
Towards Automated EvolutionaryDesign of Combinational CircuitsCarlos A. Coello CoelloyAlan D. ChristiansenzArturo Hern�andez Aguirrezy (ccoello@xalapa.lania.mx)Laboratorio Nacional de Inform�atica Avanzada, A.C.Xalapa, Veracruz 91090, M�exicoz(fadc,hernandag@eecs.tulane.edu)211 Stanley Thomas HallDepartment of Computer ScienceTulane UniversityNew Orleans, LA 70118, USAAbstractIn this paper we propose a methodology based on a genetic algorithm (GA)to automate the design of combinational logic circuits in which we aim tominimize the total number of gates used. Our results are compared againstthose produced by human designers and by another GA-based approach.We also analyze the importance of using a non-binary representation in thisproblem despite the commonly accepted notion of universality of the binaryrepresentation in all kinds of GA-based applications.Keywords: circuit design, optimization, genetic algorithms, computer-aided design, arti�cial intelligence.1 IntroductionDesign is a task that requires knowledge and creativity which are two humanattributes normally considered too complex to be automated.Researchers in Arti�cial Intelligence (AI) have devoted a lot of work to-wards automating di�erent aspects of design, but most of the current results1

consist of complex and expensive programs that can be easily outperformedby experienced human designers.The main goal of the research reported in this paper was to develop alow-cost computer-based design tool that could generate combinational logiccircuits which are not only fully functional, but also optimum according tosome metrics.Since the de�nition itself of the term design is so elusive, it is convenientto start by stating the de�nition of design that better ful�lls the purposesof this paper:Design is the process of deriving, from a speci�ed input/outputbehavior, a structure (in our case a certain combination of logicgates) that is functional (produces all the outputs desired for allthe inputs speci�ed) within a certain set of speci�ed constraints.Furthermore, we want this design to be optimum in terms of certainstructural features (e.g., the number of gates used). It should be addedthat our current work focuses only on combinational logic circuits, whichcontain no memory elements and no feedback paths. However, the approachproposed is general enough as to allow its generalization to other (morecomplex) circuits.2 Previous WorkA general search technique inspired by natural evolution, called the geneticalgorithm (GA) [15], has been widely used for optimization tasks [9] and isknown to be a very powerful tool in certain domains. In our current work wewish to �nd a way to use the GA as a design tool, with particular emphasisin the design of combinational circuits.The design process for combinational logic circuits has evolved from its�rst notions [36] to a standard element of undergraduate computing curricula[34]. Standard graphical design aids such as Karnaugh Maps [18, 41] arewidely used and tools suitable for computer implementation have evolvedfrom the Quine-McCluskey Method [32, 26] to freely available tools such asEspresso [2] and MisII [3] and many commercial products.Probably the earliest attempt to evolve circuits is Friedman's thesis, thatdates back to the mid 1950s [8]. In his thesis, Friedman proposed that aseries of control circuits, similar to what we now call neural networks, couldbe evolved through \selective feedback" in a process analogous to natural2

selection. J. W. Atmar [1] was another early researcher to incorporate di-rectly the bit string representing the con�guration of a programmable circuitwithin the genotype of an evolutionary-based technique.In the contemporary literature, the attempt to use evolutionary-basedtechniques to design electrical circuits has been called \evolvable hardware"[20, 7]. Within evolvable hardware there are only a few researchers workingon the design of circuits at the gate-level.Louis [25] is one of earliest sources that report the use of GAs to de-sign combinational logic circuits. In his dissertation [24] Louis combinesknowledge-based systems with the genetic algorithm, making use of a ge-netic operator called masked crossover that adapts to the encoding, beingable to exploit information unused by classical crossover operators. His re-sults, although very encouraging for certain examples, do not seem to havesolved the combinational circuit design problem completely. However, hisidea of incorporating knowledge about the domain in the genetic operatorconstitutes a big step toward increasing the power of the GA as a designtool. Unfortunately, the incorporation of knowledge into the GA decreasesits usefulness as a general search tool. Louis overcomes this problem byde�ning an operator that he claims to be domain independent, but whosee�ciency turns out to depend on the representation used.Koza [21] has used genetic programming to design combinational cir-cuits. He has designed, for example, a two-bit adder, using a small set ofgates (AND, OR, NOT), but his emphasis has been on generating func-tional circuits rather than on optimizing them. In fact, this is also thecase in Louis' research, where the main focus was to provide an easier wayto generate functional designs using the GA rather than in optimizing afunctional design according to certain metrics. In more recent work, Koza[23, 22] has focused more towards the design of analog circuits in whichthe goal is to produce their appropriate topology and size so that they arefunctional given a certain set of components. So far, genetic programminghas been considered a more powerful tool in such tasks, because the rep-resentation it uses is more powerful for structural design in general [33].However, genetic programming produces circuits that are highly redundantand di�cult to simplify automatically. Furthermore, the computer resourcesnormally required to produce such circuits are very demanding in terms ofmemory and CPU time [21]. That is why we decided to use instead a matrixrepresentation that is encoded linearly in a chromosome, and turns out tobe a compromise between the powerful tree representation used by geneticprogramming and the relatively limited linear representation used by a con-ventional genetic algorithm [33]. It must be added that the main limitations3

of a linear representation rely on two facts: the �xed length normally as-sociated with it that keeps an expression (a Boolean function in our case)from growing and shrinking during the evolutionary process and the way inwhich a linear chromosome is decoded (translating each chromosomic posi-tion directly into a variable value). By using a variable-length GA and amatrix representation in the decoding stage, we could succesfully deal withthese two problems.Another early e�ort to codify the basic logic gates (AND, OR, and NOT)along with their possible interconnections was o�ered by Thompson et al.[38]. Thompson's work focuses on the con�guration of a Field ProgrammableGate Array (FPGA) using genetic algorithms, and was the basis for the re-search performed later by most of the other researchers working in evolvablehardware at the gate level.Miller et al. [28] developed (independently) an approach similar to ours,but using a more compact representation that instead of considering theinputs and gates as completely separate elements in the chromosomic string(as in our case), uses a single gene to encode a complete Boolean expression.Miller's notation does not decrease the total length of the chromosome, but itincreases the cardinality of the alphabet needed, having as its main drawbackthe lack of
exibility of the representation to handle a larger number ofinputs (the cardinality of the alphabet in Miller's case grows exponentiallywith respect to the number of inputs, whereas in our case, it grows linearly).Nevertheless, we will compare the results found by our approach in oneexample with those previously reported by Miller et al. [28].The only other work on evolvable hardware at a gate level is the onereported by Higuchi et al. [13] and Iba et al. [16]. In both cases, a variable-length GA with an array representation is used. However, since the focusof these papers is on learning rather than on optimization problems, we willnot be able to compare our work with theirs.It should be mentioned that in the work reported here, we were inter-ested not only in producing functional designs, but also in optimizing themaccording to certain metrics. This is a quite complicated task for the GA,because designing a fully functional circuit from a random set of invalid cir-cuits is a problem di�cult enough as to consume most of the search time ofa conventional genetic algorithm. Trying to �nd the feasible region in thishighly constrained search space and then try to locate the optimum withinsuch region is an even more di�cult task.4

