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Abstract

This paper presents the artificial immune sys-
tem IA DED (Immune Algorithm Dynamic Eco-
nomic Dispatch) to solve the Dynamic Economic
Dispatch (DED) problem and the Dynamic Eco-
nomic Emission Dispatch (DEED) problem. Our
approach considers these as dynamic problems
whose constraints change over time. IA DED is
inspired on the activation process that T cells suf-
fer in order to find partial solutions. The pro-
posed approach is validated using several DED
problems taken from specialized literature and
one DEED problem. The latter is addressed
by transforming a multi-objective problem into
a single-objective problem by using a linear ag-
gregating function that combines the (weighted)
values of the objectives into a single scalar value.
Our results are compared with respect to those
obtained by other approaches taken from the spe-
cialized literature. We also provide some statisti-
cal analysis in order to determine the sensitivity
of the performance of our proposed approach to
its parameters. Part of this work was presented
at the XXV Argentine Congress of Computer Sci-
ence (CACIC), 2019.

Keywords: Artificial immune systems, dynamic
economic dispatch problem, dynamic economic
emission dispatch problem, metaheuristics

Resumen

Este art́ıculo presenta el sistema inmune artificial
IA DED (Immune Algorithm Dynamic Economic
Dispatch) para resolver el problema de despacho
de enerǵıa económico dinámico (DED) y el prob-
lema de despacho de enerǵıa económico dinámico
que tiene en cuenta la emisión de gases (DEED).
Nuestro enfoque considera estos problemas como
problemas dinámicos cuyas restricciones cambian
con el tiempo. IA DED está inspirado en el pro-
ceso de activación que sufren las células T del sis-

tema inmune para encontrar soluciones parciales.
El enfoque propuesto se valida utilizando varios
problemas de DED tomados de literatura especial-
izada y un problema DEED. El último se aborda
transformando un problema múlti-objetivo en un
problema de un solo objetivo mediante el uso de
una función agregativa lineal que combina los val-
ores ponderados de dos objetivos en un solo valor
escalar. Nuestros resultados se comparan con re-
specto a los obtenidos por otros enfoques toma-
dos de la literatura especializada. También pro-
porcionamos un análisis estad́ıstico para determi-
nar la sensibilidad del desempeÃśo de nuestro en-
foque a sus parámetros. Parte de este trabajo
fue presentado en el XXV Congreso Argentino de
Informática (CACIC), 2019.

Palabras claves: Sistemas inmunes artificiales,
problema de despacho de enerǵıa económico
dinámico, problema de despacho de enerǵıa
económico dinámico con emisión de gases, meta-
heuŕısticas

1 Introduction

Electrical energy is generated by transforming
some other type of energy (chemical combus-
tion, nuclear fission, kinetic energy of flowing wa-
ter and wind, solar photo-voltaic and geother-
mal power, among others) into electrical energy
through a procces called electricity generation.
This transformation happens at a power station
by electromechanical generators. It is the first
step of an electrical supply system. Then, electri-
cal energy is transmitted and distributed to con-
sumers by means of specialized systems.

The energy requirements from a city, region or
country vary throughout the day. This variation
depends on many factors, such as: types of ex-
isting industries in the area and shifts performed
on their production, weather (extremes of heat or
cold), type of appliances that are most frequently
used, type of water heaters installed at homes, the
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season of the year and the time of day at which
the energy demands are considered, among oth-
ers. The generation of electrical energy should
respond to the demand curve; that is, if energy
demand is increased, power supply must also in-
crease and vice versa.

Since the 1920s, researchers have paid atten-
tion to the Static Economic Dispatch (SED) prob-
lem [1], i.e., the problem of determining how
much energy has to produce each generator from
a power system, in order to minimize the pro-
duction cost and to satisfy some constraints such
as: load demand, maximum and minimum lim-
its and prohibited operating zones. However, the
SED problem satisfies only one load demand re-
gardless of future load demands or the generators’
lifetime.

Also, if the gradients for temperature and pres-
sure inside the boiler and turbine are kept inside
safe limits [1] the generators’ lifetime can last
longer. Consequently, the SED problem was ex-
tended with a ramp rate and a constraint which
preserves the life of the units or generators [2],
limiting the rate of increase or decrease of the
power output.

This extension originated the Dynamic Eco-
nomic Dispatch (DED) problem. In this optimiza-
tion problem, a sequence of load demands has to
be met by minimizing the production cost while
some constraints are met. Also, if environmental
protection to reduce pollutant and atmospheric
emissions caused by thermal power station are
considered, the problem becomes a Dynamic Eco-
nomic Emission Dispatch (DEED) problem where
emission and fuel cost need to be minimized.

