Vol. 00, No. 00, October 2008, 1-29

RESEARCH ARTICLE

Solving Constrained Optimization Problems with a Hybrid
Particle Swarm Optimization Algorithm

Leticia Cecilia Cagnina, Susana Cecilia Esquivel
and Carlos A. Coello Coello?*
'LIDIC (Research Group). Universidad Nacional de San Luis
Ej. de Los Andes 950. (D5T00HHW) San Luis, ARGENTINA
2CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computacion, Av. IPN No. 2508
Col. San Pedro Zacatenco, México D.F. 07360, MEXICO
Email: {1cagnina,esquivel}@unsl.edu.ar and ccoello@cs.cinvestav.mx

(v3.7 released September 2008)

This paper presents a particle swarm optimization algorithm for solving general
constrained optimization problems. The proposed approach introduces differ-
ent methods to update the particle’s information, as well as the use of a double
population and a special shake mechanism designed to avoid premature con-
vergence. It also incorporates a simple constraint-handling technique. Twenty-
four constrained optimization problems commonly adopted in the evolutionary
optimization literature, as well as some structural optimization problems are
adopted to validate the proposed approach. The results obtained by the pro-
posed approach are compared with respect to those generated by algorithms
representative of the state of the art in the area.

Keywords: particle swarm optimization; constraint-handling; evolutionary
algorithms; engineering optimization

*Corresponding author

ISSN: 0305-215X print/ISSN 1029-0273 online
(© 2008 Taylor & Francis
DOI: 10.1080/0305215Y Y XXXXXXXX

http://www.informaworld.com

1. Introduction

In recent years, a wide variety of real-world applications have been solved using meta-
heuristics, mainly because they tend to produce reasonably good solutions at a reasonable
computational cost. One of the metaheuristics that has become very popular in the last
few years is Particle Swarm Optimization (PSO) (Kennedy and Eberhart 2001).

PSO was conceived as a simulation of individual and social behavior (Kennedy and
Eberhart 1999) such as the one observed in flocks of birds and fishes. PSO explores the
search space using a population of individuals (named swarm), and the best performers
(either within a group or with respect to the entire population) affect the performance
of the others.

In PSO, each individual is named particle and represents a possible solution to the
problem at hand, within a multidimensional search space. The particles have their own
position and velocity and such values are updated at each iteration of the algorithm. The
individuals also record their past behavior and use it to move towards promising regions
of the search space.

PSO has been found to be highly competitive for solving a wide variety of optimization
problems (Bochenek and Forys 2006, Munoz-Zavala et al. 2006, Liang and Suganthan
2006, He and Wang 2007, Ye et al. 2007, Perez and Behdinan 2007b, Mezura-Montes and
Lépez-Ramirez 2007). In spite of the popularity of PSO as an efficient optimizer, it has
been until relatively recently that its use has focused more on engineering optimization
problems, mainly because of the lack of constraint-handling techniques that had been
explicitly designed to be coupled with a PSO! algorithm. Although the use of constraint-
handling mechanisms commonly adopted with other evolutionary algorithms is, of course,
possible in PSO (e.g., exterior penalty functions), the resulting approaches are nor-
mally not very competitive with respect to state-of-the-art evolutionary optimization
algorithms, which motivates the development of carefully designed constraint-handling
mechanisms that explicitly exploit the features of PSO when exploring the search space.
In this paper, it is precisely introduced a proposal of this sort, which can be useful to
solve nonlinear constrained optimization problems. The approach is validated first with
a test suite commonly adopted in the literature of constrained evolutionary optimization
(i.e., evolutionary algorithms that have a constraint-handling mechanism), in order to
assess the competitiveness of the present approach with respect to state-of-the-art evo-
lutionary algorithms designed for solving constrained optimization problems. Then, in
the final part of the paper, some engineering optimization problems are presented and
the results are compared with respect to approaches that have been used to solve them
in the specialized literature.

The remainder of the paper is organized as follows. Section 2 describes the general
nonlinear optimization problem of interest. A review of the most representative previous
related work is presented in Section 3. Section 4 describes the proposed PSO for solving
constrained optimization problems. The experimental setup and the comparison of re-
sults with respect to state-of-the-art approaches are presented in Section 5. Finally, the
conclusions and some possible paths for future work are presented in Section 6.

1PSO, like any other evolutionary algorithm (e.g., genetic algorithms) can be seen as an uncon-
strained search/optimization technique, since in its original form, it does not have an explicit
constraint-handling mechanism.

2. Statement of the Problem

The focus of this paper is the solution of the general nonlinear optimization problem
in which the objective is:

Find & which optimizes f(Z) (1)

subject to:
hj(@) =0, j=1,....p (3)
where 7 is the vector of solutions & = [x1,%,...,2,]T, n is the number of inequality

constraints and p is the number of equality constraints (in both cases, constraints could
be linear or nonlinear).

If F denotes the feasible region and S denotes the whole search space, then it should
be clear that F C S.

For an inequality constraint that satisfies g;(¥) = 0, then it is said to be active at 7.
All equality constraints h; (regardless of the value of & used) are considered active at all
points of F.

It is relatively common to transform equality constraints into inequalities of the form:

|hj(Z)] —e <0 (4)

where € is the tolerance allowed (a very small value). This is precisely the approach
adopted in this paper. More details about the definition of € are provided in Section 4.2.4.

3. Previous Related Work

As indicated before, evolutionary algorithms can be seen as unconstrained search tech-
niques, since in their original form, they do not incorporate any explicit mechanism to
handle constraints. Because of this, several authors have proposed a variety of constraint-
handling techniques explicitly designed for evolutionary algorithms (Coello Coello 2002,
Mezura-Montes 2009).

However, there exist relatively few proposals involving the design of constraint-handling
techniques explicitly developed for the PSO algorithm. Next, a short review of the most
representative work done in this regard is shown.

Hu and his co-workers (2002, 2003) proposed mechanisms that ensure the generation
of feasible solutions. Such mechanisms can be, however, very expensive (computationally
speaking) and even impossible to use in problems having a very small feasible region.
The test cases adopted to validate this approach were a few engineering optimization
problems in which the size of the feasible region is relatively large with respect to the
total size of the search space.

Paquet and Engelbrecht (2003) proposed an approach explicitly designed to deal with
linear constraints, but without considering a more general extension that incorporates
nonlinear constraints.

Zhang et al. (2004) proposed the use of a periodic constraint-handling mode in a
PSO algorithm. The main idea is to make periodic copies of the search space when the
algorithm starts the run. This aims to avoid the dispersion of particles that arises from
the application of the mutation operator to particles lying on the boundary between
the feasible and infeasible regions. This approach was validated adopting a low number
of objective function evaluations (ranging from 28,000 to 140,000), and using eight test
problems. The results produced by the proposed approach were compared with respect
to those generated by traditional constraint-handling techniques (i.e., penalty functions),
but none is provided with respect to state-of-the-art evolutionary algorithms designed
for constrained search spaces.

In Toscano Pulido and Coello Coello (2004) a simple constraint-handling mechanism
based on closeness of the particles in the swarm to the feasible region is incorporated
into a PSO algorithm. This approach also incorporates a mutation operator (called tur-
bulence), which changes the flight of the particles to different zones, aiming to maintain
diversity. In the validation of this approach, the authors adopted a relatively large pop-
ulation size, and a low number of iterations, as to perform 340,000 objective function
evaluations. The results of this approach were found to be competitive with respect to
those generated by state-of-the-art evolutionary algorithms designed for constrained op-
timization (namely, stochastic ranking (Runarsson and Yao 2000), homomorphous maps
(Koziel and Michalewicz 1999) and ASCHEA (Hamida and Schoenauer 2002)) when
solving the thirteen test problems adopted in (Runarsson and Yao 2000).

Parsopoulos et al. (2005) proposed a Unified Particle Swarm Optimization approach,
which was then adapted to incorporate constraints. This approach adopts a penalty func-
tion, which uses information from the number of constraints violated and the magnitude
of such violations. Also, the feasibility of the best solutions is preserved. This approach
was tested with four constrained engineering optimization problems with promising re-
sults. However, no results were presented with benchmark problems, which are normally
more difficult to solve.

