

Theoretial and Numerial Constraint-Handling Tehniques used withEvolutionary Algorithms: A Survey of the State of the ArtCarlos A. Coello Coellooello�s.investav.mxCINVESTAV-IPNDepto. de Ingenier��a El�etriaSei�on de Computai�onAv. Instituto Polit�enio Naional No. 2508Col. San Pedro ZaatenoM�exio, D. F. 07300, MEXICOAbstratThis paper provides a omprehensive survey of the most popular onstraint-handling tehniques urrently used withevolutionary algorithms. We review approahes that go from simple variations of a penalty funtion, to others,more sophistiated, that are biologially inspired on emulations of the immune system, ulture or ant olonies.Besides desribing briey eah of these approahes (or groups of tehniques), we provide some ritiism regardingtheir highlights and drawbaks. A small omparative study is also onduted, in order to assess the performaneof several penalty-based approahes with respet to a dominane-based tehnique proposed by the author, and withrespet to some mathematial programming approahes. Finally, we provide some guidelines regarding how to seletthe most appropriate onstraint-handling tehnique for a ertain appliation, ad we onlude with some of the themost promising paths of future researh in this area.Keywords: evolutionary algorithms, onstraint handling, evolutionary optimization.1 IntrodutionThe famous naturalist Charles Darwin de�ned Natural Seletion or Survival of the Fittest as the preservation offavorable individual di�erenes and variations, and the destrution of those that are injurious [33℄. In nature,individuals have to adapt to their environment in order to survive in a proess alled evolution, in whih thosefeatures that make an individual more suited to ompete are preserved when it reprodues, and those featuresthat make it weaker are eliminated. Suh features are ontrolled by units alled genes whih form sets alledhromosomes. Over subsequent generations not only the �ttest individuals survive, but also their �ttest geneswhih are transmitted to their desendants during the sexual reombination proess whih is alled rossover.Early analogies between the mehanism of natural seletion and a learning (or optimization) proess led tothe development of the so-alled \evolutionary algorithms" (EAs) [2℄, in whih the main goal is to simulate theevolutionary proess in a omputer. There are three main paradigms within evolutionary algorithms, whosemotivations and origins were independent from eah other: evolution strategies [156℄, evolutionary programming[58℄, and geneti algorithms [77℄. However, the urrent trend has been to derease the di�erene among these threeparadigms and refer (in generi terms) simply to evolutionary algorithms when talking about any of them.In general, we need the following basi omponents to implement an EA in order to solve a problem [104℄:1. A representation of the potential solutions to the problem.2. A way to reate an initial population of potential solutions (this is normally done randomly, but deterministiapproahes an also be used). 1







3. An evaluation funtion that plays the role of the environment, rating solutions in terms of their \�tness".4. A seletion proedure that hooses the parents that will reprodue.5. Evolutionary operators that alter the omposition of hildren (normally, rossover and mutation).6. Values for various parameters that the evolutionary algorithm uses (population size, probabilities of applyingevolutionary operators, et.).EAs have been quite suessful in a wide range of appliations [67, 111, 101, 3, 130, 64, 57, 133, 157℄. However,an aspet normally disregarded when using them for optimization (a rather ommon trend) is that these algorithmsare unonstrained optimization proedures, and therefore is neessary to �nd ways of inorporating the onstraints(normally existing in any real-world appliation) into the �tness funtion.The most ommon way of inorporating onstraints into an EA have been penalty funtions (we will be referringonly to exterior penalty funtions in this paper) [144, 67℄. However, due to the well-known diÆulties assoiatedwith them [144℄, researhers in evolutionary omputing have proposed di�erent ways to automate the de�nitionof good penalty fators, whih remains as the main drawbak of using penalty funtions. Additionally, severalresearhers have developed a onsiderable amount of alternative approahes to handle onstraints, mainly to dealwith spei� features of some omplex optimization problems in whih it is diÆult to estimate good penalty fatorsor to even generate a single feasible solution.In this paper, we provide a omprehensive survey of ontraint-handling tehniques that have been adopted overthe years to handle all sorts of onstraints (linear, non-linear, equality, and inequality) in EAs. Eah group ofapproahes is briey desribed and disussed, indiating their main advantages and disadvantages. At the end, weonlude with some of the most promising paths of future researh in this area.There are several other surveys on onstraint handling tehniques available in the speialized literature (see forexample [104, 109, 103, 63, 34, 161℄), but they are either too narrow (i.e., they over a single group of onstrainthandling tehniques) or they fous more on empirial omparisons and on the design of interesting test funtions.None of these surverys attempt to fous on the disussion of the di�erent aspets of eah method or to be asomprehensive as we intend in this paper.Our main goal is to provide enough (mainly desriptive) information as to allow newomers in this area to geta very omplete piture of the researh that has been done and that is urrently under way. Sine trying to beexhaustive is as fruitless as it is ambitious, we have foused on papers in whih the main emphasis is the wayin whih onstraints are handled, and from this subset, we have seleted the most representative work available(partiularly, when dealing with very proli� authors).We are interested in the general non-linear programming problem in whih we want to:Find ~x whih optimizes f(~x) (1)subjet to: gi(~x) � 0; i = 1; : : : ; n (2)hj(~x) = 0; j = 1; : : : ; p (3)where ~x is the vetor of solutions ~x = [x1; x2; : : : ; xr℄T , n is the number of inequality onstraints and p is thenumber of equality onstraints (in both ases, onstraints ould be linear or non-linear).If we denote with F to the feasible region and with S to the whole searh spae, then it should be lear thatF � S.For an inequality onstaint that satis�es gi(~x) = 0, then we will say that is ative at ~x. All equality onstraintshj (regardless of the value of ~x used) are onsidered ative at all points of F .The remainder of this paper is organized as follows. Setion 2 presents penalty funtions in several of theirvariations that have been used with EAs (i.e., stati, dynami, annealing, adaptive, o-evolutionary, and deathpenalties). Penalty funtions are the oldest approah used to inorporate onstraints into unonstrained optimiza-tion algorithms (inluding EAs) and, therefore, they are disussed �rst. Setion 3 disusses the use of speialrepresentations and geneti operators. The use of operators that preserve feasibility at all times and deoders2







that transform the shape of the searh spae are disussed, among other tehniques. Setion 4 disusses repairalgorithms, whih are normally used in ombinatorial optimization problems in whih the traditional geneti oper-ators tend to generate infeasible solutions all (or at least most of) the time. Thus, \repair" refers, in this ontext,to make valid (or feasible) these individuals through the appliation of a ertain (normally heuristi) proedure.Setion 5 overs tehniques that handle objetives and onstraints separately. From these approahes, the useof multiobjetive optimization tehniques seems one of the most promising venues of future researh in the area.Setion 6 disusses approahes that use hybrids with other tehniques suh as Lagrangian multipliers or fuzzylogi. This setion also ontains some approahes that onstitute very promising paths of future researh (e.g.,the use of ultural algorithms or the immune system). Setion 7 presents a small omparative study in whihseveral penalty-based tehniques are ompared against a tehnique based on dominane relations (i.e., one of thetehniques disussed in Setion 5). As a orollary to the results of this omparative study, Setion 8 provides some�nal suggestions on the hoie of onstraint-handling tehniques for a ertain problem. Finally, Setion 9 presentssome onlusions and some possible paths of future researh.The detailed table of ontents of the paper is the following:1. Penalty funtions(a) Stati Penalty(b) Dynami Penalty() Annealing Penalty(d) Adaptive Penalty(e) Co-evolutionary Penalty(f) Death Penalty2. Speial representations and operators(a) Davis' appliations(b) Random keys() GENOCOP(d) Constraint Consistent GAs(e) Loating the boundary of the feasible region(f) Deoders3. Repair algorithms4. Separation of objetives and onstraints(a) Co-evolution(b) Superiority of feasible points() Behavioral memory(d) Multiobjetive Optimization Tehniques5. Hybrid Methods(a) Lagrangian multipliers(b) Constrained optimization by random evolution() Fuzzy logi(d) Immune system(e) Cultural algorithms 3







(f) Ant olony optimization6. Some Experimental Results(a) Example 1 : Himmelblau's Nonlinear Optimization Problem(b) Example 2 : Welded Beam Design() Example 3 : Design of a Pressure Vessel7. Some Reommendations8. Conlusions and Future Researh Paths2 Penalty funtionsThe most ommon approah in the EA ommunity to handle onstraints (partiularly, inequality onstraints) isto use penalties. Penalty funtions were originally proposed by Courant in the 1940s [31℄ and later expanded byCarroll [18℄ and Fiao & MCormik [55℄. The idea of this method is to transform a onstrained optimizationproblem into an unontrained one by adding (or subtrating) a ertain value to/from the objetive funtion basedon the amount of onstraint violation present in a ertain solution.In lassial optimization, two kinds of penalty funtions are onsidered: exterior and interior. In the ase ofexterior methods, we start with an infeasible solution and from there we move towards the feasible region. Inthe ase of interior methods, the penalty term is hosen suh that its value will be small at points away from theonstraint boundaries and will tend to in�nity as the onstraint boundaries are approahed. Then, if we startfrom a feasible point, the subsequent points generated will always lie within the feasible region sine the onstraintboundaries at as barriers during the optimization proess [138℄.The most ommon method used in EAs is the exterior penalty approah and therefore, we will onentrate ourdisussion only on suh tehnique. The main reason why most researhers in the EA ommunity tend to hooseexterior penalties is beause they do not require an initial feasible solution. This sort of requirement (an initialfeasible solution) is preisely the main drawbak of interior penalties. This is an important drawbak, sine inmany of the appliations for whih EAs are intended the problem of �nding a feasible solution is itself NP-hard[161℄.The general formulation of the exterior penalty funtion is:�(~x) = f(~x)� 24 nXi=1 ri �Gi + pXj=1 j � Lj35 (4)where �(~x) is the new (expanded) objetive funtion to be optimized, Gi and Lj are funtions of the onstraintsgi(~x) and hj(~x), respetively, and ri and j are positive onstants normally alled \penalty fators".The most ommon form of Gi and Lj is: Gi = max[0; gi(~x)℄� (5)Lj = jhj(~x)j (6)where � and  are normally 1 or 2.Ideally, the penalty should be kept as low as possible, just above the limit below whih infeasible solutions areoptimal (this is alled, the minimum penalty rule [39, 145, 162℄). This is due to the fat that if the penalty istoo high or too low, then the problem might beome very diÆult for an EA [39, 145, 147℄. If the penalty is toohigh and the optimum lies at the boundary of the feasible region, the EA will be pushed inside the feasible regionvery quikly, and will not be able to move bak towards the boundary with the infeasible region. A large penaltydisourages the exploration of the infeasible region sine the very beginning of the searh proess. If, for examplethere are several disjointed feasible regions in the searh spae, the EA would tend to move to one of them, andwould not be able to move to a di�erent feasible region unless they are very lose from eah other.4