3 Statement of the ProblemThe problem of interest to us consists of designing a circuit that performs adesired function (speci�ed by a truth table), given a certain speci�ed set ofavailable logic gates. In circuit design, one can use various criteria to de�neminimal-cost expressions. For example, from a mathematical perspective,one could minimize the total number of literals or the total number of binaryoperations or the total number of symbols in an expression. The minimiza-tion problem is di�cult for all such cost criteria. In gate networks one couldminimize the total number of gates subject to such restrictions as fan-in,fan-out, number of levels, or the total number of SSI packages. In general,it is very di�cult to �nd such minimal networks or to prove the minimalityof a given network [4]. In spite of this, it is possible to solve a number ofminimization problems using systematic techniques, provided that we aresatis�ed with less general solutions.The complexity of a logic circuit is a function of the number of gates inthe circuit. The complexity of a gate generally is a function of the numberof inputs to it. Because a logic circuit is a realization (implementation)of a Boolean function in hardware, reducing the number of literals in thefunction should reduce the number of inputs to each gate and the numberof gates in the circuit|thus reducing the complexity of the circuit.The algebraic method used to minimize functions is tedious and errorprone. Its success depends on our ability to recognize the application of atheorem or a postulate during the minimization process. Such recognitionmay not be obvious. Furthermore, there is no general set of rules to aid thatrecognition.Two popular minimization techniques are the Karnaugh Map [18], whichis based on a graphical representation of Boolean functions, and the Quine-McCluskey Procedure [32, 26], which is a tabular method. Both of thesemethods are mechanical in nature. Karnaugh Maps are useful in minimizingfunctions with up to �ve or six variables. The Quine-McCluskey Procedure isuseful for functions of any number of variables and can easily be programmedto run on a digital computer. Generally, several minimum functions can beobtained for a given function using either method, based on the choicesmade during the minimization process. All minimum functions with thesame number of literals yield circuits of the same complexity; hence, any ofthem can be selected for implementation.Both the Karnaugh Map and Quine-McCluskey Procedure produce two-level circuit forms (e.g., minimum sum of products). This is the best formif the overriding concern is minimizing propagation delay of signals through5

the circuit. However, in many cases a greater concern is the minimization ofthe number of gates present in a circuit, and a small penalty in circuit speedis acceptable. To minimize the total number of gates, it is often necessary to�nd a multi-level circuit form. In order to �nd multi-level implementations,the Karnaugh Map and Quine-McCluskey Methods must be combined withother techniques, such as algebraic manipulation of logic expressions.1Additionally, the Quine-McCluskey Procedure is not very e�cient: itcan be shown that the upper bound on the number of prime implicants is3nn [19], where n is the number of inputs in the truth table. This meansthat the CPU requirements for this procedure grows exponentially with thenumber of inputs. Furthermore, once the prime implicants have been found,the algorithm needs to �nd the minimum set cover, which is known to bean NP-complete problem [19]. Also, although some authors have proposedextensions to the basic Quine-McCluskey Procedure that allow to handleXOR gates (see for example [40]), in the original proposal (which we haveused here), only the basic gates are allowed (AND, OR, NOT), and a humandesigner has to perform further re�nements in order to introduce XOR gatesinto the circuit.Note that the algebraic simpli�cation process depends entirely on one'sfamiliarity with the postulates and theorems and one's ability to recognizetheir application. Of course, this ability varies from individual to individ-ual. Depending on the sequence in which the theorems and postulates areapplied, more than one simpli�ed form of the expression may be obtained.Usually all such simpli�ed forms are valid and acceptable. Thus, there is (inthe general case) no single, unique minimized form of a Boolean expression.In this work, we compare the designs produced by a GA with those gen-erated by a human designer using Karnaugh maps and another one using theQuine-McCluskey Procedure (unless indicated otherwise in the examples).The comparison is in many ways unfair because of di�ering capabilities ofman and machine. For example, a human designer tends to use only thegates NOT, AND, OR and has more di�culties using XOR because theKarnaugh Map and the Quine-McCluskey Procedure do not support theidenti�cation of XOR terms as well as they support \seeing" simple productterms. The computer, using our GA approach, and not being restricted byhuman pattern recognition abilities, uses many XOR gates, often disregard-ing the NOT gate. Our overall measure of circuit optimality is the totalnumber of gates used, regardless of their kind. This is approximately pro-1A tool like MisII [3] can �nd multi-level forms, but requires human guidance to do soe�ectively. 6

Input OutputFigure 1: A gate in a two-dimensional template, gets its second input fromeither one of two gates in the previous column.portional to the total part cost of the circuit. Obviously, we perform thisanalysis for only fully functional circuits.4 Using the Genetic AlgorithmThe famous naturalist Charles Darwin de�ned Natural Selection or Survivalof the Fittest in his book [6] as the preservation of favorable individual dif-ferences and variations, and the destruction of those that are injurious. Innature, individuals have to adapt to their environment in order to survive ina process called evolution, in which those features that make an individualmore suited to compete are preserved when it reproduces, and those featuresthat make it weaker are eliminated. Such features are controlled by unitscalled genes which form sets called chromosomes. Over subsequent gener-ations not only the �ttest individuals survive, but also their �ttest geneswhich are transmitted to their descendants during the sexual recombinationprocess which is called crossover.John H. Holland became interested in the application of natural selectionto machine learning, and in the late 1960s, while working at the Universityof Michigan, he developed a technique that allowed computer programs tomimic the process of evolution. Originally, this technique was called re-productive plans, but the term genetic algorithm became popular after thepublication of his book [14] [15].More information on genetic algorithms may be found in the books byGoldberg [9], Michalewicz [27] and Mitchell [31].A genetic algorithm for a particular problem must have the following�ve components [27]: 7