On the other hand, any time-dependent prob-
lem can be considered as a dynamic problem.
Such problems can change the objective function,
the constraints or both. A change over a con-
straint exists when the problem conditions change
(for instance, how much energy has to produce the
system at one point). So, in this paper, the DED
and DEED problems are considered as dynamic
problems whose load demands constraint change
over time in a random fashion.

In a previous work, presented at the
XXV Argentine Congress of Computer Science
(CACIC)[3], an algorithm based on an artificial
immune system (AIS) to solve the DED prob-
lem was developed and validated. The present
study extends this previous work by incorporat-
ing to IA DED the ability to solve DEED prob-
lems maintaining the ability to minimize the pro-
duction cost as well as the time invested to find
it. Considering T load demands by day, the prob-
lem is regarded as a sequence of T problems. But,
each problem (at time i): 1) depends on the solu-
tion produced for the previous problem (at time

i− 1) and 2) conditions its successor (at time
i + 1).

The remainder of this paper is organized as fol-
lows. Section 2 defines the DED and DEED prob-
lems. Section 3 provides a short review of some of
the approaches which have been used to solve the
DED and DEED problems. Section 4 presents
considerations about the DED and DEED prob-
lems. In Section 5, we describe our proposed al-
gorithm. In Section 6, we present the test prob-
lems used to validate our proposed approach as
well as its parameters settings. In Section 7, we
present our results and we discuss and compare
them with respect to other approaches. Finally,
in Section 9, we present our conclusions and some
possible paths for future research.

2 Problem Formulation

In the DED problem the main aim is to minimize
the total production cost (T C) associated with N
dispatch units for a time period:

cost(P t) =
N

∑

i=1

Fi(P
t
i ) (1)

T C =
T

∑

t=1

cost(P t) (2)

where T C is the fuel cost over the whole dispatch
period, cost(P t) is the fuel cost for the tth inter-
val, P t = (P t

1 ,P t
2 , . . . ,P t

N ) is the power output of
each unit at time t, T is the number of intervals
in the period, N is the number of generators or
units in the system, P t

i is the power of the ith

unit at time t (in MW) and Fi is the fuel cost for
the ith unit (in $/h).

The simplest fuel cost function (i.e., smooth)
can be expressed as a single quadratic function:

Fi(P
t
i ) = ai(P

t
i )2 + biP

t
i + ci (3)

where ai , bi and ci are the fuel consumption cost
coefficients of the ith unit. But, if the valve-point
effects are taken into account, the fuel cost func-
tion becomes non-smooth and the ith unit is ex-
pressed as the sum of a quadratic and a sinusoidal
function in the form:

Fi(P
t
i ) = ai(P t

i )2 + biP t
i + ci+ | eisin(fi(Pmini

− P t
i )) |

(4)

where ei and fi are the fuel cost coefficients of
the ith unit with valve-point effects.

Furthermore, in the DEED problem, another
objective function is considered in order to reduce
the amount of atmospheric pollutants released
into the air [4] (i.e., the Emission). Emission is
defined by:



Emission =
T

∑

t=1

emissiont(P
t) (5)

emissiont(P t) =

N
∑

i=1

αi(P t
i )2 + βiP

t
i + γi + ηiexp(δiP

t
i )

(6)

where αi, βi, γi, ηi and δ are emission coefficients
of unit i. According to [5, 4], Emission and T C
are combined in order to get just one objective
function, so, the DEED problem consists in min-
imizing:

CostEmission = wEmission + (1−w)T C (7)

where w ∈ [0, 1] is used to generate a trade-off
between the fuel cost and the emission according
to the user’s preferences.

Regardless of the fuel cost function (Eqs. (3) or
(4)), the minimization of T C is subject to:

1. Power Balance Constraint: the power gener-
ated has to be equal to the power demand
required. It is defined as:

N
∑

i=1

P t
i −P t

D−P t
L = 0 (8)

where t = 1,2, . . . ,T . P t
D is the power de-

mand at time t, and P t
L is the transmission

power loss at time t (in MW). This value
considers the transmission loss due to the ge-
ographical distribution of the power stations.
Although this value can be determined by
means of a power flow solution, in this paper,
we use Kron’s formula which represents the
losses as a function of the output level of the
system generators and it uses some B-matrix
loss coefficients. This is the most popular ap-
proach to find an approximate value of the
losses. The general form of the loss formula
using B-coefficients is:

P t
L =

N
∑

i=1

N
∑

j=1

P t
i BijP t

j +
∑

i=1

B0iP
t
i + B00

(9)

If transmission power loss is not considered,
P t

L = 0.