On the other hand, if the penalty is too low, a lot of the searh time will be spent exploring the infeasible regionbeause the penalty will be negligible with respet to the objetive funtion [161℄. These issues are very importantin EAs, beause many of the problems in whih they are used have their optimum lying on the boundary of thefeasible region [159, 162℄.The minimum penalty rule is oneptually simple, but it is not neessarily easy to implement. The reason isthat the exat loation of the boundary between the feasible and infeasible regions is unknown in many of theproblems for whih EAs are intended (e.g., in many ases the onstraints are not given in algebrai form, but arethe outome generated by a simulator [27℄).It is known that the relationship between an infeasible individual and the feasible region of the searh spae playsa signi�ant role in penalizing suh an individual [144℄. However, it is not lear how to exploit this relationship toguide the searh in the most desirable diretion.There are at least three main hoies to de�ne a relationship between an infeasible individual and the feasibleregion of the searh spae [34℄:1. an individual might be penalized just for being infeasible regardless of its amount of onstraint violation (i.e.,we do not use any information about how lose it is from the feasible region),2. the `amount' of its infeasibility an be measured and used to determine its orresponding penalty, or3. the e�ort of `repairing' the individual (i.e., the ost of making it feasible) might be taken into aount.Several researhers have studied heuristis on the design of penalty funtions. Probably the most well-known ofthese studies is the one onduted by Rihardson et al. [144℄ from whih the following guidelines were derived:1. Penalties whih are funtions of the distane from feasibility are better performers than those whih are onlyfuntions of the number of violated onstraints.2. For a problem having few onstraints, and few feasible solutions, penalties whih are solely funtions of thenumber of violated onstraints are not likely to produe any solutions.3. Good penalty funtions an be onstruted from two quantities: the maximum ompletion ost and theexpeted ompletion ost. The ompletion ost refers to the distane to feasibility.4. Penalties should be lose to the expeted ompletion ost, but should not frequently fall below it. Themore aurate the penalty, the better will be the solution found. When a penalty often underestimates theompletion ost, then the searh may fail to �nd a solution.Based mainly on these guidelines, several researhers have attempted to derive good tehniques to build penaltyfuntions. The most important will be analyzed next. It should be kept in mind, however, that these guidelinesare diÆult to follow in some ases. For example, the expeted ompletion ost sometimes has to be estimatedusing alternative methods (e.g., doing a relative saling of the distane metris of multiple onstraints, estimatingthe degree of onstraint violation, et. [161℄). Also, it is not lear how to ombine the two quantities indiated byRihardson et al. [144℄ and how to design a �tness funtion that uses aurate penalties.Penalty funtions an deal both with equality and inequality onstraints, and the normal approah is to transforman equality to an inequality of the form: jhj(~x)j � � � 0 (7)where � is the tolerane allowed (a very small value).Most of the approahes analyzed in this paper attempt to avoid this hand-tuning of the penalty fators andsome even make unneessary at all the use of a penalty funtion.
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2.1 Stati PenaltiesUnder this ategory, we onsider approahes in whih the penalty fators do not depend on the urrent generationnumber in any way, and therefore, remain onstant during the entire evolutionary proess.Homaifar, Lai and Qi [78℄ proposed an approah in whih the user de�nes several levels of violation, and apenalty oeÆient is hosen for eah in suh a way that the penalty oeÆient inreases as we reah higher levelsof violation. This approah starts with a random population of individuals (feasible or infeasible).An individual is evaluated using [104℄:�tness(~x) = f(~x) + mXi=1 �Rk;i � max [0; gi(~x)℄2� (8)whereRk;i are the penalty oeÆients used,m is total the number of onstraints (Homaifar et al. [78℄ transformedequality onstraints into inequality onstraints), f(~x) is the unpenalized objetive funtion, and k = 1; 2; : : : ; l,where l is the number of levels of violation de�ned by the user. The idea of this approah is to balane individualonstraints separately by de�ning a di�erent set of fators for eah of them through the appliation of a set ofdeterministi rules.An interesting stati penalty approah has been used by Kuri [114℄. Fitness of an individual is determined using:�tness(~x) = � f(~x) if the solution is feasibleK �Psi=1 �Km� otherwise (9)where s is the number of onstraints satis�ed, m is the total number of (equality and inequality) onstraints, and Kis a large onstant (it was set to 1�109 [113℄ in the experiments reported in [114℄). Notie that when an individualis infeasible, its �tness is not omputed and all the individuals that violate the same number of onstraints reeivethe same penalty regardless of how lose they are from the feasible region.Finally, Ho�meister & Sprave have proposed to use the following penalty funtion [76℄:�tness(~x) = f(~x)�vuut mXi=0 H(�gi(~x))gi(~x)2 (10)where H : R ! f0; 1g is the Heavyside funtion:H(y) = � 1 : y > 00 : y � 0 (11)This is equivalent to a partial penalty approah and was suessfully used in some real-world problems [155℄.Advantages and DisadvantagesThe main drawbak of Homaifar et al.'s approah is the high number of parameters required. For m onstraints,this approah requiresm(2l+1) parameters in total [102℄. So, if we have, for example, six onstraints and two levels,we would need 30 parameters, whih is a very high number onsidering the small size of the proposed problem.Also, this method requires prior knowledge of the degree of onstraint violation present in a problem (to de�ne thelevels of violation), whih might not be always given (or easy to obtain) in real-world appliations.Kuri's approah does not use information about the amount of onstraint violation, but only about the numberof onstraints that were violated. Although this ontradits one of the basi rules stated by Rihardson [144℄about the de�nition of good penalty funtions, apparently the self-adaptive EA used by Kuri (alled EletiGeneti Algorithm or EGA for short) ould ope with this problem and was able to optimize several diÆultnonlinear optimization problems. In one of the funtions reported in [114℄, however, it was neessary to initializethe population with another EGA beause no feasible solutions were present in the �rst generation. This problemwas obviously produed by the lak of diversity in the population (not having a single feasible individual in thepopulation, they all had a very similar or equal �tness), whih seriously limits its appliability in highly onstrainedsearh spaes. 6







The problem with Ho�meister & Sprave's approah is that it is based on the assumption that infeasible pointswill always be valuated worse than feasible ones, and that is not always the ase [103℄.Other researhers have used di�erent distane-based stati penalty funtions [68, 5, 79, 124, 144, 17, 172℄, butin all ases these metris rely on some extra parameter (namely one or more penalty fators) whih are diÆult togeneralize and normally remain problem-dependent.2.2 Dynami PenaltiesWithin this ategory, we will onsider any penalty funtion in whih the urrent generation number is involvedin the omputation of the orresponding penalty fators (normally the penalty funtion is de�ned in suh a waythat it inreases over time|i.e., generations). Notie that although the two approahes desribed in the followingsubsetions (annealing penalties and adaptive penalties) are also dynami penalty approahes, they were onsideredseparately for the sake of larity.Joines and Houk [83℄ proposed a tehnique in whih individuals are evaluated (at generation t) using (we assumeminimization): �tness(~x) = f(~x) + (C � t)� � SV C(�; ~x) (12)where C, � and � are onstants de�ned by the user (the authors used C = 0:5, � = 1 or 2, and � = 1 or 2), andSV C(�; ~x) is de�ned as [83℄: SV C(�; ~x) = nXi=1 D�i (~x) + pXj=1Dj(~x) (13)and Di(~x) = � 0 gi(~x) � 0jgi(~x)j otherwise 1 � i � n (14)Dj(~x) = � 0 �� � hj(~x) � �jhj(~x)j otherwise 1 � j � p (15)This dynami funtion inreases the penalty as we progress through generations.Kazarlis & Petridis [85℄ performed a detailed study of the behavior of a dynami penalty funtion of the form:�tness(~x) = f(~x) + V (g)� A mXi=1 (Æi � wi � �(di(S))) +B!� Æs (16)where A is a \severity" fator, m is the total number of onstraints, Æi is 1 if the onstraint i is violated and0 otherwise, wi is a weight fator for onstraint i, di(S) is a measure of the degree of violation of onstraint iintrodued by solution S, �i(:) is a funtion of this measure, B is a penalty threshold fator, Æs is a binary fator(ds = 1 if S is infeasible and is zero otherwise), and V (g) is an inreasing funtion of g (the urrent generation) inthe range (0 : : : 1).Using as test funtions the utting stok problem and the unit ommitment problem, Kazarlis & Petridisexperimented with di�erent forms of V (g) (linear, quadrati, ubi, quarti, exponential and 5-step), and foundthat the best overall performane was provided by a funtion of the form:V (g) = � gG�2 (17)where G is the total number of generations.
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Advantages and DisadvantagesSome researhers have argued that dynami penalties work better than stati penalties. However, it is diÆultto derive good dynami penalty funtions in pratie as it is diÆult to produe good penalty fators for statifuntions [159℄. For example, in the approah proposed by Joines and Houk [83℄, the quality of the solution foundwas very sensitive to hanges in the values of � and � and there were no lear guidelines regarding the sensitivityof the approah to di�erent values of C. Even when the values indiated above were found by the authors ofthis method to be a reasonable hoie, Mihalewiz [102, 108℄ reported that these parameters produed prematureonvergene most of the time in other examples. Also, it was found that the tehnique normally either onvergedto an infeasible solution or to a feasible one that was far away from the global optimum [102, 34℄. Apparently, thistehnique provides very good results only when the objetive funtion is quadrati [109℄.The dynami penalty funtion proposed by Kazarlis & Petridis (alled by them Varying Fitness Funtion Teh-nique or VFF for short) [85℄ requires several parameters that depend on the problem and whose de�nition is notat all lear (for example, A = 1000 and B = 0 in the experiments reported in [85℄, but no further explanationis provided about why these values were hosen). Also, their tests (although exhaustive for the two problemsonsidered in their work) need to be extended to other funtions before being able to make more general laimsabout this tehnique.In general, the problems assoiated with stati penalty funtions are also present with dynami penalties: if abad penalty fator is hosen, the EA may onverge to either non-optimal feasible solutions (if the penalty is toohigh) or to infeasible solutions (if the penalty is too low) [161℄.2.3 Annealing PenaltiesMihalewiz and Attia [105℄ onsidered a method based on the idea of simulated annealing [89℄: the penaltyoeÆients are hanged one in many generations (after the algorithm has been trapped in a loal optima). Onlyative onstraints are onsidered at eah iteration, and the penalty is inreased over time (i.e., the temperaturedereases over time) so that infeasible individuals are heavily penalized in the last generations.The method of Mihalewiz and Attia [105℄ requires that onstraints are divided into four groups: linear equal-ities, linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of ative onstraints A has tobe reated, and all nonlinear equalities together with all violated nonlinear inequalities have to be inluded there.The population is evolved using [102℄: �tness(~x) = f(~x) + 12� Xi2A�2i (~x) (18)where � is the ooling shedule [89℄,�i(~x) = � max[0; gi(~x)℄ if 1 � i � njhi(~x)j if n+ 1 � i � m (19)and m is the total number of onstraints.An interesting aspet of this approah is that the initial population is not really diverse, but onsists of multipleopies of a single individual that satis�es all the linear onstraints (a single instane of this feasible individual isreally enough [109℄). At eah iteration, the temperature � is dereased and the new population is reated using thebest solution found in the previous iteration as the starting point for the next iteration. The proess stops when apre-de�ned �nal `freezing' temperature �f is reahed.A similar proposal was made by Carlson et al. [160℄. In this ase, the �tness funtion of an individual isomputed using: �tness(~x) = A � f(~x) (20)where A depends on two parameters: M , whih measures the amount by whih a onstraint is violated (it takesa zero value when no onstraint is violated), and T , whih is a funtion of the running time of the algorithm. T8







