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Abstract

A cultural algorithm with a differential evolution population is pro-
posed in this paper. This cultural algorithm uses different knowledge
sources to influence the variation operator of the differential evolution
algorithm, in order to reduce the number of fitness function evaluations
required to obtain competitive results. Comparisons are provided with
respect to three techniques that are representative of the state-of-the-art
in the area. The results obtained by our algorithm are similar (in qual-

ity) to those obtained by the other approaches with respect to which it
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was compared. However, our approach requires a lower number of fitness

function evaluations than the others.

Keywords: evolutionary algorithms, optimization, differential evolution, cul-

tural algorithms, evolutionary optimization.

1 Introduction

Evolutionary computation techniques have been successfully applied in many
types of problems, mainly related to optimization tasks [1, 30]. However, evo-
lutionary algorithms are considered “blind heuristics” because they do not nor-
mally require information about the problem but only the relative assessment
of the quality of the solutions produced (through the so-called “fitness func-
tion”). This fact is also the reason of their generality, because we don’t need to
know any feature of the problem to solve, only to assign the fitness of any given
solution.

The use of domain knowledge within an evolutionary algorithm has been
successfully used to improve its performance when limiting the use of such evo-
lutionary algorithm to a certain specific problem or group of problems [19]. By
incorporating domain-specific knowledge, we obviously remove generality to the
evolutionary algorithm, because such domain knowledge can be extracted and
adopted only when dealing with the specific problem at hand. However, at the
same time, we are replacing some of the stochastic nature of the evolutionary
algorithm by deterministic information. This extra information will increase
the selection pressure and will normally accelerate convergence (note, however,
that this improved convergence rate may also degenerate into premature con-
vergence, when reaching a local optimum instead of the global optimum). It
is worth noticing that the incorporation of domain-specific knowledge into an

evolutionary algorithm is one of the choices that have been suggested [12] to



circumvent the limitations imposed by the famous “No Free Lunch” theorem,
which roughly states that all heuristics are equally efficient when measuring
their performance over all possible problems [39].

Cultural algorithms are evolutionary computation techniques that extract
domain knowledge during the evolutionary process aiming to improve perfor-
mance. In this work, we explore some of the benefits of this type of incorporation
of domain knowledge when applied to constrained optimization problems.

Evolutionary algorithms have been very successfully applied to constrained

optimization problems [6], mainly due to some features such as the following:

e They are population-based techniques, which makes them less prone to

get trapped in local optima.

e They are less susceptible to the characteristics of the function to be opti-
mized than traditional optimization techniques (e.g., they can deal with

non-differentiable objective functions).

e They are very easy to implement and use, which has contributed to make
them very popular in a wide variety of engineering and scientific disci-

plines.

Despite the considerable amount of work on the use of evolutionary algo-
rithms for constrained optimization, there are relatively few researchers that
have devised mechanisms to incorporate knowledge from the problem in order
to guide an evolutionary algorithm. As indicated before, by adding domain
knowledge, we aim to accelerate the convergence of an evolutionary algorithm.
The motivation of the work reported in this paper was precisely to provide a
mechanism that can extract knowledge from the problem during the evolution-
ary process, such that we can accelerate its convergence. Such a mechanism is

developed using as a basis a cultural algorithm.



The remainder of this paper is organized as follows. In Section 2, we provide
some basic concepts related to cultural algorithms together with a brief review
of the most important previous (related) work. In Section 3, we describe the
basic differential evolution algorithm and we briefly review the most represen-
tative previous work on constrained optimization. In Section 4, we describe
our proposed approach. In Section 5, we compare our approach with respect to
techniques representative of the state-of-the-art in the area using a well-known
benchmark plus two engineering optimization problems. Finally, in Section 6,

we draw our conclusions and provide some possible paths for future research.

2 Cultural Algorithms

Cultural algorithms are techniques that add domain knowledge to evolution-
ary computation methods. They are based on the assumption that domain
knowledge can be extracted during the evolutionary process, by means of the
evaluation of each point generated [32]. This process of extraction and use of
the information, has been shown to be very effective in decreasing computa-
tional cost while approximating global optima, in unconstrained, constrained
and dynamic optimization [34, 5, 18, 36].

Cultural algorithms are made of two main components: the population
space, and the belief space [33]. The population space consists of a set of
possible solutions to the problem, and can be modeled using any population
based technique, e.g. genetic algorithms [14]. The belief space is the informa-
tion repository in which the individuals can store their experiences for the other
individuals to learn them indirectly. In cultural algorithms, the information
acquired by an individual can be shared with the entire population.

Both spaces (i.e., population space and belief space) are linked through a

communication protocol, which states the rules about the individuals that can



contribute to the belief space with their experiences (the acceptance function),
and the way the belief space can influence to the new individuals (the influence
function). Those interactions are depicted in Figure 1.

Originally, when cultural algorithms were applied to real parameter opti-
mization, genetic algorithms were used as a population space [32]. Later on,
evolutionary programming appeared as a better choice [4] for the population
space than genetic algorithms when dealing with unconstrained search spaces.
The evolutionary programming algorithm was the most commonly used search
engine in cultural algorithms [5, 18, 7], until the advent of particle swarm op-
timization [20] in [17], which shred light regarding the potential use of new
evolutionary methods with better performance in real parameter optimization.

Differential evolution [31] is a recently developed evolutionary algorithm,
focused on the solution of real paramenter optimization problems. Differen-
tial evolution has been found to be a very robust optimization technique [38].
However, to the authors’ best knowledge, we are the first to propose the use of

differential evolution as the population space of a cultural algorithm.

2.1 Previous Work

Reynolds et al. [34] and Chung & Reynolds [5] have explored the use of cul-
tural algorithms for global optimization with very encouraging results. Chung
and Reynolds use a hybrid of evolutionary programming and GENOCOP [27]
in which they incorporate an interval constraint-network to represent the con-
straints of the problem at hand.

In [5], Chung and Reynolds use evolutionary programming with a mutation
operator influenced by the best individual found so far, and the intervals where
good solutions have been found. They call their approach “CAEP”, or Cultural

Algorithms with Evolutionary Programming.



In more recent work, Jin and Reynolds [18] proposed an n-dimensional
regional-based scheme, called belief-cell, as an explicit mechanism that sup-
ports the acquisition, storage and integration of knowledge about nonlinear
constraints in a cultural algorithm. The idea of Jin and Reynolds’ approach is
to build a map of the search space which is used to derive rules about how to
guide the search of the evolutionary algorithm (avoiding infeasible regions and
promoting the exploration of feasible regions).

Using the same population space (evolutionary programming), Saleem pro-
poses a cultural algorithm for dealing with dynamic environments [36], which
adds two more ways to incorporate domain knowledge to CAEPs, in addition to
the existing Chung’s and Jin’s proposals. These knowledge sources are designed
to extract patterns in environmental changes.

Using as a basis the work of Jin and Reynolds, an algorithm for constrained
optimization was developed in [7, 8], where a spatial data structure is incor-
porated to store the map of the feasible region, and also new rules are used in
several phases of the algorithm.

