
Optimizing Constrained Problems through a T-Cell

Artificial Immune System

Victoria S. Aragón, Susana C. Esquivel
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional∗

Universidad Nacional de San Luis
Ejército de los Andes 950

(5700) San Luis, Argentina
{vsaragon, esquivel}@unsl.edu.ar

Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary Computation Group)
Electrical Eng. Department, Computer Science Dept.

Av. IPN No. 2508, Col. San Pedro Zacatenco

México D.F. 07300, MÉXICO
ccoello@cs.cinvestav.mx

ABSTRACT

In this paper, we present a new model of an ar-
tificial immune system (AIS), based on the pro-
cess that suffers the T-Cell, it is called T-Cell
Model. It is used for solving constrained (nu-
merical) optimization problems. The model oper-
ates on three populations: Virgins, Effectors and
Memory. Each of them has a different role. Also,
the model dynamically adapts the tolerance fac-
tor in order to improve the exploration capabil-
ities of the algorithm. We also develop a new
mutation operator which incorporates knowledge
of the problem. We validate our proposed ap-
proach with a set of test functions taken from
the specialized literature and we compare our re-
sults with respect to Stochastic Ranking (which
is an approach representative of the state-of-the-
art in the area), with respect to an AIS pre-
viously proposed and a self-organizing migrat-
ing genetic algorithm for constrained optimiza-
tion (C-SOMGA)

Keywords: Artificial Immune System, Con-
strained Optimization Problem.

∗LIDIC is financed by Universidad Nacional de San
Luis and ANPCyT (Agencia Nacional para promover la
Ciencia y Tecnoloǵıa).

1 INTRODUCTION

We are interested in solving the general non-
linear programming problem which is defined as
follows:

Find ~x = (x1, . . . , xn) which optimizes
(x1, . . . , xn) subject to:

hi(x1, . . . , xn) = 0 i = 1, . . . , l

gj(x1, . . . , xn) ≤ 0 j = 1, . . . , p

where (x1, . . . , xn) is the vector of solutions (or
decision variables), l is the number of equality
constraints and p is the number of inequality con-
straints (in both cases, constraints could be linear
or nonlinear).

In many real-world problems, the decision vari-
ables are subject to a set of constraints, and the
search has to be bound accordingly. Constrained
optimization problems are very common, for ex-
ample, in engineering applications, and therefore
it is important to be able to deal with them effi-
ciently.

Many bio-inspired algorithms (particularly
evolutionary algorithms) have been very success-
ful in the solution of a wide variety of opti-
mization problems [27]. But, when they are
used to solve constrained optimization problems,
they need a special method to incorporate the
problem’s constraints into their fitness function.

JCS&T Vol. 8 No. 3 October 2008

158

Evolutionary algorithms (EAs) often use exte-
rior penalty functions in order to do this [25].
However, penalty functions require the definition
of accurate penalty factors and performance is
highly dependent on them.

Recently, several researchers have proposed
novel constraint-handling techniques for EAs [4,
17, 22]. These approaches have been able to
outperform penalty functions and can handle all
types of constraints (linear, nonlinear, equality,
inequality).

The main motivation of the work presented in
this paper is to explore the capabilities of a new
AIS model in the context of constrained global
optimization. The proposed model is based on
the process that suffers the T-Cell. We also pro-
pose a dynamic tolerance factor and several muta-
tion operators that allow us to deal with different
types of constraints.

2 MAIN MODELS OF AIS

According to [11] the main models of Artificial
Immune System are: Negative Selection, Clonal
Selection and Immune Network Models. They are
briefly described next.

Forrest et al. [23] proposed the Negative Selec-
tion model for detection of changes. This model
is based on the discrimination principle that the
immune system adopts to distinguish between self
and nonself. This model generates random detec-
tors and discards the detectors that are unable
to recognize themselves. Thus, it maintains the
detectors that identify any nonself. It performs a
probabilistic detection and it is robust because it
searches any foreign action instead of a particular
action.

The Immune Network Model was proposed by
Jerne [15], and it is a mathematical model of the
immune system. In this case, the dynamics of the
lymphocytes are simulated by differential equa-
tions. This model assumes that lymphocytes are
an interconnected network. Several models have
been derived from it [14, 1].

