopted for benchmarking new constraint-handling tech-
niques. The approach reported in [14] is one of the few AIS algorithms reported
in the specialized literature, which was specifically designed to solve constrained
optimization problems. Furthermore, to the authors’ best knowledge, it is the
most powerful AIS-based approach that has been published so far, for solving
constrained optimization problems. The algorithm presented in [9] was chosen
in order to have an extra AIS-based approach to compare the performance of
our approach.

The results obtained by our proposed approach are shown in Table 1. The
results obtained by Stochastic Ranking [36] are shown in Table 2. The results
obtained by the AIS approach reported in [14] are shown in Table 3. The results
obtained by the AIS approach reported in [9] are shown in Table 4.

13

Function BKS Best ‘Worst Mean Std.Dev
g01 -15.0 -14.9874 -12.9171 -14.7264 0.6070
g02 -0.803619 -0.8017 -0.6268 -0.7434 0.0414
g03 -1.0 -1.0 -1.0 -1.0 0.0
g04 -30665.5386 | -30665.5387 | -30665.5386 | -30665.5386 0.0000
g05* 5126.4967 5126.9990 6111.1714 5436.1278 300.88
g06 -6961.81387 -6961.8105 -6961.7981 -6961.8065 0.0027
g07 24.3062 24.5059 26.4223 25.4167 0.4637
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6965 680.6521 0.0176
gl0 7049.24 7127.9502 12155.1358 8453.7902 1231.37
gll 0.7499 0.75 0.75 0.75 0.0000
gl2 -1.0 -1.0 -1.0 -1.0 0.0000
gl3 0.0539498 0.05466 1.49449 0.45782 0.3790

Table 3: Results obtained by the AIS proposed in [14]. The asterisk (*) indicates
a case in which only 90% of the runs converged to a feasible solution. It is worth
noting that the authors report results only for the first 13 test functions from
the benchmark adopted here. This approach also performed 350,000 objective
function evaluations. BKS refers to either the global optimum or the best
known solution. We show in boldface the results that match the optimum
value.

Function BKS Best ‘Worst Mean Std.Dev
g01 -15.0 -14.9944 -14.9687 -14.9793 -
g02 0.803619 0.772831 0.756478 0.764654 -
g03 1.0 0.9989538 0.9933335 0.9978105 -
g04 30655.5386 30665.53 30665.25 30665.35 -
205 5126.4967 INF INF INF -
g06 6961.81387 6961.804 6961.804 6961.804 -
g07 24.3062 25.373074 26.896858 25.888315 -
08 -0.095825 -0.095825 | -0.095825 | -0.095825 -
g09 680.63 680.6817 681.0401 680.7827 -
gl10 7049.24 7320.2637 8081.6685 7571.3228 -
gll 0.7499 0.750035 0.9992529 0.878316 -
gl2 -1.0 -1.0 -1.0 -1.0 -
gl3 0.0539498 INF INF INF -

Table 4: Results obtained by the AIS proposed in [9]. INF means that the
algorithm converged to an infeasible solution. It is worth noting that the authors
report results only for the first 13 test functions from the benchmark adopted
here. This approach performs 350,000 objective function evaluations. BKS
refers to either the global optimum or the best known solution. We show in
boldface the results that match the optimum value. - indicates that this value
is not reported by the authors.

14

From Table 1, we can see that our proposed approach was able to reach the
global optimum in 10 test functions (g01, g03, g06, ¢08, g09, gl1, gl2, gl5,
g16 and g20). Additionally, our approach reached feasible solutions close to the
global optimum (in the best case) in the rest of the test functions, showing its
worst performance in g05, in which it reached the feasible region only in 24 of
the 30 runs performed. Comparing the performance of our proposed approach
with respect to Stochastic Ranking (see Tables 1 and 2), we can see that our
approach obtained better results in 5 test functions (gl1, g14, g15, g16 and gl7).
Both approaches found similar solutions in six other test problems: g01, g03,
206, g08, g09 and gl2. Our proposed model was outperformed in the rest of
the problems. Considering average results, our approach was outperformed by
stochastic ranking in 7 problems: g02, g05, g09, g10, g13, g15, g19. Thus, from
this comparison, we can conclude that our T-Cell approach is very competitive
with respect to Stochastic Ranking.

Comparing our proposed T-Cell approach with respect to the AIS proposed
in [14] (see Tables 1 and 3), our approach obtained better best results in 8 test
functions (g01, g05, g06, g07, 09, ¢10, g11 and gl13). Both approaches found
similar best results for g08 and g12. Our proposed model was outperformed (in
terms of best results found) in g04. With respect to the mean and worst found
solutions, our approach was outperformed only in g02, g04 and g09. Thus, we
can conclude that our proposed T-Cell outperforms the AIS proposed in [14].

Comparing our proposed T-Cell approach with respect to the AIS proposed
in [9] (see Tables 1 and 4), our approach obtained better best results in all test
functions. Both approaches found similar best results for g08 and gl2. With
respect to the mean and worst found solutions, our approach was outperformed
only in g02 and g10. Thus, we can conclude that our proposed T-Cell outper-
forms the AIS proposed in [9]. It is worth noting, however, that our proposed
approach adopts a hybrid encoding scheme that incorporates both binary and
real numbers encoding, whereas the AIS proposed in [9] only adopts binary
encoding.