2. Operating Limit Constraints: units have
physical limits regarding the minimum and
maximum power they can generate:

Pmini
≤ P t

i ≤ Pmaxi
(10)

where Pmini
and Pmaxi

are the minimum
and maximum power output of the ith unit
in MW, respectively.

3. Ramp Rate Limits: they restrict the oper-
ating range of all on-line units. Such limits
indicate how quickly the unit’s output can
be changed:

{

P t
j −P

(t−1)
j ≤ URj if P t

j > P
(t−1)
j

P
(t−1)
j −P t

j ≤DRj if P t
j < P

(t−1)
j

(11)

where P
(t−1)
j is the output power of the jth

unit at a previous hour and URj and DRj

are the ramp-up and ramp-down limits of the
jth unit in MW, respectively. Due to ramp-
rate constraints, Eq. (10) is replaced by:

max(P t
minj

,P
(t−1)
j −DRj)≤ P t

j (12)

and

P t
j ≤min(P t

maxj
,P

(t−1)
j + URj) (13)

such that

{

P t
minj

= max(Pminj
,P

(t−1)
j −DRj)

P t
maxj

= min(Pmaxj
,P

(t−1)
j + URj)

(14)

4. Prohibited Operating Zones: the operation
of the units is restricted due to steam valve
operation conditions or to vibrations in the
shaft bearing. Thus, a unit with prohibited
operating zones has a discontinuous input-
output power generation characteristic which
gives rise to additional constraints on the
unit operating range.







Pmini
≤ P t

i ≤ P ZL
i,1 or

P ZU
i,k−1 ≤ P t

i ≤ P ZL
i,k, or

P ZU
i,n1
≤ P t

i ≤ Pmaxi
k = 2,3, ...,ni

(15)

where ni is the number of prohibited zones of
the ith unit, and k is the index of the prohib-
ited operating zones of the ith unit. P ZL

i,k

and P ZU
i,k are the lower and upper bounds

of the kth prohibited operating zones of unit
i.



3 Literature Review

Artificial Intelligence (AI) techniques are appropi-
ate to solve the DED problem because this is
a real-world problem with several particular fea-
tures that make it difficult to solve, since its non-
linear search space is nonsmooth, discontinuous
and non-differentiable. In fact, if valve-point ef-
fects or prohibited zones are considered, then we
are dealing with a nonconvex problem [6].

This section aims to highlight how the DED
problem has been tackled using different AI tech-
niques, rather than providing a comprehensive de-
scription of each of them. These methods include:
neural networks [7, 8, 9], simulated annealing [10],
evolutionary algorithms [11, 12, 13, 14, 6, 15], dif-
ferential evolution [16, 17, 18], particle swarm op-
timization [19, 20, 21, 14], Harmony Search [5, 22],
and Artificial Immune Systems [23]. Additional
techniques have been reported in [14, 5, 24, 25,
26, 27, 28, 29, 30, 31]. Some researchers have
reported the use of hybrid approaches, such as
[32, 33, 34, 35, 5, 36, 22, 37, 38]. Other iterative
methods are reported in [39, 40, 41] which mini-
mize T subproblems instead of an NT problem.

4 Our considerations about DED
and DEED Problems

For a DED problem with N units and T time in-
tervals, a feasible solution for the whole dispatch
period is a power output sequence where Eq. (8)
to Eq. (15) must be met. This solution ∈ ℜN×T

and it has the following form:

(P 1
1 ,P 1

2 , . . . ,P 1
N ,P 2

1 ,P 2
2 , . . . ,P 2

N , . . . ,P T
1 ,P T

2 , . . . ,P T
N )

Let (P i
1,P i

2, . . . ,P i
N ) be a partial feasible solu-

tion for the ith interval (subproblem i). In this
paper, we consider DED and DEED problems as a
sequence of T economic dispatch problems, where
a relationship is kept between the solutions from
consecutive intervals (ith and (i + 1)th). This
relationship is based on the following: 1) after
power demand for the ith interval is determined,
the units remain with a specified power output
and 2) the ramp rate limits. These two facts will
determine the operational limits for the (i + 1)th

interval.

A traditional population approach to solve the
DED problem will require to find from the C solu-
tions (∈ℜN×T , with population size C) a feasible
one. Let’s assume that we have the next popula-
tion:























(P 1
1,1, ..,P 1

N,1,P 2
1,1, ..,P 2

N,1, ..,P T
1,1, ..,P T

N,1)
.. . . .
(P 1

1,i, ..,P
1
N,i,P

2
1,i, ..,P

2
N,i, ..,P

T
1,i, ..,P

T
N,i)

. . .
(P 1

1,C , ..,P 1
N,C ,P 2

1,C , ..,P 2
N,C , ..,P T

1,C , ..,P T
N,C)

where P t
h,s indicates the power output of the

hth unit at time t for the sth population’s indi-
vidual, with h = 1, . . . ,N , t = 1, . . . ,T and s =
1, . . . ,C. This population has C starting points
(P 1

1,s,P 1
2,s, . . . ,P 1

N,s with s = 1, . . . ,C). Each of
them will constrain the operational limits for the
next intervals, within each individual. Thus, a
traditional population approach will carry out C
search processes in parallel. Hence, time and com-
putational effort is invested in C different search
processes.