Clonal Selection is based on the way in which
both B-cells and T-cells adapt in order to match
and kill the foreign cells [11]. Clonal Selection
involves: 1) the AIS’ ability to adapt its B-cells
to new types of antigens and 2) the affinity mat-
uration by hypermutation. CLONALG proposed
by Nunes de Castro and Von Zuben [20, 21] was
originally used to solve pattern recognition and
multimodal optimization problems, and there are
a few extensions of this algorithm for constrained

optimization. CLONALG works in the follow-
ing way: first, it creates a random population of
antibodies, it sorts it according to some fitness
function, it clones them, it mutates each clone,
it selects the fittest antibodies and clones it and
replaces the worst antibodies for antibodies that
are randomly generated.

3 AIS FOR CON-
STRAINED PROBLEMS

Models presented in 2 have been used in several
types of problems, but particularly, the use of ar-
tificial immune systems to solve constrained (nu-
merical) optimization problems is scarce. The
only previous related work that we found in the
specialized literature is the following:

Hajela and Yoo [26, 27] have proposed a hy-
brid between a Genetic Algorithm (GA) and an
AIS for solving constrained optimization prob-
lems. This approach works on two populations.
The first is composed by the antigens (which are
the best solutions), and the other by the antibod-
ies (which are the worst solutions). The idea is
to have a GA embedded into another GA. The
outer GA performs the optimization of the orig-
inal (constrained) problem. The second GA uses
as its fitness function a Hamming distance so that
the antibodies are evolved to become very similar
to the antigens, without becoming identical. An
interesting aspect of this work was that the in-
feasible individuals would normally become feasi-
ble as a consequence of the evolutionary process
performed. This approach was tested with some
structural optimization problems.

Kelsey and Timmis [16] proposed an immune
inspired algorithm based on the clonal selection
theory to solve multimodal optimization prob-
lems. Its highlight is the mutation operator called
Somatic Contiguous Hypermutation, where muta-
tion is applied on a subset of contiguous bits. The
length and beginning of this subset is determined
randomly.

Coello Coello and Cruz-Cortés [6] have pro-
posed an extension of Hajela and Yoo’s algorithm.
In this proposal, no penalty function is needed,
and some extra mechanisms are defined to allow
the approach to work in cases in which there are
no feasible solutions in the initial population. Ad-
ditionally, the authors proposed a parallel version
of the algorithm and validated it using some stan-
dard test functions reported in the specialized lit-
erature.

Balicki [2] made a proposal very similar to the

JCS&T Vol. 8 No. 3 October 2008

159

approach of Coello Coello and Cruz-Cortés. Its
main difference is the way in which the antibod-
ies’ fitness is computed. In this case, Balicki in-
troduces a ranking procedure. This approach was
validated using a constrained three-objective op-
timization problem.

Luh and Chueh [10, 19] have proposed an al-
gorithm (called CMOIA, or Constrained Multi
Objective Immune Algorithm) for solving con-
strained multiobjective optimization problems.
In this case, the antibodies are the potential so-
lutions to the problem, whereas antigens are the
objective functions. CMOIA transforms the con-
strained problem into an unconstrained one by
associating an interleukine (IL) value with all the
constraints violated. IL is a function of both the
number of constraints violated and the total mag-
nitude of this constraint violation. Then, feasi-
ble individuals are rewarded and infeasible indi-
viduals are penalized. Other features of the ap-
proach were based on the clonal selection theory
and other immunological mechanisms. CMOIA
was evaluated using six test functions and two
structural optimization problems.

Coello Coello and Cruz-Cortés [7] have pro-
posed an algorithm based on the clonal selec-
tion theory for solving constrained optimization
problems. The authors experimented with both
binary and real-value representation, consider-
ing Gaussian-distributed and Cauchy-distributed
mutations. Furthermore, they proposed a con-
trolled and uniform mutation operator. This ap-
proach was tested with a set of 13 test functions
taken from the specialized literature on evolution-
ary constrained optimization.