6.2 Analysis of Results for the Engineering Optimization
Problems

Seven mechanical engineering optimization problems (the description of these
problems is available at the Appendix included at the end of this paper) were
used to validate the performance of our approach.

In these cases, our results are compared with respect to several bio-inspired
metaheuristics, which have reported the best values known so far for the engi-
neering problems adopted in our comparative study.

The problems Tension/Compression Spring Design, Speed Reducer Design,
Welded Beam Design, Pressure Vessel Design, and 10-bar plane truss are com-
pared with respect to the following approaches: three genetic algorithms hy-
bridized with an artificial immune system (AIS-GA) [10] and its modified ver-
sion AIS-GA® which includes a clearing procedure [10] and another version

15

presented in [8]; a binary coded genetic algorithm equipped with the adaptive
penalty method (APM) [6], and the Stochastic Ranking technique [36].

The number of objective function evaluations performed for each engineer-
ing optimization problem is different, since we adopt the values reported by the
other authors, in order to perform a fair comparison. For the Tension/Compres-
sion Spring Design and the Speed Reducer Design problems all the approaches
performed 36,000 evaluations. For the Welded Beam Design problem all the ap-
proaches performed 320,000 evaluations. For the Pressure Vessel Design prob-
lem all the approaches performed 80,000 evaluations of the objective function
and for the 10-bar plane truss problem, all the approaches performed 280,000
evaluations. For this last problem we just compared results with respect to the
continuous case. All the approaches, including our own, used binary represen-
tation with Gray codes (for VC and EC), with strings of 25 bits in length to
encode each design variable. For 10-bar plane truss, 25-bar space truss and
200-bar plane truss all design variables are assumed to be involved in all the
constraints, when the first mutation operator for EC_f is applied.

Table 5 shows the comparison of results for the Tension/Compression Spring
Design problem. The results from Table 5 clearly indicate that our proposed
approach outperforms all the other approaches with respect to which it was
compared. All approaches found feasible solutions in the 50 runs performed.
The AIS-GAs from [10] do not report this value. Table 6 shows the decision
variables corresponding to the best solutions found by each approach for this
problem. All the decision variables correspond to feasible solutions. The con-
straint values for the best solution found by our T-Cell are: g; = —0.000029,
g2 = —0.000004, g5 = —4.050423 and g4 = —0.728849.

Algorithm Best ‘Worst Mean St. Dev
T-Cell 0.012665 | 0.013309 | 0.012732 9.4E-5

AIS-GA [10] 0.012668 0.016155 0.013481 -

ATS-GAC [10] 0.012666 0.013880 0.012974 -

AIS-GA [§] 0.012666 0.015318 0.013131 6.28E-4
APM [5] 0.012684 0.017794 0.014022 1.47E-3
SR [36] 0.012679 0.017796 0.013993 1.27-3

Table 5: Best objective function found for the Tension/Compression Spring De-
sign problem. The number of function evaluations performed by all approaches
was 36,000. - indicates that this value is not reported by the authors.

Table 7 shows the comparison of results for the Speed Reducer Design prob-
lem. The results from Table 7 indicate that our proposed approach found the
best solution with respect to which it was compared, but T-Cell only found feasi-
ble solutions in 36 out of the 50 runs performed. APM [5] found feasible solutions
in 19 out of the 50 runs performed, and the remaining approaches found feasible
solutions in the 50 runs. Table 8 shows the decision variables corresponding to
the best solution found by each approach for this problem. All the decision
variables shown correspond to feasible solutions. The constraint values for the

16

T-Cell | AIS-GA [10] | AIS-GAC [10] | AIS-GA [8] | APM [5] | SR [36]
1 11.384534 11.852177 11.329555 11.6611924 12.070748 11.375795
zo | 0.355105 0.347475 0.356032 0.3505298 | 0.344304 | 0.355485
T3 0.051622 0.051302 0.051661 0.0514305 0.051168 0.051638
14 0.012665 0.012668 0.012666 0.012666 0.0126838 0.012679

Table 6: Design variables corresponding to the best solutions found for the
Tension/Compression Spring Design problem.

best solution found by our T-Cell are: g1 = —0.073915, go = —0.197999, g5 =
—0.499172, g4 = —0.901472, g5 = —0.000000, gs = 0.000000, g = —0.702500,
gs = —0.000000, gg = —0.583333, g10 = —0.051326 and g1; = —0.010852.

Algorithm Best ‘Worst Mean St. Dev

T-Cell 2996.3481 2996.3801 2996.3551 8.9E-3
ATS-GA [10] 2996.3494 2996.6277 2996.3643 4.35E-3
ATS-GAC [10] 2996.3484 2996.3486 | 2996.3484 1.46E-6

AIS-GA [§] 2996.3483 2996.3599 2996.3501 7.45E-3
APM [5] 2996.3482 3459.0948 3033.8807 1.10E-2
SR [36] 2996.3483 2996.3535 2996.3491 1.01E-3

Table 7: Best objective function values found for the Speed Reducer Design
problem. The number of function evaluations performed by all the algorithms
was 36,000.