tends to zero as evolution progresses. Using the basi priniple of simulated annealing, Carlson et al. [160℄ de�nedA as: A = e�M=T (21)so that the initial penalty fator is small and it inreases over time. This will disard infeasible solutions in thelast generations.To de�ne T (the ooling shedule), Carlson et al. [160℄ use:T = 1pt (22)where t refers to the temperature used in the previous iteration.Finally, it should be mentioned that Joines and Houk [83℄ also experimented with a penalty funtion based onsimulated annealing: �tness(~x) = f(~x) + e(C�t)��SV C(�;~x) (23)where t is the generation number, SV C(�; ~x) is de�ned by equation (13), C = 0:05, and � = � = 1.This �tness funtion was proposed as another form of handling onstraints in an EA, but their suess wasrelative, mainly beause they used unnormalized onstraints.Advantages and DisadvantagesOne of the main drawbaks of Mihalewiz and Attia's approah is its extreme sensitivity to the values of itsparameters (partiularly the ooling shedule �), and it is also well known that it is normally diÆult to hoose anappropriate ooling shedule when solving a problem with simulated annealing [89℄. Mihalewiz and Attia [105℄used �0 = 1 and �f = 0:000001 in their experiments, with inrements �i+1 = 0:1��i. Carlson et al. [160℄ deided touse the mean onstraint violation ( �M) as the starting temperature value. For the �nal temperature, they deidedto use one hundreth of the mean onstraint violation at the last generation. However, these values are empiriallyderived and although proved to be useful in some engineering problems by Carlson et al. [160℄, their de�nitionremains as the most ritial issue when using this approah.The approah used to handle linear onstraints in Mihalewiz and Attia's tehnique (treated separately bythem) is very eÆient, but it requires that the user provides an initial feasible point to the algorithm. Theimplementation of this tehnique might require the use of another program to generate a feasible starting pointthat satis�es all linear onstraints (equalities and inequalities) and also requires speial operators that produealways feasible o�spring from feasible parents.Regarding Joines and Houk's approah [83℄, their main problems to make this approah work were due to theoverows produed by the fat that they did not normalize their onstraints. Therefore, the exponential funtionwould sometimes fall out of the valid numerial range of the omputer. Furthermore, the de�nition of the onstantC was not justi�ed, and the authors admitted that further experimentation regarding its e�et was neessary. Onthe other hand, the implementation of this tehnique is easier beause it does not distinguish between linear andnonlinear onstraints and its authors leave to the EA itself the task of generating feasible solutions from an initialset of random values.2.4 Adaptive PenaltiesBean and Hadj-Alouane [10, 69℄ developed a method that uses a penalty funtion whih takes a feedbak from thesearh proess. Eah individual is evaluated by the formula:�tness(~x) = f(~x) + �(t)24 nXi=1 g2i (~x) + pXj=1 jhj(~x)j35 (24)where �(t) is updated at every generation t in the following way:9







�(t+ 1) = 8<: (1=�1) � �(t); if ase #1�2 � �(t); if ase #2�(t); otherwise; (25)where ases #1 and #2 denote situations where the best individual in the last k generations was always (ase#1) or was never (ase #2) feasible, �1; �2 > 1, �1 > �2, and �1 6= �2 (to avoid yling). In other words, thepenalty omponent �(t+1) for the generation t+1 is dereased if all the best individuals in the last k generationswere feasible or is inreased if they were all infeasible. If there are some feasible and infeasible individuals tied asbest in the population, then the penalty does not hange.Smith and Tate [162℄ proposed an approah later re�ned by Coit and Smith [28℄ and Coit et al. [29℄ in whihthe magnitude of the penalty is dynamially modi�ed aording to the �tness of the best solution found so far. Anindividual is evaluated using the formula (only inequality onstraints were onsidered in this work):�tness(~x) = f(~x) + (Bfeasible �Ball) nXi=1 � gi(~x)NFT (t)�k (26)where Bfeasible is the best known objetive funtion at generation t, Ball is the best (unpenalized) overallobjetive funtion at generation t, gi(~x) is the amount by whih the onstraint i is violated, k is a onstant thatadjusts the \severity" of the penalty (a value of k = 2 has been previously suggested by Coit and Smith [28℄), andNFT is the so-alled Near Feasibility Threshold, whih is de�ned as the threshold distane from the feasible regionat whih the user would onsider that the searh is \reasonably" lose to the feasible region [109, 63℄.Norman & Smith [123℄ further applied Coit & Smith's approah to faility layout problems, and apparently thetehnique has been used only in ombinatorial optimization problems.Gen and Cheng [63℄ indiate that Yokota et al. [177℄ proposed a variant of Smith, Tate and Coit's approah inwhih they use a multipliative form of the �tness funtion (instead of an addition as in Smith et al. [162℄):�tness(~x) = f(~x)� P (~x) (27)where P (~x) is de�ned as: P (~x) = 1� 1n nXi=1 ��bi(~x)bi �k (28)and �bi(~x) = max[0; gi(~x)� bi℄ (29)In this ase, �bi(~x) refers to the violation of onstraint i. Notie that this approah is really a speial ase ofSmith et al.'s approah in whih NFT = bi, assuming that gi(~x) � bi is required to onsider a solution as feasible.Gen and Cheng [62℄ later re�ned their approah introduing a more severe penalty for infeasible solutions. Inthe new version of their algorithm, P (~x) = 1� 1n nXi=1 ��bi(~x)�bmaxi �k (30)�bi(~x) = max[0; gi(~x)� bi℄ (31)�bmaxi = max[�;�bi(~x); ~x 2 P (t)℄ (32)where �bi(~x) is the value by whih the onstraint i is violated in the n-th hromosome. �bmaxi is the maximumviolation of onstraint i in the whole (urrent) population, and � is a small positive number used to avoid dividingby zero [63℄. The motivation of this tehnique was to preserve diversity in the population, avoiding at the sametime overpenalizing infeasible solutions whih will onstitute most of the population at early generations in highlyonstrained optimization problems [63℄. 10







Eiben & van der Hauw [52℄, Eiben et al. [53℄ and Eiben & Ruttkay [51℄ proposed an adaptive penalty funtionthat was suessfully applied to the graph 3-oloring problem. They used a �tness funtion of the form�tness(~x) = nXi=1 wi � �(~x; i) (33)where wi is a weight (or penalty) assigned to node i of a graph, and�(~x; i) = � 1 if node xi is left unolored beause of a onstraint violation0 otherwise (34)In this approah, originally introdued by Eiben et al. [50℄, the weights used in the �tness funtion are hangedduring the evolutionary proess suh that the searh fouses on satisfying those onstraints that are onsidered\harder" by giving higher rewards to the �tness funtion in those ases. This tehnique proved to be superior to apowerful (traditional) graph oloring tehnique alled DSatur [15℄ and to a Grouping Geneti Algorithm [54℄.Rasheed [139℄ proposed an approah in whih the penalty fator would be small at the beginning of the evolu-tionary proess, and it would be inreased whenever the searh gave too little attention to feasibility (i.e., when thepoint with highest �tness in the population was infeasible). Conversely, the penalty fator would be dereased if thesearh gave too muh attention to feasibility (i.e., if all individuals in the population were feasible). The rationalebehind the approah was to insure proper searh of the regions adjaent to onstraint boundaries, sine in manyases the optimum lies preisely there. This approah was suessfully applied to several engineering optimizationproblems (e.g., supersoni transport airraft design).Crossley and Williams [32℄ experimented with several adaptive penalty oeÆients based on the urrent gen-eration number (this would really be a dynami penalty funtion) and the standard deviation and variane ofthe population's �tness values. They tested their six di�erent penalty oeÆients (inluding a onstant value) onfour engineering problems. Their results showed supperiority of the adaptive approahes over the use of a on-stant penalty oeÆient. A oeÆient whose variation was linear with respet to the urrent generation numberwas found to provide the best results overall. However, they onluded that the best adaptive penalty is reallyproblem-dependent if we are onerned of �nding the best result in the minimum number of generations.Advantages and DisadvantagesThe obvious drawbak of Bean and Hadj-Alouane's approah [10, 69℄ is how to hoose the generational gap (i.e.,the appropriate value of k) that provides reasonable information to guide the searh. More important yet is howdo we de�ne the values of �1 and �2 to penalize fairly a given solution.The most obvious drawbak of Smith and Tate's [162℄ approah is how to hoose NFT , sine this parameterwill be problem dependent. Coit and Smith [28℄ have proposed to de�ne NFT as:NFT = NFT01 + �� t (35)where NFT0 is an upper bound for NFT , t is the generation number, and � is a onstant that assures thatthe entire region between NFT0 and zero (feasible region) is searhed. Care should be taken that NFT does notapproah zero either too quikly or too slowly [28℄. Although Coit and Smith [28℄ have provided some alternativesfor de�ning NFT , its value remains as an additional parameter to be determined by the user.Additionally, the fator Bfeasible�Ball has some potential dangers: First, if Bfeasible is muh greater than Ball,then the penalty would be quite large for all individuals in the population. Coit and Smith [28℄ laim that thisdoes not seem to happen too often in pratie beause they use seletion strategies that prelude the possibility ofseleting solution vetors suÆiently far from the feasible region for this to happen, but in any ase, they proposehanging the values of Bfeasible and Ball for the initial generations.The seond potential danger is that if Bfeasible and Ball are idential, then the penalty would be zero, whihmeans that all infeasible individuals would go unpenalized in that generation. The underlying assumption here isthat the best unpenalized individual in fat lies on the feasible region, but that might not be the ase, and it ouldintrodue a strong bias towards infeasible solutions. 11