4 T-CELL MODEL

This paper presents a novel bio-inspired model
based on the T-Cell. In a very simple way, the
processes that suffer the T-Cell are the follow-
ing: first, they are divided in three groups (Virgin
Cell, Effector Cells and Memory Cells). Then, the
natural immune system generates a huge num-
ber of virgin cells. During the immunological re-
sponse, the T-cells pass through different phases:
initiation, reaction and elimination. After the ini-
tiation phase, virgin cells becomes effector cells.
These react (it means that the cells change in
order to improve) and undergo a process called
apoptosis. This process eliminates any undesir-
able cells. The surviving cells become memory
cells.

Thus, this model operates on three popula-
tions, corresponding to the three groups in which

the T-cells are divided: (1) Virgin Cells (VC), (2)
Effector Cells (EC) and (3) Memory Cells (MC).
Each of them has a specified function. VC has
as its main goal to provide diversity. EC tries to
explore the conflicting zones of the search space.
MC has to explore the neighborhood of the best
solutions found so far. VC and EC represent their
cells with binary string using Gray coding, MC
does the same, but adopting vectors of real val-
ues.

4.1 Characteristics of T-Cell

In our proposed model, the constraint-handling
method needs to calculate, for each cell (solution)
regardless of the population to which it belongs,
the following: 1) value of each constraint func-
tion, 2) sum of violation constraints (sum res), it
is a positive value determined by the addition of
gi(x)+ for i = 1, . . . , p and |hk(x)| for k = 1, . . . , l
and 3) value of objective function (only if the cell
is feasible).

When the search process is driven by the value
of each constraint and the sum of constraint vio-
lations, then the selection mechanisms favors the
feasible solutions over the infeasible ones. In this
case, it is probable that, in some functions, the
search falls into a local optimum. For this reason,
we develop a dynamic tolerance factor (DTF). It
changes with each new population, since it de-
pends on the value of sum res. The DTF is cal-
culated by adding the value of each constraint
violated in each cell from a particular population
(VC or EC). Then, this value is divided by the
number of Virgin Cells (for DTF’s VC) or three
times the number of Effector Cells (for DTF’s
EC). Thus, the DTF for VC is more flexible than
DTF for EC allowing that more infeasible cells
being feasible cells, in a virtual way.

When we evalue the population using the DTF,
it will be easier to generate solutions that are con-
sidered ”feasible” (although they may be really
infeasible if evaluated with the actual precision
required). This allows the exploration of each
solution’s neighborhood, which otherwise, would
not be possible. This DTF is used by both VC
and EC. If the value of DTF is lower than 0.0001,
we set it to 0.1 and 0.001 for VC and EC, re-
spectively. In contrast, MC adopts a traditional
tolerance factor, which is set to 0.0001. The cells
within MC need to be evaluated with the tradi-
tional tolerance factor because these are the real
solutions for the problem.

In order to explore the frontier between feasible
and infeasible zones, EC is divided in EC f and
EC inf. The first is composed by feasible solu-

JCS&T Vol. 8 No. 3 October 2008

160

tions and the other by infeasible solutions. Also,
we introduce domain knowledge through the mu-
tation operator, which modify the decision vari-
ables involve in the constraint with the highest
violation.

Each population that reacts (EC f, EC inf and
MC) has its own mutation operator. These oper-
ators are described next.

The mutation operator for EC inf works in the
following way: first, it identifies the most vio-
lated constraint, say c. If this constraint value
(c) is larger than sum res divided the total num-
ber of constraints, then we change each bit from
each decision variable involve in c with a random
probability between 0.01 and 0.2. Otherwise, we
change each bit from one decision variable involve
in c, randomly selected, with a random proba-
bility between 0.01 and 0.2. We use a random
probability because after some experiments, we
observed that some test functions required differ-
ent step sizes. If after applying mutation, a cell
becomes feasible, it is inserted in EC f according
to an elitist selection.

The mutation operator for EC f works in the
following way: it changes each bit from all deci-
sion variables, with a random probability between
0.001 and 0.2. This random probability has the
same motivation that the previously.

The mutation operator for MC applies the fol-
lowing equation:

x
′
= x±

(
N(0, 1)lu− ll

10mgen|const||dv|
)N(0,1)

(1)

where x and x
′

are the original and mutated de-
cision variables, respectively. N(0, 1) refers to a
random number with a uniform distribution be-
tween (0,1). lu and ll are the upper and lower
limits of x. |const| refers to the number of con-
straints. |dv| refers to the number of decision
variables of the problem, gen is the current gen-
eration number and m is an integer (its value is
setted in Section 6).