T-Cell ATS-GA [10] | AIS-GAC [10] | AIS-GA [8] | APM [5] | SR [36]

Z1 | 3.500000 3.500001 3.500000 3.500001 | 3.500000 | 3.500000
za | 0.700000 0.700000 0.700000 0.700000 | 0.700000 | 0.700000
3 17 17 17 17 17 17

x4 | 7.300000 7.300019 7.300001 7.300008 | 7.300000 | 7.300001
x5 | 7.800000 7.800013 7.800000 7.800001 | 7.800000 | 7.800001
ze | 3.350215 3.350215 3.350215 3.350215 | 3.350215 | 3.350215
z7 | 5.286683 5.286684 5.286684 5.286683 | 5.286683 | 5.286683
W1 | 2996.3481 | 2996.3494 2996.3484 2996.3483 | 2996.3482 | 2996.3483

Table 8: Design variables corresponding to the best solutions found for the
Speed Reducer Design problem.

Table 9 shows the comparison of results for the Welded Beam Design prob-
lem. The results from Table 9 clearly indicate that our proposed approach
outperforms all the other approaches with respect to the best found solution,
but not with respect to the Worst and Mean values (AIS-GA® [10] was better
in that regard). All the approaches found feasible solutions in all runs.* Ta-
ble 10 shows the decision variables corresponding to the best solutions found

4For AIS-GA [10] this value is not reported.

17

by each approach for this problem. All the decision variables shown correspond
to feasible solutions. The constraint values for the best solution found by our
T-Cell are: g3 = —0.642858, go = —0.021854, g3 = —0.000000, g4 = —0.004550
and g5 = —0.234241.

Algorithm Best ‘Worst Mean St. Dev
T-Cell 2.38113 | 2.710406 | 2.439811 0.093146

AIS-GA [10] 2.38125 3.23815 2.59303 -

AIS-GAC [10] 2.38122 2.41391 | 2.38992 -

AIS-GA [§] 2.38335 4.05600 | 2.992998 2.02E-1
APM [5] 2.38144 5.94803 3.49560 9.09E-1
SR [36] 2.59610 10.1833 4.33259 1.29

Table 9: Best objective function values found for the Welded Beam Design
problem. The number of function evaluations performed by all the algorithms
was 320,000. - indicates that this value is not reported by the authors.

T-Cell | AIS-GA [10] | AIS-GAC [10] | AIS-GA [8] | APM [5] | SR [36]
h | 0.244369 | 0.2443243 0.2443857 0.2434673 | 0.2442419 | 0.2758192
I | 6218613 | 6.2201996 6.2183037 6.2507296 | 6.2231189 | 5.0052613
t | 8291474 | 8.2914640 8.2911650 8.2014724 | 8.2914718 | 8.6261101
b | 0.244369 | 0.2443694 0.2443875 0.2443690 | 0.2443690 | 0.2758194
C [2.38113 | 2.381246 2.38122 2.38335 2.38144 | 2.59610

Table 10: Design variables corresponding to the best solutions found for the
Welded Beam Design problem.

Table 11 shows the comparison of results for the Pressure Vessel Design prob-
lem. The results from Table 11 clearly indicate that our proposed approach is
outperformed by all the other approaches with respect to which it was compared,
except for SR, when we take into account only the best solution found. All the
approaches found feasible solutions in all runs.®> Table 12 shows the decision
variables corresponding to the best solutions found by each approach for this
problem. All the decision variables shown correspond to feasible solutions. The
constraint values for the best solution found by our T-Cell are: g; = —0.000000,
g2 = —0.035881, g3 = —0.114149 and g4 = —430.787695.

Table 13 shows the comparison of results for the 10-bar plane truss. The
results from Table 13 clearly indicate that our proposed approach was outper-
formed by all the other approaches with respect to which it was compared. All
the approaches found feasible solutions in all runs.® Table 14 shows the decision
variables corresponding to the best solutions found by each approach for this
problem. All the decision variables shown correspond to feasible solutions.

The results of the 25-bar space truss problem were compared with respect
to a particle swarm optimizer coupled with an augmented Lagrange multiplier

5For AIS-GA [10] this value is not reported.
SFor AIS-GA [10] this value is not reported.

18

Algorithm Best Worst Mean St. Dev
T-Cell 6390.554 7694.066881 | 6737.065147 | 3.57TE+2
AIS-GA [10] 6060.368 7546.750 6743.872 -
ATS-GAC [10] 6060.138 6845.496 6385.942 -
AIS-GA [§] 6059.855 7388.160 6545.126 1.24E+2
APM [5] 6065.822 8248.003 6632.376 5.15E+2
SR [36] 6832.584 8012.615 7187.314 2.67E+2

Table 11: Best objective function values found for the Pressure Vessel Design
problem. The number of function evaluations performed by all the algorithms
was 80,000.

T-Cell | AIS-GA [10] | AIS-GAT [10] | AIS-GA [8] | APM [5] | SR [36]
T, 0.8125 0.8125 0.8125 0.8125 0.8125 1.1250
T, 0.4375 0.4375 0.4375 0.4375 04375 | 0.5625
R | 42.098429 42.0931 42.0950 42.0973 42.0492 | 58.1267
L | 190.787695 | 176.7031 176.6797 176.6509 | 177.2522 | 44.5941
W2 | 6390.554 6060.367 6060.138 6059.854 | 6065.821 | 6832.583

Table 12: Design variables corresponding to the best solutions found for the
Pressure Vessel Design problem.

formulation and a dynamic inertia weight variation method (PSO) [35]. We did
not find in the specialized literature any AIS which had adopted this problem.
Table 15 shows the results found by our T-Cell and the previously indicated
PSO. T-Cell performed 50 runs with 2,000 objective function evaluations per
run. The authors of the PSO approach do not report the number of objec-
tive function evaluations performed, but they indicate that they performed 20
independent runs.