The approah proposed by Gen and Cheng [63℄ assigns a relatively mild penalty with respet to Coit et al. [29℄,but the authors of this method argue that their approah is problem-independent [63℄. However, no informationis provided by Gen and Cheng [63℄ regarding the sort of problems used to test this tehnique, and apparently theapproah was used only in one ombinatorial optimization problem, whih does not onstitute enough evidene ofthis statement.Similarly, the approah of Eiben & van der Hauw [52℄ also requires the de�nition of additional parameters(the weights wi assigned to eah node of the graph), and it has been applied only to ombinatorial optimizationproblems.Rasheed's approah [139℄ was inspired by Smith and Tate [162℄, and it seems to be the �rst attempt to useadaptive penalties in numerial optimization. This approah is interesting, but it requires the de�nition of aninitial value for the penalty fator. Rasheed provides a way of omputing suh a default value. However, hisformula is based on the assumption that the numerial magnitude of the onstraints is omparable to what he allsthe \measure of merit" (i.e., the objetive funtion). If this is not true, then a saling funtion will be required.Also, ertain limits have to be de�ned for the inrements and derements of the penalty fator, in order to avoidabrupt hanges.Crossley and Williams' study was inonlusive. For example, adaptive penalties based on the standard deviationand variane of the population's �tness values were found to be too expensive (omputationally speaking). Apenalty fator that inreased quadratially with respet to the number of generations was also found to providepoor results. However, from the remaining approahes, none of them was found to provide the best possible resultswith the lowest number of �tness funtion evaluations for all test problems. Obviously, more studies of this sortare required.2.5 Co-evolutionary penaltiesCoello [25℄ proposed the use of a penalty funtion of the form:�tness(~x) = f(~x)� (oef � w1 + viol � w2) (36)where f(~x) is the value of the objetive funtion for the given set of variable values enoded in a hromosome; w1and w2 are 2 penalty fators (onsidered as integers); oef is the sum of all the amounts by whih the onstraintsare violated (only inequality onstraints were onsidered):oef = nXi=1 gi(~x) 8gi(~x) > 0 (37)viol is an integer fator, initialized to zero and inremented by one for eah onstraint of the problem that isviolated, regardless of the amount of violation (i.e., only the number of onstraints violated is ounted with thisvariable, but not the magnitude in whih eah onstraint is violated).In Coello's approah, the penalty is atually split into two values (oef and viol), so that the EA has enoughinformation not only about how many onstraints were violated, but also about the orresponding amounts ofviolation. This follows Rihardson's suggestion [144℄ about using penalties that are guided by the distane tofeasibility.Coello [25℄ used two di�erent populations P1 and P2 with orresponding sizesM1 andM2. The seond of thesepopulations (P2) enoded the set of weight ombinations (w1 and w2) that would be used to ompute the �tnessvalue of the individuals in P1 (i.e., P2 ontained the penalty fators that would be used in the �tness funtion).The idea of Coello's approah is to use one population to evolve solutions (as in a onventional EA), and anotherto evolve the penalty fators w1 and w2. For eah individual Aj in P2 there is an instane of P1. However, thepopulation P1 is reused for eah new element Aj proessed from P2.Eah individual Aj (1 � j � M2) in P2 is deoded and the weight ombination produed (i.e., the penaltyfators) is used to evolve P1 during a ertain number (Gmax1) of generations. The �tness of eah individual Bk(1 � k � M1) is omputed using equation (36), keeping the penalty fators onstant for every individual in theinstane of P1 orresponding to the individual Aj being proessed.12







After evolving eah P1 orresponding to every Aj in P2 (there is only one instane of P1 for eah individual inP2), the best average �tness produed is omputed using:average fitnessj = M1Xi=1 � �tness(~x)ount feasible�+ ount feasible 8~x 2 F (38)In equation (38), the �tnesses of all feasible solutions in P1 are added, and an average of them is omputed(the integer variable ount feasible is a ounter that indiates how many feasible solutions were found in thepopulation). The reason for onsidering only feasible individuals is that if infeasible solutions are not exludedfrom this omputation, the seletion mehanism of the EA may bias the population towards regions of the searhspae where there are solutions with a very low weight ombination. Suh solutions may have good �tness values,and still be infeasible. The reason for that is that low values of w1 and w2 may produe penalties that are not bigenough to outweight the value of the objetive funtion.Notie also the use of ount feasible to avoid stagnation (i.e., loss of diversity in the population) at ertainregions in whih only very few individuals will have a good �tness or will be even feasible. By adding this quantityto the average �tness of the feasible individuals in the population, the EA is enouraged to move towards regionsin whih lie not only feasible solutions with good �tness values, but there are also lots of them. In pratie, it maybe neessary to apply a saling fator to the average of the �tness before adding ount feasible, to avoid that theEA gets trapped in loal optima. However, suh saling fator is not very diÆult to ompute beause Coello [25℄assumes populations of onstant size (suh size must be de�ned before running the EA). The range of the �tnessvalues an be also easily obtained at eah generation, beause the maximum and minimum �tness values in thepopulation are known at eah generation.The proess indiated above is repeated until all individuals in P2 have a �tness value (the best average fitnessof their orresponding P1). Then, P2 is evolved one generation using onventional geneti operators (i.e., rossoverand mutation) and the new P2 produed is used to start the same proess all over again. It is important to notiethat the interation between P1 and P2 introdues diversity in both populations, whih keeps the EA from easilyonverging to a loal optimum.Advantages and DisadvantagesThe problem with this approah is that it introdues the de�nition of four additional parameters: Gmax1, Gmax2,M1 and M2. Coello [25, 22℄ argues that those parameters have to be (empirially) determined for an EA in anypartiular appliation, and showed that the approah was really more sensitive to hanges in the parameters of P1than to hanges in the parameters of P2. However, the de�nition of these parameters remains as an additionalissue to be settled. Furthermore, if these parameters are not arefully hosen, a lot of �tness funtion evaluationsmight be required due to the nested loops involved in the optimization proess. A parallel algorithm may be aviable solution to this problem, but suh an alternative has not been implemented yet.2.6 Segregated geneti algorithmLe Rihe et al. [147℄ designed a (segregated) geneti algorithm whih uses two penalty parameters (for eahonstraint) instead of one; these two values aim at ahieving a balane between heavy and moderate penaltiesby maintaining two subpopulations of individuals instead of one. Even when individuals of the two populationsinterbreed (i.e., they are merged), they are \segregated" in terms of satisfation of a ertain onstraint.The proedure is the following [147℄: a population of size 2 � m is generated. Eah individual is evaluatedaording to two penalty funtions (one with heavy and one with moderate penalties). Two ranked lists aregenerated and then merged. Only m individuals are hosen from the new list to apply the geneti operators(rossover and mutation): the best individuals from the two original ranked lists are hosen to beome parents forthe next generation. This aims to ombine feasible and infeasible individuals, and to help the geneti algorithm tostay out of loal minima.Another important di�erene of this approah with respet to a traditional geneti algorithm is that if the twopenalties have the same value, the m hildren produed after applying the geneti operators are mixed with their13







m parents. Then the best m individuals from this merged list are hosen for further proessing. This replaementstrategy (alled \super elitism" by Le Rihe et al. [147℄) was taken from evolution strategies [156℄ and allows tobalane the inuene of the two penalty fators used.Linear ranking was used to derease the high seletion pressure that ould ause premature onvergene. Thisapproah was used to solve a laminated design problem, providing exellent results [147℄.Advantages and DisadvantagesThe problem with this approah is again the way of hoosing the penalties for eah of the two sub-populations.Even when some guidelines have been provided by the authors of this method to de�ne suh penalties [147℄, theyalso admit that it is diÆult to produe generi values that an be used in any problem for whih no previousinformation is available.2.7 Death penaltyThe rejetion of infeasible individuals (also alled \death penalty") is probably the easiest way to handle onstraintsand it is also omputationally eÆient, beause when a ertain solution violates a onstraint, it is assigned a �tnessof zero. Therefore, no further alulations are neessary to estimate the degree of infeasibility of suh a solution.The normal approah taken is to iterate reursively, generating a new point at eah reursive all, until a feasiblesolution is found [76℄. This might be a rather lengthy proess in problems in whih is very diÆult to approahthe feasible region.Advantages and DisadvantagesDeath penalty is very popular within the evolution strategies ommunity [156, 4℄, but it is limited to problems inwhih the feasible searh spae is onvex and onstitutes a reasonably large portion of the whole searh spae. Thisapproah has the drawbak of not exploiting any information from the infeasible points that might be generatedby the EA to guide the searh.One potential problem of this approah is that if there are no feasible solutions in the initial population (whihis normally generated at random) then the evolutionary proess will \stagnate" beause all the individuals willhave the same �tness (i.e., zero).There are well-doumented experiments in whih the use of death penalty with EAs is not a good hoie. Forexample, Coit & Smith [28℄ ompared this approah against an adaptive penalty in a reliability design optimizationproblem (a problem with highly onstrained searh spaes), �nding that the adaptive penalty was superior in termsof both the quality of the �nal solutions found and the onvergene of the EA to the best solution found. Mihalewiz[102, 108, 109℄ has also shown that the use of death penalty is inferior to the use of penalties that are de�ned interms of the distane to the feasible region.3 Speial representations and operatorsSome researhers have deided to develop speial representation shemes to takle a ertain (partiularly diÆult)problem for whih a generi representation sheme (e.g., the binary representation used in the traditional genetialgorithm) might not be appropriate. Due to the hange of representation, it is neessary to design speial genetioperators that work in a similar way than the traditional operators used with a binary representation.A hange of representation is aimed at simplifying the shape of the searh spae and the speial operators arenormally used to preserve the feasibility of solutions at all times. The main appliation of this approah is naturallyin problems in whih it is extremely diÆult to loate at least a single feasible solution.3.1 Davis' appliationsLawrene Davis' Handbook of Geneti Algorithms [40℄ ontains several examples of EAs that use speial represen-tations and operators to solve omplex real-world problems. For example, Yuval Davidor [37℄ (see also [36℄) used14







