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Abstract Evolutionary multiobjective optimization has been a research area
since the mid-1980s, and has experienced a very significant activity in the
last 20 years. However, and in spite of the maturity of this field, there are
still several important challenges lying ahead. This paper provides a short
description of some of them, with a particular focus on open research areas,
rather than on specific research topics or problems. The main aim of this paper
is to motivate researchers and students to develop research in these areas, as
this will contribute to maintaining this discipline active during the next few
years.
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1 Introduction

In the real world, there exist many problems having two or more (often con-
flicting) objectives that we aim to optimize at the same time. They are called
multiobjective optimization problems (MOPs) and their solution has attracted
the attention of researchers for many years. Because of the conflict among the
objectives, solving an MOP produces a set of solutions representing the best
possible trade-offs among the objectives (i.e., solutions in which one objective
cannot be improved without worsening another one). Such solutions consti-
tute the Pareto optimal set and the image of this set (i.e., the corresponding
objective function values) form the so-called Pareto front.

In spite of the fact that a wide variety of mathematical programming tech-
niques have been developed to tackle MOPs since the 1970s [115], such tech-
niques present a number of limitations, from which the most remarkable are
that these algorithms are normally quite susceptible to the shape and/or con-
tinuity of the Pareto front and that they usually generate one element of
the Pareto optimal set per algorithmic execution. Additionally, some mathe-
matical programming techniques require that the objective functions and the
constraints are provided in algebraic form and in many real world problems
we can only obtain such values from a simulator. These limitations have moti-
vated the use of alternative approaches, from which metaheuristics have been
a very popular choice, mainly because of their flexibility (i.e., they require
little domain specific information) and their ease of use. From the many meta-
heuristics currently available [158], evolutionary algorithms [57] have certainly
been the most popular in the last few years in this area, giving rise to a field
now known as evolutionary multiobjective optimization (EMO) [29].

The first Multi-Objective Evolutionary Algorithm (MOEA) was called Vec-
tor Evaluated Genetic Algorithm (VEGA) and was proposed by J. David
Schaffer in the mid-1980s [147–149]. Something interesting is that there was
not much interest in EMO research for almost a decade. However, in the mid-
1990s, this area started to attract a lot of attention from several research
groups around the world, and has maintained a high research activity since
then.1

The remainder of this paper is organized as follows. In Section 2, we pro-
vide some basic mathematical concepts related to multiobjective optimization,
with the aim of making of this a self-contained paper. Section 3 provides a list
of research areas that present challenges that are particularly relevant from
the authors’ perspective. In the subsequent subsections, each of these areas
are described, providing in the process a summary of some of the most rele-
vant research that has been conducted in such areas so far. In Section 4 we
provide the main challenges associated to each of the research areas previously
discussed. Finally, Section 5 contains the conclusions of this paper.

1 The first author maintains the EMOO repository [28] which currently contains over
12,100 bibliographic references on evolutionary multiobjective optimization. The EMOO
repository is located at: https://emoo.cs.cinvestav.mx.
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2 Basic Concepts

In multiobjective optimization, the aim is to solve problems of the type2:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.

A few additional definitions are required to introduce the notion of opti-
mality used in multiobjective optimization:

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such
that f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from the set F of all
the decision variable vectors that satisfy (2) and (3). Note however that in
practice, not all the Pareto optimal set is normally desirable or achievable,
and decision makers tend to prefer certain types of solutions or regions of the
Pareto front [16].

2 Without loss of generality, we will assume only minimization problems.
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3 Open Research Areas

In spite of the intense research activity that has been conducted in the last
25 years in this area, there are still some open research areas that are worth
exploring in the next few years. The following is a non-comprehensive list of
them:

1. Algorithmic design
2. Scalability
3. Dealing with expensive objective functions
4. Hyper-heuristics

Next, we briefly discuss some of the most representative research that has
been conducted on these topics.

3.1 Algorithmic Design

In their origins, MOEAs were very simple and naive. A good example of this is
the Vector Evaluated Genetic Algorithm (VEGA) [148] in which the popula-
tion of a simple genetic algorithm was subdivided into as many sub-populations
as the number of objectives of the MOP to be solved (only problems with two
objectives were normally considered at that time). Then, solutions in each
subpopulation were selected based on their performance on a single objec-
tive (e.g., individuals in the first subpopulation were selected based on the
performance on the first objective). Then, the individuals of all the subpopu-
lations were shuffled with the aim of recombining solutions that were the best
in the first objective with those that were the best in the second objective.
When combined with proportional selection (e.g., the roulette-wheel method),
VEGA produced solutions similar to those obtained with the use of a linear
aggregating function that combines all the objective functions into a single
scalar value [31]. In spite of the limitations of VEGA, some researchers even-
tually found applications in which this sort of scheme could be useful (see for
example [27]).

Linear aggregating functions were among the most popular approaches
adopted in the early days of MOEAs [67], but their incapability of dealing
with non-convex Pareto fronts was soon pointed out by some researchers (see
for example [36]). Nevertheless, linear aggregating functions and other naive
approaches, such as lexicographic ordering have survived in the EMO literature
for many years [29].