T-Cell found feasible solutions in all runs. In [35]. this value is not reported.
Table 16 shows the decision variables corresponding to the best solutions found
by these approaches. All the decision variables shown correspond to feasible
solutions.

Finally, the comparison of results for the 200-bar plane truss is shown in
Table 17. In this case, we did not find an AIS approach with respect to which
we could compare our results and, therefore, we decided to compare results
with respect to the following methods from [7]: feasible directions (CONMIN),
Pshenichny’s Recursive Quadratic Programming (LINRM), gradient projection
(GPR-UI), exterior penalty function (SUMT), multiplier methods (M-3, M-4
and M-5). Additionally, we compared results with respect to the following
approaches: a harmony search algorithm [27], and a trust region method for
structural optimization which uses exact second order sensitivity (TRUST) [38].

The harmony search algorithm reported in [27] performed 50,000 objective
function evaluations. The other approaches do not report the number of ob-
jective function evaluations performed. Based on the values adopted by the

19

Algorithm Best ‘Worst Mean Std.Dev
T-Cell 5142.30 | 5164.2821 | 5148.3626 4.90
AIS-GA [10] 5062.67 | 5094.8867 | 5075.5513 -
ATS-GAC [10] 5064.67 5113.22 5082.52 -

AIS-GA [§] 5061.16 5084.56 5068.85 7.78
APM [§] 5062.12 6430.55 5133.22 2.48E4-2
SR [36] 5061.71 5101.17 5077.67 1.01E+41

Table 13: Best objective function values found for the 10-bar plane truss prob-
lem. The number of function evaluations performed by all the algorithms was
280,000. - indicates that this value is not reported by the authors.

T-Cell | AIS-GA [10] | AIS-GAC [10] | AIS-GA [8] | APM [8] | SR [36]
1 31.23829 30.16252 29.78121 30.52684 30.95080 | 30.01400
z2 | 0.316625 0.10004 0.10031 0.10000 0.10000 | 0.10000
T3 23.61073 22.81192 22.55140 22.91574 22.92083 | 26.14460
x4 | 14.50669 | 15.87183 15.50462 15.48294 | 15.55024 | 15.29260
T5 0.316234 0.10000 0.10002 0.10000 0.10000 0.10000
z6 | 0.316464 0.51495 0.52377 0.54620 0.60959 | 0.55610
T7 8.135098 7.50595 7.52854 7.47594 7.46973 7.43980
T8 21.61828 21.26408 21.15708 21.01566 20.83562 | 21.00560
zo | 21.22159 | 21.38304 22.21351 21.55362 | 21.35644 | 21.93900
10 0.31634 0.10001 0.10018 0.10000 0.10000 0.10000
W3 5142.30 5062.67 5064.67 5061.16 5062.12 5061.71

Table 14: Design variables corresponding to the best solutions found by each
approach for the 10-bar plane truss.

other metaheuristic with respect to which we compared our results (i.e., har-
mony search), we performed 30 independent runs with 50,000 objective function
evaluations per run.

Here, we adopted the following parameters in order to perform 50,000 ob-
jective function evaluations (other parameters had to be empirically tuned in
this case, considering the lower population size that had to be adopted for VC):

1. Size of VC: 50.

Size of the EC_f population: 20

Size of the EC_inf population: 20

Size of the MC population: 10

Number of repetitions for EC (rep_-EC): 10
Number of repetitions for MC (rep-MC): 10

Percentage of replacement for EC: 100%

© N e ok W

Percentage of replacement for MC: 50%

20

Algorithm Best ‘Worst Mean Std.Dev
T-Cell 471.332 | 504.502 | 479.205 6.17
PSO [35] 483.84 489.424 - -

Table 15: Best objective function values found for the 25-bar space truss. -
indicates that this value is not reported by the authors.

T-Cell | PSO [35]
z1 | 0.171600 | 0.1000
zo | 0215618 | 0.4565
z3 | 3.530105 | 3.4000
x4 | 0.179024 | 0.1000
x5 | 1.968327 | 1.9369
z6 | 0.862956 | 0.9647
x7 | 0.152496 | 0.4423
zg | 3.787504 | 3.4000
W, | 471.332 | 483.84

Table 16: Design variables corresponding to the best solutions found by all the
approaches for the 25-bar space truss.

9. Probability of mutation (prob,..): 0.01

Our proposed approach outperformed all the approaches with respect to
which it was compared. T-Cell found feasible solutions in all the runs per-
formed. Table 18 shows the decision variables found by T-Cell and the harmony
search algorithm reported in [27]. All the decision variables shown correspond
to feasible solutions. This information was not available for any of the other
approaches.

Algorithm Best ‘Worst Mean Std.Dev
T-Cell 24852.58 | 33132.30 | 27376.57 | 2165.0667
CONMIN 34800.0 - - -
LINRM 33315.0 - - -
SUMT 27564.0 - - -
M-3 26600.0 - - -
M-4 26654.0 - - -
M-5 26262.0 - - -
Harmony search [27] | 25447.10 - - -
TRUST [39)] 25500.8 - - -

Table 17: Best objective function values found for the 200-bar plane truss. -
indicates that this value is not reported by the authors.