Lu et al. (2006) proposed DOM, a dynamic objective technique to handle constraints,
based on the search mechanism of the PSO algorithm. DOM states bi-objective uncon-
strained optimization problems: one objective is related to reaching the feasible region,
and the other is related to reaching the global optimum. The technique allows each par-
ticle to dynamically adjust the importance given to each of these two objectives, based
on their current position. The authors also presented a restricted velocity PSO (RVPSO)
which incorporates information about the feasible region that had been previously learnt.
Both approaches were validated using the 13 well-known benchmark functions adopted
in (Runarsson and Yao 2000). DOM was compared with an approach called “keeping
feasible solutions”, which was reported in (Hu and Eberhart 2002) and the former out-
performed the latter. Then, they incorporated DOM into RVPSO and also into a CPSO
algorithm (i.e., a PSO algorithm using the constriction factor (Eberhart and Shi 2000)),
and the results showed that DOM+RVPSO outperformed or exhibited the same per-
formance as DOM+CPSO. The results were also compared with respect to PESO (a
PSO approach that incorporates some evolutionary operators that improve its perfor-
mance) (Munoz-Zavala et al. 2005) and they concluded that their proposed approach was
highly competitive when considering the quality of the solutions produced. Additionally,
the authors indicated that another advantage was that their proposed approach required

only 50,000 objective function evaluations, whereas PESO required 350,000 evaluations.
A follow-up of this work was presented in (Lu and Chen 2008), in which the authors
proposed an approach called “self-adaptive velocity PSO” (SAVPSO), which is based
on DOM. This version uses a different velocity update equation to maintain the parti-
cles into the feasible region, and the previous experience incorporated into the velocity
is restricted to the flying direction. This version was assessed using the same set of 13
test problems indicated before. Results were compared with respect to those reported
by Toscano Pulido and Coello Coello (2004), PESO (Munoz-Zavala et al. 2005), Hu and
Eberhart (2002) and DEPSO (a PSO with a reproduction operator similar to the one
adopted by differential evolution) (Zhang and Xie 2003).

Liang and Suganthan (2006) modified a previous dynamic multi-swarm particle swarm
optimizer (DMS-PSO) to solve 24 benchmark functions. Their version includes a new
method to handle constraints based on sub-swarms which are assigned depending on
the difficulty of each constraint. The algorithm, named DMS-C-PSO (for DMS-PSO +
Constraint mechanism), has dynamic multi-swarms and a Sequential Quadratic Pro-
gramming method (used as a local search engine) aimed to improve the DMS-C-PSO’s
ability to find good solutions. The authors tested their approach with 24 constrained
test problems. They concluded that their proposed approach was able to find feasible
solutions in all the test problems and that was able to reach the optimum in most of
them.

Zahara and Hu (2008) proposed a hybridization of PSO with the Nelder-Mead method
(Nelder and Mead 1965), called NM-PSO. The aim was to combine the global search
properties of PSO with the efficient local search performed by the Nelder-Mead method.
This approach adopts two constraint-handling methods: a gradient repair technique and
a constraint fitness priority-based ranking method. Both of them avoid the difficulties
associated with the choice of an appropriate penalty term within a penalty function,
by using gradient information derived from the set of constraints of the problem. This,
however, eliminates the main advantage of using a derivative-free search method (Nelder-
Mead), since such gradient information will be required and its estimation requires several
additional objective function evaluations, unless the exact derivatives are available. NM-
PSO was applied to the 13 benchmark problems included in (Runarsson and Yao 2000).
The approach performed 5,000 iterations in all cases, but the number of objective function
evaluations performed at each iteration depends on the dimensionality of the problem
(the population size was set to 21 x N + 1, where N is the number of decision variables
of the problem). In some cases, the number of objective function evaluations required
by this approach was close to one million, which is a very high value when compared to
the number of evaluations typically required by modern constraint-handling techniques
(normally no higher than 500,000). Results were compared with respect to a cultured
differential evolution approach (Landa Becerra and Coello Coello 2006), filter simulated
annealing (Hedar and Fukushima 2006), a genetic algorithm (Chootinan and Chen 2006)
and an improved version of stochastic ranking (Runarsson and Yao 2005). In terms of
the quality of the results achieved, NM-PSO was able to find the best known solutions
in 10 problems, while the others could only find the best solutions in eight of them. In
terms of computational cost, NM-PSO required less objective function evaluations in
eight problems.

Mezura-Montes and Flores-Mendoza (2009) evaluated with 24 constrained functions
some PSO variants with the purpose of selecting the most competitive local best PSO
with a constriction factor. Then, the authors modified that PSO variant by adding to
it two features in order to obtain the so-called Improved Particle Swarm Optimization

(IPSO) algorithm. One modification was the incorporation of a dynamic adaptation
mechanism to control two parameters: the acceleration constant that controls the influ-
ence of social information (c2) and the constriction factor (k). The second modification
was in the dominance criterion used to compare solutions: the new solution is selected
only if the sum of equality and inequality constraint violations is decreased. IPSO was
tested with 24 benchmark problems and was compared with respect to state-of-the-art
PSO approaches. The results obtained were competitive and even better in some cases,
than those of the other algorithms with respect to which it was compared. The authors
concluded that the proposed algorithm promoted a better exploration of the search space
without adding any extra complexity to a traditional PSO algorithm.

The PSO-based approach reported in this paper maintains the simplicity of the original
PSO algorithm, since it does not require gradient information (as in (Zahara and Hu
2008)), the use of external archives (as in (Munoz-Zavala et al. 2005)) or specialized
operators to perform a biased exploration of the search space (as in (Lu and Chen 2008)).
Nevertheless, as it will be shown later on, the proposed approach provides competitive
results with respect to state-of-the-art approaches that have been proposed for solving
constrained optimization problems.

4. The Proposed Approach

The approach is called “Constrained Particle Swarm Optimization with a shake-
mechanism” (CPSO-shake, for short). It inherits some characteristics from the classical
PSO model (Eberhart and Kennedy 1995) and from a previous CPSO (Cagnina et al.
2006), but also incorporates features which aim to improve its performance, namely, a
bi-population and a shake mechanism.

4.1. Classical PSO Model

The PSO algorithm operates on a population of individuals (the so-called particles). Such
particles consist of vectors of real numbers, and each vector position is named dimension.
The algorithm iterates searching for solutions and saves the best position found so far
for the particles (for the “global best” or gbest model) or within the neighborhood (for
the “local best” or lbest model). The best value reached by each particle (pbest) is also
stored. The particles evolve using two update formulas, one for the particle’s velocity
and another for its position, in the following way:

Vig = X (Vig + c171(pig — paria) + cara(M — par;q)) (5)

Pariq = pariq + viq (6)

where v;4 is the velocity of the particle ¢ at the dimension d, X is the constriction
factor (Clerc and Kennedy 2002) whose goal is to balance global exploration and local
exploitation of the swarm, ¢; is the personal learning factor, and ¢y the social learning
factor. 1 and 7y are two random numbers within the range [0, 1], which are used to
introduce a stochastic value to determine how much of each factor is added. p;q is the
dimension d of the best position reached by the particle i and M is either the best

position reached by any particle in the neighborhood (pl;4) of the particle i or, the best
position reached by any particle in the entire swarm (pgy), depending of the model used
(lbest or gbest). pariq is the value of the particle ¢ at the dimension d.

4.2. The Previous CPSO Approach

Next, the modifications introduced in the PSO-based approach (Cagnina et al. 2006)
with respect to the classical PSO model, are described.

4.2.1. Updating Velocities and Particles

A previous work (Cagnina et al. 2004) showed that it is possible to achieve quickly a
reasonably good performance with the gbest model in a variety of problems. However,
it is well known that the gbest model tends to lose diversity relatively quickly and, as a
consequence of that, it tends to converge to local optima. The lbest model generally works
better than the gbest model as a consequence of its higher capability to maintain diversity.
Motivated by this, the approach proposed here has a formula to update the velocity which
combines both the gbest (fast convergence) and the lbest (less susceptibility to being
trapped in local optima) models. The idea is to replace equation (5) by equation (7) in
the proposed CPSO.

Vig = X (Vig + c171(pia — paria) + cara(plia — pariq) + csr3(pga — paria)) (7)

where c3 is an additional social learning factor, r3 is a random number within the
range [0, 1], pl;q is the dimension d of the best position reached by any particle in the
neighborhood of particle ¢, and pgy is the dimension d of the best position reached by
any particle in the swarm.
The equation for updating the particles is also modified. Instead of using equation (6) in
all the iterations, it is selected with a probability of 0.925. The rest of the time an equation
based on Kennedy’s proposal (Kennedy 2003) is used, which is depicted in equation (8).
In this case, the position of each particle is randomly chosen from a Gaussian distribution
with the mean selected as the average between the best position recorded for the particle
and the best in its neighborhood. The standard deviation is the difference between these
two values.

pi +pl
pars =N (252 b= ®

where par; is the particle to be updated, N is the Gaussian random generator, p; and
pl are, respectively, the best position reached by the ith particle and, the best posi-
tion reached by any particle in the neighborhood of par;. The probability of selection
adopted (0.925), deserves an explanation for being a seemingly unusual value. In order
to reach this probability value, a Latin Hypercube Design (LHD) study, as suggested in
the experimental design literature, was performed. LHD generates random points of the
parameters to be set within a pre-defined range and fulfills the requirement suggested
by specialists in experimental design, of being a space-filling approach. The parameter
to be set was called probGauss, which is the complement of the probability of selection
of interest (the probability of selection is 1-probGauss). In order to decide the range of

Particles: i1 2 3 4 5 6

.........