In [17], Iacoban et al. change the evolutionary programming algorithm of the
population space for a particle swarm optimizer [20]. They make an analysis
of the effects of the belief space over the evolutionary process, showing the
similarities with the approach in which evolutionary programming is adopted,

and identifying the phases of the search process with a belief space.

3 Differential Evolution

Differential evolution is an evolutionary algorithm originally proposed by Price
and Storn [31], whose main design emphasis is real parameter optimization.
Differential evolution is based on a mutation operator, which adds an amount

obtained by the difference of two randomly chosen individuals of the current



Generate initial population of size popsize
Do
For each individual j in the population
Generate three random integers, r1, r2 and r3 € (1, popsize),
with r1 #£ro £r3#j

Generate a random integer iyqnq € (1,71)

For each parameter ¢
r { ZTirs + F % (Tir1 — xip2) if rand;(0,1) < CR or @ = trand

T; =

J Zij otherwise
End For
Replace z; with the child m;, if m; is better
End For

Until the termination condition is achieved

Figure 1: Pseudo-code of the differential evolution algorithm adopted in this
work (this version is called DE/rand/1/bin)

population, in contrast to most evolutionary algorithms, in which the mutation
operator is defined by a probability function.

The basic algorithm of differential evolution is shown in Figure 1, where the
problem to be solved has n decision variables, F' and CR are parameters given
by the user, and z;; is the i-th decision variable of the j-th individual in the
population.

The authors of the differential evolution algorithm have suggested that by
computing the difference between two individuals randomly chosen from the
population, the algorithm is actually estimating the gradient in that zone (rather
than in a point). This approach also constitutes a rather efficient way to self-
adapt the mutation operator (as a matter of fact, the differential evolution algo-
rithm is also capable of self-adapting both the step sizes and the step direction,
since they both depend of the current solutions in the population). Furthermore,
when adopting CR = 1, the variation operator is rotationally invariant [31],
which means that the differential evolution algorithm supports self-adaptation
at the same level that an evolution strategy with covariance matrices to self-

adapt its standard deviations (this is the most complete self-adaptation scheme



available in evolution strategies).

Another important feature of the differential evolution algorithm, is the local
criterion of the selection operator, which is efficient and fast.

The version of differential evolution shown in Figure 1, is called
DE/rand/1/bin, and is recommended to be the first choice when trying to ap-
ply differential evolution to any given problem [31]. That is the reason why we
adopted it for the work reported in this paper. However, there are some other
versions of the differential evolution algorithm, and the modifications made here
to the variation operator may have certain similarities with some of those ver-

sions, as we will note later on.

3.1 Differential Evolution in Constrained Optimization

There have been very few approaches for handling constraints based on differ-
ential evolution. We will review next the most representative of them.

One of the original developers of differential evolution, Storn, proposed con-
straint adaptation [38], in which all the constraints of the problem at hand are
relaxed, so that all the individuals in the initial population become feasible. The
constraints are reduced toward their original versions at each generation, but
the individuals must always remain feasible (i.e., different relaxations are ap-
plied at each generation). The author says that this approach is not suitable for
handling equality constraints, and one of its main applications is constraint sat-
isfaction (where only constraint violation is important, and there is no objective
function).

Another constraint handling technique is the one proposed by Lampinen [25].
He states some rules for the replacement made during the selection procedure,

that can be summarized as follows:

e If both individuals are feasible, the one with a better value of the objective



function always wins.

o If the newly generated individual is feasible, as his parent is infeasible, the

new individual is used for the next generation.

e If both individuals are infeasible, the parent is replaced if the new indi-
vidual has lower or equal violation for all the constraints (this comparison

is made in the Pareto sense in the constraint violation space).

The rest of the differential evolution algorithm remains the same. The experi-
ments are done with 10 of the 11 test functions proposed in [21]. Some previous
versions of this algorithm appeared in [24, 23], where the replacement rules were
not as complete as in [25], and less test problems were taken into account.

A previously porposed algorithm which uses a very similar set of rules, even
when it is not based in differential evolution, is the one proposed by Deb [10].
As in the case of Lampinen, this approach does not need any extra parameter for
the constraint-handling mechanism, but the main search engine in this case is a
genetic algorithm. A key difference between the set of rules of both algorithms
is the comparison for the case of two infeasible individuals: while Lampinen
makes a comparison in the Pareto sense, Deb sums all the constraint violations
and compares a single value. Also, note that Deb’s approach requires niching
[11] to maintain diversity.

Simultaneously to Lampinen, Lin et al. [26] proposed the use of an aug-
mented Lagrangian function to guide the search, with a newly developed method
to update the multipliers. In a first phase, the multipliers are constant and the
problem is minimized. During a second phase, the multipliers are updated and
the algorithm tries to maximize the dual function.

Lin et al. [26] called their approach hybrid differential evolution, because

they add some new steps to the original algorithm. Such steps are acceleration



Generate initial population
Evaluate initial population
Initialize the belief space
Do
For each individual in the population
Apply the variation operator influenced by a randomly chosen
knowledge source
Evaluate the child generated
Replace the individual with the child, if the child is better
End for
Update the belief space with the accepted individuals
Until the termination condition is achieved

Figure 2: Pseudo-code of the cultured differential evolution.

and migration, and are used when the current population has either too much

or no diversity.

4 Our Proposed Approach

Our proposed approach uses differential evolution in the population space. A
pseudo-code of our approach (called cultured differential evolution) is shown in
Figure 2.!

In the initial steps of the algorithm, a population of popsize individuals is
created, as well as a belief space. For the offspring generation, the variation
operator of the differential evolution algorithm is influenced by the belief space.

Since we want to solve constrained optimization problems, the objective
function by itself does not provide enough information as to guide the search
properly. To determine if a child is better than its parent, and, therefore, it can

replace it, we use the following rules:

1. A feasible individual is always better than an infeasible one.

LA public-domain implementation of our approach (in the C programming language under
Linux) is available for download at: http://www.cs.cinvestav.mx/“EVOCINV/software/
Cultured Differential Evolution/principal.html
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2. If both are feasible, the individual with the best objective function value

is better.

3. If both are infeasible, the individual with less amount of constraint viola-

tions is better.

The amount of constraint violation is measured with normalized constraints,

with the use of the following expression:

constr
viol(z;) = Z 9e(2;)

c=1 gmawc

where g.(z) are the constr constraints of the problem, and g,z is the largest
violation of the constraint g.(x) found so far.

These tournament rules were inspired from previous works ([25, 10]). When
comparing infeasible individuals, the proposed approach is more similar to the
Deb’s approach, since Lampinen’s approach makes the comparison of violations
in the Pareto sense. However, the expression above describes the normalization
of the constrains; this is done with the intention that every constraint has the
same contribution to the comparing value, despite of the units in which each
constraint is expressed. Such a normalization was not made in the Deb’s ap-
proach. Also, our approach does not use niching to maintain diversity, as in
Deb’s proposal [10].

A shared feature of the three approaches is the fact that the evaluation of
the objective function is only needed when comparing two feasible individuals,
as can be seen from the tournament rules above, reducing the amount of CPU
time when solving highly constrained problems.