21

T-Cell Harmony search [27]
1 0.5077 0.1253
T2 0.9850 1.0157
3 0.6700 0.1069
Ta 0.4076 0.1096
5 2.5113 1.9369
T6 0.3334 0.2686
7 0.6602 0.1042
8 3.7534 2.9731
T9 0.4640 0.1309
T10 4.3729 4.1831
T11 0.4282 0.3967
T12 0.3472 0.4416
13 5.0191 5.1873
T14 0.4378 0.1912
T15 6.3160 6.2410
T16 0.4859 0.6994
17 0.5247 0.1158
18 7.4365 7.7643
19 0.4013 0.1000
T20 7.9161 8.8279
21 0.8591 0.6986
T22 1.6976 1.5563
23 10.1246 10.9806
24 0.4382 0.1317
T25 10.9628 12.1492
26 1.6424 1.6373
To7 3.8004 5.0032
28 8.4192 9.3545
T29 13.5780 15.0919
Ws 24852.58 25447.10

Table 18: Design variables corresponding to the best solutions found by each
approach for the 200-bar plane truss.

7 Conclusions and Future Work

We have presented a modified version of an artificial immune system based on
the T-Cell model, which has been proposed to solve constrained optimization
problems. The proposed approach is inspired on the processes suffered by the
T-Cells within our immune system. The proposed approach has been validated
first with a benchmark of standard test functions normally adopted to assess
the performance of new constraint-handling techniques coupled to evolutionary
algorithms. In this case, our results were compared with respect to those gener-
ated by an evolutionary algorithm and two artificial immune systems which are
representative of the state-of-the-art in constrained optimization. After that,
we also adopted seven engineering optimization problems, and compared results
with respect to approaches previously reported in the specialized literature. In
both cases, the results obtained by our proposed approach were competitive,
resulting better in most cases to those generated by the other algorithms with
respect to which it was compared. This indicates that our T-Cell algorithm can

22

be a viable alternative to solve constrained optimization problems in engineering
or other disciplines.

As part of our future work, we are interested in studying mechanisms that
allow us to reduce the number of parameters that our approach requires. Such
parameters are mainly derived from the biological model that we developed as
part of this work. Such model is relatively complex and yet represents only a
raw approximation of the real phenomenon that takes place within our immune
system. However, we believe that it is possible to introduce further modifications
to the model that allow a reduction of its parameters, or the adoption of fixed
values for most of them. This would certainly simplify its use. Additionally, we
aim to explore techniques that increase the robustness of our proposed approach
(i.e., we aim to reduce the standard deviations obtained in certain cases and to
improve our results in those cases in which other approaches outperformed ours).

Acknowledgments

The authors thank the anonymous reviewers for their comments, corrections and
suggestions, which greatly helped them to improve the contents of this paper.
The third author acknowledges support from CONACyT project no. 103570.

Appendix: Mechanical Engineering Problems

This appendix describes seven engineering problems that were used to test our
proposed T-Cell Algorithm.

1. The Tension/Compression Spring Design

The objective is to minimize the volume V of a coil spring under a constant
tension/compression load. The design variables are the number of active
coils of the spring (N = z; € [2,15]), the winding diameter (D = x5 €
[0.25,1.3]), and the wire diameter (d = z3 € [0.05,2]). The volume and
the mechanical constraints are given by:

V(z) = (21 + 2)x923

_ II:BIL‘l
gi(z) =1~ 717a5e1 = 0

437% —x3x2 1 1<0

92(z) = 13566(z223 1) | 510822

140.45
ga(w) =1 — U0tz <

2 gu(w) = 25~ 120

23

2. The Speed Reducer Design

The objective is to minimize the weight W of a speed reducer. The design
variables are the face width (b = z1 € [2.6,3.6]), the module of teeth
(m = x2 € [0.7,0.8]), the number of teeth on pinion (n = z3 € [17,28]),
the length of the shaft 1 between the bearings (I; = x4 € [7.3,8.3]), the
length of the shaft 2 between the bearings (lo = x5 € [7.8,8.3]), the
diameter of the shaft 1 (d; = z¢ € [2.9,3.9]), and, finally, the diameter
of the shaft 2 (d2 = x7 € [5.0,5.5]). The variable 3 is integer and all
the others are continuous. The weight and the mechanical constraints are
given by

Wi (z) = 0.78542123(3.33332% + 14.93342343.0934) — 1.508x1 (22 + 22) +
TATTT (2 + 23) + 0.7854(z42% + w522)

gi(z) = 21— —-1<0

1'11'21'3

_ 3975
g2(z) = zaZa? 1<0

1.9323

1.93z3
1'21'31'?

=

2

[(1425534)2+16.9x106} :

g5(x) = 110.023 —1=<0

[N

|:(745m5)2+157.5><106}

Toxs3

96(z) = 85.0232 -1<0

gr(x) =252 —-1<0

910(33) — 1.5z6+1.9 1 S 0

T4

gll(x)zw_lgo

5

3. The Welded Beam design

The objective is to minimize the cost C(h,l,t,b) of the beam where h €
[0.125,10], and 0.1 <,t,b < 10. The objective and constraints are:

24

C(h,l,t,b) = 1.10471h% + 0.04811tb(14.0 + 1)

g1(7") = —13600 + \/T’2 +72 4+t a <0

g2(0) = —30000 + 324000 < ¢

g3(b,h) = —b+h <0

ga(Pc) = —Pc+ 6000 <0

g5(t,b) = —0.25 + 21952 <

/ _ 6000
V2hi

a=/0.25(12 + (h + t)?)
Pc = 64746.022(1 — 0.0282346t)tb>

"o 6000(14+0.50)a:
2(0.707h1 (5 +0.25(h+1)?))