.........
.........
.........

.........

.........

1 2 314 5 6

.........

1 2:3 4 5 6

.....

+____+ Neighborhood size k=3 (Circle Topology)

Figure 1. Possible neighborhoods.

interest for probGauss, another empirical study had to been done. The algorithm was
tested using values for probGauss of 0.0, 0.1, 0.2, ..., 0.9 (for each of these values, the
test problems were evaluated). Positive results were found when using 0.0 and 0.1, which
led to select [0.0, 1.0] as the pre-defined range for probGauss. Then, 20 LHD design
points within this range were generated and, again, the same 19 test problems were
evaluated. A number of 30 independent runs were performed with each test problems.
The configuration having probGauss=0.075 provided the best overall results and was,
therefore, chosen. Since probGauss=0.075, then the probability of selection was taken as
1-probGauss = 0.925.

4.2.2. lbest Model: Clircle Topology

A number of different topologies have been proposed to implement the lbest model
(Kennedy 1999). The present approach uses a simple topology which produced good
results on the functions tested: the circle topology. In this model, each particle is con-
nected to its neighbors, determining a neighborhood of size k, that is, there are k — 1
neighbors for each particle. The neighbors are determined by the (consecutive) position
of the particles in the storage structure. Figure 1 illustrates this concept using a swarm
of six particles and neighborhood size k = 3, so that each particle has two neighbors
and six neighborhoods can be considered. For each neighborhood, the best particle (pl)
needs to be determined and it is used in equations (7) and (8) for the particles within
such neighborhood.

4.2.3. Handling Constraints

A variety of constraint-handling techniques have been proposed for evolutionary al-
gorithms (Coello Coello 2002), but the one adopted in this work is quite simple. The
constraint-handling method used in the proposed approach is based on the following
rule: “a feasible particle is preferred over an infeasible one”. When the two particles
compared are infeasible, the one closer to the feasible region is chosen. In order to do
that, the algorithm stores the largest violation obtained for each constraint in each gen-

a run with Q cycles

—_ o d e

€ -value: 0.1 0.01 0.001 0.0001

Figure 2. Variation of ¢ during a run of the PSO approach.

eration. When an individual is found to be infeasible, the sum of its constraints violations
(this value is normalized with respect to the largest violation stored so far) is the one
considered as its distance to the feasible region. This constraint-handling scheme is used
when the pbest, gbest and [best particles are chosen.

4.2.4. Dynamic Tolerance

As indicated before, in CPSO-shake, all the equality constraints are transformed into
inequalities. The value of € used is adapted three times during the entire run. When
the search process starts, the value is initialized in 0.1. As the number of iterations is
increased, the value of € is divided by 10 at three different moments during the search
(i.e., € takes the values: 0.01, 0.001 and 0.0001 along a full execution of the algorithm).
For example, assuming that @ is the total number of iterations to be performed, the
value of € will change according to the scheme graphically shown in Figure 2.

The main advantage of using a varying e value is to favor the existence of feasible
solutions at the beginning of the search process, by allowing almost-feasible solutions to
be treated as feasible. In that way, the search space can be properly sampled (particularly
in problems having equality constraints, which are normally hard to satisfy when using
an evolutionary algorithm). As the number of iterations increases, € is decreased, so that
the approach starts converging towards solutions that satisfy the equality constraints
with a higher accuracy.

It is worth indicating that the above adaptation procedure is applied exactly three
times, to arrive to a final € value of 0.0001. This value corresponds to the tolerance
commonly adopted by other authors in their work (see for example Runarsson and Yao
(2000)). Also, the experiments showed that applying the adaptation process three times
was appropriate, since a lower number of times did not provide enough flexibility for the
relaxation to have a significant impact on the search and a higher number did not allow
sufficient time for the algorithm to reach the feasible region.

4.2.5. Mutation Operator

A dynamic mutation operator (Cagnina et al. 2004) was adopted for maintaining diver-
sity into the swarms. The operator is applied to each individual with a certain probability
(pm). Such probability is computed considering the total number of iterations performed
by the algorithm (cycles) and the current iteration (cycle) number, using the following
equation:

max_pm — min_pm

pm = max_pm — * current_cycle 9)

max_cycle

where maz_pm and min_pm are the maximum and minimum values that pm can take,
maz_cycle is the total number of cycles that the algorithm will iterate, and current_cycle
is the current cycle in the iterative process. This operator is applied frequently at the
beginning of the search process (exploration), and its application decays as the number
of cycles increases (exploitation).

4.3. CPSO-shake Model
The modifications introduced to the previous CPSO approach are described next.

4.3.1. Bi-population

The idea of having several swarms in the population of a PSO algorithm has been
adopted before by several researchers (Liang and Suganthan 2005, Blackwell and Branke
2006, Yen and Daneshyari 2006, Zhao et al. 2008, Trojanowski 2008). However, in most
cases, there are several small and dynamic swarms which are frequently regrouped at a
certain moment during the search, and in all cases the swarms exchange information.
Here, this concept is used in a different way.

In the proposed CPSO-shake algorithm is applied the idea of maintaining more than
one group of particles that explore the search space at the same time. The aim of this
is to reduce the possibility of getting trapped in local optima. In the CPSO-shake algo-
rithm, the entire population is split into only two static subpopulations, each of which is
independently evolved. No information is shared between the two swarms. In the papers
indicated before, the sizes of the swarms change over time because the particles move
from one swarm to a different one. However, in the approach introduced here, the swarm
sizes remain constant.

The issue that naturally arises here is why not to adopt more than two subpopulations.
The pragmatic reason is: since the number of particles used in the population of the
algorithm is small, it is considered that it would be inappropriate to adopt more than
two populations. In fact, the neighborhood topology would not work properly if fewer
particles were adopted in each sub-swarm than the current number and, therefore the
reason for adopting only two subpopulations.

All the features stated before for the entire population (neighborhoods, lbest and gbest
approaches, and equations for updating the velocity and the positions) remain without
changes, but in this case, they are applied not to a single population, but to each subpop-
ulation. When the iterative process finishes, the best particle from both subpopulations
is reported as the final output.

It is worth noting that the scheme with two subpopulations indicated before could be
parallelized using two or more processors in order to speed it up.

4.3.2. Shake Mechanism

In some previous related work (Cagnina et al. 2006), it was found that stagnation
problems occur when trying to obtain values close to the optima for some difficult test
functions. In order to overcome this problem, the algorithm reported in this paper incor-
porates a shake mechanism. This mechanism is applied when the percentage of infeasible
individuals is higher than 10% (this value was empirically derived). It is worth noticing
that it is not convenient to keep populations in which all the solutions are feasible, since
infeasible solutions play an important role when trying to solve problems with active
constraints, since they allow to explore the boundary between the feasible and infeasible
regions.

In order to implement the shake mechanism, some particles are moved to a different
place in the search space. Although this can be done by guiding a particle to a random
direction, it is undesirable that the particles move away too much (the objective is to
shake them just a little!). So, a particle with a good solution is selected as a reference: a
randomly chosen pbest particle (pbsgrq). Thus, equation (10) is used to move a particle
i

Vig = Xviq + c171(pbseLa) (10)

where v;4 is the dth-position of the velocity vector, X is the constriction factor, c¢; is the
personal learning factor multiplied by 71, which is a random number within the range [0,
1]. pbsgra is the dth-position of a (randomly chosen) selected pbest vector.

The shake mechanism is applied with a 50% probability over all the individuals in the
swarm, at each iteration, and a different pbggrq vector is chosen each time.