Goldberg proposed in his seminal book on genetic algorithms [57] a mech-
anism called Pareto ranking for the selection scheme of a MOEA. The core
idea of Pareto ranking is to rank the population of an evolutionary algorithm
based on Pareto optimality, such that the nondominated solutions obtain the
highest (best) possible rank and are sampled at the same rate (i.e., all non-
dominated solutions have the same probability of survival). Since Goldberg did
not provide a specific algorithm for Pareto ranking, several implementations
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were developed based on his proposal. From them, the two main ones were
those provided in the Multi-Objective Genetic Algorithm (MOGA) of Fonseca
& Fleming [53] and the Nondominated Sorting Genetic Algorithm (NSGA) of
Srinivas & Deb [153]. In the first, the ranking was done in a single pass (by
comparing each individual with respect to everybody else, in terms of Pareto
optimality), whereas the second required the creation of several layers of solu-
tions, which involved re-ranking the population several times (i.e., NSGA was
more computationally expensive than MOGA).

Goldberg [57] realized that in MOEAs, diversity would be a key issue if
we aimed to generate as many elements of the Pareto optimal set as possible
in a single algorithmic execution. This gave rise to the use of a mechanism
that was eventually called density estimator, whose task is to maintain dif-
ferent (nondominated) solutions in the population, thus avoiding convergence
to a single one (something that eventually happens with any evolutionary al-
gorithm because of stochastic noise [57]). MOGA [53] and NSGA [153] used
fitness sharing [58] as their density estimator, but a wide variety of other ap-
proaches have been proposed since then: clustering [184], adaptive grids [85],
crowding [40], entropy [129] and parallel coordinates [74], among others.

In the late 1990s, another mechanism was incorporated in MOEAs: elitism.
The idea of elitism is to retain the best solutions obtained by a MOEA so that
they are not destroyed by the evolutionary operators (e.g., crossover and muta-
tion). However, since all nondominated solutions are considered equally good
(unless we have some preference information), this leads to the generation of a
large number of solutions. Zitzler realized this when developing the Strength
Pareto Evolutionary Algorithm (SPEA) [184] and also observed that retaining
such a large number of solutions diluted the selection pressure. Thus, he pro-
posed not only to use an external archive to store the nondominated solutions
generated by his MOEA, but also proposed to prune such an archive once a
certain (user-defined) limit was reached. For this sake, he adopted clustering.
Elitism is important not only for practical reasons (it is easier to compare the
performance of two MOEAs that produce the same number of nondominated
solutions), but also for theoretical reasons, since it has been proved that such
a mechanism is required in a MOEA to guarantee convergence [141].

Pareto-based MOEAs were very popular in the mid-1990s, but few of the
many approaches that were proposed at that time have been actually used
by other researchers. With no doubt, the most popular of the Pareto-based
MOEAs has been the Nondominated Sorting Genetic Algorithm-II (NSGA-II)
[40] which uses a more efficient ranking scheme (called nondominated sorting)
than its predecessor (NSGA), and adopts a clever mechanism called crowded
comparison operator (which does not require any parameters), as its density
estimator. NSGA-II is still used today by many researchers, in spite of the
well-known limitations of its crowded comparison operator when dealing with
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MOPs having more than three objectives3 (the so-called many-objective opti-
mization problems [29]).

For over 10 years, Pareto-based MOEAs were, by far, the most popular
approaches in the specialized literature. In 2004, a different type of algorithmic
design was proposed, although it remained underdeveloped for several years:
indicator-based selection. The core idea of this sort of MOEA was introduced
in the Indicator-Based Evolutionary Algorithm (IBEA) [183] which consists
of an algorithmic framework that allows the incorporation of any performance
indicator into the selection mechanism of a MOEA. IBEA was originally tested
with the hypervolume [182] and the binary ε indicator [183].

Indicator-based MOEAs were initially seen as a curiosity in the field, since
it was not clear what were their advantages other than providing an alter-
native mechanism for selecting solutions. However, when the limitations of
Pareto-based selection for dealing with many-objective problems became clear,
researchers started to get interested in indicator-based MOEAs, which did not
seem to have scalability limitations. Much of the interest in this area was
produced by the introduction of the S Metric Selection Evolutionary Multi-
objective Algorithm (SMS-EMOA) [46]. SMS-EMOA randomly generates an
initial population and then produces a single solution per iteration (i.e., it
uses steady state selection) using the crossover and mutation operators from
NSGA-II. Then, it applies nondominated sorting (as in NSGA-II). When the
last nondominated front has more than one solution, SMS-EMOA uses hyper-
volume [182] to decide which solution should be removed. Beume et al. [13]
proposed a new version of SMS-EMOA in which the hypervolume contribution
is not used when, in the nondominated sorting process, we obtain more than
one front (i.e., the hypervolume is used as a density estimator). In this case,
they use the number of solutions that dominate to a certain individual (i.e.,
the solution that is dominated by the largest number of solutions is removed).
This makes SMS-EMOA a bit more efficient. However, since this MOEA relies
on the use of exact hypervolume contributions, it becomes too computationally
expensive as we increase the number of objectives [12].

SMS-EMOA started a trend for designing indicator-based MOEAs (several
of which rely on the hypervolume indicator) although it is worth indicating
that in such approaches, the performance indicator has been mostly used as
a density estimator (see for example [77]). The use of “pure” indicator-based
selection mechanisms has been very rare in the specialized literature (see for
example [114]).