In this work, we adopt a divide-and-conquer
approach dividing a problem defined in an NT
space into T subproblems in an N space. In gen-
eral, the divide and conquer approach works by
breaking down a problem into subproblems; then,
each of these subproblems is properly solved. In
a further step, the solutions to these subproblems
are combined to obtain the solution to the orig-
inal problem. So, our approach searches partial
solutions (i.e., for each interval) by taking a pre-
vious partial solution as a starting point. That
is, for the (i + 1)th interval, the best partial solu-
tion from the ith interval determines the operat-
ing limits for all solutions of the (i+1)th interval.
Moreover, the best partial solution of the (i+1)th

interval will be the starting point for the next in-
terval, and so on. Thereby, when a new power
demand arrives, all solutions have the same op-
erational limits because they all adopt the same
starting point, i.e., the best solution from the pre-
vious interval.

Our approach considers the DED problem as
a dynamic problem with constraints that change
over time. These are the power balance constraint
(Eq. (8)) and the rate ramp limits (Eq. (12 and
13)). We search a partial feasible solution for in-
terval 1, then for interval 2, and so on until T
intervals had been reached.

Based on the work reported in [5, 4], we trans-
formed the multi-objective problem (DEED) into
a single objective problem through the use of a
linear aggregating function.

5 Our Proposed Algorithm

Here, an artificial immune system originally de-
signed to solve DED [3] is extended to solve
DEED problems. It is based on the activation pro-
cess that T cells suffer. This process is divided in
two parts: proliferation and differentiation [42].



The proposed approach is called IA DED (Im-
mune Algorithm for Dynamic Economic Dispatch
problem). It works on a cells population. Each
cell is activated in order to find partial feasible
solutions. Special receptors present on the cells
surface, called T cell receptors (TCR), are used
to represent the decision variables of the problem.
In this case, each variable represents a thermal
unit, so a T CR has N variables.

5.1 Activation Process

The proliferation process clones N times each
cell and the differentiation process changes these
clones so that they acquire specialized functional
properties. The differentiation process to be ap-
plied depends on the feasibility cell.

• Differentiation for feasible cells: Based
on a probability Pa, each unit exchanges part
of its output power with another unit from
the same cell. The idea is to take a value
(called d) from a unit (say i) and add it to an-
other unit (say j). ith and jth units are modi-
fied according to: cell.T CRi = cell.T CRi−d
and cell.T CRj = cell.T CRj + d, where d =
U(0,Pc ∗ min(cell.T CRi − P t

mini
,P t

maxj
−

cell.T CRj)), U(w1,w2) refers to a random
number with a uniform distribution in the
range (w1,w2) and Pc is a change factor
(Pc ∈ [0,1]). The best from among the clones
and the original cell passes to the next itera-
tion.

• Differentiation for infeasible cells: the
number of decision variables to be changed
is determined by a random number U(1,N).
Each variable to be changed is chosen in
a random way and it is modified accord-
ing to: cell.T CR

′

i = cell.T CRi±m, where

cell.T CRi and cell.T CR
′

i are the original
and the mutated decision variables, respec-
tively. m = U(0,1) ∗ (cell.ECV + cell.ICS).
In a random way, it is decided if m will be
added or subtracted to cell.T CRi. If the pro-
cedure cannot find a T CR′

i in the allowable
range, then a random number with a uniform
distribution is assigned to it (cell.T CR

′

i =
U(cell.T CRi,P

t
maxi

) if m should be added

or cell.T CR
′

i = U(P t
mini

, cell.T CRi), other-
wise). If the clone is feasible, then the dif-
ferentiation process stops. Otherwise, the
process is applied to the clone instead of the
infeasible original cell. This methodology is
repeated until N differentiations have been
applied or a feasible clone had been reached.

5.2 Handling Constraints

Different violation rates are calculated for equal-
ity and inequality constraints. They are called
ECV and ICS, respectively, and are detailed
next.