The rest of the algorithm, described below, is rather different from the pre-

vious approaches.
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4.1 The Belief Space

In our approach, the belief space is divided in four knowledge sources, described

next.

4.1.1 Situational Knowledge

Situational knowledge consists of the best exemplar E found along the evolu-
tionary process. It represents a leader for the other individuals to follow.

To initialize the situational knowledge, it is necessary to have an initial
population, so that we can find the best individual and store it.

The variation operators of differential evolution are influenced in the follow-
ing way:

1
T; ;= Ei + F % (Tir1 — Tiro)

where E; is the i-th component of the individual stored in the situational knowl-
edge. This way, we use the leader instead of a randomly chosen individual for
the recombination. This has the effect of pushing the children closer to the best
point found.

This way of influencing the variation operator was previously proposed in
[37], and is called DE/best/1/bin (if the other mechanisms remain the same as
in DE/rand/1/bin; in fact, the word “rand” or “best” indicates if the individual
r3 is chosen at random or is the best of the population). The difference with that
previous proposal is that we use several modifications of the variation operator,
and not only one.

The update of the situational knowledge is done by replacing the stored
individual, E, by the best individual found in the current population, Tpest,

only if Zpest is better than E.

12
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Figure 3: Structure of the normative knowledge

5 Tpest 1if Tpest 1S better than F
E otherwise

4.1.2 Normative Knowledge

The normative knowledge contains the intervals for the decision variables where
good solutions have been found, in order to move new solutions towards those
intervals. Thus, the normative knowledge has the structure shown in Figure 3.

In Figure 3, I; and u; are the lower and upper bounds, respectively, for
the i-th decision variable, and L; and U; are the values of the fitness function
associated with that bound. Also, the normative knowledge includes a scaling
factor, dm;, to influence the mutation operator adopted in differential evolution.

To initialize the normative knowledge, all the bounds are set to the intervals
given as input data of the problem. L; and U; are set to 400, assuming a
minimization problem, and dm; = u; — l;, for i =1,2,...,n.

The following expression shows the influence of the normative knowledge on

the variation operators:

Tirs + F % |25 01 — 4 00| if 2503 <
i =\ Tirs — F % |2 — Zirol if 25,03 > u;

ui—l; :
Tigs + 4t x F % (Tir1 — Tiy2)  otherwise

ui—l;

e for the mutation to be proportional to

We introduce the scaling factor

the interval of the normative knowledge for the i-th decision variable. The values
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dmy; are initialized with u; — [; to have a null influence at the first generation.

The wupdate of the normative knowledge is as follows: let
Tal,Ta2s -+ s Tangeceprea PE the accepted individuals in the current generation,
and ZTpin, and Tpag,, With min;, maz; € {al,a2,...,ngccepteq}, be the indi-

viduals with minimum and maximum values for the parameter ¢ between the

accepted individuals, then

Timing i Timing <1 V f(@min:) < L

l; otherwise

and

Timax; if Timaz; > Ui \ f(xma:ci) < Ul
U; =
U; otherwise

In words, the update will reduce or expand the intervals stored on normative
knowledge. An expansion takes place when the accepted individuals do not fit in
the current interval, while a reduction occurs when all the accepted individuals
lie inside the current interval, and the extreme values have a better fitness and
are feasible.

If the values of I; or u; are updated, the same must be done with L; or U;.

The dm,; values are updated with the greatest difference |2; 1 — ; r2| found

during the application of the variation operators at the previous generation.

4.1.3 Topographical Knowledge

The usefulness of the topographical knowledge is to create a map of the fitness
landscape of the problem during the evolutionary process. It consists of a set
of cells, and the best individual found on each cell. The topographical knowl-
edge, also, has an ordered list of the best b cells, based on the fitness value of

the best individual on each of them. For the sake of a more efficient memory
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management, in the presence of high dimensionality (i.e., too many decision
variables), we use an spatial data structure, called k-d tree, or k-dimensional
binary tree [3]. In k-d trees, each node can only have two children (or none, if
it is a leaf node), and represents a division in half for any of the k dimensions
(see Figure 2).

To initialize the topographical knowledge, we only create the root node,
which represents the entire search space, and contains the best solution found
in the initial population.

The influence function tries to move the children to any of the b cells in the

list:

Tips + F x|Tim — Tigo| i 2ips <lic
Tij = Tips— F*|ir —xire| if 2403 > uie
Zirs + F % (25,1 — 2502) otherwise
where [; . and u; . are the lower and upper bounds of the cell ¢, randomly chosen
from the list of the b best cells.

The update function splits a node if a better solution is found in that cell,
and if the tree has not reached its maximum depth. The dimension in which the
division is done, is the one that has a greater difference between the solution
stored and the new reference solution (i.e., the new solution considered as the

“best” found so far).

4.1.4 History Knowledge

This knowledge source was originally proposed for dynamic objective functions,
and it was used to find patterns in the environmental changes [36]. History
knowledge records in a list, the location of the best individual found before each
environmental change. That list has a maximum size w.

The structure of history knowledge is shown in Figure 4, where e; is the

best individual found before the i-th environmental change, ds; is the average
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Figure 4: Structure of the history knowledge

distance of the changes for parameter i, and dr; is the average direction if there
are changes for parameter i. In our approach, instead of detecting changes of
the environment, we store a solution if it remains as the best one during the
last p generations. If this happens, we assume that we are trapped in a local
optimum.

The expression of the influence function of the history knowledge is the

following:

eiq +drix F x|z, — 2502 if rand(0,1) < o

Tij =9 €1+ j,f;i. * (Tip1 — Tip2) if rand(0,1) < B
rand(lb;, ub;) otherwise

where e; ; is the i-th decision variable of the previous best e; stored in the list
of the history knowledge, dm; is the maximum difference for the i-th variable,
stored in the normative knowledge, Ib; and ub; are the lower and upper bounds
of the variable z;, given as input for the problem, and rand(a,b) is a random
number between a and b.

To update the history knowledge, we add to the list any local optima found
during the evolutionary process. If the list has reached its maximum length w,
the oldest element is discarded. The average distances and directions of change

are calculated by:

ds; = Yt leike1 — il
’ w—1
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w—1
dr; = sgn (Z sgn (ei,k+1 - ei,k))

k=1

where the function sgn(a) returns the sign of a.

4.2 Acceptance Function

The number of individuals accepted for the update of the belief space is com-
puted according the design of a dynamic acceptance function proposed by
Saleem [36]. The number of accepted individuals decreases as the generation
number increases.

Saleem [36] suggests to reset the number of accepted individuals when an
environmental change occurs. In our case, we reset the number of accepted
individuals when the best solution has not changed in the last p generations.

We get the number of accepted individuals, ngccepted, With the following

expression:

(1 — %p) *popsizeJ

Naccepted = {%p * popsize + P

where %p is a parameter given by the user, within the range (0, 1]; Saleem [36]
suggests using 0.2. g is the generation counter, but is reset to 1 when the best

solution has not changed in the last p generations.