4.4. CPSO-shake Pseudocode

Figure 3 shows the pseudocode of the CPSO-shake algorithm. At the beginning of the
search, the vectors of position and velocity of each particle in the entire population
are initialized (lines 2 and 3). All particles are evaluated and the corresponding pbest
values are saved (lines 4 and 5). In line 6, the lbest and gbest values are recorded (for the
entire population) and when the swarm is divided into two different subpopulation, those
values are the same for each sub-swarm (lines 6 and 7). In line 8, the € value is initialized.
Then, the subpopulations begin to evolve (line 9). During the evolutionary process, new
values of pbest, lbest and gbest are chosen for each subpopulation and both, the velocity
and the position of each particle, are updated (lines 10 to 25). At line 26, a keeping
mechanism is applied in order to control that all the dimensions in all the particles
are within the allowable bounds. When any of the dimensions falls outside its allowable
bounds, this mechanism re-sets that dimension to its corresponding lower bound. Then,
the shake mechanism is applied if the required conditions are fulfilled (lines 27 to 30).
The mutation probability is updated and the particles are mutated, if applicable (lines
31 and 32). After that, the particles are evaluated, new “best” values are recorded, the €
value is updated and the percentage of infeasible particles is calculated (lines 33 to 35).
All the process is repeated until the stop condition is reached. Finally, the best value
reached by any subpopulation is taken and compared. The best of them is returned (lines
37 and 38).

5. Experimental Study

It is worth noting that although the approach seems to require many user-defined pa-
rameters (i.e., X, ¢1, ¢, c3, pmin, pmax, €, probability to select the equation to update
the particles, size of the neighborhood, size of the population and number of cycles), this
is not really the case. As will be seen next, many of these parameters can be set with
constant values without the need to be tuned or empirically derived.

The relationship between the constriction factor X and the learning factors ¢y, ¢
and csg has been studied by other researchers. Indeed, it has been proved (Kennedy and
Eberhart 2001) that when the sum of learning factors exceeds 4.0, an explosion occurs,

0. CPSO-shake:

1. Swarm Initialization

2 Initialize population

3 Initialize velocities

4. Evaluate fitness for each particle

5. Record pbest for each particle

6 Record lbest and gbest

7 Split swarm in subpopl and subpop2

8. Initialize epsilon

9. Swarm flies through the search space

10. DO

11. FOR each subpop DO

12. FOR i=1 TO numberOfparticles DO
13. Search the best leader in the
14. neighborhood of part;

15. and store it in [best;

16. FOR j=1 TO numberOfdimensions DO
17. Update wvel;;

18. IF probability>(0.075)

19. Update part;; with eq. (6)
20. ELSE

21. Gaussian update with eq. (8)
22. END

23. END

24. END

25. END

26. Keep particles

27. Test for shake-mechanism

28. IF % infeasibles > 10%

29. shake-mechanism

30. END

31. Update pm

32. Mutate every particle depending on pm
33. Evaluate fitness(part;)

34. Record pbest and gbest

35. Update epsilon

36. WHILE(current_cycle < max_cycle)

37. result=BEST (best_subpopl,best_subpop2)

38. RETURN(result)

Figure 3. Pseudocode of CPSO-shake.

which keeps PSO from converging to the global optimum. In order to avoid that, the
constriction factor X was adopted to regulate this effect in order to maintain a proper
behavior of the PSO algorithm during the search (Clerc and Kennedy 2002). For the
purposes of the work reported here, it was decided to set only one of the learning factors

and set the other two to the same value, because there is equal preference for each of
the two factors (social or individual). In other words, a value in the range [1.4, 1.9] was
adopted for the three learning factors. The constriction factor was set as X = ¢; — 1.0
in all cases, so it can vary in the range [0.4, 0.9] which follows the recommendations
from (Clerc and Kennedy 2002). This reduces the setting of four parameters to that of
setting only one.

The maximum e value was set to 0.0001, as discussed in Section 4.2.4. The probability
to select the equation (normal or Gaussian) to update the particles was chosen so that
it favored the use of the first, as discussed in Section 4.2.1.

The size of neighborhood was fixed to 3 for all the examples adopted here, because it
was empirically found that larger neighborhoods combined with a low number of particles
in each swarm (less than 20) leads to a poor performance.

The performance of the proposed approach was assessed using 24 (nonlinear) con-
strained optimization problems that have been proposed in the specialized literature.
Additionally, the proposed approach was also applied to three truss optimization prob-
lems. The test problems and the corresponding experimental setup adopted are described
next.

5.1. A Benchmark of Constrained Optimization Problems

The 24 test problems adopted here were reported in (Liang et al. 2006), from which the
first 13 correspond to the test problems adopted in (Runarsson and Yao 2000) and in
many other publications related to evolutionary constrained optimization (see for exam-
ple (Toscano-Pulido and Coello Coello 2004, Munoz-Zavala et al. 2005, Zahara and Hu
2008)). The detailed descriptions of these test problems are available in (Liang et al.
2006). It is worth noticing that all of these test functions were transformed into mini-
mization problems. Also, all the equality constraints were transformed into inequalities
using a tolerance ¢, as indicated before (see Section 4.2.4). For each problem, 25 inde-
pendent runs were performed with a total of 350,000 objective function evaluations per
run. The proposed CPSO-shake used the following parameters: swarm size = 10 particles,
pm_min = 0.1, pm_max = 0.4, ¢c; = 1.8. These parameters were empirically derived after
performing an analysis of variance (ANOVA) of the main parameters of the approach.
This ANOVA allowed to identify the combination of parameter values that provided the
best overall performance for the proposed approach.

Results were compared with respect to those obtained by DMS-C-PSO (Liang and Sug-
anthan 2006) and IPSO (Mezura-Montes and Flores-Mendoza 2009), which are two PSO-
based algorithms that have been found to be very competitive in the benchmark adopted
here (see (Liang and Suganthan 2006, Mezura-Montes and Flores-Mendoza 2009)). The
parameters setting for DMS-C-PSO was as suggested in (Liang and Suganthan 2006),
except for the number of fitness function evaluations,’ which was set at 350,000 in order
to allow a fair comparison with respect to CPSO-shake. The parameters setting for IPSO
was as suggested in (Mezura-Montes and Flores-Mendoza 2009) except for the number
of iterations and the number of independent runs used to obtain the best results. In
(Mezura-Montes and Flores-Mendoza 2009), the authors performed 30 independent runs
of IPSO, each of which consumed 2,000 generations, for a total of 160,000 fitness func-
tion evaluations per run. In order to allow a fair comparison with CPSO-shake, a new

In (Liang and Suganthan 2006), the authors adopted 300,000, 400,000 and 500,000 fitness func-

tion evaluations.

320 -
300 -
280 -
260
240 -
220
200 -
180
160 |
140
120
100
80 e
B0 -
40
20 -

Averaged Error Values

g7

4
g9 g

91g2g3g8
5x 104 15 x 104 25 x 104 35 x 10 45 x 104
Fitness Evaluations

-20

Figure 4. Evolution curves for functions gl-g9.

experimental study was conducted, in which IPSO was run for 4,375 generations in order
to reach a total of 350,000 fitness function evaluations. In this case, 25 independent runs
were performed. The other parameter values were set as in (Mezura-Montes and Flores-
Mendoza 2009), since the authors of IPSO reported that such parameter values provided
the most consistent performance of their approach. In Figures 4, 5 and 6, the evolution
curves of CPSO-shake for the test functions from 1 to 9, from 10 to 19 and from 20 to 24,
respectively, are presented. The vertical axis shows the distance between the best values
reached (the average) and the global optimum (or best known value), and the horizontal
axis shows the number of fitness function evaluations (FEs) performed over the 25 runs.
As can be observed in Figure 4, the average error values for gl, g2, g3, g8 and g9 are
zero which indicates that the algorithm found the optimum (or very close values) with
50,000, 150,000, 250,000 and 350,000 FEs, respectively. The same happens in Figure 5
with functions gl1, g12, g13, gl5, g16 and gl18. For functions g4 and gl19 the best values
obtained are slightly improved when the number of FEs is increased. However, a signifi-
cant improvement is shown in the rest of the functions: gb, g6, g7, gl0, gl4 and gl7. In
Figure 6, it can be observed that for g20 and g24 the average error is zero. For g21 and
g22 the best values found improve as the number of iterations increases and for g23 a
significant improvement is observed.

The best values reached by each algorithm are shown in Table 1. It is possible to
observe that, in general, CPSO-shake was able to obtain the best known values (gl,
g2, g3, g8, g9, gll, gl2, gl5, gl6, gl7, g18 and g24). For functions g4, g5, g6, g7, gl0
and gl4, CPSO-shake found solutions very close to the optimum. The best solutions
found are feasible in all cases except the instances indicated with (*) in Table 1. For g20,
g21 and g22, CPSO-shake did not find any feasible solutions. CPSO-shake outperformed
DMS-C-PSO in functions gl, g3, g4, gb, g6, g7, g9, g10, gl13, gl6, gl7, gl8 and gl9.