• At time t, for each cell j, its ECVj is

calculated as ECVj =|
∑N

i=1 T CRt
i − P t

D −
T CRt

L |), where T CRt
i, P t

D and T CRt
L are

the output power for unit i, the load de-
mand and the loss transmission, respectively.
This rate indicates how far is the generated
power from the demanded power. Thus, if
ECVj > 0 then the generated power by cell
j is larger than the demanded power and if
ECV < 0, the power generated by cell j is
lower than the required power.

• ICSj represents the inequality constraints
sum for cell j, at time t. For each
cell, the rate is calculated as ICSj =
∑N

i=1

∑ni
j=1 poz(T CRi, i, j)

poz(p,i,j) =
{

min(p − P ZL
i,j

,P ZU
ij

− p) ifp ∈ [P ZL
i,j

,P ZU
ij

]

0 otherwise

where ni indicates the number of prohibited
operating zones and [P ZL

i,j ,P ZU
ij ] is the jth

prohibited range for the ith unit. So, if some
T CRi falls in a prohibited zone, the closer
distance, between T CRi and the prohibited
zone limit is added to the rate.

A cell is considered feasible only if it produces
at least the load demand but it has to be less than
a predetermined ǫ (0 ≤ ECV < ǫ) for problems
with transmission loss or the exact load demand
(ECV = 0), otherwise. And any T CR must fall
in a prohibited zone (ICS = 0).

The algorithm works in the following way (see
Algorithm 1). First, the TCRs are randomly ini-
tialized within the limits of the units (Step 1) (in-
terval 1). Then, ECV and ICS are calculated for
each cell (Step 2). Only if a cell is feasible, its ob-
jective function value is calculated (Step 3). Next,
the following steps are repeated T times (Step 5 to
25): while a predetermined number of objective
function evaluations had not been reached and
5× 107 iterations had not been performed, the
cells are proliferated and differentiated according
to their feasibility (Step 7). After the activation
process, the best solution at time t is recorded.
The time (interval) is increased (Step 11) and
new operational limits are updated according to
Eq. (14) (Steps 12-15). Those units whose power
outputs fall outside the new operational limits are
replaced by random values from the new valid lim-
its (Steps 16-22). Since the power outputs could
change, the T P s are updated and the cells are



re-evaluated according to the new power demand
(Step 24) and the corresponding objective func-
tion value as well, if applicable (Step 25). Finally,
(Step 27) the final solution is the union of the
solutions found at times 1, 2 to T (BEST ).

Algorithm 1 IA DED Algorithm

1: C ← Initialize Population();
2: Evaluate Constraints(C);
3: Evaluate Objective Function(C);
4: for t ≤ T do

5: top← 0;
6: while A number of evaluations has not

been reached ∧ top < 5 ∗ 107 do

7: Activation Process(C);
8: top + +;
9: end while

10: bestt← Search best at Population(C);
11: t + +;
12: for j ≤ N do

13: P t
minj

= max(Pminj
, bestt−1−DRj)

14: P t
maxj

= min(Pmaxj
, bestt−1 + URj)

15: end for

16: for i≤ | C | do

17: for j ≤ N do

18: if celli.T CRj /∈ [P t
minj

,P t
maxj

]
then

19: celli.T CRj ← U(P t
minj

,P t
maxj

)
20: end if

21: end for

22: end for

23: Update output power(C);
24: Evaluate Constraints(C);
25: Evaluate Objective Function(C);
26: end for

27: BEST ← (best1, best2, . . . , bestT );

6 Numerical Experiments

The proposed algorithm was tested on six 24-h
dynamic power systems (T=24). The first one is
a 5-unit system, in which all the units have valve-
point effects and transmission losses. The B co-
efficients were taken from [26]. The total load
demand of the system is 14577 MW. The system
data and power load demands were taken from
[10]. The second example is a 6-unit system with
26 buses, and 46 transmission lines. In this case,
valve-point effects are not considered but trans-
mission loss is considered. All units have two pro-
hibited zones and the total load demand is 25954
MW. The data and daily load demands for this
problem were taken from [36]. The third system
has 10 thermal units, all of which consider valve-
point effects but not transmission losses. The to-
tal load demand is 40108 MW. The data and daily