The replace mechanisms are always applied in
an elitist way, both within a population and be-
tween different populations. They take into ac-
count the value of objective function or the sum
of constraint violation, depending on whether the
cell is feasible or infeasible, respectively. Addi-
tionally, we always consider a feasible cell as bet-
ter than an infeasible one. Note that before a
cell is inserted into another population, it is first
evaluated with the tolerance factor of the receptor
population.

Therefore, the general structure of our pro-
posed model for constrained problems is the fol-
lowing:

Repeat a predetermined number of times
1. Randomly generate Virgin Cells
2. Calculate DTF’s VC
3. Evaluate VC with its own DTF
4. Insert a percentage of Virgin Cells

into Effector Cells population
5. Calculate DTF’s EC’s
6. Repeat 50 times

6.1. Make the Effector Cells React
6.2. Evaluate EC’s with its own DTF
End repeat.

7. Insert a percentage of Effectors Cells
into Memory Cells population

8. Repeat 100 times
8.1. Make the Memory Cells React
8.2. Evaluate MC

End repeat.
End repeat.

The most relevant aspects of our proposed
model are the following:

• All equality constraints are converted into in-
equality constraints, |h(~x)| − δ ≤ 0, using a
tolerance factor.

• VC’s cells and MC’s cell are sorted using the
following criterion: the feasible cell whose
objective function are the best are placed
first. Then, we place the infeasible cells that
have the lowest sum of constraint violation.

• EC f’s cells are sorted in ascending order on
their objective function.

• EC inf’s cells are sorted in ascending order
on their sum of constraint violation.

5 DIFFERENCES BE-
TWEEN MODELS

The immune system models described in 2 are
based on different immunological theories. Clonal
Selection is based on the replication of antibodies
according to their affinity. The Immune Network
Model is a probabilistic approach to idiotypic net-
works. Negative Selection is based on the princi-
ples of self-nonself discrimination that take place
in the immune system. Aditionally, Negative Se-
lection and T-Cell Model are both based on the
mechanisms of the T-Cell. However, these models
give a completely different treatment to the cells

JCS&T Vol. 8 No. 3 October 2008

161

(in T-Cell Model) and detectors (in Negative Se-
lection). The Negative Selection Model tries to
detect some change, whereas T-Cell Models cate-
gorizes the T-cell and it uses their phases in order
to achieve different goals.

6 EXPERIMENTAL
SETUP

In order to validate our proposed model we tested
it with two benchmarks, the first is composed by
19 test functions taken from the specialized lit-
erature [5] and the second one has five problems
taken from [8]. The functions g02, g03, g08 and
g12, from the first benchmark and problem 2 from
the second one, are maximization problems (for
simplicity, these problems were converted into
minimization problems using −f(x)) and the rest
are minimization problems.

For the first benchmark, our results are com-
pared with respect to Stochastic Ranking, we take
its result from [18], which is a constraint handling
technique representative of the state-of-the-art in
the area, and with respect to the AIS approach
reported in [7]. For equation 1, we used m = 107

for all functions except for g02, here we used
m = 102. 25 independents runs were performed
for each problem, each consisting of 350,000 fit-
ness function evaluations. We experimented with
different population sizes, the best results were
obtained using: 1) for VC 100 cells for all func-
tions, except for g19 here we used 10 cells and for
g10 and g15 we used 20 cells, 2) for EC f, EC inf
and MC we used 20 cells for all functions, except
for g10 and g19, here we used 10 cells.

For the second benchmark, our results are com-
pared with respect to a self-organizing migrat-
ing genetic algorithm for constrained optimiza-
tion (C-SOMGA) [8]. For equation 1, we used
m = 107 for all problems. 100 independents runs
were performed for each problem, each consisting
of 150,000 fitness function evaluations. We exper-
imented with different population sizes, the best
results were obtained using: 1) for VC 100 cells
for problem 1 [13] and problem 3 [24], for the oth-
ers (problems 2 [12], 4 [3] and 5 [3]) is 10 cells,
2) for EC f, EC inf and MC we used 20 cells for
problems 1 and 3, 10 cells for problem 2 and 50
cells for problems 4 and 5.