T

4. The Pressure Vessel Design

This problem corresponds to the weight minimization of a cylindrical pres-
sure vessel with two spherical heads. There are four design variables (in
inches): the thickness of the pressure vessel (T), the thickness of the head
(Th), the inner radius of the vessel (R) and the length of the cylindrical
component (L). Since there are two discrete variables (Ts and T},) and
two continuous variables (R and L), one has a nonlinearly constrained
mixed discrete-continuous optimization problem. The bounds of the de-
sign variables are 0.0625 < T , T, < 5 (in constant steps of 0.0625) and
10 < R, L < 200. The weight, to be minimized, and the constraints are
given by:

Wo(Ts, T, R, L) = 0.6224T,RL + +1.7781T,R? + 3.1661T2L + 19.84T2R
g1(Ts, R) = =T, +0.0193R < 0
92(Th, R) = —Th + 0.00954R < 0
g3(R, L) = —mR?L — 4/37R® + 1296000 < 0

ga(L) =L —240<0

25

5. 10-Bar Plane Truss

The geometry of the 10-bar plane truss structure employed in this problem
is shown in Figure 1. The problem is to find the cross-sectional area of each
member of this truss, such that we minimize its weight (W3). The problem
is subject to both displacement and stress constraints. The weight of the
truss is given by

fla)y =W =" pA;L, (8)

j=1

where z is the candidate solution, A; is the cross-sectional area of the jth
member, L; is the length of the jth member, and p is the weight density
of the material. The assumed data are: Young’s modulus of elasticity is
10* ksi, p = 0.101b/in? and a load of 100 kips in the negative y-direction is
applied at nodes 2 and 4. The maximum allowable stress of each member
(04) is assumed to be 25 ksi. The maximum allowable displacement
of each node (horizontal and vertical)(u,) is assumed to be 2 in. The
minimum allowable cross-sectional area is 0.10 in? for all members. The
problem has a total of 10 design variables.

5 3 1

360"

360" 360"

Figure 1: 10-bar plane truss

6. 25-Bar Space Truss

Figure 2 shows the geometry of this problem, which consists of a 25-bar
space truss. The members are divided into eight groups, according to
Table 19. The assumed data are: Young’s modulus of elasticity 107 ksi
and specific weight p = 0.101b/in3(2, 770kg/ m?), with the applied loads
listed in Table 20. Again, the objective function of the problem is set
to minimize the weight of the structure Wy. The stress is constrained to

26

>N

V
<

=)

10

Figure 2: 25-bar space truss

+ 40 ksi (257.6 MPa) and only the displacements at joints 1 and 2 are
restricted, both to less than +0.35 in (8.89 mm) in the = and y directions.

. 200-Bar Plane Truss

This problem consists of a 200-bar plane truss originally proposed in [7],
and shown in Figure 3. The structure has 77 nodes. The problem is to
find the cross-sectional area of each member of this truss, such that we
minimize its weight W5. The truss is to be designed under three inde-
pendent load conditions and is subject only to stress constraints in its
members. The three loading conditions are: 1) 1 kip acting in the positive
z-direction at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; 2)
10 kips acting in the negative y-direction at node points 1, 2, 3, 4, 5, 6,
8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 71, 72, 73, 74, and
75; and 3) load conditions 1 and 2 acting together. The 200 elements of
this truss are classified in 29 groups. The grouping information is shown
in Table 21. The stress in each element is limited to a value of 10 ksi for
both tension and compression members. Young’s modulus of elasticity is
30000 ksi and the weight density is 0.283 x 1073 kips/in®. A lower bound
of 0.1 in? and an upper bound of 30 in? are imposed on each of the 29

27

Group Number Members
1 1-2

1-4, 2-3, 1-5, 2-6
2-5, 2-4, 1-3, 1-6

3-6, 4-5

3-4, 5-6
3-10, 6-7, 4-9, 5-8
3-8, 4-7, 6-9, 5-10
3-7, 4-8, 5-9, 6-10

00| | O U x| Wl Do

Table 19: Group membership for the 25-bar space truss

Node Number | Fy(kips) | Fy(kips) | F.(kips)
1 1.00 -10.0 -10.0
2 - -10.0 -10.0
3 0.5 - -
6 0.6 - -

Table 20: Load conditions for 25-bar space truss

decision variables.

References

1]

Victoria S. Aragén, Susana C. Esquivel, and Carlos A. Coello Coello. A
Novel Model of Artificial Immune System for Solving Constrained Opti-
mization Problems with Dynamic Tolerance Factor. In Alexander Gelbukh
and Angel Fernando Kuri Morales, editors, MICAI 2007: Advances in Ar-
tificial Intelligence, 6th International Conference on Artificial Intelligence,
pages 19-29, Aguascalientes, México, November 2007. Springer. Lecture
Notes in Artificial Intelligence Vol. 4827.

Victoria S. Aragén, Susana C. Esquivel, and Carlos A. Coello Coello. Opti-
mizing Constrained Problems through a T-Cell Artificial Immune System.
Journal of Computer Science & Technology, 8(3):158-165, 2008.