1000 - g10
200 4 \—_{
800 -

700 A

—i0
£ 600 | —gn
™ g12
2 500 A g13
2 o
w ——T
'g} 400 —315
E —_—17
; 300 4 e 18

L

200 g17

100 A g14

g11 912913 g15 g16 g18

100 - 5x10M 16 x 104 25100 35 x 1004 453 100

Fitness Evaluations

Figure 5. Evolution curves for functions g10-g19.

For g20, g21, g22 and g23 DMS-C-PSO did not find any feasible solutions. CPSO-shake
outperformed IPSO in 9 functions (g2, g3, gb, g7, gl0, gl3, gl4, g17 and g23), from
which, in 6 cases the differences were significant (g3, g7, gl0, gl13, g17 and g23). In
contrast, IPSO outperformed CPSO-shake in only 4 functions (g4, g6, g19 and g21) and
from them, only in the last one the difference was significant. For g20 and g22, IPSO
did not find any feasible solutions. The comparisons with DMS-C-PSO and IPSO were
direct, since that the source codes of both algorithms were obtained from their authors.

The deviations of the mean values obtained by the algorithms, with respect to their
reference solutions are presented in Table 2. ;From Table 2 it is possible to observe
that the proposed CPSO-shake algorithm presents some variability in the results that it
obtained. It is worth noting, however, that the mean errors of DMS-C-PSO are, in general,
worse than those of CPSO-shake. However, the mean errors of IPSO are, in general,
better than those obtained by CPSO-shake, although, in several cases the differences
are negligible. jFrom Table 2, it should be clear that the robustness of the proposed
approach is an aspect that still needs to be improved.

The overall conclusion from this first comparative study is that the approach is com-
petitive with respect to other competitive PSO-based approaches.

5.2. FEngineering Optimization Problems

The second comparative study performed, adopted truss optimization problems that
have been widely studied in the specialized literature (Landa Becerra and Coello Coello
2006, Bernardino et al. 2007). For this study, 3 truss optimization problems taken from
(Belegundu 1982) were adopted: a 10-bar plane truss (modeled with 20 design variables
corresponding to the dimension (height and width) of each element), a 25-bar space

Averaged Error Values

1800 -
1600 4-- S | S
1400 -
1200 +-
L e .
800 -

800 -
400 4~

200 -

g20 g24

— 20
-g21
— 22
—_— = 23
1= = =gos

5% 104

15x10°4

25 x 1074

35 x 1074

Fitness Evaluations

4510

Figure 6. Evolution curves for functions g20-g24.

Table 1.

Comparison of the best values obtained by the proposed CPSO-

shake, DMS-C-PSO and IPSO after performing 350,000 objective function
evaluations. The column labeled with BKV reports the optimum or best

known value for that specific test problem.

Test problem BKV CPSO-shake DMS-C-PSO IPSO
gl -15.000 -15.000 -14.770 -15.000
g2 -0.803 -0.803 -0.803 -0.792
g3 -1.000 -1.000 -0.998 -0.614
g4 -30,665.539 -30,665.538 —32,217.121* -30,665.539
g5 5,126.496 5,126.498 5,132.459 5,126.546
g6 -6,961.813 -6,961.825 -6,961.910 -6,961.814
g7 24.306 24.309 24.741 24.339
g8 -0.095 -0.095 -0.095 -0.095
g9 680.630 680.630 680.635 680.630

gl0 7,049.248 7,049.285 7,498,872 7,084.351
gll 0.749 0.749 0.749 0.749
gl2 -1.000 -1.000 -1.000 -1.000
gl3 0.053 0.054 0.072 0.084
gld -47.764 -47.635 -47.635 -47.631
glh 961.715 961.715 961.715 961.715
gl6 -1.905 -1.905 —2.579" -1.905
gl7 8,853.539 8,853.539 8,856.526 8,858.361
gl8 -0.866 -0.866 -0.865 -0.866
gl9 32.655 34.018 34.730 33.537
220 0.097* 0.256" 0.664" 8.170"
g21 193.724 361.846" 253.590" 193.739
g22 236.430 545.112* 0.000" 2,248.269"
g23 -400.055 -326.963 —2,294.500" -259.229
g24 -5.508 -5.508 -5.508 -5.508

*Infeasible solution.

Table 2. Errors of the mean values obtained by each algo-
rithm, with respect to the optimum or best known values.

Test problem CPSO-shake DMS-C-PSO IPSO

gl 0 1.822 0.08
g2 0.007 0.040 0.106
g3 0 0.011 0.803
gd 19.360 1,552.439 0
g5 114 263.296 20.271
g6 102.738 554.023 0.001
g7 0.606 1.576 0.338
g8 0 0.001 0
g9 0.743 0.085 0.022

gl0 801.153 2,727.872 350.201

gll 0 0 0

gl2 0 0 0

gl3 0.397 0.517 0.381

gld 2.099 0.130 2.468

gl5 0.801 2.226 0.587

gl6 0.110 0.011 0

gl7 41.169 70.461 48.454

gl8 0.079 0.002 0.004

g19 31.850 2.074 3.590

20 2.679 5.368 15.252

g21 23.673 104.905 30.371

g22 56.334 1,215.442 17,565.760

223 128.212 398.948 314.394

g24 0 0 0

truss and a 200-bar plane truss. The detailed descriptions of these test problems may be
consulted in the Appendix at the end of this paper.

The proposed CPSO-shake used the following parameter settings: swarm size = 10
particles and ¢; = 1.7. The probability of mutation was set to zero, that is, no mutation
operator was applied. Those settings were empirically derived after numerous experi-
ments.

30 independent runs were performed per problem, with a total of 100,100 objective
function evaluations per run. This number of evaluations was chosen because it is the
lowest value reported in the previous works adopted here for the comparative study
reported (see (Landa Becerra and Coello Coello 2006), in which the use of a cultured
differential evolution approach is used).

The results of CPSO-shake were compared with respect to the following approaches:

(1) Several mathematical programming techniques adopted in (Belegundu 1982):
Feasible directions (CONMIN and OPTDYN), Pshenichny’s Recursive Quadratic
Programming (LINRM), Gradient Projection (GRP-UI), and Exterior Penalty
Function (SUMT).

(2) Two simple genetic algorithms with a penalty function: SGA (Galante 1992) and
GENETICO (Coello Coello et al. 1994).

(3) A gradient-based method for constrained optimization, embedded in a computer
program called BEHSAZ (BEHP) (Memari and Fuladgar 1994).

(4) Nonlinear goal programming (NLP) (El-Sayed and Jang 1994).

(5) Harmony search (HSA) (Lee and Geem 2004).

(6) A genetic algorithm with an adaptive penalty scheme (AP-GA) (Lemonge and

Table 3. Solution vector for
the 10-bar plane truss.

Value
o 104.714546
1 88.240891
T2 0.400003
T3 0.400000
T4 120.564369
s 46.732246
T6 98.870956
T7 19.894732
s 0.400006
Tg 0.400001
Z10 3.411510
11 0.400211
T12 63.583042
13 4.455610
14 42.467812
Tis 74.717102
T1i6 136.491806
17 30.628040
18 0.400001
T19 0.400000
Displacement 7.591675
Stress 84.707460
Weight 4,656.361619

Barbosa 2004).

(7) A modified version of the Pareto Archived Evolution Strategy (PAES) (Knowles
and Corne 2000), which is used for single-objective constrained optimization (IS-
PAES) (Hernandez-Aguirre et al. 2004).

(8) Differential evolution (Price 1999) hybridized with a cultural algorithm (CDE)
(Landa Becerra and Coello Coello 2006).

(9) A particle swarm optimization approach for structural design (IPSO) (Perez and
Behdinan 2007a).

(10) A heuristic particle swarm optimizer (HPSO) (Li et al. 2007).
(11) A hybrid of a genetic algorithm and an artificial immune system (AIS-GA)
(Bernardino et al. 2007).

In Tables 3, 4 and 5, the decision variables corresponding to the best solutions found
by CPSO-shake are shown.

In Table 6, the comparison of results (objective function values) found by CPSO-shake
and those obtained by the previously indicated algorithms is shown, for the three truss
optimization problems adopted. Note that the best value reported by (Landa Becerra
and Coello Coello 2006) for the 200-bar plane truss is not included, because they used
different input data for that problem.