a varying-length geneti algorithm to generate robot trajetories, and de�ned a speial rossover operator alledanalogous rossover [35℄, whih uses phenotypi similarities to de�ne rossover points in the parent strings. Davi-dor also used Lamarkian probabilities for rossover and mutation. This means that the rossover and mutationpoints were hosen aording to the error distribution along the string, whih was relatively easy to estimate inthis partiular appliation.Other appliations inluded in Davis' book are: shedule optimization [170℄, synthesis of neural networks arhi-teture [73℄, and onformational analysis of DNA [98℄, among others.Advantages and DisadvantagesThe use of speial representations and operators is, with no doubt, quite useful for the intended appliation forwhih they were designed, but their generalization to other (even similar) problems is by no means obvious.3.2 Random keysJames C. Bean [8, 9℄ proposed a speial representation alled \random keys enoding" whih (in ontrast withthe approahes reported in Davis' book) is used to eliminate the need of speial rossover and mutation operatorsin ertain sequening and optimization problems (e.g., job shop sheduling, parallel mahine tool sheduling, andfaility layout), beause it maintains the feasiblity of the permutations used in these domains at all times. It alsoadds no omputational overhead to the searh.The idea is to enode a solution with random numbers. Suh random numbers are used as sort keys to deodethe solution. For example, to represent an n-job m-mahine sheduling problem using this approah, eah allele isa real number in whih the integer part belongs to the set f1; 2; : : : ;mg, whereas the deimal fration is randomlygenerated within the interval (0; 1). The integer part of the number is then interpreted as the mahine assignmentfor that job, whereas the sorted frational parts provide the job sequene on eah mahine [121, 122℄.Advantages and DisadvantagesThis approah is with no doubt interesting, although some researhers have reported poor performane of thetehnique in some appliations. For example, Parsons et al. [131, 132℄ found that the random keys geneti algorithmdid not perform as well as a standard permutation representation with speial-purpose operators (transpositionand a form of inversion) in a DNA fragment-assembly problem (a TSP problem with noise, errors, and some otherompliations).3.3 GENOCOPAnother example of this approah is GENOCOP (GEneti algorithm for Numerial Optimization for COnstrainedProblems), developed by Mihalewiz [101℄. GENOCOP eliminates equality onstraints together with an equalnumber of problem variables. This removes part of the spae to be searhed and simpli�es the problem for theEA. The remaining onstraints are linear inequalities, whih form a onvex set that must be searhed by the EA.GENOCOP tries to loate an initial (feasible) solution by sampling the feasible region. If it does not sueed after aertain number of trials, the user is asked to provide suh a starting point. The initial population will then onsistof idential opies of this starting point. The geneti operators adopted perform linear ombinations of individualsto ensure that their o�spring will also be feasible (these operators rely on properties of onvex sets).Advantages and DisadvantagesGENOCOP assumes a feasible starting point (or feasible initial population), whih implies that the user or theEA must have a way of generating (in a reasonable time) suh starting point. Also, the fat that GENOCOP onlyallows linear onstraints, limits its appliations to onvex searh spaes [34℄.
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3.4 Constraint Consistent GAsKowalzyk [90℄ proposed the use of onstraint onsisteny [93℄ to prune the searh spae by preventing variableinstantiations that are not onsistent with the onstraints of the problem (i.e., making sure that variables produeonly feasible solutions).Kowalzyk used real-numbers representation and de�ned speial geneti operators and a speial initializationproedure that inorporated the onept of onstraint onsisteny. He indiated that his approah an be usedin ombination with any other onstraint-handling tehnique, and was aware that in many ases partially feasiblesolutions may be preferred beause they an guide the searh in a more appropriate way or beause they are muheasier to �nd.Advantages and DisadvantagesThe main drawbak of this approah is the extra omputational ost required to propagate onstraints, whih maybeome a proess more expensive than the optimization itself. In any ase, the approah deserves some attentionand more experimentation is required, sine Kowalzyk illustrated its performane with only two optimizationproblems.3.5 Loating the boundary of the feasible regionThe main idea of this tehnique is to searh areas lose to the boundary of the feasible region. Sine in manynonlinear optimization problems at least some onstraints are ative at the global optimum, it is perfetly justi�edto fous the searh to the boundary between the feasible and infeasible regions.The idea was originally proposed in an Operations Researh tehnique known as strategi osillation [65℄ andhas been used in ombinatorial and nonlinear optimization problems [66℄. The basi approah is to use adaptivepenalties or other similar mehanism (e.g., gradients) to ross the feasibility boundary bak and forth by relaxingor tightening a ertain fator that determines the diretion of movement [109℄.The two basi omponents of this approah are: (a) an initialization proedure that an generate feasible points,and (b) geneti operators that explore the feasible region.Additionally, the geneti operators must satisfy the following onditions [136, 101℄: (1) rossover should beable to generate all points \between" the parents, (2) small mutations must result in small hanges in the �tnessfuntion.In the work done by Shoenauer and Mihalewiz [152℄, several examples are presented and speial genetioperators are designed for eah using geodesial urves and plane-based operators. In a further paper, Shoenauerand Mihalewiz [153℄ analyze in more detail the use of sphere operators in onvex feasible searh spaes.Advantages and DisadvantagesThe main drawbak of this approah is that the operators designed are either highly dependent on the hosenparameterization [152℄, or more omplex alulations are required to perform rossover and mutation. Also, manyproblems have disjoint feasible regions and the use of operators of this sort would not be of muh help in thoseases sine they would explore only one of those feasible regions.Finally, the use of these operators is limited to a single problem, although some of the onepts involved an begeneralized. Whenever appliable, however, the approah is quite eÆient and produes very good results.3.6 DeodersIn this ase, a hromosome \gives instrutions" on how to build a feasible solution. Eah deoder imposes arelationship T between a feasible solution and a deoded solution [34℄. When using deoders, however, it isimportant that several onditions are satis�ed [127℄: (1) for eah feasible solution s there must be a deodedsolution d, (2) eah deoded solution d must orrespond to a feasible solution s, and (3) all feasible solutionsshould be represented by the same number of deodings d. Additionally, it is reasonable to request that (4) the16







transformation T is omputationally fast and (5) it has loality feature in the sense that small hanges in thedeoded solution result in small hanges in the solution itself [34℄.Koziel and Mihalewiz [91, 92℄ have reently proposed a homomorphous mapping between an n-dimensionalube and a feasible searh spae (either onvex or non-onvex). The main idea of this approah is to transform theoriginal problem into another (topologially equivalent) funtion that is easier to optimize by the EA.Kim and Husbands [86, 87℄ had an earlier proposal of a similar approah that used Riemann mappings totransform the feasible region into a shape that failitated the searh for the EA.Advantages and DisadvantagesDespite the several advantages of Koziel and Mihalewiz's approah [92℄, it also has some disadvantages [92℄:� It uses an extra parameter v whih has to be found empirially, performing a set of runs.� Requires extra omputational e�ort beause of the binary searh required to �nd the intersetion of a linewith the boundary of the feasible region (whih is the ore of the tehnique).� It violates the loality feature mentioned before when used in non-onvex searh spaes: small hanges in theenoded solution may result in huge hanges in the deoded value (e.g., when dealing with disjoint searhspaes).However, in the experiments reported by Koziel and Mihalewiz [92℄, this tehnique provided muh better resultsthan those reported with any other onstraint-handling method, and seems a very promising area of researh.Kim and Husbands' approah [86, 87℄ ould only be used with problems of low dimensionality (no more thanfour variables) and required the objetive funtion to be given in algebrai form. The mapping proposed by Kozieland Mihalewiz [91, 92℄, however, an be used with problems of any dimensionality and does not require that theobjetive funtion is given in algebrai form.4 Repair algorithmsIn many ombinatorial optimization problems (e.g., traveling salesman problem, knapsak problem, set overingproblem, et.) is relatively easy to `repair' an infeasible individual (i.e., to make feasible an infeasible individual).Suh a repaired version an be used either for evaluation only, or it an also replae (with some probability) theoriginal individual in the population.Liepins et al. [96, 97℄ have shown, through an empirial test of EA performane on a diverse set of onstrainedombinatorial optimization problems, that a repair algorithm is able to surpass other approahes in both speedand performane.GENOCOP III [108℄ also uses repair algorithms. The idea is to inorporate the original GENOCOP system[107℄ (whih handles only linear onstraints) and extend it by maintaining two separate populations, where resultsin one population inuene evaluations of individuals in the other population. The �rst population onsists ofthe so-alled searh points whih satisfy linear onstraints of the problem; the feasibility (in the sense of linearonstraints) of these points is maintained by speialized operators. The seond population onsists of feasiblereferene points. Sine these referene points are already feasible, they are evaluated diretly by the objetivefuntion, whereas searh points are \repaired" for evaluation.Xiao et al. [110, 176, 175℄ used a repair algorithm to transform an infeasible path of a robot trying to movebetween two points in the presene of obstales, so that the path would beome feasible (i.e., ollision-free). Therepair algorithm was implemented through a set of arefully designed geneti operators that used knowledge aboutthe domain to bring infeasible solutions into the feasible region in an eÆient way.Other authors that have used repair algorithms are Orvosh and Davis [126℄, M�uhlenbein [115℄, Le Rihe andHaftka [146℄, and Tate and Smith [171℄.There are no standard heuristis for the design of repair algorithms: normally, it is possible to use a greedyalgorithm (i.e., an optimization algorithm that proeeds through a series of alternatives by making the best deision,as omputed loally, at eah point in the series), a random algorithm or any other heuristi whih would guide the17