4.3 Main Influence Function

The main influence function is responsible for choosing the knowledge source to
be applied to the variation operator of differential evolution. At the beginning,
all the knowledge sources have the same probability to be applied, %pgs = %,

because there are 4 knowledge sources; but during the evolutionary process, the

17



probability of the knowledge source ks to be applied is:

v
Yoprs = 0.1+ 0.6%
where vy are the times that an individual generated by the knowledge source
ks outperforms its parent in the current generation, and v are the times that an
individual generated (by any knowledge source) outperforms its parent in the
current generation. The lower bound of %p is the arbitrary value 0.1, to ensure

that any knowledge source has always a probability > 0 to be applied. If v =0

during a generation, %pgs = %, as in the beginning.

4.4 Parameters of the Technique

The proposed approach has several parameters that the user must set by hand
in order to successfully use the algorithm. The following is a list of all the

parameters and some suggestions about their settings:

e Population size, popsize, is the number of individuals in the population.
A value as small as 10 gives good results in “easy” (i.e., with few decision
variables and constraints easy to satisfy) problems. However, in general,
we recommend to adopt a population size of 100. Larger sizes may be
adopted, but such values are recommended only for very hard problems if

one can afford the extra computational cost.

o Maximum number of generations. It is the number of iterations that the
algorithm will run. This parameter, together with the population size,
defines the number of fitness function evaluations that the approach will
perform. For easy problems, one may start with 100 or 200 generations.
Then, if necessary, this value can get increased until no improvement in

the results is obtained. In general, and based on our own experience, we

18



suggest to set this parameter to 1,000.

F and CR are the parameters of differential evolution. These parameters
can be set following the suggestions in [31]. Good default values are F' =

0.5and CR =1.

Maximum depth of the k-d tree. The larger this value, the more accurate
will be the map generated by the topographical knowledge source, but
more memory will be needed. If m is this maximum depth, the tree can
have up to 2™ — 1 nodes. This parameter depends on the free memory
available in the device in which the algorithm will run. With a maxi-
mum depth of 12, the algorithm can have up to 4095 nodes, which is a
manageable value for most current computers. So, we suggest to set this

parameter to 12.

The length of the best cells list is the number of independent cells that
will be considered for the topographical knowledge. We suggest to adopt
a number of independent cells equal to the number of decision variables

of the problem.

The size of the list in the history knowledge, w, is the number of previous
local optima that will be considered when looking for the next one. This
parameter has little influence on the performance of the algorithm when
the distribution of the local optima is not regular in the problem. We

recommend to set this parameter to 5.

a and B have little influence on performance, and can be fixed to 0.4 or

0.45.

%p is the percentage of accepted individuals at the end of the evolutionary

process. Saleem [36] suggests using 0.2, which is the value that we adopted.
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However, this value must be increased if the algorithm exhibits premature

convergence.

5 Comparison of Results

To validate our approach, we adopted the well-known benchmark originally
proposed in [28] and extended in [35] which has been often used in the literature
to validate new constraint-handling techniques. The 13 test problems are listed
in Appendix A.

The parameters used by our approach are the following: popsize = 100,
maximum number of generations = 1000, the factors of differential evolution
are F' = 0.5 and CR = 1, maximum depth of the k-d tree = 12, length of
the best cells list b = 10, the size of the list in the history knowledge w = 5,
a = f = 045, and %p = 0.2. These parameters were derived empirically
after numerous experiments. This parameter setting was chosen to be a good
compromise for all the test functions; optimal settings for each problem may
exist, but they are not reported here. It is worth noticing that we did not spend
too much effort in performing a very thorough parameters fine-tuning, since we
found that our approach was relatively robust. However, it is expected that a
better performance (even if only marginal in some cases) may be obtained with
different settings. For each test function, we performed 30 independent runs.

We compare our approach against five state-of-the-art approaches: the Ho-
momorphous Mappings (HM) [21], Stochastic Ranking (SR) [35], the Adaptive
Segregational Constraint Handling Evolutionary Algorithm (ASCHEA) [16], a
Constraint Handling Method for Genetic Algorithms (TS) [10], and a Constraint
Handling Approach for Differential Evolution (DE) [25]. The best results ob-
tained by each approach are shown in Table 2. The mean values provided are

compared in Table 3 and the worst results are presented in Table 4. The results
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provided by these approaches were taken from the original references for each
method.

HM performs a homomorphous mapping between an n-dimensional cube
and a feasible search space (either convex or non-convex). The main idea of
this approach is to transform the original problem into another (topologically
equivalent) function that is easier to optimize by an evolutionary algorithm.
HM handles two cases: convex feasible space and nonconvex feasible space. HM
uses a binary-coded GA with Gray codes, proportional selection without elitism
and traditional crossover and mutation operators.

The aim of SR is to balance the influence of the objective function and the
penalty function when assigning fitness to a solution. SR does not require the
definition of a penalty factor. Instead, a user-defined parameter called Py sets
the probability of using only the objective function to compare two solutions to
sort them. The selection process is based on a ranking process. Then, when the
solutions are sorted using a bubble-sort like algorithm, sometimes, depending
of the P; value, the comparison between two adjacent solutions will be per-
formed using only the objective function. The remaining comparisons will be
performed using only the penalty function that consists, in this case, of the sum
of constraint violation. SR uses a (30, 200)-ES with global intermediate recom-
bination applied only to the strategy parameters (not to the decision variables
of the problem).

ASCHEA is based on three components: (1) an adaptive penalty function,
(2) a constraint-driven recombination, and (3) a segregational selection based
on feasibility. In ASCHEA’s most recent version [16], the authors propose to
use a penalty factor for each constraint of the problem. Also, the authors
added a niching mechanism [11] to improve the performance of the algorithm in

multimodal functions. Finally, the authors added a dynamic and an adaptive
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scheme to decrease the tolerance value used in the transformation of equality
constraints into two inequality constraints. The approach uses a (100 + 300)-ES
with standard arithmetical recombination.

The approaches TS and DE were briefly described in Section 3.1.

The results of HM were obtained with 1,400,000 evaluations of the fitness
function, the results of SR required 350,000 evaluations, and the results of the
ASCHEA technique were obtained with 1,500,000 evaluations of the fitness
function. The results reported for TS and DE required a variable number of fit-
ness function evaluations and used different parameter settings for each problem.
It is worth saying that when tunning the parameters for each particular prob-
lem, our algorithm can achieve better results, but the intention here is to show
the capabilities of the proposed algorithm, when not too much effort is spent
in the adjustment of the algorithm’s parameters to the problem at hand. TS
required from 250,050 to 350,100 function evaluations (in the original source,
the number of evaluations and maximum generations for the problem g01 are
missing), and DE required from 10,000 to 12,000,000 function evaluations.
Our approach required 100,100 evaluations in all the test problems adopted.

In the problem g01, the best result obtained was f(z) = —15.000000, with
z = {1.000000,1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 3.000000, 3.000000, 3.000000, 1.000000} and the values
gi(x) = {0.000000,0.000000,0.000000, —5.000000, —5.000000, —5.000000,
0.000000, 0.000000, 0.000000} for the constraints. The cultured diferential evo-
lution, SR and DE reached the optimum value in all the 30 runs performed.
TS reached the optimum in its best and median case, ASCHEA reached the
optimum only in its best case, and HM could not reach the optimum.