Input 1 Input 2 Gate TypeFigure 2: Encoding used for each of the matrix elements that represent acircuit.1. A representation for potential solutions to the problem.2. A way to create an initial population of potential solutions (this isnormally done randomly).3. An evaluation function that plays the role of the environment, ratingsolutions in terms of their \�tness".4. Genetic operators that alter the composition of children.5. Values for various parameters that the genetic algorithm uses (popu-lation size, probabilities of applying genetic operators, etc.).The �rst interesting aspect of this problem is the encoding (i.e., rep-resentation) of solutions as chromosomic strings that the GA can evolve.The representation chosen for our work is a bidimensional matrix as the onesuggested by Louis [25] in which each matrix element is a gate (there are 5types of gates: AND, NOT, OR, XOR and WIRE) that receives its 2 inputsfrom any gate2 at the previous column as shown in Figure 1. More formally,we can say that any circuit can be represented as a bidimensional array ofgates Si;j , where j indicates the level of a gate, so that those gates closer tothe inputs have lower values of j. (Level values are incremented from left toright in Figure 1). For a �xed j, the index i varies with respect to the gatesthat are \next" to each other in the circuit, but without being necessarilyconnected. It is interesting to notice that if a row-order encoding is used,the problem becomes disruptive [25], making it very hard for the GA. Thereason is that using such an encoding, any circuit designs that are closein two-dimensional (phenotypic) space may be far apart in one-dimensional(genotypic) space, making it di�cult to preserve highly �t schemas (in GAterminology, we say that the problem is deceptive [10]).A chromosomic string encodes the matrix shown in Figure 1 by usingtriplets in which the 2 �rst elements refer to each of the inputs used, and2It is worth mentioning that Louis �xes the position of one of the inputs to reduce thesize of the search space [24]. 8

the third is the corresponding gate as shown in Figure 2 (only 2-input gateswere used in this work).Our goal was then to produce a fully functional design (i.e., one thatproduces all the expected outputs for any combination of inputs accordingto the truth table given for the problem) which maximizes the number ofWIREs3.A critical part of getting a GA approach to succeed in this problem has todo with the representation scheme used by the genetic algorithm. Althoughit has been argued that a binary representation provides the maximum num-ber of schemata [27] it turns out that in some domains such as numericaloptimization, alphabets of higher cardinality have proved to provide betterresults in a shorter period of time than their binary counterparts [5]. Withthis idea in mind, we decided to experiment with an alphabet of cardinalityn, where n can be de�ned by the user and will be normally taken as thenumber of rows allowed in our circuit, according to the matrix encodingadopted in this problem. This representation allows the manipulation ofshorter strings, it decreases the complexity of the decoding task, and as willbe seen in this work, it provides better solutions than its binary counterpart.Another di�culty is the development of a good �tness function. Again,our initial approach was to use a slight variation of the function suggestedby Louis in his dissertation [24], which consists of the number of correctresponses obtained by the GA (with respect to the truth table given by theuser).The following formula is used to compute the �tness of an individual x:�tness(x) = (Ppj=1 fj(x) if f(x) is not feasiblePpj=1 fj(x) + w(x) otherwise (1)where p is the number of entries of the truth table (normally, p = 2n,being n the number of inputs of the truth table, but p can also be assigned acertain value directly, in case the truth table has don't cares), and the valueof fj(x) depends on the outcomes produced by the circuit x encoded by theGA (whenever the GA matches the corresponding entry of the truth tableat location j, a value of one is assigned to fj(x); otherwise, a value of zerois assigned). The function w(x) returns an integer equal to the number ofWIREs present in the circuit x encoded by the GA.In words, we can say that our �tness function works in two stages. At3WIRE basically indicates a null operation, or in other words, the absence of gate,and it is used just to keep regularity in the representation used by the GA that otherwisewould have to use variable-length strings. 9

1 0 1 1 0 1 1 1 1 0 1 1 1 0

1 0 1 0 1 1

1 1 1 1

Descendants

0 1

011 0

 Cross-points Cross-points

1 0

Figure 3: Use of a two-point crossover between two chromosomes. In thiscase the genes at the extremes are kept, and those in the middle part areexchanged. If one of the two cross-points happens to be at the string bound-aries, a single-point crossover will be performed, and if both are at the stringboundaries, the parents remain intact for the next generation.the beginning of the search, only validity of the circuit outputs is takeninto account, and the GA is basically exploring the search space. Once afunctional solution appears, then the �tness function is modi�ed such thatany valid designs produced are rewarded for each WIRE gate that theyinclude, so that the GA tries to �nd the circuit with the minimum numberof gates that performs the function required. It is at this second stagethat the GA is actually exploiting the search space, trying to optimize thesolutions found (in terms of their number of gates) as much as possible.It should be mentioned that although at �rst sight the size of the searchspace for some instances of this problem may seem too small to even attemptto use a heuristic function, that is not true. For the representation used forthis work, if we assume a cardinality n and a chromosomic lenght l, the sizeof the intrinsic search space is nl. Both the cardinality and the length of astring depend on the size of the matrix used to solve the circuit. In general:l = u� t, where t = r� q, and r and q are the number of rows and columnsof the matrix respectively, and u refers to the number of genes required torepresent a triplet. For the case of a GA with n-cardinality (like the oneused in this paper), u = 3, and for the case of a binary GA, u = 9 (we areassuming 3 bits for each of the elements of the triplet).For the experiments reported here we used a traditional two-point crossoveroperator (see Figure 3) and a conventional uniform bit mutation operator[9]. In all our experiments we kept the best individual of each generation10

(elitism).5 Comparison of ResultsWe have used several circuits of di�erent degrees of complexity to test ourapproach. For the purposes of this paper, 5 examples were chosen to illus-trate our approach, and the results produced with the GA were comparedwith those generated by human designers and, in one case, with anotherGA-based approach.In each case, the size of the matrix used to �t the circuit was determinedusing the following procedure:1. Start with a square matrix of size 5.2. If no feasible solution is found using this matrix, then increase thenumber of columns by one.3. If no feasible solution is found using this matrix, then increase thenumber of rows by one.4. Repeat steps 2 and 3 until a suitable matrix is produced.As we will see in the following examples, it was normally the case that forsmall circuits a matrix of 5� 5 was su�cient. However, in our last example,it was necessary to reach a matrix size of 6 � 7. This made necessary torun the GA for more generations, performing, in consequence, more �tnessfunction evaluations. This situation normally arises with circuits havingseveral outputs, although in some cases, such as in the 2-bit multiplier ofour fourth example, even a 5 � 5 matrix may be enough to �nd the bestknown circuit.To distinguish between the (traditional) binary representation, we willrefer to that approach as the binary genetic algorithm (or BGA), and ourproposed representation that uses an n-cardinality encoding will be calledNGA.The other issue is regarding the crossover and mutation rates. Aftera series of experiments, we decided to use a crossover rate of 50% and amutation rate such that each string had a 50% probability of being mutatedat a certain position. Since mutation was applied on a single-gene basis, weused as our probability of mutation the result of dividing this 50% by thelength of the string. Since the length of the strings used to solve the �rst fourexamples using the NGA is 75, the probability of mutation in those cases11