repair proess. However, the suess of this approah relies mainly on the ability of the user to ome up with suha heuristi.Another interesting aspet of this tehnique is that normally an infeasible solution that is repaired is only usedto ompute its �tness, but the repaired version is returned to the population only in ertain ases (using a ertainprobability). The question of replaing repaired individuals is related to the so-alled Lamarkian evolution, whihassumes that an individual improves during its lifetime and that the resulting improvements are oded bak intothe hromosome [166℄. Some researhers like Liepins et al. [96, 97℄ have taken the never replaing approah (thatis, the repaired version is never returned to the population), while other authors suh as Nakano [119℄ have takenthe always replaing approah.Orvosh and Davis [125, 126℄ reported a so-alled 5% rule for ombinatorial optimization problems, whih meansthat EAs (applied to ombinatorial optimization problems) with a repairing proedure provide the best result when5% of the repaired hromosomes replae their infeasible originals. Mihalewiz et al. [104℄ have reported, however,that a 15% replaement rule seems to be the best hoie for numerial optimization problems with nonlinearonstraints.Advantages and DisadvantagesWhen an infeasible solution an be easily (or at least at a low omputational ost) transformed into a feasiblesolution, repair algorithms are a good hoie. However this is not always possible and in some ases repair operatorsmay introdue a strong bias in the searh, harming the evolutionary proess itself [161℄. Furthermore, this approahis problem-dependent, sine a spei� repair algorithm has to be designed for eah partiular problem.5 Separation of onstraints and objetivesThere are several approahes that handle onstraints and objetives separately (i.e., without ombining the amountof onstraint violation and the objetive funtion value). In this setion we will review some of the most represen-tative proposals.5.1 Co-evolutionParedis [128℄ proposed a tehnique based on a o-evolutionary model in whih there are two populations: the �rstontains the onstraints to be satis�ed (in fat, this is not a population in the general sense of the term, sineits ontents does not hange over time) and the seond ontains potential (and possibly invalid) solutions to theproblem to be solved. Using an analogy with a predator-prey model, the seletion pressure on members of onepopulation depends on the �tness of the members of the other population [128℄.An individual with high �tness in the seond population represents a solution that satis�es a lot of onstraintswhereas an individual with high �tness in the �rst population represents a onstraint that is violated by a lot ofsolutions.Solutions and onstraints have enounters in whih individuals belonging to both populations are evaluated.Eah individual keeps a history of its enounters, and its �tness is omputed aording to the sum of the last nenounters (Paredis [128℄ used n = 25). The idea of the approah is to inrease the �tness of those onstraintsthat are harder to satisfy so that the evolutionary searh onentrates on them. In fat, the relevane of a ertainonstraint an be hanged over time using this approah.Advantages and DisadvantagesParedis [128℄ indiated that his approah was similar to a self-adaptive penalty funtion in whih the relevane ofa ertain onstraint an be hanged over time, aording to its diÆulty. The results reported by Paredis [128℄are very impressive, and the approah seems very eÆient beause not all onstraints have to be heked at alltimes. One problem with this approah is that the use of a historial reord to ompute �tness of an invidualmight introdue \stagnation" (i.e., the searh may not progress anymore) if all the onstraints (or at least mostof them) are equally diÆult to satisfy. Also, there is no further evidene of the e�etiveness of the approah in18







other ombinatorial optimization problems, and apparently, it has not been extended to numerial optimizationproblems either.5.2 Superiority of feasible pointsPowell and Skolnik [134℄ inorporated a heuristi rule (suggested by Rihardson et al. [144℄) for proessinginfeasible solutions: evaluations of feasible solutions are mapped into the interval (�1, 1), and infeasible solutionsinto the interval (1, 1). Individuals are evaluated using [134℄:�tness(~x) = ( f(~x) if feasible1 + r �Pni=1 gi(~x) +Ppj=1 hj(~x)� otherwise (39)f(~x) is saled into the interval (�1,1), gi(~x) and hj(~x) are saled into the interval (1, 1), and r is a onstant.Notie that in this approah the objetive funtion and the amount of onstraint violation are not ombined whenan individual is infeasible (as when using penalty funtions).Powell and Skolnik [134℄ used linear ranking seletion [6, 7, 40℄ in suh a way that at early generations therewould be slow onvergene, and later on onvergene ould be fored by inreasing the number of opies of thehighest ranked individuals.Deb [44℄ proposed more reently a similar approah in whih an individual is evaluated using:�tness(~x) = � f(~x) if gi(~x) � 0; 8i = 1; 2; : : : ; nfworst +Pni=1 gi(~x) otherwise (40)where fworst is the objetive funtion value of the worst feasible solution in the population, and gi(~x) refers onlyto inequality onstraints (Deb transformed equality onstraints to inequality onstraints using eq. (2)). If there areno feasible solutions in the population, then fworst is set to zero.Using binary tournament seletion, Deb applies the following rules to ompare two individuals [44℄:1. A feasible solution is always preferred over an infeasible one.2. Between two feasible solutions, the one having a better objetive funtion value is preferred.3. Between two infeasible solutions, the one having smaller onstraint violation is preferred.No penalty fator is required, sine the seletion proedure only performs pairwise omparisons. Therefore,feasible solutions have a �tness equal to their objetive funtion value, and the use of onstraint violation in theomparisons aims to push infeasible solutions towards the feasible region. Due to the fat that onstraints arenormally non-ommensurable (i.e., they are expressed in di�erent units), Deb normalized them to avoid any sortof bias toward any of them.The main di�erene between these two approahes (Powell & Skolnik's and Deb's) is that the seond does notrequire a penalty fator r, beause of the pairwise omparisons performed during the seletion proess. However,Deb's approah requires nihing to maintain diversity in the population [100℄. This means that in this approah thesearh is foused initially on �nding feasible solutions and then uses tehniques to maintain diversity to approahthe optimum.Another similar approah alled CONGA (COnstraint based Numeri Geneti Algorithm) was proposed byHinterding and Mihalewiz [75℄. The idea is to perform the searh in two phases, as Shoenauer and Xanthakis'behavioral memory algorithm [154℄. In the �rst phase, the searh onentrates on �nding feasible individuals(assuming that there is none in the initial population) and the objetive funtion value is not used (only theinformation about onstraint violation of eah individual). As the amount of feasible individuals inreases, thesearh fouses on �ne-tuning the best of them. Hinterding and Mihalewiz [75℄ use two seletion funtions: onethat selets an individual for mutation or the �rst parent for rossover (only one operator an be applied) usingthe same riteria as Deb [44℄ (an individual is randomly hosen when there is a tie). The seond seletion funtion�nds a mate for a parent seleted with the �rst funtion. This seond seletion funtion hooses the individualwith the least number of satis�ed onstraints in ommon with the parent already seleted. The idea is to selet the19







mate who best \omplements" the parent previously seleted. This mate should satisfy the onstraints than the�rst seleted parent does not satisfy. Therefore, the aim is that rossover will reate new individuals who satisfymore onstraints than any of their parents. The idea of omplementary mathing was borrowed from Ronald [148℄,only that in his ase, the seletion of the seond parent did not depend on the �rst one but on a di�erent globalriterion.Advantages and DisadvantagesAlthough some might think that the de�nition of r in Powell and Skolnik's approah introdues the traditionalproblems of using a penalty funtion, this is not true, sine the linear ranking seletion sheme used makes irrelevantthe value of this onstant. The approah has, however, other problems.The key onept of this approah is the assumption of the superiority of feasible solutions over infeasible ones,and as long as suh assumption holds, the tehnique is expeted to behave well [134℄. However, in ases where theratio between the feasible region and the whole searh spae is too small (for example, when there are onstraintsvery diÆult to satisfy), this tehnique will fail unless a feasible point is introdued in the initial population [104℄.Deb's results [44℄ are very enouraging, but his tehnique seems to have problems to maintain diversity in thepopulation, and the use of nihing methods [45℄ ombined with higher than usual mutation rates is apparentlyneessary to avoid stagnation. Sharing is an expensive proess (O(n2)), and its use introdues an extra parameter(�share), whose de�nition is normally determined using an empirial proedure similar to the one used with theother parameters of an EA (e.g., rossover and mutation rates, population size, et.).Hinterding andMihalewiz's approah relies on the same assumption as Powell and Skolnik's tehnique: feasibleindividuals are always better than infeasible ones. Therefore, it shares its same problems. The other problem withthis approah is how to keep diversity in the population, sine the tournament seletion strategy adopted mightintrodue a high seletion pressure (e.g., if there is only one feasible individual in the population, it will drive theothers to a possible loal optimum). The authors used a very high replaement rate (the 97% worst individualsfrom eah generation are replaed by new individuals, and dupliates are not allowed in the population). This triesto keep a large number of infeasible individuals in the population when at least one feasible individual has beenfound, as to derease the seletion pressure. However, the approah still needs further re�nement and validation(it was tested only with �ve benhmark funtions and ompared against GENOCOP II and III).5.3 Behavioral memoryShoenauer and Xanthakis [154℄ proposed to extend a tehnique alled behavioral memory, whih was originallyproposed for unonstrained optimization [41℄. The main idea of this approah is that onstraints are handled in apartiular order. The algorithm is the following [154℄:� Start with a random population of individuals� Set j = 1 (j is the onstraint ounter)� Evolve this population to minimize the violation of the j-th onstraint, until a given perentage of thepopulation (this is alled the ip threshold �) is feasible for this onstraint. In this ase�tness(~x) =M � g1(~x) (41)where M is a suÆiently large positive number whih is dynamially adjusted at eah generation.� j = j + 1� The urrent population is the starting point for the next phase of the evolution, minimizing the violation ofthe j-th onstraint, �tness(~x) =M � gj(~x) (42)During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j � 1)-th onstraints areeliminated from the population. The ondition required to stop this stage of the algorithm is again thesatisfation of the j-th onstraint by the ip threshold perentage � of the population.20