At this point, an obvious question is: why is that the hypervolume is such
an attractive choice for indicator-based selection? The hypervolume (which is
also known as the S metric or the Lebesgue Measure) of a set of solutions
measures the size of the portion of objective space that is dominated by those
solutions collectively. One of its main advantages are its mathematical prop-
erties, since it has been proved that the maximization of this performance

3 In fact, there is empirical evidence indicating that the crowded comparison operator has
difficulties even in MOPs with only 3 objectives (see for example [88]).
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measure is equivalent to finding the Pareto optimal set [52]. Additionally, em-
pirical studies have shown that (for a certain number of points previously
determined) maximizing the hypervolume indeed produces subsets of the true
Pareto front [85,46]. Also, the hypervolume assesses both convergence and, to
a certain extent, also the spread of solutions along the Pareto front (although
without necessarily enforcing a uniform distribution of solutions). However,
there are several issues regarding the use of the hypervolume. First, the com-
putation of this performance indicator depends of a reference point, which
can influence the results in a significant manner. Some people have proposed
to use the worst objective function values in the current population, but this
requires scaling of the objectives. Nevertheless, the most serious limitation of
the hypervolume is its high computational cost. The best algorithms known to
compute hypervolume have a polynomial complexity on the number of points
used, but such complexity grows exponentially on the number of objectives
[12]. This has triggered a significant amount of research regarding algorithms
that can reduce the computational cost of computing the hypervolume and the
hypervolume contributions, which is what we need for a hypervolume-based
MOEA4 (see for example [142,33,93,81,62]).

An obvious alternative to deal with this issue is to approximate the actual
hypervolume contributions. This is the approach adopted by the Hypervolume
Estimation Algorithm for Multi-Objective Optimization (HyPE) [6] in which
Monte Carlo simulations were used to approximate exact hypervolume values.
In spite of the fact that HyPE can efficiently solve MOPs having a very large
number of objectives, its results are not as competitive as when using exact
hypervolume contributions.

Another possibility is to use a different performance indicator whose com-
putation is relatively inexpensive. Unfortunately, the hypervolume is the only
unary indicator which is known to be Pareto compliant [185], which makes less
attractive the use of other performance indicators. Nevertheless, there are some
other performance indicators which are weakly Pareto compliant, such as R2
[17] and the Inverted Generational Distance plus (IGD+) [79]. Although sev-
eral efficient and effective indicator-based MOEAs have been proposed around
these performance indicators (see for example [72,18,160,105,97,106]), their
use has remained relatively rare in the specialized literature.

In 2007, a different sort of approach was proposed, quickly attracting a
lot of interest: the Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [178]. The idea of using decomposition (or scalarization)
methods was originally proposed in mathematical programming more than
20 years ago [35] and it consists in transforming an MOP into several single-
objective optimization problems which are then solved to generate the non-
dominated solutions of the original problem. Unlike linear aggregating func-
tions, the use of scalarization (or decomposition) methods allows the gener-

4 See also:
http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start

http://people.mpi-inf.mpg.de/~tfried/HYP/

http://iridia.ulb.ac.be/~manuel/hypervolume
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ation of non-convex portions of the Pareto front and works even in discon-
nected Pareto fronts. MOEA/D presents an important advantage with respect
to methods proposed in the mathematical programming literature (such as
Normal Boundary Intersection (NBI) [35]): it uses neighborhood search to
solve simultaneously all the single-objective optimization problems generated
from the transformation. Additionally, MOEA/D is not only effective and ef-
ficient, but can also be used for solving problems with more than 3 objectives
although in such cases it will require higher population sizes.

Decomposition-based MOEAs became fashionable at around 2010 and have
remained as an active research area since then [144]. In fact, this sort of
approach influenced the development of the Nondominated Sorting Genetic
Algorithm-III (NSGA-III) [38] which adopts both decomposition and refer-
ence points to deal with many-objective problems. However, it was recently
found that decomposition-based MOEAs do not work properly with certain
Pareto front geometries [80]. This will certainly trigger a lot of research in the
next few years, given the popularity of decomposition-based MOEAs.

3.2 Scalability

As has been pointed out, in the early days of MOEAs, their use was frequently
limited to solving problems having only two or three objectives. However, over
the years, the need for tackling many-objective problems became more evident.
It was soon identified that scalability in objective function space is a serious
limitation of Pareto-based MOEAs [75].

However, it is interesting to notice that when Schütze et al. [150] stud-
ied the actual source of difficulty in many-objective problems, they concluded
that adding more objectives to an MOP does not necessarily makes it harder.
According to this study, the difficulty is really associated to the intersection of
the descent cones of the objectives (these descent cones are obtained with the
combination of the gradients of each objective). This was somehow corrobo-
rated by an empirical study conducted by Ishibuchi et al. [78] in which it was
shown that NSGA-II could properly solve many-objective knapsack problems
in which the objectives were highly correlated. So, the question arises: why is
that many-objective problems turn out to be difficult to solve in practice when
using Pareto-based MOEAs? A series of experimental [131,165] and analyti-
cal studies [32,86,78] have identified the following limitations of Pareto-based
MOEAs in many-objective problems:

1. Deterioration of the Search Ability: The proportion of nondominated solu-
tions in a population increases rapidly with the number of objectives [49].
According to Bentley et al. [9] the number of nondominated k-dimensional
vectors on a set of size n is O(lnk−1 n). This implies that in problems
with a large number objectives, the selection of solutions is carried out
almost at random or guided by the density estimator. In fact, Mostaghim
and Schmeck [119] experimentally showed that a random search optimizer
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could achieve better results than NSGA-II [40] in a problem with 10 ob-
jectives. This problem is the reason why most indicator-based MOEAs are
able to tackle many-objective problems simply by using a more powerful
density estimator that guides the search.