load demands for this problem were taken from
[26]. An extension from this is the 30-unit sys-
tem where the units are tripled to get a 30 units
system. It has the same cost characteristics with
valve point load effects. The load pattern is taken
as three times the value which is considered in
the 10 unit system for a 24 h time period. The
fifth power system has 15 generating units (15-
unit system), it doesn’t consider valve-point ef-
fects but it takes into account transmission losses.
Four units (2, 5, 6 and 12) have prohibited op-
erating zones. The total load demand is 60981
MW. The data and daily load demands for this
problem were taken from [4]. The last test case
is a 54-unit system, which comprises 54 thermal
units (33 coal-fired units, 11 gas-fired units and
10 oil-fired units) as well as 8 hydro plants [26].
The detailed data of this system were taken from
[43]. Thermal units 5, 10, 11, 28, 36, 43, 44 and
45 have valve load effects cost and thermal units 7,
10, 30, 34, 35 and 47 have POZs limitations [44].
Thermal units 8, 9, 10, 11, 15, 16, 17, 18, 21, 22,
23, 24, 28, 29, 30, 31, 32, 33, 34, 35 and 36 can
generate emission but this issue is not tracked in
this case. The total load demand of the system is
111600 MW. The data pertaining to the demand
were taken from [4]. The 5-unit-DEED system
has the same data used in the 5-unit system but
emissions are considered. In this case, wet set w
= 0.5 [4].

Table 1 provides the most relevant features
of the problems previously described as well as
the maximum number of function evaluations
performed by IA DED. The algorithm was im-
plemented in Java (v. 1.6.0 24) under Linux
(Ubuntu 12.04) on a Pentium IV personal Com-
puter while the experiments were performed on
an Intel Q9550 Quad Core processor running at
2.83GHz and with 4GB DDR3 1333Mz in RAM.
For each problem, 100 independent runs were per-
formed.

7 Comparison of Results and Dis-
cussion

Several methods are selected to be compared with
our proposed algorithm, according to the chosen
test cases. The comparison of results is presented
in Tables 2 and 3. These tables show the follow-
ing: the best, mean, worst, standard deviation as
well as the running times obtained by each of the
approaches, when available. Due to space restric-
tions, the integer costs are shown but they are not
rounded up. For all the test problems, IA DED
found feasible solutions in all the runs performed,
considering the parameters setting given in Ta-
ble 1, except for the 10-unit system where feasi-
ble solutions were found in 86% of the runs. The



Table 1: Test Problems Features
Problem Objective PL POZ MaxEv C Pc Pa

5-unit system non-smooth Yes No 19000 10 0.1 0.01
6-unit system smooth Yes Yes 2000 20 0.5 0.1

10-unit system non-smooth No No 5000 10 0.9 0.1
15-unit system smooth Yes No 30000 20 0.9 0.1
30-unit system non-smooth No No 50000 5 0.9 0.1
54-unit system non-smooth No Yes 40000 5 0.9 0.01

5-DEED-unit System non-smooth Yes No 2000 5 0.9 0.1

running times are compared in an indirect man-
ner, to give a rough idea of the computational
costs of the different algorithms considered in our
comparative study.

Analyzing Table 2, the best total fuel cost ob-
tained by IA DED is $43699, for the 5-unit sys-
tem. This cost was outperformed by ICA [26] and
DE-SQP [37], but the computational cost is not
reported for any of these two approaches. The
other approaches, for which the computational
cost is reported, required minutes to obtain fea-
sible solutions. In contrast, IA DED could find
very quickly (in seconds instead of minutes), an
acceptable solution.

A similar situation occurs when the 6-unit sys-
tem and the 10-unit system are considered. For
the 6-unit system, IA DED exceeds by $104 the
cost found by SAMF [40], but our approach ob-
tained this best total fuel cost just in 0.924 sec-
onds while SAMF [40] required 1.965 seconds. For
the 10-unit system, IA DED exceeds by $1397
the cost found by EBSO [29], but this approach
reports a running time of 0.205 minutes, i.e.,
12.3 seconds. The other approaches took times
measured in minutes to find feasible solutions,
whereas our proposed approach took only 2.552
seconds.

Considering Table 3 (15-unit system) IA DED
outperformed all the considered approaches. It
finds a solution whose total fuel cost is $759302
in 2.660 seconds. Thus, our proposed approach
found the best solution requiring the lowest run-
ning time. However, the Brent-Method [39] found
an acceptable solution in only 0.53 seconds.

For the 30-unit system, IA DED obtained a
best total fuel cost of $3056592, outperforming all
the approaches with respect to which it was com-
pared, except for EBSO [29]. EBSO produced a
solution which is only 0.08% cheaper than the one
produced by IA DED, but it required 634% more
time than IA DED.

For the 54-unit system, IA DED outperformed
all the other approaches with respect to which
it was compared, in terms of the total fuel cost.
IA DED just required 13.169 seconds to find
this solution, whose cost is $1717901. In this

case, OCD [41] found a feasible solution which
is 3% more expensive than the one produced by
IA DED but it produced it in only 0.132 seconds.

For the 5-unit-DEED system, IA DED ob-
tained, in 1.216 seconds, a solution whose total
fuel cost is $45169 and whose emissions are 18774
lb/day. This solution is less expensive than the
solutions produced by the approaches considered
for comparison purposes but it releases into the
air 144 lb/day more than the NPAHS solution [4].