Victoria S. Aragén, Susana C. Esquivel, and Carlos A. Coello Coello. Solv-
ing constrained optimization using a t-cell artificial immune system. Revista
Iberoamericana de Inteligencia Artificial, 12(40):7-22, 2008.

Jerzy Balicki. Multi-criterion Evolutionary Algorithm with Model of the
Immune System to Handle Constraints for Task Assignments. In Leszek
Rutkowski, Jorg H. Siekmann, Ryszard Tadeusiewicz, and Lotfi A. Zadeh,
editors, Artificial Intelligence and Soft Computing - ICAISC 2004, Tth
International Conference. Proceedings, pages 394—399, Zakopane, Poland,
June 2004. Springer. Lecture Notes in Computer Science. Volume 3070.

28

Group number

Member number

i 1,2, 3,4
2 5,8, 11, 14, 17

3 19, 20, 21, 22, 23, 24

1 18, 25, 56, 63, 94, 101, 132, 139, 170, 177

5 26, 29, 32, 35, 38

6 6, 7,9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37

7 39, 40, 41, 42

B 43, 46, 49, 52, 55

9 57, 58, 59, 60, 61, 62

10 64, 67, 70, 73, 76

11 44, 45, 47, 48, 50, 51, 53, b4, 65, 66, 68, 69, 71, 72, 74, 75

12 77, 78, 79, 80

13 81, 84, 87, 90, 93

14 95, 96, 97, 98, 99, 100

15 102, 105, 108, 111, 114

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113

17 115, 116, 117, 118

18 119, 122, 125, 128, 131

19 133, 134, 135, 136, 137, 138

20 140, 143, 146, 149, 152

21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151
22 153, 154, 165, 156

23 157, 160, 163, 166, 169

24 171, 172, 173, 174, 175, 176

25 178, 181, 184, 187, 190

26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 186, 188, 189
27 191, 192, 193, 194

28 195, 197, 108, 200

29 196, 199

Table 21: Group membership for the 200-bar plane truss

29

[5] Helio J.C. Barbosa and Afonso C.C. Lemonge. An adaptive penalty scheme
in genetic algorithms for constrained optimization problems. In W.B. Lang-
don, E.Canti-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A.C. Schultz,
J. F. Miller, E. Burke, and N.Jonoska, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2002), pages 287294,
San Francisco, California, July 2002. Morgan Kaufmann Publishers.

[7] A.D. Belegundu. A study of mathematical programming methods for struc-

15— 16 40 19
43‘ 44 45 46‘ 47 48 55
(o)™)" (2)™ () ()) ()
6o\ 70 76
78 3
85 86 87‘ 88 8900 \91 92 %‘ 1aa
(o7 7" (20)" a0) ™ (a0) 10} e)
107\08] 1% 110 1”“‘ na ‘114
116 17 AL -
123 124 126 127 129130
119 122 125 128 131
(a0 (50)™ a1) () 30) (50 (s0) ()
140‘ 125\146| 147" 148\149| 150/ 151 ‘152
157‘
178‘ 17
360"

Figure 3: 200-bar plane truss

Helio J.C. Barbosa and Alfonso C.C. Lemonge. An adaptive penalty scheme
for genetic algorithms in structural optimization. International Journal for
Numerical Methods in Engineering, 59:703-736, 2004.

30

[10]

tural optimization. PhD thesis, Department of Civil and Environmental
Engineering, USA, 1982.

H. S. Bernardino, H. J. C. Barbosa, A. C. C. Lemonge, and L. G. Fonseca. A
New Hybrid AIS-GA for Constrained Optimization Problems in Mechanical
Engineering. In 2008 Congress on Evolutionary Computation (CEC’2008),
pages 1455-1462, Hong Kong, June 2008. IEEE Service Center.

H. S. Bernardino, H. J.C. Barbosa, and A. C.C. Lemonge. Constraints
handling in genetic algorithms via artificial immune systems. In Genetic
and FEvolutionary Computation - GECCO 2006, Genetic and Fvolutionary
Computation Conference - Late Breaking Paper, Seattle, WA, USA, July
2006.

H.S. Bernardino, H.J.C. Barbosa, and A.C.C. Lemonge. A hybrid genetic
algorithm for constrained optimization problems in mechanical engineering.
In 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pages
646-653, Singapore, September 2007. IEEE Press. ISBN: 978-1-4244-1339-
3.

P. Bretscher and M. Cohn. A theory of self-nonself discrimination. Science,
169:1042-1049, 1970.

Leticia Cagnina, Susana Esquivel, and Carlos Coello-Coello. A Bi-
population PSO with a Shake-Mechanism for Solving Constrained Numer-
ical Optimization. In 2007 IEEE Congress on Evolutionary Computation
(CEC’2007), pages 670676, Singapore, September 2007. IEEE Press.

Carlos A. Coello Coello and Nareli Cruz-Cortés. Hybridizing a genetic algo-
rithm with an artificial immune system for global optimization. Engineering
Optimization, 36(5):607-634, October 2004.

Nareli Cruz Cortés, Daniel Trejo-Pérez, and Carlos A. Coello Coello. Han-
dling constraints in global optimization using artificial immune system. In
Christian Jacob, Marcin L. Pilat, Peter J. Bentley, and Jonathan Timmis,
editors, Artificial Immune Systems. 4th International Conference, ICARIS
2005, pages 234-247. Springer. Lecture Notes in Computer Science Vol.
3627, Banff, Canada, August 2005.