Table 7 summarizes the best objective function values (Best Known) reported for
each of the three trusses adopted (considering all the algorithms previously indicated
and CPSO-shake). The worst (Worst) values obtained and the corresponding standard
deviations (Std.Dev) are also shown. It can be clearly seen that CPSO-shake obtained
better results than the best known for each of the three trusses. Additionally, its standard
deviations are lower than those obtained with the other approaches, except for the 10-bar

Table 4. Solution vector for the
25-bar plane truss.

Value
Zo 0.100007
1 0.100054
T2 3.592288
x3 0.100000
T4 1.978739
x5 0.777161
T6 0.148297
T7 3.926824
Displacement 1.559454
Stress 91,679.728643
Weight 467.307565

Table 5. Solution vector for the 200-bar plane

truss.

Value || Value
To 0.099778 T16 0.059441
T 0.827075 Ti7 50.606869
T2 0.010058 Tis 0.010290
T3 0.010004 T19 66.012398
T4 3.645809 T20 0.279517
5 0.049748 T2l 0.746613
T 0.010007 Ta2 94.119659
z7 10.451566 To3 0.488295
Ts 0.010109 T24 114.492180
9 16.537201 o5 1.489903
10 0.090882 26 24.173244
11 0.057575 Tar 69.310654
T2 23.390146 Tas 168.946198
x13 0.175855 Displacement 45.352070
T4 34.062832 Stress 1,105.103661
z15 0.236381 Weight 22,705.327292

plane truss. This seems to contradict the results obtained with the benchmark problems.
However, possibly the reason for this apparent increase in robustness is related to the fact
that the evolutionary algorithms that tend to produce the best final results in engineering
optimization problems are normally more explorative, which makes them generate poorer
solutions from time to time. The price that must be paid for this higher explorative
power is precisely a higher standard deviation in the results, as can be seen here. The
improvements achieved in the truss optimization problems are not the same in all cases:
for the 10-bar plane truss the improvement is negligible, for the 25-bar space truss, there
is a 4% improvement, but in the 200-bar plane truss, the improvement almost reaches 18%
with respect to the reference solution. These results seem to indicate that the proposed
approach is a viable alternative for solving engineering optimization problems.

Table 6. Comparison of the best values obtained by CPSO-shake and other algorithms. The
-’ indicates that the authors did not report that value.

Algorithm 10-bar-truss 25-bar-truss 200-bar-truss
CONMIN (Belegundu 1982) 4,793.00 - 34,800.00
OPTDYN (Belegundu 1982) 9,436.00 - -
LINRM (Belegundu 1982) 6,151.00 - 33,315.00
GRP-UI (Belegundu 1982) 5,077.00 - -
SUMT (Belegundu 1982) 5,070.00 - 27,564.00
SGA (Galante 1992) 4,987.00 - -
BEHP (Memari and Fuladgar 1994) 4,981.10 - -
GENETICO (Coello Coello et al. 1994) 5,691.82 539.48 -
NLP (El-Sayed and Jang 1994) 5,013.24 - -
HSA (Lee and Geem 2004) 5,057.88 544.38 -
AP-GA (Lemonge and Barbosa 2004) 5,069.09 - -
ISPAES (Hernandez-Aguirre et al. 2004) 5,951.00 569.80 -
CDE (Landa Becerra and Coello Coello 2006) 4,656.39 - -
IPSO (Perez and Behdinan 2007a) 5,024.21 485.33 -
HPSO (Li et al. 2007) 5,060.92 545.19 -
AIS-GA (Bernardino et al. 2007) 5,062.67 - -
CPSO-shake 4,656.36 467.30 22,705.32

Table 7. Comparison of the best values obtained by CPSO-shake and the best values reported by other
approaches. The ‘-’ indicates that the authors did not report that value.

Other Approaches CPSO-shake
Truss Best Known Std.Dev Worst Best Found Std.Dev Worst
10-bar 4,656.39 0.18 4,656.71 4,656.36 2.84 4,696.06
25-bar 485.33 - 534.84 467.30 0.35 470.87
200-bar 27,564.00 - - 22,705.32 1,566.65 30,107.62

6. Conclusions and Future Work

This paper has introduced a PSO-based approach for constrained optimization, called
CPSO-shake. This approach introduces relatively simple changes to a traditional PSO
algorithm, aiming to provide better diversity maintenance and better exploration of con-
strained search spaces. The approach was validated using both traditional test problems
adopted in the evolutionary optimization literature and engineering optimization prob-
lems. Results were compared with respect to other approaches, including a variety of
evolutionary algorithms as well as mathematical programming techniques. In both cases,
the results were found to be very encouraging, and place CPSO-shake as a highly com-
petitive PSO-based optimizer for nonlinear constrained problems.

It would be interesting to work in the future in the design of mechanisms that can
improve the robustness of the proposed approach (i.e., that can reduce its variability of
results over several independent runs). In that regard, possibly the use of local search
could be quite useful. Additionally, it would be interesting to experiment with other
PSO variants and with other constraint-handling mechanisms, including a possible re-
laxation of the inequality constraints (instead of only relaxing the equality constraints).
We would also like to test our proposed approach with other benchmarks (see for example
(Mallipeddi and Suganthan 2010a)) and to compare our results with other PSO-based

approaches that have been recently introduced (see for example (Liang et al. 2010)). The
development of a parallel version of the proposed approach would also be interesting, since
it would allow its use in problems having computationally expensive objective functions.
Such a parallel implementation could also contain different PSO-based approaches (one
in each processor) in order to allow the search skills of different PSO-based variants to
be combined (throught the use of migration). This is similar to the idea of an “ensem-
ble” of constraint-handling techniques recently introduced in (Mallipeddi and Suganthan
2010Db).

Acknowledgments

The authors thank P. N. Suganthan for providing the source code of DMS-C-PSO as well
as Efrén Mezura-Montes and Jorge Isacc Flores-Mendoza for providing the source code
of TIPSO, both of which were used in the experiments reported here.

The first and second author gratefully acknowledge the continuous support from AN-
PCyT and the Universidad Nacional de San Luis. The third author acknowledges support
from CONACyT project no. 103570.

References

Belegundu, A.D., 1982. A Study of Mathematical Programming Methods for Structural
Optimization. Thesis (PhD). University of lowa, Iowa, USA.

Bernardino, H., Barbosa, H., and Lemong, A., 2007. A Hybrid Genetic Algorithm for
Constrained Optimization Problems in Mechanical Engineering. In: 2007 IEEFE
Congress on Evolutionary Computation (CEC 2007). Singapore, 25-28 September.
IEEE Press, 646—653.

Blackwell, T. and Branke, J., 2006. Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation, 10 (4),
459-472.

Bochenek, B. and Forys, P.; 2006. Structural optimization for post-buckling behavior
using particle swarms. Structural and Multidisciplinary Optimization, 32 (6), 521—
531.

Cagnina, L., Esquivel, S., and Gallard, R., 2004. Particle Swarm Optimization for se-
quencing problems: a case study. In: Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (CEC 2004). Portland, Oregon, USA. 20-23 June. IEEE
Press, 536-541.

Cagnina, L.C., Esquivel, S.C., and Coello Coello, C.A., 2006. A Particle Swarm Op-
timizer for Constrained Numerical Optimization. In: T.P. Runarsson, H.G. Beyer,
E. Burke, J.J. Merelo-Guervés, L.D. Whitley and X. Yao, eds. Parallel Problem
Solving from Nature (PPSN IX). 9th International Conference. Reykjavik, Iceland.
9-13 September. Lecture Notes in Computer Science Vol. 4193. Springer, 910-919.

Chootinan, P. and Chen, A., 2006. Constraint Handling In Genetic Algorithms Using A
Gradient-Based Repair Method. Computers and Operations Reseach, 33 (8), 2263~
2281.

Clerc, M. and Kennedy, J., 2002. The Particle Swarm-Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, 6 (1), 58-73.

Coello Coello, C.A., 2002. Theoretical and Numerical Constraint Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art. Computer
Methods in Applied Mechanics and Engineering, 191 (11-12), 1245-1287.

Coello Coello, C.A., Rudnick, M., and Christiansen, A.D., 1994. Using Genetic Algo-
rithms for Optimal Design of Trusses. In: Proceedings of the Sixth International
Conference on Tools with Artificial Intelligence. New Orleans, Louisiana, USA. 6-9
November. IEEE Computer Society Press, 88-94.

Eberhart, R. and Kennedy, J., 1995. A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, MHS’95. Nagoya, Japan. 4-6 October. IEEE Press, 39-43.

Eberhart, R.C. and Shi, Y., 2000. Comparing Inertia Weights and Constriction Factors
in Particle Swarm Optimization. In: Proceedings of the 2000 IEEE Congress on
FEvolutionary Computation (CEC’2000). Piscataway, New Jersey, USA. 16-19 July
IEEE Press, 84-88.