� If j < m, repeat the last two steps, otherwise (j = m) optimize the objetive funtion f rejeting infeasibleindividuals.The idea of this tehnique is to satisfy sequentially (one by one) the onstraints imposed on the problem. Thisis similar to an approah alled \lexiographi ordering" that is used in multiobjetive optimization [21℄. Onea ertain perentage of the population (de�ned by the ip threshold) satis�es the �rst onstraint, an attempt tosatisfy the seond onstraint (while still satisfying the �rst) will be made. Notie that in the last step of thealgorithm, Shoenauer and Xanthakis [154℄ use death penalty, beause infeasible individuals are eliminated fromthe population.Advantages and DisadvantagesThis method requires that there is a linear order of all onstraints, and the order in whih the onstraints areproessed inuenes the results provided by the algorithm (in terms of total running time and preision ahieved)[104℄.Shoenauer and Xanthakis also reommended the use of a sharing sheme (to keep diversity in the population),whih adds to the ip threshold � and the order of the onstraints as extra parameters required by the algorithm.Furthermore, sine this approah violates the minimum penalty rule [145, 147℄, it has a high omputational ost(inreased by the use of sharing to keep diversity in the population). As Shoenauer and Xanthakis [154℄ admit,the extra omputational ost of this approah is not justi�ed when the feasible region is quite large. However, it ispartiularly suitable for appliations in whih onstraints have a natural hierarhy of evaluation, like the problemof generating software test data used by the authors of this tehnique [154℄.5.4 Multiobjetive Optimization TehniquesThe main idea is to rede�ne the single-objetive optimization of f(~x) as a multiobjetive optimization problemin whih we will have m + 1 objetives, where m is the total number of onstraints. Then, we an apply anymultiobjetive optimization tehnique [60℄ to the new vetor �v = (f(~x); f1(~x); : : : ; fm(~x)), where f1(~x); : : : ; fm(~x)are the original onstraints of the problem. An ideal solution ~x would thus have fi(~x)=0 for 1 � i � m andf(~x) � f(~y) for all feasible ~y (assuming minimization).Surry et al. [168, 167℄ proposed the use of Pareto ranking [59℄ and VEGA [151℄ to handle onstraints using thistehnique. In their approah, alled COMOGA, the population was ranked based on onstraint violations (ountingthe number of individuals dominated by eah solution). Then, one portion of the population was seleted basedon onstraint ranking, and the rest based on real ost (�tness) of the individuals.Parmee and Purhase [129℄ implemented a version of VEGA [151℄ that handled the onstraints of a gas turbineproblem as objetives to allow an EA to loate a feasible region within the highly onstrained searh spae of thisappliation. However, VEGA was not used to further explore the feasible region, and instead Parmee and Purhase[129℄ opted to use speialized operators that would reate a variable-size hyperube around eah feasible point tohelp the EA to remain within the feasible region at all times.Camponogara & Talukdar [16℄ proposed the use of a proedure based on an evolutionary multiobjetive opti-mization tehnique. Their proposal was to restate a single objetive optimization problem in suh a way that twoobjetives would be onsidered: the �rst would be to optimize the original objetive funtion and the seond wouldbe to minimize �(~x) = nXi=1 max[0; gi(~x)℄ (43)One the problem is rede�ned, non-dominated solutions with respet to the two new objetives are generated.The solutions found de�ne a searh diretion d = (xi � xj)=jxi � xjj, where xi 2 Si, xj 2 Sj , and Si and Sj arePareto sets. The diretion searh d is intended to simultaneously minimize all the objetives [16℄. Line searh isperformed in this diretion so that a solution x an be found suh that x dominates xi and xj (i.e., x is a betterompromise than the two previous solutions found). Line searh takes the plae of rossover in this approah, andmutation is essentially the same, where the diretion d is projeted onto the axis of one variable j in the solution21







spae [16℄. Additionally, a proess of eliminating half of the population is applied at regular intervals (only the less�tted solutions are replaed by randomly generated points).Jim�enez and Verdegay [81℄ proposed the use of a min-max approah [19℄ to handle onstraints. The main ideaof this approah is to apply a set of simple rules to deide the seletion proess:1. If the two individuals being ompared are both feasible, then selet based on the minimum value of theobjetive funtion.2. If one of the two individuals being ompared is feasible and the other one is infeasible, then selet the feasibleindividual.3. If both individuals are infeasible, then selet based on the maximum onstraint violation (max gj(~x); for j =1; : : : ;m, and m is the total number of onstraints). The individual with the lowest maximum violation wins.Notie the great similarity between this approah and the tehnique proposed by Deb [44℄ that was desribedin setion 5.2. The main di�erene is that in this ase, no extra mehanism is used to preserve diversity in thepopulation.Coello [24℄ proposed the use of a population-based multiobjetive optimization tehnique suh as VEGA [151℄ tohandle eah of the onstraints of a single-objetive optimization problem as an objetive. At eah generation, thepopulation is split into m+1 sub-populations (m is the number of onstraints), so that a fration of the populationis seleted using the (unonstrained) objetive funtion as its �tness and another fration uses the �rst onstraintas its �tness and so on.For the sub-population guided by the objetive funtion, the evaluation of suh objetive funtion for a givenvetor ~x is used diretly as the �tness funtion (multiplied by (-1) if it is a minimization problem), with no penaltiesof any sort. For all the other sub-populations, the algorithm used is the following [24℄:if gj(~x) < 0:0 then �tness = gj(~x)else if v 6= 0 then �tness = �velse �tness = f(~x)where gj(~x) refers to the onstraint orresponding to sub-population j + 1 (this is assuming that the �rst sub-population is assigned to the objetive funtion f(~x)), and v refers to the number of onstraints that are violated(� m).There are a few interesting things that an be observed from this proedure. First, eah sub-population assoiatedwith a onstraint will try to redue the amount in whih that onstraint is violated. If the solution evaluated doesnot violate the onstraint orresponding to that sub-population, but it is infeasible, then the sub-population willtry to minimize the total number of violations, joining then the other sub-populations in the e�ort of driving theEA to the feasible region. This aims at ombining the distane from feasibility with information about the numberof violated onstraints, whih is the same heuristi normally used with penalty funtions.Finally, if the solution enoded is feasible, then this individual will be `merged' with the �rst sub-population,sine it will be evaluated with the same �tness funtion (i.e., the objetive funtion).It is interesting to notie that the use of the unonstrained objetive funtion in one of the sub-populationsmay assign good �tness values to infeasible individuals. However, sine the number of onstraints will normally begreater than one, the other sub-populations will drive the EA to the feasible region. In fat, the sub-populationevaluated with the objetive funtion will be useful to keep diversity in the population, making then unneessarythe use of sharing tehniques. The behavior expeted under this sheme is to have few feasible individuals atthe beginning, and then gradually produe solutions that may be feasible with respet to some onstraints butnot with respet to others. Over time, these solutions will ombine to produe individuals that are feasible, butnot neessarily optimum. At that point the diret use of the objetive funtion will help the EA to approahthe optimum, but sine some infeasible solutions will still be present in the population, those individuals will beresponsible to keep the diversity required to avoid stagnation.More reently, Coello [23℄ proposed another approah based on nondominane. In this ase, �tness is assignedto an individual using the following algorithm:Let the vetor ~xi (i = 1; : : : ; pop size) be an individual in the urrent population whose size is pop size. Theproposed algorithm is the following: 22







� To ompute the rank of an individual ~xi is feasible, following proedure is used:rank(~xi) = ount(~xi) + 1 (44)where ount(~xi) is omputed aording to the following rules:1. Compare ~xi against every other individual in the population. Assuming pairwise omparisons, we willall ~xj (j = 1; : : : ; pop size and j 6= i) the other individual against whih xi is being ompared at anygiven time.2. Initialize ount(~xi)(for i = 1; : : : ; pop size) to zero.3. If both ~xi and ~xj are feasible, then both are given a rank of zero and ount(~xi) remains without hanges.4. If ~xi is infeasible and ~xj is feasible, then ount(~xi) is inremented by one.5. If both ~xi and ~xj are infeasible, but ~xi violates more onstraints than ~xj , then ount(~xi) is inrementedby one.6. If both ~xi and ~xj are infeasible, and both violate the same number of onstraints, but ~xi has a totalamount of onstraint violation larger than the onstraint violation of ~xj , then ount(~xi) is inrementedby one.If any onstraint gk(~x) (k = 1; : : : ;m, where m is the total amount of onstraints) is onsidered satis�edif gi(~x) � 0, then, the total amount of onstraint violation for an individual ~xi (denoted as oef(~xi)) isgiven by: oef(~xi) = pXk=1 gk(~xi) for all gk(~xi) > 0 (45)� Compute �tness using the following rules:1. If ~xi is feasible, then rank(~xi) = fitness(~xi), else2. rank(~xi) = 1rank(~xi)� Individuals are seleted based on rank(~xi) (stohasti universal sampling is used).� Values produed by fitness(~xi) must be normalized to ensure that the rank of feasible individuals is alwayshigher than the rank of infeasible ones.This approah uses a real-oded GA with a simple self-adaptive mehanism for rossover and mutation (see[23℄ for details) and it does not require any additional parameters to maintain diversity in the population (as isnormally the ase of evolutionary multiobjetive optimization tehniques [21℄).Ray et al. [140℄ proposed an approah in whih solutions are ranked separately based on the value of theirobjetive funtions and their onstraints. Then, a set of mating restritions are applied based on the informationthat eah individual has of its own feasibility (this idea was inspired on an earlier approah by Hinterding andMihalewiz [75℄), so that the global optimum an be reahed through ooperative learning.Finally, Runarsson & Yao [149℄ proposed a onstraint-handling approah based on stohasti ranking that hassome resemblane with Surry & Radli�e's tehnique [168℄. In this ase, however, the population is ranked using astohasti version of bubble sort in whih individuals are ompared to their adjaent neighbors through a ertainnumber of sweeps (this number is probabilistially determined). The approah aims to �nd whether the objetivefuntion or the penalty funtion is dominanting the searh so that an appropriate balane an be found and theevolutionary algorithm an be guided to the global optimum in an eÆient way. The authors used a multi-memberevolution strategy with this approah and were able to math (and even improve in some ases) the results produedby Koziel & Mihalewiz [92℄ in the benhmark funtions of Mihalewiz [104℄, at a lower omputational ost.23