2. Dimensionality of the Pareto front: Due to the ‘curse of dimensionality’
the number of points required to represent accurately a Pareto front in-
creases exponentially with the number of objectives. The number of points
necessary to represent a k-dimensional Pareto front with resolution r is
given by O(krk−1) (e.g., see [151]). This poses a challenge both to the data
structures to efficiently manage that number of points in the population as
well as in the external archive and to the density estimators to achieve an
even distribution of the solutions along the Pareto front. In fact, this is a
challenge even for performance indicators [78]. In practice, most MOEAs
tend to use relatively small population sizes (less than 300 individuals)
even when tackling MOPs with more than six objectives in spite of the
fact that such population sizes are clearly inappropriate for sampling such
high-dimensional Pareto fronts.

3. Visualization of the Pareto front: Clearly, with more than three objectives
is not possible to plot the Pareto front as usual. This is a serious problem
since visualization plays a key role for a proper decision making process. In
recent years, a number of visualization techniques have been proposed for
many-objective problems (see for example [161]), and this is still an active
research area (see for example [14,156,70]).

In order to properly deal with many-objective optimization problems, three
main approaches have been normally adopted [163,96,8]:

1. As mentioned before, the use of indicator-based MOEAs has been an im-
portant research trend to deal with many-objective optimization problems,
in spite of the limitations of some performance indicators such as the hy-
pervolume (see for example [82]).

2. One interesting possibility that was adopted in the early days of many-
objective optimization was the use of an optimality relation that yields a
solution ordering finer than that produced by Pareto optimality. These are
normally called relaxed forms of Pareto dominance. Some examples are:
k-optimality [50], preference order ranking [42], the favour relation [155],
and a method that controls the dominance area [145], among others. Be-
sides providing a richer ordering of the solutions, these relations obtain an
optimal set that it is usually a subset of the Pareto optimal set.

3. Another interesting approach which is now rarely used is dimensionality
reduction in which we reduce the number of objectives of the MOP either
during the search process or in an a posteriori manner, during the decision
making process [100,19,146]. The main aim of reduction techniques is to
identify redundant objectives (or at least partially redundant) in order to
discard them. A redundant objective is one that can be removed without
changing the dominance relation induced by the original objective set. Evi-
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dently, if each objective is conflicting with respect to every other objective,
no reduction is possible. However, this is rarely the case in practice.

Many other approaches are possible for tackling many-objective problems,
including, for example, the use of alternative ranking schemes (different from
nondominated sorting) (see for example [54]), the use of machine learning
techniques (as in MONEDA [108]), or approaches such as the two-archive
MOEA, which uses one archive for convergence and another for diversity [131].

3.3 Dealing with expensive objective functions

In spite of the several advantages that MOEAs can offer for solving com-
plex MOPs (e.g., ease of use and generality), their most important limitation
is that they normally require a relatively high number of objective function
evaluations to produce a reasonably good approximation of the Pareto front.
The reason for this is that MOEAs need to sample the search space in order
to identify an appropriate search direction, since they are stochastic search
techniques. This is, indeed, a serious limitation and, in some cases, it can
make MOEAs inappropriate for solving certain real-world MOPs in which
their computational cost becomes prohibitive (e.g., applications in aeronauti-
cal and aerospace engineering [122]).

In general, MOEAs can become computationally unaffordable for an ap-
plication when:

– The evaluation of the fitness functions is computationally expensive (i.e.,
it takes from minutes to hours, depending on the quality or granularity of
the model and the available computational resources).

– The fitness functions cannot be defined in an algebraic form (e.g., when
the fitness functions are generated by a computational simulation of the
physics of the real system).

– The total number of evaluations of the fitness functions is limited by some
financial constraints (i.e., there is a financial cost involved in computing
the fitness functions and we cannot exceed a certain pre-defined budget).

As we get access to more computational power each year at more affordable
prices, the interest in pursuing research in the development of MOEAs for
solving computationally expensive MOPs has significantly increased in the
last few years. The main approaches that have been developed in this area can
be roughly divided into three main groups [143]:

1. Parallelism: The use of parallel processing is perhaps the most obvious
choice for solving computationally expensive MOPs, particularly with the
decrease in the cost of high-speed multi-core processors (see for example
[37,139,83,124,110]). Something interesting, however, is that in spite of
the existence of an important number of papers on parallel MOEAs [159],
basic research in this area has remained scarce since the origins of MOEAs
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[29]. Most papers on parallel MOEAs focus on applications [173] or rela-
tively straighforward parallel extensions of well-established MOEAs such
as NSGA-II [130] or SMS-EMOA [71]. For many years, the emphasis was
placed on developing synchronous parallel MOEAs, but in recent years, the
development of asynchronous implementations (which are more appropri-
ate for the heterogeneous computer architectures that are more common
nowadays) has become more common [174,41,171,68].