El-Sayed, M. and Jang, T., 1994. Structural optimization using unconstrained non-linear
goal programming algorithm. Computers and Structures, 52 (4), 723-727.

Galante, M., 1992. Structures Optimization by a simple genetic algorithm. In: Numerical
methods in engineering and applied sciences. Barcelona, Spain: CIMNE, 862-870.

Gere, J.M. and Weaver, W., 1965. Analysis of Framed Structures. D. Van Nostrand
Company, Inc.

Hamida, S.B. and Schoenauer, M., 2002. ASCHEA: New Results Using Adaptive Seg-
regational Constraint Handling. In: Proceedings of the Congress on FEvolutionary
Computation 2002 (CEC’2002). Honolulu, Hawaii. 12-17 May. IEEE Service Cen-
ter, 884-889.

He, Q. and Wang, L., 2007. An effective co-evolutionary particle swarm optimization
for constrained engineering design problems. Engineering Applications of Artificial
Intelligence, 20 (1), 89-99.

Hedar, A. and Fukushima, M., 2006. Derivative-free filter simulated annealing method
for constrained continuous global optimization. Journal of Global Optimization, 35
(4), 521-549.

Hernandez-Aguirre, A., et al., 2004. Handling Constraints using Multiobjective Opti-
mization Concepts. International Journal for Numerical Methods in Engineering,
59 (15), 1989-2017.

Hu, X. and Eberhart, R., 2002. Solving Constrained Nonlinear Optimization Problems
with Particle Swarm Optimization. In: Proceedings of the 6th World Multiconference
on Systemics, Cybernetics and Informatics (SCI 2002), Vol. 5. Orlando, USA. 14-18
July. IIIS.

Hu, X., Eberhart, R.C., and Shi, Y., 2003. Engineering Optimization with Particle
Swarm. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Indi-
anapolis, Indiana, USA. 24-26 April. IEEE Service Center, 53-57.

Kennedy, J., 1999. Small World and Mega-Minds: effects of neighborhood topologies
on Particle Swarm Performance. In: Proceedings of the 1999 IEEE Congress on
Evolutionary Computation (CEC 1999). Washington, USA. 6-9 July IEEE Service
Center, 1931-1938.

Kennedy, J., 2003. Bare Bones Particle Swarms. In: Proceedings of the IEEE 2003 Swarm
Intelligence Symposium (SIS 2003). Indianapolis, Indiana, USA. 24-26 April. IEEE
Press, 80-87.

Kennedy, J. and Eberhart, R.C., 1999. The particle swarm: social adaptation in infor-
mation processing systems. In: D. Corne, M. Dorigo and F. Glover, eds. New Ideas

in Optimization. London, UK: McGraw-Hill, 379-388.

Kennedy, J. and Eberhart, R.C., 2001. Swarm Intelligence. California, USA: Morgan
Kaufmann Publishers.

Knowles, J.D. and Corne, D.W., 2000. Approximating the Nondominated Front Using
the Pareto Archived Evolution Strategy. Fvolutionary Computation, 8 (2), 149-172.

Koziel, S. and Michalewicz, Z., 1999. Evolutionary Algorithms, Homomorphous Map-
pings, and Constrained Parameter Optimization. Evolutionary Computation, 7 (1),
19-44.

Landa Becerra, R. and Coello Coello, C.A., 2006. Cultured differential evolution for
constrained optimization. Computer Methods in Applied Mechanics and Engineering,
195 (33-36), 4303-4322.

Lee, K.S. and Geem, Z.W., 2004. A new structural optimization method based on the
harmony search algorithm. Computers and Structures, 82 (9-10), 781-798.

Lemonge, A. and Barbosa, H., 2004. An Adaptive Penalty Scheme for Genetic Algo-
rithms in Structural Optimization. International Journal for Numerical Methods in
Engineering, 59 (5), 703-736.

Li, L.J., et al., 2007. A heuristic particle swarm optimizer for optimization of pin con-
nected structures. Computers and Structures, 85 (7-8), 340-349.

Liang, J.J., et al., Problem Definitions and Fvaluation Criteria for the CEC 2006,
Nanyang Technological University, Singapore. 2006.

Liang, J.J. and Suganthan, P.N., 2005. Dynamic multi-swarm particle swarm optimizer.
In: Proceedings of the IEEE 2005 Swarm Intelligence Symposium (SIS 2005). Cali-
fornia, USA. 8-10 June. IEEE Press, 124-129.

Liang, J.J. and Suganthan, P.N., 2006. Dynamic Multi-Swarm Particle Swarm Opti-
mizer with a Novel Constrain-Handling Mechanism. In: 2006 IEEE Congress on
Evolutionary Computation (CEC 2006). Vancouver, BC, Canada. 16-21 July. IEEE,
316-323.

Liang, J., Zhigang, S., and Zhihui, L., 2010. Coevolutionary Comprehensive Learning
Particle Swarm Optimizer. In: 2010 IEEE Congress on Evolutionary Computation
(CEC’2010), July 18-23. Barcelona, Spain: IEEE Press, 1505-1512.

Lu, H. and Chen, W., 2006. Dynamic-objective particle swarm optimization for con-
strained optimization problems. Journal of Combinatorial Optimization, 12 (4), 409—
419.

Lu, H. and Chen, W., 2008. Self-adaptive velocity particle swarm optimization for solving
constrained optimization problems. Journal of Global Optimization, 41 (3), 427-445.

Mallipeddi, R. and Suganthan, P.N., Problem Definitions and FEvaluation Criteria for
the CEC 2010 Competition on Constrained Real-Parameter Optimization, Technical
report, Nanyang Technological University, Singapore. 2010a.

Mallipeddi, R. and Suganthan, P.N.; 2010b. Ensemble of Constraint Handling Tech-
niques. IEEE Transactions on Evolutionary Computation, 14 (4), 561-579.

Memari, A. and Fuladgar, A., 1994. Minimum Weight Design of Trusses by BEHSAZ
Program. In: Proceedings of the 2nd International Conference on Computational
Structures Technology. Athens, Greece. August 30-September 1. Civil-Comp Press,
179-185.

Mezura-Montes, E. and Flores-Mendoza, J.I., 2009. Improved Particle Swarm Optimiza-
tion in Constrained Numerical Search Spaces. In: R. Chiong, ed. Nature-Inspired Al-
gorithms for Optimisation - Nature-Inspired Algorithms for Optimisation. Springer,
299-332.

Mezura-Montes, E., ed. , 2009. Constraint-Handling in FEvolutionary Optimization.

Berlin/Heidelberg: Springer. ISBN 978-3-642-00618-0.

Mezura-Montes, E. and Lopez-Ramirez, B.C., 2007. Comparing Bio-Inspired Algorithms
in Constrained Optimization Problems. In: 2007 IEEE Congress on Evolutionary
Computation (CEC 2007). Singapore, 25-28 September. IEEE Press, 662-669.

Munoz-Zavala, A.E., Aguirre, A.H., and Diharce, E.R.V., 2005. Constrained Optimiza-
tion via Particle Evolutionary Swarm Optimization Algorithm (PESO). In: H.G.B.
et al., ed. Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO’2005), Vol. 1, June. ISBN 1-59593-010-8 New York: ACM Press, 209
216.

Munoz-Zavala, A.E., et al., 2006. PESO+ for Constrained Optimization. In: 2006 IEEFE
Congress on Evolutionary Computation (CEC 2006). Vancouver, BC, Canada. 16-21
July. IEEE, 935-942.

Nelder, J.A. and Mead, R., 1965. A Simplex Method for Function Minimization. The
Computer Journal, 7, 308-313.

Paquet, U. and Engelbrecht, A., 2003. A New Particle Swarm Optimiser for Linearly
Constrained Optimization. In: Proceedings of the Congress on Evolutionary Compu-
tation 2003 (CEC 2003). Canberra, Australia. 8-12 December. IEEE Service Center,
227-233.

Parsopoulos, K. and Vrahatis, M., 2005. Unified Particle Swarm Optimization for solving
constrained engineering optimization problems. Advances in Natural Computation,
Pt. 3. Lecture Notes in Computer Science Vol. 3612, 582-591.

Perez, R.E. and Behdinan, K., 2007a. Particle Swarm approach for Structural Design
Optimization. Computers and Structures, 85 (19-20), 1579-1588.

Perez, R.E. and Behdinan, K., 2007b. Particle Swarm Optimization in Structural Design.
In: F.T. Chan and M.K. Tiwari, eds. Swarm Intelligence: Focus on Ant and Particle
Swarm Optimization. ISBN 978-3-902613-09-7 Vienna, Austria: Itech Education and
Publishing, 373-394.