For both benchmarks, we adopted a 100% and
50% replacement for the cells in EC’s and MC,
respectively. All the statistical measures reported
are taken only with respect to the runs in which
a feasible solution was reached at the end.

7 DISCUSSION OF
RESULTS

7.1 Results for the First Bench-
mark

Tables 1, 2 and 3 show the results obtained with
the AIS proposed in [7], Stochastic Ranking and
our T-Cell Model, respectively.

From Table 3, we can see that our model was
able to reach the global optimum in 8 test func-
tions (g01, g04, g06, g08, g11, g12, g15 and g16).
Additionally, our model reached feasible solutions
close to the global optimum in 7 more test func-
tions (g02, g03, g07, g09, g13, g14 and g18) and
it found acceptable (but not too close from the
global optimum) feasible solutions for the rest of
the test functions.

Comparing T-Cell Model with respect to
Stochastic Ranking (see Tables 2 and 3), T-Cell
Model obtained better results in 9 test functions
(g03, g04, g06, g11, g14, g15, g16, g17 and g18).
Both approaches found similar solutions for g01,
g08 and g12. Our model was outperformed in 7
functions (g02, g05, g07, g09, g10, g13 and g19) .
With respect to the mean and worst found solu-
tions, our model was outperformed all functions
except g03, g04, g06, g11, g14 and g16.

Comparing T-Cell Model with the AIS pro-
posed in [7] (see Tables 1 and 3), T-Cell Model ob-
tained better results in 8 test functions (g01,g02,
g03, g05, g06, g07, g10 and g11). Both ap-
proaches found similar solutions for g04, g08 and
g12. Finally, our model was outperformed in
g09 and g13. With respect to the mean and
worst found solutions, our model was outper-
formed only in g02, g07, g09 and g13.

We conducted an analysis of variance of the re-
sults obtained by our T-Cell Model and of the
results obtained by Stochastic Ranking [18]. Due
to, for some functions, the results do not follow a
normal distribution, we used the Kruskal Wallis
test [9] and then Turkey method [9]. The first
test indicates if the means between the results of
the algorithms had significant differences and the
second one indicates in which experimental condi-
tions the means had significant differences. Table
4 shows the values obtained for these tests. The
first column represents to the function, the second
column shows the values for Kruskal Wallis test
(the means had significant differences if this value
p is lower than 0.05), the third and fourth column
indicate the lower and upper limits (if the values
contained inside this interval does not contain the
zero then the means had significant differences).

JCS&T Vol. 8 No. 3 October 2008

162

After the analysis of Table 4, we observed that
for all function the means have significant differ-
ences except for g11. Note that we do not apply
these tests to g01, g08 and 12 because, for these
functions both algorithms found the optimum so-
lution in all runs.

We argue that the model is capable of perform-
ing an efficient local search over each cell, which
allows the model to improve on the feasible solu-
tions found. In cases in which no feasible solu-
tions are found in the initial population, the mu-
tation applied is capable of reaching the feasible
region even when dealing with very small feasible
search spaces.

Although there is clearly room for improving
our proposed model, we have empirically shown
that this approach is able of dealing with a va-
riety of constrained optimization problems (i.e.,
with both linear and nonlinear constraints and
objective function, and with both equality and
inequality constraints). The benchmark adopted
includes test functions with both small and large
feasible regions, as well as a disjoint feasible re-
gion.

7.2 Results for the Second Bench-
mark

Tables 5 and 6 show the results obtained with
our T-Cell Model and the approach in [8], respec-
tively.

From Table 5, we can see that our model was
able to reach the global optimum in four problems
(problem 2, 3, 4 and 5). Additionally, our model
reached feasible solutions close to the global op-
timum in problem 1. All runs found feasible so-
lutions.

Comparing T-Cell Model with respect to C-
SOGMA (see Tables 5 and 6), T-Cell Model ob-
tained better results in all problems.