For the problem g02, SR has a lower variability than the cultured differen-

tial evolution. However, our approach can get the optimum value in some of
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the runs, and HM, SR and ASCHEA were unable to do it. The best value ob-
tained was f(z) = —0.803619, with = {3.162681, 3.128106, 3.095032, 3.061492,
3.028413,2.994410, 2.957990, 2.921746, 0.495094, 0.488762, 0.481956, 0.476491,
0.472845,0.465291,0.461291, 0.457043, 0.452091, 0.448045, 0.444050, 0.440310}
and g;(z) = {0.000000, —120.066861}.

In g03, the best result obtained by the cultured differential evolution was
f(z) = 0.995413, with z = {0.304887,0.329917,0.319260, 0.328069, 0.326023,
0.302707,0.305104, 0.315312, 0.322047,0.309009} and g;(z) = {0.000991},
which is very close of the global optimum. SR and DE are clear winners in
this problem, because they were able to reach the optimum in all the runs re-
ported. HM and ASCHEA also had a better performance than the cultured
differential evolution in this problem.

The best result obtained for the function g04 was f(z) = —30665.538672,
with £ = {78.000000, 33.000000, 29.995256,45.000000, 36.775813} and g;(z) =
{0.000000, —92.000000, —11.159500, —8.840500, —5.000000, —0.000000}.  This
problem is “easy” to solve for all techniques, which have similar behavior obtain-
ing a value very close to the optimum in all the runs. The results for DE reports
a slightly different version of this problem, and therefore cannot be included in
this comparison.

g05 is the problem in which the cultured differential evolution exhibits its
highest variability of results, even when its best value is very close to the
optimum: f(z) = 5126.570923, with z = {683.926335,1021.814124,0.116038,
—0.397581} and the values g;(z) = {—0.036381, —1.063619, 0.000803, 0.000419,
0.000980} for the constraints. SR, ASCHEA and DE also obtained a best value
very close to the optimum, but their variability is lower. HM was not able to
find any feasible solution for this problem.

f(z) = —6961.813876, with = = {14.095000,0.842961} and g;i(z) =
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{0.000000, —0.000002} is the best result obtained for the cultured differential
evolution in g06. In this problem, our approach shows a performance which
is clearly better than that of HM and SR in terms of consistency to reach the
optimum. Both had a large variability of results when solving this problem.
ASCHEA and DE reported a mean (and worst in the case of DE) result very
close to the optimum, as is the case of the cultured differential evolution.

The best result obtained by our approach in g07 is f(x) = 24.306209,
with z = {2.171982,2.363717,8.773931, 5.095984, 0.990654, 1.430557, 1.321617,
9.828704, 8.280092, 8.376018} and g;(z) = {-0.000002,0.000000,0.000000,
0.000000, —0.000010, —0.000002, —6.148630, —50.024352}. The cultured differ-
ential evolution exhibits a great robustness in this problem, reaching a value
very close to the optimum in all the runs. The best value obtained for any of
the other techniques (except DE), is worse than the worst result produced by
the cultured differential evolution. Only DE can also reach the optimum, but
exhibits a slightly larger variability (as can be seen in the worst case).

The cultured differential evolution approach obtained this best value for the
problem g08: f(z) = 0.095825, with x = {1.227971,4.245373} and g;(z) =
{—1.737460,—0.167763}. This problem seems easy to solve for the techniques
analyzed here, because all the techniques reached the optimum in almost all the
runs, except HM, which exhibits a poor performance in this problem.

In the problem g09, the best result obtained was f(z) = 680.630057, with
z = {2.330499,1.951372,—0.477541,4.365726, —0.624487,1.038131, 1.594227}
and g;(z) = {—0.000045, —252.561724, —144.878190, —0.000008}. SR and AS-
CHEA were able to reach the optimum in their best cases, while the algorithm
proposed here and DE obtained the optimum in all the runs performed, being
more robust.

In gl0, the best result obtained by the cultured differential evolution was
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f(z) = 7049.248058, with = = {579.380244,1359.992748, 5109.875066,
182.023843,295.604998, 217.976157, 286.418844, 395.604998} and the values
9:(z) = {0.000000, 0.000000, 0.000000, 0.000000, —0.000537, —0.001600} for the
constraints. Again, our cultured differential evolution approach and DE ob-
tained a value very close to the optimum in all the runs, being clear winners.
However, DE required 270,000 function evaluations for this particular problem.
All the other techniques exhibited a very high variabilty of results in this prob-
lem, and were not able to reach the optimum in their best cases.

The best result obtained for the function gl1 was f(z) = 0.749900, with z =
{0.707036,0.500000} and g;(x) = {0.000100}. In this case, all the approaches
analyzed here reached the optimum in their best cases. However, HM, SR,
ASCHEA and DE were more robust in this problem, showing a low variability
of results.

The best result obtained by our approach in gl2 is f(z) = 1.000000, with
z = {5.000000, 5.000000,5.000000} and g;(z) = {—0.062500}. This problem
is another example of similar performance of SR and the cultured differential
evolution, because they both could reach the optimum in practically all the
runs.

Finally, f(z) = 0.056180, with = {-1.648857,1.515826,1.949583,
0.753371,0.784312} and g¢;(z) = {0.000045,0.000839,0.000161} is the best re-
sult obtained for the cultured differential evolution in g13. SR was more robust
than our approach in this problem, and its best result was slightly better than
ours.

In short, SR and DE are the most competitive constraint-handling techniques
compared here. However, our approach reached the global optimum in ten
problems, while SR and DE did it in nine (DE was only tested in nine problems).

Also, in most cases, the cultured differential evolution was more robust than SR,

25



showing a very low standard deviation, while performing less than one third of
its total number of fitness function evaluations. Also, it is worth noticing that
our approach used the same number of function evaluations and parameters for
all the test functions, while DE got their parameters tuned for each problem,

and requires a variable number of fitness function evaluations.

5.1 Engineering Optimization Problems

Aditionally to this standard benchmark, we tested the cultured differential evo-
lution on an engineering optimization problem: desing of trusses. Two different
problems related to the design of trusses are tackled: the optimization of a 10-
bar plane truss and a 200-bar plane truss. Their descriptions are provided in

Appendix A.

5.2 Comparison of Results

The two engineering optimization problems previously mentioned were used by
Belegundu [2] to evaluate the following numerical optimization techniques: Fea-
sible directions (CONMIN and OPTDYN), Pshenichny’s Recursive Quadratic
Programming (LINRM), Gradient Projection (GRP-UI), Exterior Penalty Func-
tion (SUMT), Multiplier Methods (M-3, M-4 and M-5).

The parameters adopted by our cultured differential evolution approach are
the same used to solve the benchmark. Thus, we performed the same number
of objective function evaluations as before (100,100). For the 10-bar truss, the
best result of the 30 independent runs is shown in Table 5, together with the
results of the methods included in [2] (all the results presented are feasible).
For the 200-bar truss, the best result of the 30 independent runs is shown in
Table 6, with the results of other methods reported by Belegundu [2].