X Y Z F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0Table 1: Truth table for the circuit of the �rst example.was 0.006667. For the case of our BGA, the probability of mutation was0.002222 because the length of the strings used for the �rst four exampleswas 225. The last example used a longer string (126 for the NGA and 252for the BGA), which made necessary to use a lower probability of mutation(0.003968 for the NGA and 0.001984 for the BGA).The maximum number of generations was arbitrarily set to a reasonablelarge number, and the population size was chosen based on a number ofindependent runs. For the case of the �rst four examples, the populationsize was ranged from 100 to 3000 individuals with increments of 100 (30runs) and the maximum number of generations was set to 400. In the caseof the last example, the population size was ranged from 1000 to 3000 withincrements of 100 (20 runs), and the maximum number of generations wasset to 2000. In each case, the results shown for each problem (including thepopulation size used) correspond to the best solution at the median of allthe runs (either 30 or 20 as indicated before). It is also important to addthat whenever we use the term \optimum solution", we mean the best foundby our approach, which might be a local optimum, since nobody has beenable to determine (analytically) the global optimum for any of the circuitsreported in this paper.5.1 Example 1Our �rst example has 4 inputs and one output, as shown in Table 1. In thiscase, the matrix used was of size 5� 5, and the chromosomic length was 75for the case of the NGA (r = 5; q = 5; t = 5�5 = 25; l = 3�t = 75), and 225for the case of the BGA (r = 5; q = 5; t = 5� 5 = 25; l = 9� t = 225). Thecardinality c used for this problem wasmax(r; g), for the NGA where g refers12

0510
152025
30

0 50 100 150 200 250 300 350 400
�tness

generation numberFigure 4: Convergence graph of the NGA used to solve the �rst example.The feasibility barrier is indicated with a horizontal line (any value above itrepresents a fully functional circuit).to the number of allowable gates (since only the inputs from the previouslevel are considered, the number of columns does not a�ect the cardinalityused by the NGA). Obviously, for the BGA, the cardinality c = 2. Sinceg = 5, and c = 5, then the size of the intrinsic search space for this problemis cl = 575 � 2:6 � 1052 for the NGA and 2225 � 5:39 � 1067 for the BGA.The graphical representation of the circuit produced by the NGA is shownin Figure 5.The comparison of the results produced by the NGA, the BGA and twohuman designers are shown in Tables 2, 3, and 4. In this and all the furtherexamples, designer 1 used Karnaugh Maps plus Boolean algebra identitiesto simplify the circuit, whereas designer 2 used the Quine-McCluskey Pro-cedure.The parameters used by the NGA for this example are the following:crossover rate = 0.5, mutation rate = 0.007, population size = 700, maxi-mum number of generations = 400. The parameters for the BGA are thesame except for the mutation rate that was instead 0.0022. The convergencegraph of the NGA is shown in Figure 5.1. Convergence to the optimum was13

NGA Human Designer 1F = Z(X + Y)� (XY) F = Z(X � Y) + Y (X � Z)4 gates 5 gates2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORsTable 2: Comparison of results between the n-cardinality GA (NGA) and ahuman designer for the circuit of the �rst example
X

Y

Z

F

Figure 5: Circuit produced by an n-cardinality GA (NGA) for the �rstexample.achieved in generation 103 for the case of the NGA. The best solution foundby the BGA had a �tness of 27 (the optimum solution had a �tness of 29),and was achieved at generation 188. It should be mentioned, however, thatif a larger population size is used (900), the BGA is able to achieve theoptimum solution in 197 generations, although at a higher computationalexpense. The solution found by the BGA has the same number of gatesthan the one found by the second human designer, although its Booleanexpression looks more complex in the �rst case.5.2 Example 2Our second example has 4 inputs and one output, as shown in Table 5. Inthis case, the matrix used was of size 5�5, and the chromosomic length was75 for the case of the NGA (r = 5; q = 5; t = 5� 5 = 25; l = 3� t = 75), and225 for the case of the BGA (r = 5; q = 5; t = 5� 5 = 25; l = 9 � t = 225).Again, the size of the intrinsic search space for this problem is cl = 575 �2:6� 1052 for the NGA and 2225 � 5:39� 1067 for the BGA. The graphical14

BGAF = ((X � Z) + (X � Y))(Z 0 � (X � Y))6 gates1 AND, 1 OR, 3 XORs, 1 NOTTable 3: Results produced by the binary genetic algorithm (BGA) for thecircuit of the �rst exampleHuman Designer 2F = X 0Y Z +X(Y � Z)6 gates3 ANDs, 1 OR, 1 XOR, 1 NOTTable 4: Results produced by a second human designer for the circuit of the�rst example Z W X Y F0 0 0 0 10 0 0 1 10 0 1 0 00 0 1 1 10 1 0 0 00 1 0 1 00 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 01 0 1 0 11 0 1 1 01 1 0 0 01 1 0 1 11 1 1 0 01 1 1 1 0Table 5: Truth table for the circuit of the second example.15

X

Y

Z

W

F

Figure 6: Circuit produced by an n-cardinality GA (NGA) for the secondexample. NGAF = (((W �WX)� ((Z +X + Y)� Z)))08 gates1 AND, 3 ORs, 3 XORs, 1 NOTTable 6: Results produced by the NGA for the second example.representation of the circuit produced by the NGA is shown in Figure 6.The comparison of the results produced by the NGA, the BGA, a humandesigner, and Sasao's approach [35] are shown in Tables 6, 7, 8, and 9. Sasaohas used this circuit to illustrate his circuit simpli�cation technique based onthe use of ANDs & XORs. His solution uses, however, more gates than thecircuit produced by the NGA or the BGA. Note that the solution producedby the NGA is quite atypical, since it uses a negation at the end of theBoolean expression. Savings in this case, with respect to the best knownsolution were of 20%.The parameters used by the NGA for this example are the following:crossover rate = 0.5, mutation rate = 0.007, population size = 1000, maxi-mum number of generations = 400. The BGA used a mutation rate of 0.0022and required a larger population size (2000 chromosomes). The convergencegraph of the NGA is shown in Figure 5.2. Convergence to the optimum inthe case of the NGA was achieved in generation 376, and in the case of theBGA, in generation 328. 16

051015
20253035

0 50 100 150 200 250 300 350 400
�tness

generation numberFigure 7: Convergence graph of the NGA used to solve the second example.The feasibility barrier is indicated with a horizontal line (any value above itrepresents a fully functional circuit).BGAF = (Z � ((W � Y) +XY))� (Z + (X + Y))08 gates1 AND, 3 ORs, 3 XORs, 1 NOTTable 7: Results produced by the BGA for the second example.Human Designer 1F = ((Z 0X)� (Y 0W 0)) + ((X 0Y)(Z �W 0))11 gates4 ANDs, 1 OR, 2 XORs, 4 NOTsTable 8: Results produced by a human designer for the second example.17