Price, K.V.; 1999. An Introduction to Differential Evolution. In: D. Corne, M. Dorigo
and F. Glover, eds. New Ideas in Optimization. London, UK: McGraw-Hill, 79-108.

Rajeev, S. and Krishnamoorthy, C.S., 1997. Genetic Algorithms-based methodologies for
design optimization of trusses. Journal of Structural Engineering, 123 (3), 350-358.

Runarsson, T.P. and Yao, X., 2000. Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation, 4 (3), 284-294.

Runarsson, T.P. and Yao, X., 2005. Search biases in constrained evolutionary optimiza-
tion. IEEE Transactions on Systems, Man, and Cybernetics Part C—Applications
and Reviews, 35 (2), 233-243.

Toscano-Pulido, G. and Coello Coello, C.A., 2004. A Constraint-Handling Mechanism
for Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary
Computation 2004 (CEC 2004). Portland, Oregon, USA. 20-23 June. Piscataway,
New Jersey: IEEE Service Center, 1396-1403.

Trojanowski, K., 2008. Multi-Swarm That Learns. In: Intelligent Information Systems
2008 Vancouver, BC, Canada: IEEE, 121-130.

Ye, D., Chen, Z., and Liao, J., 2007. A New Algorithm for Minimum Attribute Reduction
Based on Binary Particle Swarm Optimization with Vaccination. In: Z.H. Zhou, H. Li
and Q. Yang, eds. Advances in Knowledge Discovery and Data Mining, 11th Pacific-
Asia Conference, PAKDD 2007. Nanjing, China. 22-25 May. Springer. Lecture Notes
in Computer Science Vol. 4426, 1029-1036.

Yen, G.G. and Daneshyari, D., 2006. Diversity-based Information Exchange among Mul-
tiple Swarms in Particle Swarm Optimization. In: 2006 IEEE Congress on FEvolu-

tionary Computation (CEC 2006), Vancouver, BC, Canada. 16-21 July. IEEE Press,
1686-1693.

Zahara, E. and Hu, C.H., 2008. Solving constrained optimization problems with hybrid
particle swarm optimization. Engineering Optimization, 40 (11), 1031-1049.

Zhang, W.J. and Xie, X.F., 2003. DEPSO: Hybrid Particle Swarm with Differential Evo-
lution Operator. In: Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics (SMC 2003), Vol. 4. Washington DC, USA. 5-8 October.
IEEE, 3816-3821.

Zhang, W.J., Xie, X.F., and Bi, D.C., 2004. Handling Boundary Constraints for Numeri-
cal Optimization by Particle Swarm Flying in Periodic Search Space. In: Proceedings
of the Congress on Evolutionary Computation 2004 (CEC 2004). Portland, Oregon,
USA. 20-23 June. Piscataway, New Jersey: IEEE Service Center, 2307—2311.

Zhao, S.Z., et al., 2008. Dynamic multi-swarm particle swarm optimizer with local search
for Large Scale Global Optimization. In: 2008 IEEE Congress on Evolutionary Com-
putation (CEC 2008). Hong Kong. 1-6 June. IEEE Press, 3845-3852.

Appendix A. Test problems

The 24 test problems were taken from (Liang et al. 2006). Consult the reference for a
complete description of them.

Engineering optimization problems:

e Design of a 10-bar planar truss: The problem consists of finding the cross-sectional
area of each member of the truss, such the weight is minimized subject to both dis-
placement and stress constraints. The weight of the truss is a function f(z) defined
in equation (Al). The 10-bar plane truss (Belegundu 1982) adopted is shown in Fig-
ure Al.

10
fl@)=> " pA;L; (A1)
j=1

where z is the solution proposed, A; the cross-sectional area, L; the length of the
member j and, p the weight density of the material. The following data is assumed:

Modulus of elasticity: £ = 1.09 x 10* ksi.

p = 0.10 1b/in3.

A load of 100 kips in the negative y—direction is applied at nodes 2 and 4.
Maximum allowable stress of each member: o, = 425 ksi.

Maximum allowable displacement of each node (horizontal and vertical): u, = 2 in.
Minimum allowable cross-section area for all members: 0.10 in?.

Web thickness and flange thickness are kept fixed at 0.1 in.

The problem was modeled using 20 design variables, that is, the dimension (height
and width) of each element. To evaluate the objective function of this problem, it was
necessary to add a module for the analysis of the truss. This module uses the stiffness
method (Gere and Weaver 1965) to analyze the structure, and returns the values of
the stress and displacement constraints, as well as the total weight of the structure.

360"

360" 360"

Figure Al. 10-bar plane truss.

Table A1. Node load for 25-bar spa-
tial truss.

Node F, (Ib) F, (Ib) F. (Ib)

1 1,000 -10,000 -10,000
2 0 -10,000 -10,000
3 500 0 0
4 600 0 0

e Design of a 25-bar spatial truss: The 25-bar spatial truss adopted is shown in
Figure A2. This 3-dimensional problem (Rajeev and Krishnamoorthy 1997) consists
of finding the cross-sectional area of each truss member such the weight of the structure
is minimized, considering constraints on the maximum allowable displacement of the
nodes and on the maximum allowable stress of each bar. The load conditions are shown
in Table Al, the coordinates of each node are shown in Table A2 and the groups of
elements are shown in Table A3. The following data is assumed:

e Modulus of elasticity: E =1 x 107 ksi.

Material density p = 0.1 1b/in3.

Maximum allowable stress of each member: o = 440 ksi.
Maximum allowable displacement: u = +0.35 in.

The problem was modeled using 8 design variables (one for each group), 25 stress
constraints and 18 displacement constraints. The weight of the truss is a function f(z)
defined in equation (A2).

25
fx) =2 pAjL; (A2)
j=1

where x is the solution proposed, A; the cross-sectional volume, L; the length of
the member j and, p the weight density of the material.

=N

v
<

Figure A2. 25-bar spacial truss.

Table A2. Coordinates of nodes for
25-bar spatial truss.

Node x (cm) y (cm) 1z (cm)

1 -95.25 0 508
2 95.25 0 508
3 -95.25 95.25 254
4 95.25 95.25 254
5 95.25 -95.25 254
6 -95.25 -95.25 254
7 -254 254 0
8 254 254 0
9 254 -254 0
10 -254 -254 0

e Design of a 200-bar planar truss: This problem consists of finding the cross-
sectional area of each member in the way that its weight is minimized. Displacement
and stress constraints have to be considered. The 200-bar plane truss (Belegundu 1982)
adopted is shown in Figure A3.
The following data is assumed:

e Loading condition 1: 1 kip acting in positive xz—direction at node points 1, 6, 15,
20, 29, 34, 43, 48, 57, 62 and 71.

e Loading condition 2: 10 kips acting in negative y—direction at node points 1, 2, 3,
4,5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 24, 71, 72, 73, 74 and 75.

Table A3. Groups of mem-
bers for 25-bar spatial truss.

Group Member
1 1-2
2 1-4, 2-3, 1-5, 2-6
3 25, 2-4, 1-3, 1-6
4 3-6, 4-5
5 3-4, 5-6
6 3-10, 6-7, 4-9, 5-8
7 3-8, 4-7, 6-9, 5-10
8 3-7, 4-8, 5-9, 6-10

240"

144"

360"

Figure A3. 200-bar planar truss.

Table A4. Groups of members for 200-bar planar truss.

Group Member
1 1,2,34
2 5,8,11,14,17
3 19,20,21,22,23,24
4 18,25,56,63,94,101,132,139,170,177
5 26,29,32,35,38
6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37
7 39,40,41,42
8 43,46,49,52,55
9 57,58,59,60,61,62
10 64,67,70,73,76
11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75
12 77,78,79,80
13 81,84,87,90,93
14 95,96,97,98,99,100
15 102,105,108,111,114
16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113
17 115,116,117,118
18 119,122,125,128,131
19 133,134,135,136,137,138
20 140,143,146,149,152
21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151
22 153,154,155,156
23 157,160,163,166,169
24 171,172,173,174,175,176
25 178,181,184,187,190
26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189
27 191,192,193,194
28 195,197,198,200
29 196,199

Loading condition 3: loading condition 1 and 2 acting together.

The 200 elements of this truss are linked to 29 groups (see Table A4).
Young’s modulus of elasticity : 30,000 ksi.

Weight density: 0.283 x10? kips/in®.

Maximum allowable stress of each member (tension and compression): 10 ksi.