2. Surrogates: When using this approach, an empirical model that approx-
imates the real problem is built through the use of information gathered
from actual objective function evaluations [157,43,121]. Then, the empir-
ical model (on which evaluating the fitness function is computationally
inexpensive) is used to predict promising new solutions [157]. Current
functional approximation models include Polynomials (response surface
methodologies [172,47]), artificial neural networks (e.g., multi-layer percep-
trons (MLPs) [5], radial-basis function (RBF) networks [177,2], Gaussian
processes [179,15], support vector machines [176,4,3] and Kriging [126,111]
models. Although frequently used in engineering applications, surrogate
methods can normally be adopted only in problems of low dimensional-
ity, which is an important limitation when dealing with real-world MOPs.
Additionally, surrogate models tend to lack robustness which is also an
important issue in optimization problems. Nevertheless, there has been re-
cent research oriented towards overcoming the scalability and robustness
limitations of surrogate methods (see for example [134,102,175,125]).

3. Fitness inheritance: This approach was originally proposed by Smith
et al. [152] with the aim of reducing the total number of fitness function
evaluations performed by a (single-objective) evolutionary algorithm. This
mechanism works as follows: when assigning fitness to an individual, in
some cases we evaluate the objective function as usual, but the rest of
the time, we assign as the fitness value of an individual the average of
the fitness of its parents. This allows saving one fitness function evalua-
tion. This idea is based on the assumption of similarity of an offspring
to its parents. Evidently, fitness inheritance must not be always applied,
since the algorithm needs to use the true fitness function value from time
to time, in order to obtain enough information to guide the search. The
percentage of time in which fitness inheritance is applied is called inher-
itance proportion. If this inheritance proportion is one (i.e., 100%), the
algorithm is most likely to prematurely converge [24]. Extending fitness
inheritance to multiobjective optimization involves several issues, mainly
related to its apparent limitation for dealing with non-convex Pareto fronts
[45]. However, some researchers have managed to successfully adapt fitness
inheritance to MOEAs [135,128,55,169], reporting important savings on
the total number of objective function evaluations performed.
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3.4 Hyper-Heuristics

A hyper-heuristic is a search method or learning mechanism for selecting
or generating heuristics to solve computational search problems [20]. Hyper-
heuristics are high-level approaches that operate on a search space of heuristics
or on a pool of heuristics instead of the search space of the problem at hand.
Hyper-heuristics have been promoted with the aim to provide more general
search methodologies. Typically, simple heuristics tend to work well on a par-
ticular type of problem. However, when facing a new problem or even slightly
modified instances of the same problem, such heuristics tend to perform poorly.
Additionally, identifying which heuristic works efficiently on a certain prob-
lem is a very tedious and time-consuming task whose computational cost may
become prohitive in some applications.

Burke et al. [21] proposed a taxonomy of hyper-heuristics considering two
dimensions:

1. The nature of the heuristics’ search space, and
2. the different sources of feedback information.

Regarding the nature of the search space, there are two options:

1. Heuristic selection, which are methodologies for choosing existing heuris-
tics,

2. heuristic generation, which are methodologies for generating new heuristics
from the components of existing ones.

Regarding the source of feedback information obtained during the search
process, there are three options:

1. No-learning, in which there is no learning mechanism and the heuristic
selection is based on either a random or an exhaustive process,

2. Offline learning, in which knowledge is gathered in the form of rules from
a set of training instances, that will hopefully generalize to solve unseen
instances, and

3. Online learning, in which the learning takes place while the algorithm is
solving an instance of a problem.

The use of collaborative approaches which work as hyper-heuristics can
be found across Operations Research, Computer Science and Artificial Intel-
ligence. Although the ideas behind hyper-heuristics can be traced back to the
early 1960s in single-objective optimization, until relatively recently, their po-
tential hadn’t been explored in multiobjective optimization. Early attempts in
this field date back to 2005, when hyper-heuristics started to be used to solve
multiobjective combinatorial optimization problems, such as space allocation
and timetabling [22], decision-tree induction algorithms [7], bin packing and
cutting stock problems [59], integration and test order problems [63,64,107],
spanning trees [89], job shop scheduling [162], knapsack problems [90] and
software module clustering [92,91], among others.
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Multiobjective hyper-heuristics for continuous search spaces are still rare in
the specialized literature. For example Vrugt et al. [164], proposed the Multi-
ALgorithm Genetically Adaptive Method (AMALGAM), which is an online
selection hyper-heuristic that operates similarly to NSGA-II [40]. However,
in this case, the offspring are also created using the variation operators of
other stochastic search methods, such as differential evolution [154], particle
swarm optimization [84] and adaptive metropolis search [65]. Although all
these methods participate during the optimization process, those showing the
highest reproductive success are favored. Additionally, the initialization of the
population adopts Latin hypercubes sampling.

León et al. [95] proposed the Metaheuristics-based Extensible Tool for Co-
operative Optimization (METCO) which is based on the island model and the
cooperation of a set of MOEAs, which grants more computational resources
to those algorithms that show a more promising behavior. A coordinator node
is in charge of maintaining the global solution and selecting the configurations
that are executed on the islands. A configuration consists of a MOEA plus the
variation operators and the set of parameters which define them (population
size, mutation and crossover rates, etc.). These parameters are defined by the
user. The global solution set is obtained by merging local results achieved by
each of the islands and its size is limited using the crowding distance operator.
Besides the global stopping criterion, a local stopping criterion is defined for
the execution of the MOEAs on the islands. When the local stopping criterion
is reached, the configuration is scored using a performance indicator. Then, the
coordinator applies the hyper-heuristic, selecting the configuration that will
continue executing on the idle island. If the configuration has changed, the
subpopulation is replaced by a random subset of the currently global solution.