The best scheduling solution obtained by
our proposed IA DED can be downloaded from
http://www.lidic.unsl.edu.ar/node/461.The
source code of our proposed approach can be
obtained from the first author of this paper,
upon request.

It is worth noting that the methods considered
in this paper, which sub-divide the whole dispatch
into T periods such as the Brent Method [39],
SAMF [40, 41], and IA DED, are able to find high-
quality solutions in seconds rather than minutes.

8 Statistical Analysis

The parameters required by IA DED are: pop-
ulation size (C), maximum number of objective
function evaluations, change factor (Pc), differen-
tiation probability (Pa) and tolerance factor (ǫ).
This last parameter was set to 0.9 for all the test
problems that consider transmission losses. To
analyze the effect of C, Pc and Pa on IA DED’s
behavior, we tested it with different parameters
settings. As part of this process, some prelimi-
nary experiments were performed to discard some
parameter values. Hence, the selected parameter
levels were the following: a) Three levels for the
population size C (5, 10 and 20 cells), b) Three
levels for the probability Pc (0.1, 0.5 and 0.9) and
c) Two levels for the probability Pa (0.01 and 0.1).

Thus, we have 18 parameters settings for six
problems. They are identified as C <size>-
Pc <Prob>-Pa <Prob>, where C, Pc and Pa in-
dicate the population size and the probabilities,
respectively. The box plot method was selected
to visualize the distribution of the objective func-
tion values for each power system. This allowed

http://www.lidic.unsl.edu.ar/node/461


Table 2: Comparison of results. The best values are shown in boldface. The last column indicates the
running time (s ≡ seconds and m ≡ minutes). - denotes that the value was not available.

Problem/
Algorithm Best($) Mean($) Worst($) Std. Time
5-unit system
ICA [26] 43117 43144 43209 19.821 -
DE-SQP [37] 43161 - - - -
ABC [14] 44045 - - - -
PSO [14] 44253 - - - -
HS [5] 44376 - - - 2.8m
AIS [23] 44385 44758 45553 - 4m
GA [14] 44862 - - - -
IA DED 43699 45081 46383 593.68 8.925s
6-unit system
SAMF [40] 313363 - - - 1.965s
Brent Method[39] 313405 - - - 0.078s
BPSO-DE [36] 314025 314144 314351 - 21.89s
IA DED 313467 313497 313534 14.58 0.924s
10-unit system
EBSO [29] 1017147 1017526 1017891 147.01 0.205m
ICA [26] 1018467 1019291 1021795 - -
CSADHS [22] 1018681 1018718 1018760 - 2.72m
CDHS [22] 1018683 1018743 1018793 - 2.95m
CSAPSO [21] 1018767 1019874 - - 0.467m
ICPSO [20] 1019072 1020027 - - 0.467m
HHS [5] 1019091 - - - 12.233m
CDE method3 [18] 1019123 1020870 1023115 - 0.32m
DE [16] 1019786 - - - 11.15m
DHS [22] 1019952 1020025 1020107 - 3.34m
AHDE [35] 1020082 1022474 - - 1.10m
AIS [23] 1021980 1023156 1024973 - 19.01m
ECE [24] 1022271 1023334 - - 0.5271m
BCO-SQP [38] 1032200 - - - 3.24m
IA DED 1018544 1020193 1022064 764.04 2.552s



us to determine the robustness of our proposed al-
gorithm with respect to its parameters. Figures 1
to 6 show in the x-axis the parameter combina-
tions and the y-axis indicates the objective func-
tion values for each problem expressed in $. Fur-
thermore, we also performed an analysis of vari-
ance (ANOVA). The hypotheses considered were
the following:

• Null Hypothesis: there is no significant dif-
ference among the averages of the objective
values. If there are differences, they are due
to random effects.

• Alternative Hypothesis: there is a combina-
tion of level values for which the average of
the objective values are significantly different
and such differences are not due to random
effects.

As the results do not follow a normal distribu-
tion, we applied the Kruskal-Wallis test, to per-
form ANOVA and then the Tukey method in or-
der to determine the experimental conditions for
which significant differences exist. The results ob-
tained by ANOVA proved the Null Hypothesis for
several combinations of parameters. However, the
Alternative Hypothesis was proved, too.