SasaoF = X 0 � Y 0W 0 �XY 0Z 0 �X 0Y 0W12 gates3 XORs, 5 ANDs, 4 NOTsTable 9: Result produced by Sasao for the second example.5.3 Example 3Our third example has 4 inputs and one output, as shown in Table 10. In thiscase, the matrix used was of size 5�5, and the chromosomic length was 75 forthe case of the NGA (r = 5; q = 5; t = 5�5 = 25; l = 3�t = 75), and 225 forthe case of the BGA (r = 5; q = 5; t = 5�5 = 25; l = 9�t = 225). Again, thesize of the intrinsic search space for this problem is cl = 575 � 2:6� 1052 forthe NGA and 2225 � 5:39� 1067 for the BGA. The graphical representationof the circuit produced by the NGA is shown in Figure 9.The parameters used by the NGA for this example are the following:crossover rate = 0.5, mutation rate = 0.007, population size = 700, maxi-mum number of generations = 400. The BGA used a mutation rate of 0.0022,and was not able to �nd the same solution as the NGA (it found a solutionwith 8 gates instead), requiring a larger population size (900 chromosomes).The convergence graph of the NGA is shown in Figure 5.3. Convergence tothe optimum in the case of the NGA was achieved in generation 326, and inthe case of the BGA, in generation 227.The comparison of the results produced by the NGA, the BGA, and twohuman designers are shown in Tables 11, 12, 13, and 14.5.4 Example 4Our fourth example has 4 inputs and 4 outputs, and it is a 2-bit multiplieras shown in Table 15. In this case, the matrix used was of size 5 � 5,and the chromosomic length was 75 for the case of the NGA (r = 5; q =5; t = 5 � 5 = 25; l = 3 � t = 75), and 225 for the case of the BGA(r = 5; q = 5; t = 5�5 = 25; l = 9� t = 225). Again, the size of the intrinsicsearch space for this problem is cl = 575 � 2:6 � 1052 for the NGA and2225 � 5:39 � 1067 for the BGA. The graphical representation of the circuitproduced by the NGA is shown in Figure 11.The comparison of the results produced by the NGA, the BGA, a hu-man designer, and Miller et al. [28] are shown in Tables 16, 17 and 18,18

W X Y Z F0 0 0 0 10 0 0 1 00 0 1 0 10 0 1 1 00 1 0 0 10 1 0 1 00 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 11 0 1 0 11 0 1 1 01 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 1Table 10: Truth table for the circuit of the third example.NGAF = ((XY � (X + Z))(Y + (W � Z)))07 gates2 ANDs, 2 ORs, 2 XORs, 1 NOTTable 11: Result produced by our NGA for the third example.BGAF = (((W � Z) +WY)((X + Z)�XY))08 gates3 ANDs, 2 ORs, 2 XORs, 1 NOTTable 12: Result produced by our BGA for the third example.19

051015
20253035
40

0 50 100 150 200 250 300 350 400
�tness

generation numberFigure 8: Convergence graph of the NGA used to solve the third example.The feasibility barrier is indicated with a horizontal line (any value above itrepresents a fully functional circuit).
X

Y

Z

F

W

Figure 9: Circuit produced by our NGA for the third example.20

Human Designer 1F = (Z +WX)0 +XY + (WY 0)Z9 gates4 ANDs, 3 ORs, 2 NOTsTable 13: Result produced by a human designer for the third example.Human Designer 2F =W 0Z 0 +X 0Z 0 +XY +WY 0Z12 gates5 ANDs, 3 ORs, 4 NOTsTable 14: Results produced by a second human designer for the third ex-ample. A1 A0 B1 B0 C3 C2 C1 C00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1Table 15: Truth table for the 2-bit multiplier of the fourth example.21

010203040
5060708090

0 50 100 150 200 250 300
�tness

generation numberFigure 10: Convergence graph of the NGA used to solve the fourth example.The feasibility barrier is indicated with a horizontal line (any value above itrepresents a fully functional circuit).
A0

B0

A1

B1

C0

C1

C2

C3Figure 11: Circuit produced by our NGA for the fourth example.22

respectively. It should be mentioned that Miller et al. consider their solu-tion to contain only 7 gates because of the way in which they encoded theirBoolean functions (the reason is that they encoded NAND gates, which is acommon design practice). However, since we considered each gate as a sep-arate chromosomic element, we count each of them, including NOTs thatare associated with AND & OR gates. Regardless of that fact, it is moreimportant to point out that Miller et al. found their solution performing 50runs of 3,000,000 evaluations each, whereas in our case, we only performed30 runs of 600,000 evaluations each.Notice that the only di�erence between the solution produced by humandesigner 1 and the NGA is on the output C2. This is the sort of examplein which the solution may seem di�cult to achieve by a human designer,because by looking at the solution for C2 produced by the NGA, one couldthink that is more ine�cient. However, the NGA is actually reusing gateswhich, in terms of the overall circuit, turns out to be more e�cient, becauseit saves one gate with respect to the best solution produced by a humandesigner. With respect to the solution of Miller et al. [28], notice that ituses the same value for C2 as human designer 1, but it has a much morecomplex expression for C3. That is the reason why their overall circuit usestwo more gates than our solution.The parameters used by the NGA for this example are the following:crossover rate = 0.5, mutation rate = 0.007, population size = 2000, maxi-mum number of generations = 400. The best solution found by the BGA had8 gates, and was generated with a larger population (2500 chromosomes).The mutation rate used was 0.0022 as in the previous examples. of theNGA is shown in Figure 5.4. Convergence to the optimum in the case of theNGA was achieved in generation 220, and in the case of the BGA, the bestsolution reported was found in generation 691.5.5 Example 5Our �fth example has 4 inputs and 3 outputs, as shown in Table 19. In thiscase, the matrix used was of size 6�7, and the chromosomic length was 126for the case of the NGA (r = 6; q = 7; t = 6� 7 = 42; l = 3� t = 126), and378 for the case of the BGA (r = 6; q = 7; t = 6� 7 = 42; l = 9 � t = 378).The cardinality used for the NPGA was c = max(r; g) = 6. The size of theintrinsic search space for this problem is cl = 6126 � 1:1� 1098 for the NGAand 2378 � 6:16 � 10113 for the BGA. The graphical representation of thecircuit produced by the NGA is shown in Figure 12.The comparison of the results produced by the NGA, the BGA, and a23

NGA Human Designer 1C0 = A0B0 C0 = A0B0C1 = A0B1 � A1B0 C1 = A0B1 �A1B0C2 = A1B1 � (A0B0A1B1) C2 = A1B1(A0B0)0C3 = A0B0A1B1 C3 = A1A0B1B07 gates 8 gates5 ANDs, 2 XORs 6 ANDs, 1 XORs, 1 NOTTable 16: Results produced by our NGA and a human designer for thecircuit of the fourth example.BGA Human Designer 2C0 = A0B0 C0 = A0B0C1 = A0B1 �A1B0 C1 = (B1 + B0)(A1 + A0)((A1A0)� (B1B0))C2 = A0B0 � (A0B0 +A1B1) C2 = A1B1(A0B0)0C3 = A0B0A1B1 C3 = A1B1A0B08 gates 12 gates5 ANDs, 2 XORs, 1 OR 8 ANDs, 1 XOR, 2 ORs, 1 NOTTable 17: Results produced by the BGA and a second human designer forthe circuit of the fourth example.Miller et al.C0 = A0B0C1 = A1B0 �A0B1C2 = (A0B0)0(A1B1)C3 = (A1B0 � A0B1)0(A1B0)9 gates6 ANDs, 1 XORs, 2 NOTsTable 18: Results produced by Miller et al. for the circuit of the fourthexample. 24