Wang and Li [170] proposed the Multi-Strategy Ensemble Dynamic Multi-
Objective Evolutionary Algorithm (MS-MOEA), which is an offline selection
hyper-heuristic that adopts the fundamental principle of AMALGAM of com-
bining different variation operators. This approach works as ε-MOEA [39]
with an external archive that is pruned to a limit size using the hypervol-
ume indicator. The heuristics for generating new individuals consists of two
re-initialization techniques, which are based on random sampling and Gaus-
sian distribution with mean around the previous optimal solutions; the genetic
operators SBX (Simulated Binary Crossover) and polynomial-based mutation;
the Differential Evolution strategies DE/rand/1 and DE/current to best/1; as
well as Gaussian mutation. This approach was designed to solve dynamic mul-
tiobjective optimization problems (i.e., problems in which either the Pareto
optimal set or the Pareto optimal front change over time). If there is an envi-
ronmental change, then one re-initialization technique is applied under certain
probability. Genetic operators are used at early stages of the evolutionary
process. Once convergence is detected, Differential Evolution is adopted to en-
hance diversity. Under this scheme, each strategy creates an offspring. After a
fixed number of solutions is created, Gaussian mutation is launched for escap-
ing from local optima. It is worth noticing that convergence is detected when
the external archive has been full during a certain number of generations.
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McClymont et al. [112] proposed the Markov Chain Hyper-Heuristic (MCHH),
which is a selection heuristic with online learning working as a (µ + λ)-
Evolution Strategy with an unbounded external archive. The pool of heuristics
is composed of four variation operators: mutation, replication, transposition,
and cloning. All of them operate on the decision variables of a given solution.
The heuristic selection mechanism uses a Markov chain, which can be seen as
a directed graph where every vertex is connected to each other vertex and to
itself. A vertex represents a state (heuristic), and the weight of an edge out
represents the probability of moving from the current state to the destination
state. All edges out of a state must sum one. The Markov chain stochastically
selects the next heuristic biased by these probabilities. The selected heuristic
is employed during a certain number of generations. Then, its performance is
measured by counting the number of parents that were dominated by each
offspring produced by such heuristic. This performance is used to update the
corresponding probability in the Markov chain using reinforcement learning.

Maashi [104] proposed an online learning selection choice function based
hyper-heuristic framework for multiobjective optimization. Her proposed ap-
proach controls and combines the strengths of three well-known MOEAs (NSGA-
II, SPEA2, and MOGA), which are adopted as her low-level heuristics.

Gonçalves et al. [60] proposed the MOEA/D Hyper-Heuristic (MOEA/D-
HH), which is an online selection hyper-heuristic that is coupled to a MOEA/D
variant [178]. In this approach, an adaptive choice function is used to determine
the Differential Evolution (DE) strategy that should be applied to generate
individuals at each iteration.

Walker and Keedwell [166] proposed the indicator-based multiobjective
sequence-based hyper-heuristic (MOSSHH) algorithm. This seems to be the
first attempt to use a hyper-heuristic in many-objective problems. This online
selection hyper-heuristic is based on a hidden Markov model to determine the
mutation strategy to be applied for generating a single child from the current
parent. Thus, this approach works as a (1 + 1)-Evolution Strategy comple-
mented with an external archive, which keeps all the non-dominated solutions
discovered so far. The pool of seven mutation heuristics consists primarily of 1)
adding noise to the current solution using three different continuous probabil-
ity distributions, and 2) replacing the parent (or only a variable) with another
one, whether randomly created or taken from the archive. At each iteration,
the child replaces the parent if the former dominates the second. However, in
a further paper [167], this comparison rule was changed by strategies based on
the hypervolume indicator [182], the favour relation [44] and the average rank
[10]. Moreover, the hidden Markov model is updated if the child is added to
the archive and if it was better than the parent.

More recently, Hernández Gómez and Coello Coello [73] proposed a hyper-
heuristic which combines the strengths and compensates for the weaknesses of
different scalarizing functions. The selection is conducted through an indicator
called s-energy [69], which measures the even distribution of a set of points in
k-dimensional manifolds.
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4 Challenges

After reviewing some of the most relevant research done on the topics selected
in Section 3, we provide here some of the challenges that lie ahead in each of
them.