After the statistical analysis of the results ob-
tained by our proposed approach, for the six test
problems, we can infer the following general con-
clusions. For both the 5-unit system and the 15-
unit system, there are no significant differences
when C is fixed and the probabilities vary. How-
ever, the median values improve with a small
change factor. For the 6-unit system, when C
is increased, better results are obtained and they
have significant differences. Increasing the change
factor from 0.1 to 0.5 and 0.9 improves the results
with significant differences. For the 10-unit sys-
tem, increasing the change factor from 0.1 to 0.5
and 0.9 improves the results with significant dif-
ferences. When C = 5 or C = 10, increasing Pc

from 0.5 to 0.9, also improves the results. In gen-
eral, best median values are obtained with the
highest probability set for the application of the
differentiation operator. For the 30-unit system,
increasing the change factor improves the results
with significant differences. Contrary to the pre-
vious case, the best median values are obtained
with the lowest probability established for the ap-
plication of the differentiation operator. Consid-
ering the 54-unit system, for C = 5, increasing the
change factor from 0.1 to 0.5 and 0.9 produces bet-
ter results and they present significant differences.
For C = 10 or C = 20, increasing the probabilities
produces better results.
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Figure 1: Box plots for 5-unit system.
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Figure 2: Box plots for 6-unit system.
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Figure 3: Box plots for 10-unit system.



Table 3: Comparison of results. The best values are shown in boldface. The last column indicates the
running time (s ≡ seconds and m ≡ minutes). - denotes that the value was not available.

Problem/
Algorithm Best($) Mean($) Worst($) Std. Time
15-unit system
SAMF [40] 759406 - - - 2.951s
NPAHS [4] 759603 759779 759988 - 250.0s
CSADHS [22] 759689 759766 759845 - 3.36m
SGHS[4] 759897 760118 760343 - 303.3s
HS[4] 765560 765959 766370 - 678.3s
IHS[4] 765600 765942 766403 - 681.5s
GHS[4] 769074 769627 770428 - 1935.1s
Brent Method[39] 760287 - - - 0.53s
IA DED 759302 759542 760125 149.59 2.660s
30-unit system
HHS [5] 3057313 - - - 27.65m
ICPSO [20] 3064497 3071588 - - 1.03m
CDE method3 [18] 3083930 3090542 - - 0.67m
ECE [24] 3084649 3087847 - - 2.1375m
EBSO [29] 3054001 3054697 3055944 - 0.95m
IA DED 3056592 3060513 3064397 1545.83 7.756s
54-unit system
OCD [41] 1772724 - - - 0.132s
ICA [26] 1807081 1809664 1811388 - -
IA DED 1717901 1718127 1718411 108.08 13.169s
5-unit-DEED system
HS [4] 33249 - - - 1192.00s

TC: 47375 Emission: 19123
IHS [4] 33388 - - - 1243.75s

TC: 47946 Emission:18830
GHS[4] 34216 - - - 2317.70s

TC:49503 Emission: 18929
SGHS[4] 32417 - - - 860.s

TC:45870 Emission: 18964
DE[4] 34079 - - - 1326.22s

TC:48882 Emission: 19276
PSO-CF[4] 34198 - - - 1068.90s

TC:49211 Emission: 19185
NPAHS [4] 31913 - - - 235.93s

TC: 45196 Emission: 18630

IA DED 31972 32353 32748 128.18 1.216s
TC: 45169 Emission: 18774
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Figure 4: Box plots for 15-unit system.
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Figure 5: Box plots for 30-unit system.
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Figure 6: Box plots for 54-unit system.

9 Conclusions and Future Work

This paper presented an algorithm inspired on the
T-Cells of the immune system, called IA DED,
which was used to solve dynamic economic dis-
patch problems. IA DED is able to handle the
different types of constraints that are involved in
this type of problem: power balance constraints
with and without transmission loss, operating
limit constraints, ramp rate limit constraints and
prohibited operating zones. Additionally, it can
handle both smooth and non-smooth functions as
well as atmospheric emissions.

At the beginning, the search performed by
IA DED is based on a simple differentiation oper-
ator which takes an infeasible solution and mod-
ifies some of its decision variables by taking into
account their constraint violation. Once the algo-
rithm finds a feasible solution, a different differ-
entiation operator is applied. This operator mod-
ifies two decision variables at a time, it decreases
the power in one unit, and it selects another unit
to generate the power that has been taken.

Our proposed approach was validated with six
test problems having different features. Compar-
isons were provided with respect to several ap-
proaches that have been reported in the special-
ized literature. Our proposed approach produced
competitive results in all cases, being able to out-
perform some of the other approaches when run-
ning times are considered. Also, it showed an
acceptable behavior in a DEED problem. The
best performance of our proposed algorithm is ob-
served in the largest systems with which it was
tested. Furthermore, the best results were ob-
tained when the highest change factor probability
was used. As part of our future work, we are in-
terested in testing the algorithm with even larger
systems and we intend to incorporate renewable
energy resources.
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