Fun Opt Best Mean Std.Dev

g01 -15 -14.9874 -14.7264 0.6070
g02 -0.803619 -0.8017 -0.7434 0.0414
g03 -1.0005 -1.0 -1.0 0.0000
g04 -30665.5386 -30665.5387 -30665.5386 0.0000
g05∗ 5126.4967 5126.9990 5436.1278 300.88
g06 -6961.81387 -6961.8105 -6961.8065 0.0027
g07 24.306 24.5059 25.4167 0.4637
g08 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6521 0.0176
g10 7049.24 7127.9502 8453.7902 1231.37
g11 0.7499 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 0.3790

Table 1: Results obtained with AIS pro-
posed in [7]. The asterisk (*) indicates a
case in which only 90% of the runs con-
verged to a feasible solution

Fun Opt Best Mean

g01 -15 -15.0 -15.0
g02 -0.803619 -0.803 -0.784
g03 -1.0005 -1.0 -1.0
g04 -30665.539 -30665.539 -30665.480
g05 5126.4967 5126.497 5130.752
g06 -6961.81387 -6961.814 -6863.645
g07 24.306 24.310 24.417
g08 -0.095825 -0.095825 -0.095825
g09 680.63 680.63 680.646
g10 7049.24 7050.194 7423.434
g11 0.7499 0.750 0.750
g12 -1.0 -1.0 -1.0
g13 0.05395 0.053 0.061
g14 -47.7648 -41.551 -41.551
g15 961.71502 961.715 961.731
g16 -1.905155 -1.905 -1.703
g17 8853.539 8811.692 8805.99
g18 -0.86602 -0.866 -0.786
g19 32.655 33.147 34.337

Table 2: Results obtained with Stochastic
Ranking [18]

Fun Opt Best Mean Std.Dev

g01 -15.0 -15.0 -15.0 0.0
g02 -0.803619 -0.802914 -0.546031 0.1683
g03 -1.0005 -1.000499 -1.000499 0.00
g04 -30665.5386 -30665.5386 -30665.5386 0.0
g05∗ 5126.4967 5126.6595 5307.1073 230.24
g06 -6961.81387 -6961.81387 -6961.81387 0.0
g07 24.306 24.3118 25.8927 1.1297
g08 -0.095825 -0.095825 -0.095825 0.0
g09 680.63 680.6312 680.6730 0.0305
g10 7049.24 7061.67 7451.88 218.39
g11 0.7499 0.7499 0.7499 0.0
g12 -1.0 -1.0 -1.0 0.0
g13 0.05395 0.054879 0.64231 0.5346
g14 -47.7648 -46.2546 -43.6876 1.5383
g15 961.71502 961.71502 965.02171 3.10
g16 -1.905155 -1.905155 -1.905155 0.0
g17 8853.539 8862.383 8984.399 117.59
g18 -0.86602 -0.866019 -0.78805 0.0928
g19 32.655 34.649 52.617 10.100

Table 3: Results obtained with our pro-
posed T-Cell Model. The asterisk (*) indi-
cates a case in which only 96% of the runs
converged to a feasible solution

Function p lower limit upper limit
g02 2.54392e-009 16.0252 31.7348
g03 4.53296e-011 -35.0356 -18.9644
g04 8.98673e-011 17.4421 32.5579
g05 2.17934e-009 16.2556 32.0911
g06 9.06124e-011 17.4406 32.5594
g07 2.93747e-009 15.4582 30.7018
g09 1.08889e-008 14.9037 30.4563
g10 1.74435e-008 14.5837 30.1363
g11 0.1298 -1.7753 13.8553
g13 3.35698e-010 17.1443 32.6957
g14 0.0009 -21.3391 -5.4609
g15 2.01142e-008 14.9660 31.0340
g16 3.97653e-011 -32.4185 -17.5815
g17 3.60989e-010 17.1853 32.8147
g18 7.25903e-010 16.6646 32.2157
g19 3.15542e-010 16.8670 32.1330

Table 4: Analysis of Variance

Prob Opt Best Mean Std.Dev

1 0.0156 0.01561957 0.015620 0.0
2 310.0 310.0 310.0 0.0
3 13.59085 13.59085 13.59085 0.0
4 0.75 0.75 0.75 0.0
5 1.0 1.0 0.999985 0.000645

Table 5: Results obtained with our pro-
posed T-Cell Model for Problems 1 to 5

8 CONCLUSIONS AND
FUTURE WORK

This paper has presented a new AIS model
for solving constrained optimization problems in

JCS&T Vol. 8 No. 3 October 2008

163

Prob Opt Mean Std.Dev

1 0.0156 0.01531 0.00026
2 310.0 309.15 3.08
3 13.59085 13.59610 0.00315
4 0.75 0.825 0.097
5 1.0 0.887 0.212

Table 6: Mean and standard deviation of
objective function value obtained by C-
SOMGA for Problems 1 to 5

which novel mutation operators are adopted. One
of the operators incorporates knowledge of the
problem, by modifying the decision variables in-
volve in the most violated constraint. For some
functions, the feasible region is very small, which
makes it difficult to find good solutions. For this
reason, we were motivated to develop a dynamic
tolerance factor. It allows to explore regions of
the search space that, otherwise, would be un-
reachable, if we use a tolerance factor very re-
strictive.