A B C D F1 F2 F30 0 0 0 1 0 00 0 0 1 0 1 00 0 1 0 0 1 00 0 1 1 0 1 00 1 0 0 0 0 10 1 0 1 1 0 00 1 1 0 0 1 00 1 1 1 0 1 01 0 0 0 0 0 11 0 0 1 0 0 11 0 1 0 1 0 01 0 1 1 0 1 01 1 0 0 0 0 11 1 0 1 0 0 11 1 1 0 0 0 11 1 1 1 1 0 0Table 19: Truth table for the circuit of the �fth example.
A

B

C

D

F1

F2

F3Figure 12: Circuit produced by our NGA for the �fth example.25

010203040
5060708090

0 500 1000 1500 2000
�tness

generation numberFigure 13: Convergence graph of the NGA used to solve the �fth example.The feasibility barrier is indicated with a horizontal line (any value above itrepresents a fully functional circuit).human designer are shown in Tables 20, 21, 22, and 23.This is an extreme case of how the NGA can reuse blocks of the circuitto optimize the total number of gates. Notice how the functions producedby the NGA for each separated output are more complex, but since theyuse common blocks, the total number of gates is almost half of what one ofthe human designers required.The parameters used by the NGA for this example are the following:crossover rate = 0.5, mutation rate = 0.004, population size = 1000, maxi-mum number of generations = 2000. The best solution found by the BGAhad 11 gates and required a larger population (3500 chromosomes), runninga larger number of generations. The mutation rate used with the BGA was0.00132. The convergence graph of the NGA is shown in Figure 5.5. Con-vergence to the optimum in the case of the NGA was achieved in generation1059, and the best solution reported for the BGA was found in generation3755. 26

NGAF1 = ((A� C) + (B �D))0F2 = ((B �D) + (A� C))(((A� C)A � (D + (A� C))) + ((B �D) + (A� C))0F3 = (((A� C)A� ((A� C) +D)) + ((B �D) + (A� C))0)011 gates3 XORs, 3 ORs, 2 ANDs, 3 NOTsTable 20: Results produced by our NGA for the �fth example.BGAF1 = ((A� C) + (B �D))0F2 = ((A� C) + (B �D))� (((A� C) + (B �D))� ((C +A)�A))((C � A) +D0)F3 = ((C � A) +D0)(((B�D) + (A� C))� ((C +A)�A)10 gates5 XORs, 3 ORs, 1 ANDs, 1 NOTTable 21: Results produced by our BGA for the �fth example.Human Designer 1F1 = (A� C)0(B �D)0F2 = B0D(A0 + C) +A0CF3 = BD0(A+ C 0) +AC 019 gates2 XORs, 4 ORs, 7 ANDs, 6 NOTsTable 22: Results produced by a human designer for the �fth example.Human Designer 2F1 = (A� C)0(B �D)0F2 = A0C + (A� C)0(B0D)F3 = (F1 + F2)013 gates2 XORs, 2 ORs, 4 ANDs, 5 NOTsTable 23: Results produced by a second human designer for the �fth exam-ple. 27

6 DiscussionIt is interesting to notice that both the NGA and the BGA tend to favor theuse of XOR gates, since this gate allows to produce in many cases solutionswith a shorter symbolic representation. These solutions, however, are notentirely obvious for a human designer who can normally visualize easily onlydesigns with the basic gates (AND, OR, NOT) and with XORs that are notnested. The GA (using either representation), on the other hand, tendsto use very often nested XORs to produce the same e�ect that a humandesigner would achieve combining the basic gates. There it lies the mainreason for which the GA tends to produce circuits that are di�cult for ahuman to design and even to understand.However, from the two alternative chromosome representations presentedin this paper, our results show clearly the superiority of the NGA over theBGA both in terms of speed of convergence and in terms of total number ofevaluations performed. The reason seems to be the capability of the NGAto encapsulate a higher-level representation of a circuit, allowing less disrup-tion in the corresponding matrix (i.e., mutations produce more drastic butmeaningful changes in the circuit) than when using a binary representation.Although it may be argued that the relatively high number of evaluationsperformed by the GA (with either representation) is far beyond the searchcapabilities of a human designer, it must be said that the GA is in factexploring a minimum portion of the total search space that is intractableby simple brute force search methods. For instance, for the examples inwhich the size of the intrinsic search space is 2:6 � 1052, even assumingthat our computer could evaluate 1 � 1012 solutions per second, we wouldneed 8:39� 1032 years to explore the entire search space using a brute forceapproach.Some researchers might question the impact of this work in real-worldcircuit design, since the methodologies normally adopted by industry imposedi�erent speci�cations from those stated here. There are, however, some usesfor the methodology presented in this paper. One possible application canbe the evolution of circuits used for learning. Thompson [37], for example,used a GA to evolve the controller of a real robot in which the goal wasto \learn" a wall-avoidance behavior. However, another aspect that weconsider more important is the possibility of using the approach proposedin this paper to infer design principles. Some researchers have recentlysuggested the possibility of retrieving the knowledge that emerges duringthe design process using an evolutionary technique to re-discover and evenpropose new design rules [29]. This could be a very useful tool to teach28

circuit simpli�cation rules and could help us devise the design patterns usedby evolutionary algorithms to simplify Boolean functions.Finally, one issue that deserves attention is the scalability of the ap-proach to real-world circuits. The approach presented in this paper caneasily exceed the memory capabilities and processor speed of any work-station when applied to larger circuits unless their outputs are consideredseparately. This is an intrinsic limitation of the �xed-length representationadopted in this research, but we are exploring the use of more powerfulrepresentations (i.e., trees) that can overcome this limitation and allow thesolution of larger circuits in a reasonable amount of time [12]. So far, ourapproach is limited to circuits of up to 6 inputs (i.e., 64 entries) and 6 out-puts in their truth table (truth tables with don't cares can also be used).This limitation is, however, due to memory and CPU time constraints ofour current computer equipment, and not to the algorithm itself. In anycase, evolvable hardware in general is currently limited by the computingpower available and all evolvable hardware experiments conducted so farhave been on a small scale [39, 30, 11]. The two main problems commonlyassociated with scalability of evolvable hardware are the following [44]: 1)the scalability of the chromosome representation of electronic circuits and2) the computational complexity of an evolutionary algorithm. Regardingthe �rst issue, we can reach chromosomic lengths of a couple of thousandbits for circuits with 100 logic gates [38] and, if no constraint is imposed onthe connectivity of a circuit, then the length of a chromosome is expected togrow in the order of O(n2), where n is the number of functional components(e.g., logic gates) [44]. The second issue still remains open, since no one hasbeen able to establish the worst or average case time complexity of an evo-lutionary algorithm used to solve a particular problem, and current practicein evolvable hardware indicates that is rather common to perform runs thatlast several days to solve a single circuit with about 100 components (timeswill vary depending on the computer equipment available) [44].7 ConclusionsWe have shown a technique to design combinational logic circuits using agenetic algorithm, and we have explored the impact of changing from atraditional binary representation to a more compact n-cardinality represen-tation. Our NGA has been able to �nd circuits that are smaller (in termsof the total number of gates) than those produced by human designers andeven other GA-based approaches, performing a relatively small number of29