The best results of the cultured differential evolution are very competitive.
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Additionally, such results present a low variability over the 30 runs performed,
as can be appreciated from Table 7.

Finally, we noticed that in engineering optimization problems with large
search spaces (such as the two presented in this paper), our approach could
improve on the quality of the solutions produced if we allowed a larger number
of fitness function evaluations. Although such increase may be unaffordable
in real-world applications, this is a good indicative of the effectiveness of our
approach, since, if possible, it keeps improving the solutions produced over
time. To briefly illustrate this issue, we allowed our approach to run for 3500
generations (for a total of 350,100 fitness function evaluations) in the 200-bar
truss problem. This setup produced a solution with a weight of only 15824.32,
which is about 28% better than the solution reported in Table 6. Note however,
that the computational effort required to produce this solution (measured in

terms of fitness function evaluations) is over three times the original one.

6 Conclusions and Future Work

In this paper we introduced a cultural algorithm, which uses differential evo-
lution. The approach is used to solve constrained optimization problems. By
adding a belief space to the differential evolution algorithm, we were able to ob-
tain competitive results on a well-known benchmark adopted for evolutionary
optimization, and on two engineering optimization problems. Our results were
compared with respect to several evolutionary algorithms that are represen-
tative of the state-of-the-art in constrained optimization (the Homomorphous
Maps, Stochastic Ranking and ASCHEA).

The results were obtained at a relatively low computational cost (measured
in fitness function evaluations), when compared to the aforementioned evolu-

tionary algorithms. The proposed approach only requires about 30% of the

27



fitness evaluations of the second less expensive algorithm against which it was
compared.

The algorithm supports four different knowledge sources, which make it rela-
tively complex to implement. However, we have made the source code available
so that anyone interested in using it, can download it and tailor it for his/her
own application. Note that the knowledge extraction mechanisms of our ap-
proach were developed only for numerical (constrained) optimization problems,
and we make no claim regarding their generality. Different types of problems
(e.g., combinatorial) may require different knowledge extraction mechanisms.

One of the possible paths for future work is the analysis of the impact of
each knowledge source during the evolutionary process. We are also interested
in examining the influence of the different parameter settings in the perfor-
mance of the algorithm, which requires a more thorough statistical analysis. To
date, we have not identified a parameter that is the most critical (in terms of
performance) of the approach.

Another interesting point related to the incorporation of knowledge of our
approach has to do with its theoretical foundation. We did not attempt to
provide a theoretical explanation of why the mechanisms that we incorporate
in our evolutionary algorithm are able to accelerate convergence, as well as
a theoretical insight regarding their possible limitations. However, this topic
certainly deserves some further work.

Additionally, we want to explore the benefits of using a belief space in other
types of problems. Specifically, we are interested in extending our approach so

that it can deal with multiobjective optimization problems [9, 15, 29, 22].
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A Test Functions

g01.
Minimize:
4 4 13
f(@ = 52% - 52;312 — Zw,
i=1 i=1 i=5
subject to:
g1(%) = 2z +213+x10+ 211 —10<0
92(T) = 231 +2x3+ 710+ 712 —10<0
93(F) = 232+ 2734711 + 212 —10<0
94(%) = —8z1+x10<0
95(F) = —8xy3+x11 <0
96(¥) = —8x34+x12<0
971(F) = —2z4—x5+710<0
98(f) = —2m¢—xz7+211 <0
go(F) = —2x8— g+ 212 <0
where: 0< z; <1(i=1,...,9),0 < z; <100 (i = 10,11,12) y 0 < 713 <
1.
The optimum solution is z* = (1,1,1,1,1,1,1,1,1,3,3,3,1) where f(z*) =
—15.
g02.
Maximize:
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subject to:

n
0@ = 075-J[z:i<0
i=1
n
g2(%) = Z:c, —75m<0
i=1

where: n =20y 0<2; <10 (i =1,...,n).

The best known solution is f(z*) = 0.803619.

g03.
Maximize:
n
F@ = n) [
i=1
subject to:
n
h(@ = Y #i-1=0
i=1
where: n=10y0<z; <1 (i=1,...,n).
The optimum solution is 2 = 1//n (i = 1,...,n) where f(z*) = 1.
g04.

Minimize:

f(&) = 5.3578547z32 4+ 0.8356891z1 25 + 37.293239x; — 40792.141
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subject to:

g1(F) = 85.334407 + 0.0056858z5x5 4 0.0006262z 124
—0.0022053z325 — 92 < 0

92(F) = —85.334407 — 0.0056858z225 — 0.0006262x124
+0.0022053z325 < 0

g3(F) = 80.51249 + 0.0071317z2z5 + 0.002995571 22
+0.0021813z3 — 110 < 0

94(F) = —80.51249 — 0.0071317z225 — 0.0029955z1 7>
—0.0021813z% +90 < 0

g5(F) = 9.300961 + 0.004702623z5 + 0.00125472123
+0.00190852324 — 25 < 0

g6(f) = —9.300961 — 0.0047026z3x5 — 0.0012547x1 x5

—0.0019085z3z4 +20 <0

where: 78 < x; <102, 33 < x5 < 45,27 < x; <45 (i = 3,4,5).

The optimum solution is z* = (78, 33, 29.995256025682, 45, 36.775812905788)
where f(z*) = —30665.539.

g05.

Minimize:

F(Z) = 321 + 0.00000123 + 225 + (0.000002/3)z3
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subject to:

@@ = —-m4+23-055<0
g2(f) = —x3+z4—055<0
hs(£) = 1000sin(—z3 — 0.25) + 1000 sin(—x4 — 0.25)

+8948 — 21 =0

hy(£) = 1000sin(zs — 0.25) + 1000sin(zs — z4 — 0.25)
+894.8 — 22 =0

hs(Z) = 1000sin(z4 — 0.25) + 1000 sin(x4 — z3 — 0.25)

+1294.8 =0

where: 0 < z; < 1200, 0 < 25 < 1200, —0.55 < 23 < 0.55 y —0.55 < 74 <

0.55.

The best known solution is z* = (679.9453,1026.067,0.1188764, —0.3962336)
where f(z*) = 5126.4981.

g06.
Minimize:

(@) = (z1 — 10)* + (z5 — 20)?
subject to:

gl(.’i") = —(.’1:1—5)2—(.’1:2—5)2—{—100S0

@(f) = (21—6)2+ (z2—5)—82.81<0

where: 13 <z, <100y 0 < zy < 100.

The optimum solution is z* = (14.095, 0.84296) where f(z*) = —6961.81388.
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g07.

Minimize:
f(@) = 22 +22+275 — 14z — 1635 + (23 — 10)?
+4(xg —5)% + (x5 — 3)® + 2(2z6 — 1)* + 522
+7(xg — 11)% 4 2(zg — 10)% + (z10 — 7)%> + 45
subject to:
[} (.2_1") = —105+ 4.CL'1 + 5332 - 3.’1&'7 + 9.%'8 S 0
92(%) = 10x; —8xo — 1727 + 225 <0
93(Z) = =81+ 2wy + 529 — 2210 —12<0
91(%) = 3(z1—2)? +4(z2 —3)* +222 — T2, —120<0
g5(%) = 5z7+ 8z + (23 —6)? — 224 —40<0
96(F) = 24 2(xy—2)% —2x170 + 1425 — 626 < 0
g7(£) = 0.5(z1 — 8)2 + 2(xs — 4)2 + 3.’E§ -2 —30<0
gg(f) = —3x1+ 622 + 12(.’1)‘9 — 8)2 —Tx10 <0

where: —10<z; <10 (i =1,...,10).