The proposed model was found to be com-
petitive in a well-known benchmark commonly
adopted in the specialized literature on con-
strained evolutionary optimization. The ap-
proach was also found to be robust and able to
converge to feasible solutions in most cases.

Our analysis of the benchmarks adopted made
us realize that these test functions require small
step sizes, except for g02, due to this function has
a feasible region bigger than the other functions.
A lot of work remains to be done in order to im-
prove the quality of some solutions found, so that
the approach can be competitive with respect to
the algorithms representative of the state-of-the-
art in the area. For example, we plan to improve
the mutation operators in order to find the fron-
tier and feasible zone faster. Nevertheless, it is
important to emphasize that there is very little
work regarding the use of artificial immune sys-
tems for constrained numerical optimization, and
in that context, this approach provides a viable
alternative.

Acknowledgements

The first two authors acknowledge support from
the Universidad Nacional de San Luis and the
ANPCYT. The third author acknowledges sup-
port from the Consejo Nacional de Ciencia y
Tecnoloǵıa (CONACyT) through project number
42435-Y.

References

[1] Y. Watanable A. Ishiguru and Y. Uchikawa.
Fault diagnosis of plant system using im-
mune network. In Procceding of the 1994
IEEE International Conference on Multisen-
sor Fusion and Integration for Intelligent
System (MFI’94), Las Vegas, October 2-5,
1994.

[2] Jerzy Balicki. Multi-criterion Evolutionary
Algorithm with Model of the Immune Sys-
tem to Handle Constraints for Task Assign-
ments. In Leszek Rutkowski, Jörg H. Siek-
mann, Ryszard Tadeusiewicz, and Lotfi A.
Zadeh, editors, Artificial Intelligence and
Soft Computing - ICAISC 2004, 7th Interna-
tional Conference. Proceedings, pages 394–
399, Zakopane, Poland, June 2004. Springer.
Lecture Notes in Computer Science. Volume
3070.

[3] P. Chootinan and A. Chen. Constraint han-
dling in genetic algorithms using a gradient-
based repair method. Computers and Oper-
ations Research 33, pp. 22632281, 2006.

[4] Carlos A. Coello Coello. Theoretical and
Numerical Constraint Handling Techniques
used with Evolutionary Algorithms: A Sur-
vey of the State of the Art. Computer Meth-
ods in Applied Mechanics and Engineering,
191(11-12):1245–1287, January 2002.

[5] J. Liang T. Runarsson E. Mezura-Montes
M. Clere P. Suganthan C. Coello Coello and
K. Deb. Problem definitions and evalua-
tion criteria for the cec 2006 special ses-
sion on constrained real-parameter optimiza-
tion. Technical Report, Nanyang Technolog-
ical University, 2006.

[6] Carlos A. Coello Coello and Nareli Cruz-
Cortés. Hybridizing a genetic algorithm
with an artificial immune system for global
optimization. Engineering Optimization,
36(5):607–634, October 2004.

[7] Nareli Cruz Cortés, Daniel Trejo-Pérez,
and Carlos A. Coello Coello. Handling
constrained in global optimization using
artificial immune system. In Christian
Jacob, Marcin L. Pilat, Peter J. Bent-
ley, and Jonathan Timmis, editors, Arti-
ficial Immune Systems. 4th International
Conference, ICARIS 2005, pages 234–247.
Springer. Lecture Notes in Computer Science
Vol. 3627, Banff, Canada, August 2005.

[8] K. Deep. A self-organizing migrating ge-
netic algorithm for constrained optimization.

JCS&T Vol. 8 No. 3 October 2008

164

Applied Mathematics and Computation 198,
pp. 237250, 2008.