evaluations with respect to the total size of the search space.By analyzing the solutions produced by the NGA, it can be seen how itreuses components within a circuit as to reduce the total number of gates,even if in the process the Boolean expression for a certain output couldbecome more complex than the one produced by a human designer. Thisreuse of components seems to be the key to �nd simpli�ed versions of acircuit, but it becomes harder to understand it as we increase the complexityof the circuit.Future WorkIt is important to realize the di�culties of the GA (with either representa-tion) to even generate a feasible circuit in early generations. If proper matrixdimensions are not provided, the GA may not converge at all regardless ofthe parameters used.Although we have provided some basic guidelines to deal with this prob-lem, we want to explore more
exible representations that allow an easierencoding of variable-length Boolean expressions as to minimize the tune uprequired to design any sort of combinational circuit. We would also liketo extend our representation to handle circuits with more than two inputs.Right now, the most promising alternative seems to be the use of a GA withtree-representation (this approach is known as genetic programming [21]),but we still have to de�ne a way of optimizing the Boolean expressions pro-duced which are, generally, quite long, although we have some preliminaryresults along this research path [12]. Another possibility that we are con-sidering is the use of genetic programming with a grammar representationto generate circuits [42, 43]. The use of a grammar representation seemsto have several advantages, mainly because it can constraint the topologyof the circuits produced without reducing in a signi�cant way the genera-tive power of the evolutionary technique. Some preliminary work developedby Jones and Joines [17] seems to indicate that this research path is worthexploring.In the future we would also like to consider other factors in our �tnessfunctions, such as the number of levels, the number of packages of integratedcircuits used, the costs of each component, etc. Later on, we would like tomove towards more complex circuits (for example sequential), and considermore complex factors such as time delays. Also, it would be desirable tobuild a graphical interface to our system, which currently has a text-basedinterface that makes the interpretation of results a little bit di�cult for thosenot familiar with the software. 30

AcknowledgmentsThe authors thank the anonymous reviewers for their comments that greatlyhelped them to improve this paper. The �rst author acknowledges the sup-port received from CONACyT through project number I-29870 A.References[1] J. Wirt Atmar. Speculation on the Evolution of Intelligence and ItsPossible Realization in Machine Form. PhD thesis, New Mexico StateUniversity, Las Cruces, New Mexico, 1976.[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. KluwerAcademic Publishers, Dordrecht, The Netherlands, 1984.[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang.MIS: A multiple-level logic optimization system. IEEE Transactionson Computer-Aided Design, CAD-6 (6):1062{1081, November 1987.[4] Janusz A. Brzozowski and Michael Yoeli. Digital Networks. PrenticeHall, Englewood Cli�s, New Jersey, 1976.[5] Carlos Artemio Coello-Coello. An Empirical Study of EvolutionaryTechniques for Multiobjective Optimization in Engineering Design. PhDthesis, Department of Computer Science, Tulane University, New Or-leans, LA, April 1996.[6] Charles Darwin. The Origin of Species by Means of Natural Selectionor the Preservation of Favored Races in the Struggle for Life. The BookLeague of America, New York, 1929. Originally published in 1859.[7] Hugo de Garis. Evolvable Hardware: Genetic Programming of a Dar-win Machine. In Colin Reeves, R. F. Albrecht, and N. C. Steele, ed-itors, Proceedings of the International Conference on Arti�cial NeuralNets and Genetic Algorithms, pages 117{123, Inssbruck, Austria, 1993.Springer-Verlag.[8] George J. Friedman. Selective Feedback Computers for EngineeringSynthesis and Nervous System Analogy. Master's thesis, University ofCalifornia at Los Angeles, February 1956.31

[9] David E. Goldberg. Genetic Algorithms in Search, Optimizationand Machine Learning. Addison-Wesley Publishing, Reading, Mas-sachusetts, 1989.[10] John J. Grefenstette. Deception Considered Harmful. In L. DarrellWhitley, editor, Foundations of Genetic Algorithms 2, pages 75{91.Morgan Kaufmann, San Mateo, California, 1993.[11] H. Hemmi, J. Mizoguchi, and K. Shimohara. Development and evolu-tion of hardware behaviors. In E. Sanchez and M. Tomassini, editors,Toward Evolvable Hardware: The Evolutionary Engineering Approach(Lecture Notes in Computer Science, Vol. 1062), pages 250{265, Hei-delberg, Germany, 1996. Springer-Verlag.[12] Arturo Hern�andez-Aguirre, Carlos A. Coello-Coello, and Bill P. Buck-les. A Genetic Programming Approach to Logic Function Synthesis bymeans of Multiplexers. In Adrian Stoica, Didier Keymeulen, and Ja-son Lohn, editors, Proceedings of the First NASA/DoD Workshop onEvolvable Hardware, pages 46{53, Los Alamitos, California, 1999. IEEEComputer Society Press.[13] Tetsuya Higuchi, Masaya Iwata, Isamu Kaijitani, Masahiro Murakawa,Shuji Yoshizawa, and Tatsumi Furuya. Hardware evolution at gate andfunction level. In Proceedings of the International Conference on Bi-ologically Inspired Autonomous Systems: Computation, Cognition andAction, Durham, North Carolina, March 1996.[14] John H. Holland. Adaptation in Natural and Arti�cial Systems. Uni-versity of Michigan Press, Ann Harbor, Michigan, 1975.[15] John H. Holland. Adaptation in Natural and Arti�cial Systems. An In-troductory Analysis with Applications to Biology, Control and Arti�cialIntelligence. MIT Press, Cambridge, Massachusetts, 1992.[16] Hitoshi Iba, Masaya Iwata, and Tetsuya Higuchi. Gate-Level EvolvableHardware: Empirical Study and Application. In Dipankar Dasguptaand Zbigniew Michalewicz, editors, Evolutionary Algorithms in Engi-neering Applications, pages 260{275. Springer-Verlag, Berlin, 1997.[17] Eric A. Jones and William T. Joines. Genetic Design of ElectronicCircuits. In Scott Brave and Annie S. Wu, editors, Late Breaking Papersat the 1999 Genetic and Evolutionary Computation Conference, pages125{133, Orlando, Florida, August 1999.32