The optimum solution is z* = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where f(z*) =
24.3062091.

g08.

Maximize:
sin®(2mz1 ) sin(2mzs)
23 (21 + x2)

f(@) =
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g09.

g10.

subject to:

@ = 2P —2,+1<0

QQ(f) = 1—.’L‘1—|—(.’L‘2—4)2§0

where: 0 <z <10,0 <25 <10.

The optimum solution is z* = (1.2279713,4.2453733) where f(z*) =

0.095825.
Minimize:
f(@) = (21 —10)® +5(wa — 12)® + 23 + 3(z4 — 11)? 4 1028
+7w§ + 3:‘% — 4xgr7 — 1026 — 827
subject to:
g1(F) = —127+ 227 + 323 + 23 + 473 + 525 <0
go(%) = —282+4 Tz + 33y + 1025 + 24 — 25 <0
g3(Z) = =196+ 23z + x2 + 622 —8x7 <0
g4(%) = 4dat 4+ 22— 3z170 + 222 + 526 — 1127, <0

where: —10<z; <10 (i =1,...,7).

The optimum solution is z* = (2.330499,1.951372, —0.4775414,4.365726,
—0.6244870,1.038131,1.594227) where f(z*) = 680.6300573.
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gll.

gl2.

Minimize:

f(.i") =21+ 22+ T3

subject to:
g1(F) = —1+0.0025(zx4 + x6) <0
g2(F) = —1+0.0025(zxs +x7 —24) <0
93(F) = —-1+40.01(zg—x5) <0
94(%) = —z126 + 833.33252x4 + 100z — 83333.333 < 0
g5(8) = —wowy + 125025 4+ zoxy — 125024 < 0
96(Z) = —x3x5 + 1250000 + 325 — 250025 < 0

where: 100 < z; < 10000, 1000 < z; < 10000 (i = 2,3) y 10 < z; < 1000
(i=4,...,8).

The optimum solution is z* = (579.19, 1360.13, 5109.92, 182.0174, 295.5985,
217.9799, 286.40, 395.5979), where f(z*) = 7049.25.

Minimize:

subject to:

where: —1 <27 <1, -1<2,<1.

The optimum solution is 2* = (£1/v/2,1/2) where f(z*) = 0.75.

36



Maximize:

o (100 = (21 = 5)* — (w2 — 5)* — (w3 — 5)?)
@)= 100

subject to:

9(@) = (z1—p)%+ (€2 —q)% + (w3 —r)? —0.0625 < 0

where: 0 < x; <10 (i=1,2,3), y p,q,7 = 1,2,...,9.
The optimum solution is z* = (5,5, 5) where f(z*) = 1.
gl3.

Minimize:

f(ff) — 6901902903904905

subject to:

(%) = zi+z5+az3+2;+7:—10=0
hz(f) = X2X3 — 5.’L'4.CE5 =0
ha(Z¥) = 23 +a5-1=0

where: —2.3< ;<23 (i=1,2)y -3.2<1z; <32 (i =3,4,5).
The optimum solution is z* = (—1.717143,1.595709, 1.827247, —0.7636413,
—0.763645) where f(z*) = 0.0539498.

gl4: Design of a 10-bar plane truss.

Consider the 10-bar plane truss shown in Figure 3 [2]. The problem is to

find the cross-sectional area of each member of this truss, such that we
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glh:

minimize its weight. The problem is subject to both displacement and

stress constraints. The weight of the truss is given by f(z).

10
f@) =3 pA; Ly (1)

where z is the candidate solution, A; is the cross-sectional area of the jth
member, L; is the length of the jth member, and p is the weight density of
the material. The assumed data are: modulus of elasticity, E = 1.09 x 10*
ksi, p = 0.10 lb/in3, and a load of 100 kips in the negative y-direction is
applied at nodes 2 and 4. The maximum allowable stress of each member
is called o,, and it is assumed to be £25 ksi. The maximum allowable
displacement of each node (horizontal and vertical) is represented by u,,
and is assumed to be 2 inches. The minimum allowable cross-section
area is 0.10 in? for all members. The cross-section of each element can be
different, and is defined by the I-section shown in Figure 4, with the depth
and width as design variables. The web thickness and flange thickness are

each kept fixed at 0.1 in. The problem has, therefore, 20 design variables.

To solve this problem, it was necessary to add a module responsible for
the analysis of the plane truss. This module uses the stiffness method
[13] to analyze the structure, and returns the values of the stress and

displacement constraints, as well as the total weight of the structure.

Design of a 200-bar plane truss.

Consider the 200-bar plane truss taken from Belegundu [2] and shown in
Figure 5. The problem is to find the cross-sectional area of each member
of this truss, such that we minimize its weight. The problem is subject to

both displacement and stress constraints.

There are a total of three loading conditions: (1) 1 kip acting in positive
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x-direction at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and T71;
(2) 10 kips acting in negative y-direction at node points 1, 2, 3, 4, 5, 6,
8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 24, 71, 72, 73, 74, and 75; and (3)
loading condition 1 and 2 acting together. The 200 elements of this truss
linked to 29 groups. The grouping information is shown in Table 8. The
stress in each element is limited to a value of 10 ksi for both tension and

compression members. Young’s modulus of elasticity = 30,000 ksi, weight

density = 0.283 x 102 kips/in®.
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1 Spaces of a cultural algorithm.

2 Example of the partition of a two dimensional space by a k-d tree.

3 10-bar plane truss adopted for problem G14.

4 Cross-section used for the 10-bar plane truss from problem G14.

5 200-bar plane truss used for problem G15.
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Results of the cultured differential evolution algorithm
Problem Optimal Best Mean ‘Worst St. Dev.
g01 -15 -15.000000 -14.999996 -14.999993 0.000002
g02 0.803619 0.803619 0.724886 0.590908 0.070125
g03 1 0.995413 0.788635 0.639920 0.115214
g04 -30665.539 -30665.538672 -30665.538672 | -30665.538672 0.000000
g05 5126.4981 5126.570923 5207.410651 5327.390497 69.225796
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 0.000000
g07 24.3062091 24.306209 24.306210 24.306212 0.000001
g08 0.095825 0.095825 0.095825 0.095825 0.000000
g09 680.6300573 680.630057 680.630057 680.630057 0.000000
gl0 7049.25 7049.248058 7049.248266 7049.248480 0.000167
gll 0.75 0.749900 0.757995 0.796455 0.017138
gl2 1 1.000000 1.000000 1.000000 0.000000
gl3 0.0539498 0.056180 0.288324 0.392100 0.167095

Table 1: Results obtained by our cultured differential evolution approach
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Best Results of the compared techniques