– Algorithmic Design: Although there has been some debate regarding
the paradigm that will become more common in the next few years, it
seems quite obvious at this point that decomposition-based MOEAs are
the clear winner so far. For indicator-based MOEAs to become more pop-
ular, other performance indicators need to be proposed. Although there
has been some research activity in this regard (see for example [113,140])
none of these other performance indicators has become as popular as the
hypervolume. Another interesting idea is the combination of performance
indicators in order to take advantage of their strenghts and compensate for
their limitations (see for example [48]).
Nevertheless, a more relevant question in this area is the following: can we
design MOEAs in a different way? This is a very important question, since
algorithmic development has been at the heart of research on EMO and it
is quite important that new algorithmic proposals are made in the next few
years in order to keep this research area alive. Evidently, it is not trivial to
produce a selection mechanism that is not Pareto-based, decomposition-
based or indicator-based, but this is indeed possible. For example, Molinet
Berenguer and Coello Coello [11,118], proposed an approach that trans-
forms an MOP into a linear assignment problem using a set of weight
vectors uniformly scattered. Uniform design is adopted to obtain the set
of weights, and the Kuhn-Munkres (Hungarian) algorithm [87] is used to
solve the resulting assignment problem. This approach was found to per-
form quite well (and at a low computational cost) even in many-objective
optimization problems. As such, this approach does not belong to any of
the three algorithmic families previously discussed and it constitutes an
intriguing new family of MOEAs.
So, it should be clear that a challenge is to develop selection mechanisms
for MOEAs that are different from those that have been developed so far.
Additionally, popularizing the use of such MOEAs is certainly another
(perhaps more difficult) challenge.
Another challenge in this area is to gain a deeper understanding of the
limitations of current MOEAs. For example, knowing that some scalariz-
ing functions offer advantages over others is very useful to design good
decomposition-based and even indicator-based MOEAs (see for example
[127]).
Another interesting idea is to combine components of MOEAs under a
single framework that allows to exploit their advantages. This is the basic
idea of Borg [66], which adopts ε-dominance, a measure of convergence
speed called ε progress, an adaptive population size, multiple recombination
operators and a steady-state selection mechanism.
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A relevant question in this regard is if this sort of scheme could lead us to
the automated design of MOEAs as has been suggested by researchers from
automated parameter tuning for single-objective evolutionary algorithms
[76].

– Scalability: This area presents several challenges. For example, what sort
of performance indicator should we use to assess diversity in many-objective
problems. In low-dimensional Pareto fronts, the aim is normally to achieve
a uniform distribution of solutions along the Pareto front. However, what
would be a desirable distribution in an MOP having, for example, 10 ob-
jectives, if we are using only 300 solutions to sample it? In recent years, the
use of some performance indicators such as the Riesz s-energy [69] have
shown promise in this regard, but more research in this area is required.
In contrast with the significant interest that researchers have had on ma-
ny-objective optimization in recent years, scalability in decision variable
space (i.e., the solution of the so-called large-scale problems) has been
only recently studied in the context of multiobjective optimization (see for
example [116,103,181]). This is remarkable if we consider that large-scale
multiobjective optimization problems (i.e., problems having more than 100
decision variables) are not rare in real-world applications (see for exam-
ple [101]). In this area, the use of cooperative coevolutionary approaches
(which have been very successful in single-objective large-scale optimiza-
tion) is the most common research trend. However, new test suites are
required for large-scale multiobjective optimization and some work has al-
ready been done in this direction (see for example [25]).
Another challenge in this area is the solution of large-scale many-objective
problems which is a very recent research topic in which some work has
been recently published (see for example [23,180]).

– Dealing with Expensive Objective Functions: Other approaches for
dealing with expensive objective functions are also possible. For example,
some researchers have adopted cultural algorithms [30,133,34,136], which
gather knowledge during the evolutionary process and use it to perform a
more efficient search at the expense of a significantly larger memory usage.
Cultural algorithms were proposed by Reynolds [137,138], as an approach
that tries to add domain knowledge to an evolutionary algorithm during the
search process, avoiding the need to add it a priori. This approach uses,
in addition to the population space commonly adopted in evolutionary
algorithms, a belief space, which encodes the knowledge obtained from the
search points and their evaluation, in order to influence the evolutionary
operators that guide the search. However, the belief space is commonly
designed based on the group of problems that is to be solved. At each
generation, the cultural algorithm selects some exemplar individuals from
the population, in order to extract information from them that can be
useful during the search. Such an information is used to update the belief
space. The belief space will then influence the operators of the evolutionary
algorithm, to transform them into informed operators that can enhance
the search process. Cultural algorithms can be an effective means of saving
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objective function evaluations, but since a map of decision variable space
must be kept at all times, their cost will soon become prohibitive even for
problems of moderate dimensionality (in decision variable space).

– Hyper-Heuristics: We certainly need theoretical studies on the use of
hyper-heuristics in multiobjective optimization and some work in that di-
rection has been already done. Qian et al. [132] provided a theoretical study
on the effectiveness of selection hyperheuristics for multiobjective optimiza-
tion. This paper concluded that applying selection hyper-heuristics to any
of the three major components of a MOEA (selection, mutation and ac-
ceptance), can exponentially speed up the optimization process.
Another interesting idea is to combine different performance indicators
within an indicator-based MOEA as proposed by Falcón-Cardona and
Coello Coello [48]. In this case, IGD+, ε+, ∆p and R2 are adopted as
possible density estimators (i.e., the low-level heuristics).
One more interesting area of research would be the use of genetic pro-
gramming to generate components of MOEAs (e.g., evolutionary operators
or even scalarizing functions) that can improve their performance when
adopted within a multiobjective hyper-heuristic.

5 Conclusions

As we have seen in this paper, EMO still has plenty of topics to be explored.
However, it is important to emphasize that some of them require us to move
outside the main stream of research that is currently being conducted in this
area. Besides the topics previously indicated, there are several more that have
been already explored, but are worth re-visiting. For example, we need new
performance indicators, particularly for many-objective optimization. For in-
stance, we have very few performance indicators for assessing diversity in
many-objective optimization (see for example [99,168]), but there are other
interesting choices that are also worth exploring (see for example, the s-energy
indicator [69]).