[9] Bernabe Dorronsoro. Análisis de varianza
(ANOVA) con MATLAB MINI-HOWTO.

[10] H. Chueh G. C. Luh and W. W. Liu. MOIA:
Multi Objective Immune Algorithm. Engi-
neering Optimization, 35(2):143–164, 2003.

[11] Simon M. Garrett. How do we evaluate ar-
tificial immune systems? Evol. Comput.,
13(2):145–177, 2005.

[12] R. Hess. A heuristic search for estimating
a global solution of non convex program-
ming problems. Operations Research 21,
pp.12671280, 1973.

[13] D.M. Himmelblau. Applied nonlinear pro-
gramming. McGraw-Hill: New York, 1972.

[14] J. E. Hunt and D. E. Cooke. An adaptative,
distributed learning system based on the im-
mune system. In Procceding of the IEEE In-
ternational Conference on System, Man and
Cybernatics, pages 2494-2499, 1995.

[15] N. K. Jerne. The imune system. Scientific
American, 229(1):52-60, 1973.

[16] Johnny Kelsey and Jon Timmis. Immune in-
spired somatic contiguous hypermutation for
function optimisation. In Erick Cantú-Paz,
James A. Foster, Kalyanmoy Deb, Lawrence
Davis, Rajkumar Roy, Una-May O’Reilly,
Hans-Georg Beyer, Russell K. Standish, Gra-
ham Kendall, Stewart W. Wilson, Mark
Harman, Joachim Wegener, Dipankar Das-
gupta, Mitchell A. Potter, Alan C. Schultz,
Kathryn A. Dowsland, Natasa Jonoska, and
Julian F. Miller, editors, GECCO, volume
2723 of Lecture Notes in Computer Science,
pages 207–218. Springer, 2003.

[17] Slawomir Koziel and Zbigniew Michalewicz.
Evolutionary Algorithms, Homomorphous
Mappings, and Constrained Parameter Op-
timization. Evolutionary Computation,
7(1):19–44, 1999.

[18] S. Esquivel L. Cagnina and C. Coello Coello.
A bi-population pso with a shake-mechanism
for solving numerical optimization. In Pro-
ceedings of the Congress on Evolutionary
Computation 2007.

[19] G. C. Luh and H. Chueh. Multi-objective
optimal designof truss structure with im-
mune algorithm. Computers and Structures,
82:829–844, 2004.

[20] L. Nunes de Castro and J. Timmis. An arti-
ficial immune network for multimodal func-
tion optimization. In Proccedings of the
2002 Congress on Evolutionary Computation
(CEC’2002), volume 1, pages 669–674, Hon-
olulu, Hawaii, May 2002.

[21] L. Nunes de Castro and F.J. Von Zuben.
Learning and optimization using the clonal
selection principle. IEEE Transactions
on Evolutionary Computation, 6(3):239–251,
2002.

[22] Thomas P. Runarsson and Xin Yao. Stochas-
tic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolu-
tionary Computation, 4(3):284–294, Septem-
ber 2000.

[23] L. Allen S. Forrest, A. Perelson and
R. Cherukuri. Self-nonself discrimination in
a computer. IEEE Symposium on Research
in Security and Privacy, pages 202–212, May
1994.

[24] K. Schittkowski. More examples for mathe-
matical programming codes. Lecture Notes
in Economics and Mathematical Systems, p.
282, 1987.

[25] Alice E. Smith and David W. Coit. Con-
straint Handling Techniques—Penalty Func-
tions. In Thomas Bäck, David B. Fogel,
and Zbigniew Michalewicz, editors, Hand-
book of Evolutionary Computation, chapter
C 5.2. Oxford University Press and Institute
of Physics Publishing, 1997.

[26] J. Yoo and P. Hajela. Enhanced GA Based
Search Through Immune System Model-
ing. In 3rd World Congress on Structural
and Multidisciplinary Optimization, Niagara
Falls, New York, May 1999.

[27] J. Yoo and P. Hajela. Immune network mod-
elling in design optimization. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas
in Optimization, pages 167–183. McGraw-
Hill, London, 1999.

JCS&T Vol. 8 No. 3 October 2008

165

	Text4: Received: Aug. 2008. Accepted: Sep. 2008.