Problem Optimal CDE HM SR ASCHEA TS DE
g01 —15 —15.000000 —14.7864 —15.000 —15.0 —15.000 —15.000
g02 0.803619 0.803619 0.79953 0.803515 0.785 NA NA
g03 1 0.995413 0.9997 1.000 1.0 NA 1.0252
g04 —30665.539 | —30665.538672 | —30664.5 | —30665.539 —30665.5 —30665.537 NA
g05 5126.498 5126.570923 — 5126.497 5126.5 NA 5126.484
g06 —6961.814 —6961.813876 —6952.1 —6961.814 —6961.81 NA —6961.814
g07 24.306 24.306209 24.620 24.307 24.3323 24.37248 24.306
g08 0.095825 0.095825 0.0958250 0.095825 0.095825 NA 0.095825
209 680.63 680.630057 680.91 680.630 680.630 680.634460 680.630
gl0 7049.25 7049.248058 7147.9 7054.316 7061.13 7060.221 7049.248
gll 0.75 0.749900 0.75 0.750 0.75 NA 0.74900
gl2 1.00 1.000000 0.999999 1.000000 NA NA NA
gl3 0.053950 0.056180 NA 0.053957 NA 0.053950 NA

Table 2: Comparison of the best results of the cultured differential evolution
(CDE) with respect to the Homomorphous Maps (HM) [21], Stochastic Ranking
(SR) [35], ASCHEA [16], a Constraint Handling Method for Genetic Algorithms
(TS) [10], and a Constraint Handling Approach for Differential Evolution (DE)
[25]. “-” means no feasible solutions were found. NA = Not Available. A result
in boldface means that our approach obtained the same or a better value than

any other of the thechniques.
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Mean Results of the compared techniques

Problem Optimal CDE HM SR ASCHEA TS DE
g01 —15 —14.999996 —14.7082 —15.000 —14.84 —15.000 —15.000
g02 0.803619 0.724886 0.79671 0.781975 0.59 NA NA
g03 1 0.788635 0.9989 1.000 0.99989 NA 1.0252
g04 —30665.539 | —30665.538672 | —30655.3 | —30665.539 —30665.5 —30665.535 NA
g05 5126.498 5207.410651 - 5128.881 5141.65 NA 5126.484
g06 —6961.814 —6961.813876 —6342.6 —6875.940 —6961.81 NA —6961.814
g07 24.306 24.306210 24.826 24.374 24.66 24.40940 24.306
g08 0.095825 0.095825 0.0891568 0.095825 0.095825 NA 0.095825
209 680.63 680.630057 681.16 680.656 680.641 680.641724 680.630
gl0 7049.25 7049.248266 8163.6 7559.192 7193.11 7220.026 7049.248
gll 0.75 0.757995 0.75 0.750 0.75 NA 0.74900
gl2 1.00 1.000000 0.999134 1.000000 NA NA NA
gl3 0.053950 0.288324 NA 0.067543 NA 0.241289 NA

Table 3: Comparison of the mean results of the cultured differential evolution
(CDE) with respect to the Homomorphous Maps (HM) [21], Stochastic Ranking
(SR) [35], ASCHEA [16], a Constraint Handling Method for Genetic Algorithms
(TS) [10], and a Constraint Handling Approach for Differential Evolution (DE)
[25]. “-” means no feasible solutions were found. NA = Not Available. A result
in boldface means that our approach obtained the same or a better value than

any other of the thechniques.
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‘Worst Results of the compared techniques

Problem Optimal CDE HM SR ASCHEA TS DE
g01 —15 —14.999993 —14.6154 —15.000 NA —13.000 —15.000
g02 0.803619 0.590908 0.79119 0.726288 NA NA NA
g03 1 0.639920 0.9978 1.000 NA NA 1.0252
g04 —30665.539 | —30665.538672 | —30645.9 | —30665.539 NA —29846.654 NA
g05 5126.498 5327.390497 — 5142.472 NA NA 5126.484
g06 —6961.814 —6961.813876 —5473.9 —6350.262 NA NA —6961.814
g07 24.306 24.306212 25.069 24.642 NA 25.07530 24.307
g08 0.095825 0.095825 0.0291438 0.095825 NA NA 0.095825
209 680.63 680.630057 683.18 680.763 NA 680.650879 680.630
gl0 7049.25 7049.248480 9659.3 8835.655 NA 10230.834 7049.248
gll 0.75 0.796455 0.75 0.750 NA NA 0.74900
gl2 1.00 1.000000 0.991950 1.000000 NA NA NA
gl3 0.053950 0.392100 NA 0.216915 NA 0.507761 NA

Table 4: Comparison of the worst results of the cultured differential evolution
(CDE) with respect to the Homomorphous Maps (HM) [21], Stochastic Ranking
(SR) [35], ASCHEA [16], a Constraint Handling Method for Genetic Algorithms
(TS) [10], and a Constraint Handling Approach for Differential Evolution (DE)
[25]. “-” means no feasible solutions were found. NA = Not Available. A result
in boldface means that our approach obtained the same or a better value than

any other of the thechniques.
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Method | CONMIN | OPTDYN | LINRM | GRP-UI | SUMT
Weight 4793.0 9436.0 6151.0 5077.0 | 5070.0
Method M-3 M-4 M-5 CDE

‘Weight 4898.0 5057.0 5211.0 | 4656.39

Table 5: Results of several methods for the 10-bar plane truss (G14). Our
approach is labeled as CDE
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Method

CONMIN | OPTDYN | LINRM | GRP-UI | SUMT
Weight 34800.0 N/A 33315.0 N/A 27564.0
Method M-3 M-4 M-5 CDE
Weight 26600.0 26654.0 | 26262.0 | 20319.58

Table 6: Results of several methods for the 200-bar plane truss (G15). Our

approach is labeled as CDE
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TF Best Mean Worst Std Dev
10-bar truss (G14) 4656.39 4656.52 4656.71 0.18
200-bar truss (G15) | 20319.58 | 25393.37 | 30269.49 | 2492.24

Table 7: Statistics of the results obtained by our approach for the design of

trusses
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Group Member
Number Number

1 1,2,34

2 5,8,11,14,17

3 19,20,21,22,23,24

4 18,25,56,63,94,101,132,139,170,177

5 26,29,32,35,38

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37

7 39,40,41,42

8 43,46,49,52,55

9 57,58,59,60,61,62

10 64,67,70,73,76

11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75

12 77,78,79,80

13 81,84,87,90,93

14 95,96,97,98,99,100

15 102,105,108,111,114

16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113

17 115,116,117,118

18 119,122,125,128,131

19 133,134,135,136,137,138

20 140,143,146,149,152

21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151

22 153,154,155,156

23 157,160,163,166,169

24 171,172,173,174,175,176

25 178,181,184,187,190

26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189

27 191,192,193,194

28 195,197,198,200

29 196,199

Table 8: Group membership for the 200-bar plane truss from problem G15.

54




Acceptance Influence

Performance

Selection Population Function

Variation

95



56



360"

360" 360"

57



I -
[ 7]
0.1in
0.1in
0.1in
I .
[ 7]

58




144"

360"

59