Dipankar Dasgupta and Fernando Nino. Immunological Computation: The-
ory and Applications. Auerbach Publications, Boston, MA, USA, 2008.

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrim-
ination in a computer. In IEEE Symposium on Research in Security and
Privacy, pages 202-212. IEEE Press, May 1994.

H. Chueh G. C. Luh and W. W. Liu. MOTA: Multi Objective Immune
Algorithm. Engineering Optimization, 35(2):143-164, 2003.

31

[18] Simon M. Garrett. How do we evaluate artificial immune systems? FEvolu-
tionary Computation, 13(2):145-177, 2005.

[19] F. Gonzélez and D. Dasgupta. Anomaly detection using real-valued nega-
tive selection. Genetic Programming and Evolvable Machines, 4(4):383-403,
2003.

[20] S. Hofmeyr and S. Forrest. Architecture for the artificial immune system.
Evolutionary Computation, 8(4):443—-473, 2000.

[21] J. E. Hunt and D. E. Cooke. An adaptative, distributed learning sys-
tem based on the immune system. In Proceedings of the IEEE Inter-
national Conference on System, Man and Cybernetics, pages 2494-2499.
IEEE Press, 1995.

[22] J. E. Hunt and D. E. Cooke. Recognising promoter sequences using im-
mune algorithms. In Proceedings of the 3rd IEEE International Conference
on Intelligent Systems for Molecular Biology (ISMB), pages 89-97. IEEE
Press, 1995.

[23] J. E. Hunt and A. Fellows. Introducing an immune reponse into a CBR

system for data mining. In Research and Development in Expert Systems
XIII, pages 34-42, 1996.

[24] Y. Ishida. An immune network model and its applications to process diag-
nosis. Systems and Computers in Japan, 24(6):646—-651, 1993.

[25] A. Ishiguru, Y. Watanabe, and Y. Uchikawa. Fault diagnosis of plant sys-
tem using immune network. In Proceedings of the 1994 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI’94), pages 34-42, Las Vegas, Nevada, USA, October 2-5 1994. IEEE
Press.

[26] N. K. Jerne. The immune system. Scientific American, 229(1):52-60, 1973.

[27] Kang Seok Lee and Zong Woo Geem. A new structural optimization
method based on the harmony search algorithm. Computers € Structures,
82(9-10):781-798, April 2004.

[28] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Sugan-
than, C. A. Coello Coello, and K. Deb. Problem Definitions and Evaluation
Criteria for the CEC 2006. Technical report, Nanyang Technological Uni-
versity, Singapore, 2006.

[29] G. C. Luh and H. Chueh. Multi-objective optimal design of truss structure
with immune algorithm. Computers and Structures, 82:829-844, 2004.

[30] P. Matzinger. Tolerance, danger and the extend family. Annual Review of
Immunology, 12:991-1045, April 1994.

32

[31]

32]

[33]

[34]

[35]

Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for
Constrained Parameter Optimization Problems. Fuvolutionary Computa-
tion, 4(1):1-32, 1996.

L. Nunes de Castro and F.J. Von Zuben. Learning and optimization using
the clonal selection principle. IEEE Transactions on Evolutionary Compu-
tation, 6(3):239-251, 2002.

Leandro Nunes de Castro and Jonathan Timmis. aiNET: An artificial
immune network for data analysis. In Data Mining: a Heuristic Approach,
pages 231-259. Idea Group Publishing, USA, 2001.

Leandro Nunes de Castro and Jonathan Timmis. Artificial Immune Sys-
tems: A New Computational Intelligence Approach. Springer-Verlag, New
York, 2002.

Ruben E. Perez and Kamran Behdinan. Particle Swarm Optimization in
Structural Design. In Felix T.S. Chan and Manoj Kumar Tiwari, editors,
Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, pages
373-394. Itech Education and Publishing, Vienna, Austria, 2007. ISBN
978-3-902613-09-7.

Thomas P. Runarsson and Xin Yao. Stochastic Ranking for Constrained
Evolutionary Optimization. IEEE Transactions on Fvolutionary Compu-
tation, 4(3):284-294, September 2000.

Benjamin A. Schwarz and Avinash Bhandoola. Trafficking from the bone
marrow to the thymus: a prerequisite for thymopoiesis. Immunological
Reviews, 209(1):47-57, 2006.

M. Sunar and A. D. Belegundu. Trust region methods for structural op-
timization using exact second order sensitivity. International Journal for
Numerical Methods in Engineering, 32(2):275-293, 1991.

J. Timmis, M. Neal, and J. Hunt. An artificial immune system for data
analysis. Biosystems, 55(1-3):143-150, 2000.

Jennifer A. White and Simon M. Garrett. Improved pattern recognition
with artificial clonal selection. In Jon Timmis, Peter Bentley, and Emma
Hart, editors, Artificial Immune Systems, Second International Conference,
ICARIS 2003), pages 181-193, Edinburgh, UK, September 2003. Springer.
Lecture Notes in Computer Science Vol. 2787.

J. Yoo and P. Hajela. Enhanced GA Based Search Through Immune Sys-
tem Modeling. In 3rd World Congress on Structural and Multidisciplinary
Optimization, Niagara Falls, New York, May 1999.

J. Yoo and P. Hajela. Immune network modelling in design optimization.
In David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in
Optimization, pages 167-183. McGraw-Hill, London, 1999.

33