[18] M. Karnaugh. A map method for synthesis of combinational logic cir-cuits. Transactions of the AIEE, Communications and Electronics, 72(I):593{599, November 1953.[19] Randy H. Katz. Contemporary logic design. Benjamin/Cummings Pub-lishing Co., Redwood City, California, 1994.[20] Hiroaki Kitano and James A. Hendler, editors. Massively Parallel Ar-ti�cial Intelligence. MIT Press, Cambridge, Massachusetts, 1994.[21] John R. Koza. Genetic Programming. On the Programming of Com-puters by Means of Natural Selection. MIT Press, Cambridge, Mas-sachusetts, 1992.[22] John R. Koza, David Andre, III Forrest H. Bennett, and Martin A.Keane. Use of automatically de�ned functions and architecture-alteringoperations in automated circuit synthesis with genetic programming.In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.Riolo, editors, Proceedings of the First Annual Conference on GeneticProgramming, pages 132{140, Cambridge, Masachussetts, July 1996.Stanford University, MIT Press.[23] John R. Koza, III Forrest H. Bennett, David Andre, and Martin A.Keane. Automated WYWIWYG design of both the topology andcomponent values of electrical circuits using genetic programming. InJohn R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Ri-olo, editors, Proceedings of the First Annual Conference on GeneticProgramming, pages 123{131, Cambridge, Masachussetts, July 1996.Stanford University, MIT Press.[24] Sushil J. Louis. Genetic Algorithms as a Computational Tool for De-sign. PhD thesis, Department of Computer Science, Indiana University,August 1993.[25] Sushil J. Louis and Gregory J. Rawlins. Using Genetic Algorithms toDesign Structures. Technical Report 326, Computer Science Depart-ment, Indiana University, Bloomington, Indiana, February 1991.[26] E. J. McCluskey. Minimization of boolean functions. Bell SystemsTechnical Journal, 35 (5):1417{1444, November 1956.[27] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evo-lution Programs. Springer-Verlag, New York, third edition, 1996.33

[28] J. F. Miller, P. Thomson, and T. Fogarty. Designing Electronic CircuitsUsing Evolutionary Algorithms. Arithmetic Circuits: A Case Study. InD. Quagliarella, J. P�eriaux, C. Poloni, and G. Winter, editors, GeneticAlgorithms and Evolution Strategy in Engineering and Computer Sci-ence, pages 105{131. Morgan Kaufmann, Chichester, England, 1998.[29] Julian F. Miller, Tatiana Kalganova, Natalia Lipnitskaya, and DominicJob. The Genetic Algorithm as a Discovery Engine: Strange Circuitsand New Principles. In Proceedings of the AISB Symposium on CreativeEvolutionary Systems (CES'99), Edinburgh, Scotland, April 1999.[30] Julian F. Miller and Peter Thomson. Evolving Digital Electronic Cir-cuits for Real-Valued Function Generation using a Genetic Algorithm.In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, KalyanmoyDeb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Gold-berg, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming:Proceedings of the Third International Conference, pages 863{868, SanFrancisco, California, 1999. Morgan Kaufmann Publishers.[31] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,Cambridge, Massachusetts, 1996.[32] W. V. Quine. A way to simplify truth functions. American Mathemat-ical Monthly, 62 (9):627{631, 1955.[33] Simon Ronald. Robust Encodings in Genetic Algorithms. In Di-pankar Dasgupta and Zbigniew Michalewicz, editors, Evolutionary Al-gorithms in Engineering Applications, pages 29{44. Springer-Verlag,Berlin, 1997.[34] Charles H. Roth, Jr. Fundamentals of Logic Design (4th Edition). WestPublishing Company, Minneapolis, 1992.[35] Tsutomu Sasao, editor. Logic Synthesis and Optimization. KluwerAcademic Press, Dordrecht, The Netherlands, 1993.[36] C. E. Shannon. A symbolic analysis of relay and switching circuits.Transactions of the AIEE, 57:713{723, 1938.[37] Adrian Thompson. Evolving electronic robot controllers that exploithardware resources. In Proceedings of the 3rd European Conference onArti�cial Life (ECAL'95), pages 640{656. Springer-Verlag, 1995.34

[38] Adrian Thompson, I. Harvey, and Philip Husbands. Unconstrained evo-lution and hard consequences. In E. Sanchez and M. Tomassini, editors,Toward Evolvable Hardware: The Evolutionary Engineering Approach(Lecture Notes in Computer Science, Vol. 1062), pages 136{165, Hei-delberg, Germany, 1996. Springer-Verlag.[39] Adrian Thompson, Paul Layzell, and Ricardo Salem Zebulum. Ex-plorations in Design Space: Unconventional Design Through Arti�cialEvolution. IEEE Transactions on Evolutionary Computation, 3(3):167{196, September 1999.[40] Brian C. H. Turton. Extending Quine-McCluskey for Exclusive-OrLogic Synthesis. IEEE Transactions on Education, 39(1):81{85, Febru-ary 1996.[41] E. W. Veitch. A Chart Method for Simplifying Boolean Functions.Proceedings of the ACM, pages 127{133, May 1952.[42] P. A. Whigham. Grammatically-based Genetic Programming. InJ. Rosca, editor, Proceedings of the Workshop on Genetic Program-ming: From Theory to Real-World Applications, pages 33{41. MorganKaufmann Publishers, July 1995.[43] Peter Wyard. Context Free Grammar Induction Using Genetic Algo-rithms. In Richard K. Belew and Lashon B. Booker, editors, Proceedingsof the Fourth International Conference on Genetic Algorithms, pages512{517, San Mateo, California, 1991. Morgan Kaufmann.[44] Xin Yao and Tetsuya Higuchi. Promises and Challenges of EvolvableHardware. In Tetsuya Higuchi, Masaya Iwata, and W. Liu, editors,Proceedings of the First International Conference on Evolvable Systems:From Biology to Hardware (ICES'96), Lecture Notes in Computer Sci-ence, Vol. 1259, pages 55{78, Heidelberg, Germany, 1997. Springer-Verlag.
35

Carlos A. Coello Coello received his Ph.D. in ComputerScience from Tulane University in 1996. He has been seniorresearch fellow at the Plymouth Engineering Design Centre(UK), and is currently a researcher at LANIA, in M�exico.His current interest is the use of evolutionary techniques forengineering optimization, manufacturing and design.Alan D. Christiansen received his Ph.D. in ComputerScience from Carnegie Mellon University in 1992, andjoined the Tulane University faculty in 1993. He has alsobeen employed at Sandia National Laboratories, MicrosoftCorporation, and Science Applications International Cor-poration. His research interests include arti�cial intelli-gence, robotics, computer graphics, modeling and simula-tion.Arturo Hern�andez Aguirre received his Ph.D. in Com-puter Science from Tulane University in 1999. He workedfor several years at the Arturo Rosenblueth Foundation asa Software Consultant in Mexico City and is currently aVisiting Professor at Tulane University. His research inter-ests include computational learning, neural networks, andevolutionary computation.

36