It is also important to design new mechanisms (e.g., operators, encodings,
etc.) for MOEAs based on specific features of real-world problems (e.g., vari-
able length encodings, expensive objective functions, uncertainty, etc.). See
for example [98]. The way in which coevolutionary approaches can help us
to solve complex multiobjective optimization problems is another interesting
venue for future research. Besides large scale problems, coevolution can help
us in other domains (e.g., dynamic multiobjective optimization problems [56]),
but its potential has been scarcely studied in this area (see [117]).

However, it’s important to keep in mind that a great source of diversity
regarding research ideas is the knowledge coming from other disciplines. For ex-
ample, EMO has adopted advanced data structures (e.g., red-black trees [51]),
concepts from computational geometry (e.g., convex hulls [26,109], quadtrees
[120] and Voronoi maps [123]), and from economics (e.g., game theory [61]) to
design novel MOEAs and operators.
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We also need to explore more ways of bridging the gap between Operations
Research and EMO. An example is the development of hybrid approaches
that combine a MOEA with a mathematical programming technique (see for
example [94]). Another one is the use of the Karush-Kuhn-Tucker optimality
conditions to estimate proximity of a solution to the Pareto optimal set (see
[1]).

Summarizing, we claim that EMO is still a very promising research area
which should remain active for several more years. However, we need to in-
crease diversity in our research topics and to be more disruptive. If we only
do work by analogy, we will suffer stagnation!
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Computing, 9th Mexican International Conference on Artificial Intelligence, MICAI
2010, pages 349–360. Springer. Lecture Notes in Artificial Intelligence Vol. 6438, Berlin,
Heidelger, November 8-13 2010.
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74. Raquel Hernández Gómez, Carlos A. Coello Coello, and Enrique Alba Torres. A Multi-
Objective Evolutionary Algorithm based on Parallel Coordinates. In 2016 Genetic
and Evolutionary Computation Conference (GECCO’2016), pages 565–572, Denver,
Colorado, USA, 20-24 July 2016. ACM Press. ISBN 978-1-4503-4206-3.



EMO: Open Research Areas and Some Challenges 23

75. Evan J. Hughes. Evolutionary Many-Objective Optimisation: Many Once or One
Many? In 2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 1,
pages 222–227, Edinburgh, Scotland, September 2005. IEEE Service Center.

76. Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS:
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109. Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello. An Archiving Strategy Based
on the Convex Hull of Individual Minima for MOEAs. In 2010 IEEE Congress on
Evolutionary Computation (CEC’2010), pages 912–919, Barcelona, Spain, July 18-23
2010. IEEE Press.

110. Md. Maruf Hussain and Noriyuki Fujimoto. Parallel Multi-Objective Particle Swarm
Optimization for Large Swarm and High Dimensional Problems. In 2018 IEEE
Congress on Evolutionary Computation (CEC’2018), pages 1546–1555, Rio de Janeiro,
Brazil, July 8–13 2018. IEEE Press. ISBN: 978-1-5090-6017-7.

111. Atanu Mazumdar, Tinkle Chugh, Kaisa Miettinen, and Manuel López-Ibá nez. On
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Monterrubio. A Survey of Decomposition Methods for Multi-objective Optimization.
In O. Castillo, P. Melin, W. Pedrycz, and J. Kacprzyk, editors, Recent Advances on
Hybrid Approaches for Designing Intelligent Systems, pages 453–465. Springer, 2014.
ISBN 978-3-319-05170-3.

145. Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka. Controlling Dominance Area
of Solutions and Its Impact on the Performance of MOEAs. In Shigeru Obayashi,
Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata, editors,
Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007,
pages 5–20, Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer
Science Vol. 4403.

146. Dhish Kumar Saxena, Jo ao A. Duro, Ashutosh Tiwari, Kalyanmoy Deb, and Qingfu
Zhang. Objective Reduction in Many-Objective Optimization: Linear and Nonlinear
Algorithms. IEEE Transactions on Evolutionary Computation, 17(1):77–99, February
2013.

147. J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, 1984.

148. J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. In Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, pages 93–100. Lawrence Erlbaum,
1985.

149. J. David Schaffer and John J. Grefenstette. Multiobjective Learning via Genetic Al-
gorithms. In Proceedings of the 9th International Joint Conference on Artificial In-
telligence (IJCAI-85), pages 593–595, Los Angeles, California, 1985. AAAI.

150. Oliver Schütze, Adriana Lara, and Carlos A. Coello Coello. On the Influence of the
Number of Objectives on the Hardness of a Multiobjective Optimization Problem.
IEEE Transactions on Evolutionary Computation, 15(4):444–455, August 2011.

151. P. Sen and J. B. Yang. Multiple Criteria Decision Support in Engineering Design.
Springer-Verlag, London, 1998.

152. Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic algo-
rithms. In SAC ’95: Proceedings of the 1995 ACM symposium on Applied computing,
pages 345–350, New York, NY, USA, 1995. ACM Press.

153. N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.

154. Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of Global Opti-
mization, 11(4):341–359, December 1997.



28 C.A. Coello Coello et al.
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