Advantages and DisadvantagesCOMOGA ompared fairly with a penalty-based approah in a pipe-sizing problem, sine the resulting EA wasless sensitive to hanges in the parameters. However, the results ahieved were not better than those found with apenalty funtion [167℄. It should be added that COMOGA [168, 167℄ requires several extra parameters, althoughits authors argue that the tehnique is not partiularly sensitive to their values [167℄. This tehnique uses Paretoranking based on onstraint violation [168℄. From Operations Researh we know that determining whih solutionsin some set are Pareto optimal is a omputationally expensive proess (it is O(k �M2), where k is the number ofobjetives and M is the population size)).Parmee and Purhase's [129℄ approah was developed for a heavily onstrained searh spae and it proved to beappropriate to reah the feasible region. However, this appliation of a multiobjetive optimization tehnique doesnot aim at �nding the global optimum of the problem, and the use of speial operators suggested by the authorsertainly limits the appliability of their approah.Camponogara & Talukdar's approah [16℄ has obvious problems to keep diversity (a ommon problem whenusing evolutionary multiobjetive optimization tehniques [21℄). This is indiated by the fat that the tehniquedisards the worst individuals at eah generation. Also, the use of line searh inreases the ost (omputationallyspeaking) of the approah. Finally, it is not lear what is the impat of the segment hosen to searh in the overallperformane of the algorithm.Jim�enez and Verdegay's approah [81℄ an hardly be said to be using a multiobjetive optimization tehniquesine it only ranks infeasible individuals based on onstraint violation. A subtle problem with this approah is thatthe evolutionary proess �rst onentrates only on the onstraint satisfation problem and therefore it samplespoints in the feasible region essentially at random [168℄. This means that in some ases (e.g., when the feasibleregion is disjoint) we might land in an inappropriate part of the feasible region from whih we will not be able toesape. However, this approah (as in the ase of Parmee and Purhase's [129℄ tehnique) may be a good alternativeto �nd a feasible point in a heavily onstrained searh spae.The main drawbak of Coello's population-based approah [24℄ is the number of sub-populations that maybe needed in larger problems, sine they will inrease linearly with the number of onstraints. However, it ispossible to deal with that problem in two di�erent ways: �rst, some onstraints ould be tied; that means that twoor more onstraints ould be assigned to the same sub-population. That would signi�antly redue the numberof sub-populations in highly onstrained problems. Seond, the approah ould be parallelized, in whih ase ahigh number of sub-populations would not be a serious drawbak, sine they ould be proessed onurrently.The urrent algorithm would however need modi�ations as to deide the sort of interations between a masterproess (responsible for atually optimizing the whole problem) and the slave sub-proesses (all the sub-populationsresponsible for the onstraints of the problem).Speialists in evolutionary multiobjetive optimization may indiate that VEGA is not a very good hoiebeause of its well-known limitations (it tries to �nd individuals that exel only in one dimension regardless ofthe others [151, 60℄). However, that drawbak turns out to be an advantage in the ontext of onstraint-handling,beause what we want to �nd are preisely solutions that are feasible, instead of good ompromises that may notsatisfy one of the onstraints.Coello's approah based on nondominane [25℄ tends to perform well. However, as it is normally the ase ofonstraint-handling tehniques based on evolutionary multiobjetive optimization onepts, this approah tendsto generate good trade-o�s that may be more bene�tial in highly onstrained searh spaes (sine they will allowus to approah the feasible region more eÆiently). This implies that this approah may have more diÆulties toreah the global optimum eÆiently.Ray et al.'s approah [140℄ is a promising venue of future researh in onstraint-handling, sine it uses not onlyonepts from multiobjetive optimization, but it also inorporates spei� domain knowledge into the onstraint-handling mehanism of their GA. This makes the approah very eÆient (omputationally speaking) with respetto other onstraint-handling tehniques, although there are some sari�es (as in Coello's approah) in terms ofquality of the solutions produed.The approah of Runarsson & Yao [149℄ onstitutes another promising path of future researh in onstraint-handling. Their approah is eÆient and highly ompetitive with other (more sophistiated) tehniques. Its onlyurrent drawbak is the need of a parameter (alled Pf by the authors of the tehnique) that de�nes the probability24







of using only the objetive funtion for omparisons in the ranking proess (when lying in the infeasible region).The authors of the tehnique, however, have provided some guidelines to ompute the most appropriate value ofthis parameter1 [149℄.6 Hybrid methodsWithin this ategory we are onsidering methods that are oupled with another tehnique (normally a numerialoptimization approah) to handle onstraints in an EA.6.1 Lagrangian multipliersAdeli and Cheng [1℄ proposed a hybrid EA that integrates the penalty funtion method with the primal-dualmethod. This approah is based on sequential minimization of the Lagrangian method, and uses a �tness funtionof the form: �tness = f(~x) + 12 mXj=1 j �[gj(~x) + �j ℄+	2 (46)where i > 0, �i is a parameter assoiated with the ith onstraint, and m is the total number of onstraints. Also:[gj(~x) + �j ℄+ = max[0; gj(~x) + �j ℄ (47)The proposal of Adeli and Cheng [1℄ was to de�ne �j in terms of the previously registered maximum violationof its assoiated onstraint and sale it using a parameter �. This parameter is de�ned by the user and has tobe greater than one. j is inreased using also the parameter �, whose value (kept onstant through the entireproess) is multiplied by the previous value adopted for j . This is to ensure that the penalty is inreased overgenerations.This approah follows Powell's early proposal [135℄ of ombining the penalty funtion method with the primaldual method. By using an outer loop we an update the Lagrange multiplier �i = i�i automatially aordingto the information obtained in previous iterations. This makes unneessary that penalty funtion oeÆients orLagrange multipliers go to in�nity to ensure onvergene.Additionally, no derivatives of the objetive funtion or the onstraints are required to update the oeÆientsused by the Lagrange multipliers [1℄.Kim and Myung [88, 117℄ proposed the use of an evolutionary optimization method ombined with an augmentedLagrangian funtion that guarantees the generation of feasible solutions during the searh proess. This proposalis an extension of a system alled Evolian [118, 116℄, whih uses evolutionary programming with a multi-phaseoptimization proedure in whih the onstraints are saled. During the �rst phase of the algorithm, the objetiveis to optimize: �tness(~x) = f(~x) + C2 0� nXi=1(max[0; gi℄)2(~x) + pXj=1 jhj(~x)j21A (48)where C is a onstant. One this phase is �nished (i.e., one onstraint violations have been dereased as muhas the user wants), the seond phase starts. During this seond phase, the optimization algorithm of Maa andShanblatt [99℄ is applied to the best solution found during the �rst phase.The seond phase uses Lagrange multipliers to adjust the penalty funtion aording to the feedbak informationreeived from the environment during the evolutionary proess, in a way akin to the proposal of Adeli and Cheng[1℄.1The tehnique also requires another parameter (the number of sweeps to be performed) whih, however, an be �xed.
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Advantages and DisadvantagesAdeli and Cheng's tehnique [1℄ provided them with good results, but the additional parameters needed to makeit work properly do not seem to overome the most serious drawbaks of a traditional penalty funtion. Theyinitialize these parameters following Belegundu and Arora's [11℄ reommendations, but it is not lear what is theimpat of these parameters when hosen in an arbitrary manner.The main drawbak of Kim and Myung's approah [88, 117℄ is the same as before: despite the fat that theyprovide more guidelines regarding the de�nition of some of the extra parameters needed by their proedure, thereare still several values that have to be adjusted using an empirial proedure.6.2 Constrained optimization by random evolutionBelur [12℄ proposed a hybrid tehnique alled Constrained Optimization by Random Evolution (CORE). The mainidea of this approah is to use random evolutionary searh ombined with a mathematial programming tehniquefor unonstrained optimization (the author used the Nelder and Mead's simplex method [120℄, but any othersimilar tehnique should work as well). Whenever a solution is not feasible, the following onstraint funtional isminimized: C(~x) = Xi2C1 h2i (~x)� Xj2C2 gj(~x) (49)where C1 = fi = 1; : : : ; n=jhi(~x)j > "g (50)C2 = fj = 1; : : : ; q=gj(~x) < 0g (51)and " is the tolerane allowed in the equality onstraints hi(~x).Advantages and DisadvantagesThis minimization proess an be seen as a repair algorithm for numerial optimization, whih implies that thistehnique has the same problems of the repair algorithms desribed in setion 4.6.3 Fuzzy logiT. Van Le [95℄ proposed a ombination of fuzzy logi and evolutionary programming to handle onstraints. Themain idea was to replae onstraints of the form gi(~x) � bi by a set of fuzzy onstraints C1; : : : ; Cm, i = 1; : : : ;mde�ned as: �Ci(~x) = ��(bi;�i)(gi(~x)); i = 1; : : : ;m (52)where �i is a positive real number that represents the tolerable violation of the onstraints, and:��(a;s)(~x) = 8><>: 1 if x � a;e�p( x�as )2�e�p1�e�p if a < x � a+ s0 if x > a+ s (53)The rationale behind this fuzzi�ation proess is to allow a higher degree of tolerane if gi(~x) is (greater than bibut) lose to bi and then the tolerane dereases rapidly when the error inreases.The �tness funtion is then rede�ned as:�tness(~x) = f(~x)�min(�C1 (~x); : : : ; �Cm(~x)) (54)26







Advantages and DisadvantagesThe idea of using degrees of onstraint satisfation as weight fators for the �tness of potential solutions is interestingand the use of fuzzy logi to determine the aeptability of a ertain solution seems a natural way of proessingonstraints. However, the main problem with this approah is that it requires the de�nition of �i (the tolerableviolation of onstraints) and p for eah partiular problem. Furthermore, Van Le provides very little empirialevidene of the performane of his tehnique, although this is ertainly a researh path that is worth exploring.6.4 Immune systemForrest and Perelson [61℄ and Smith et al. [163, 164℄ explored the use of a omputational model of the immunesystem in whih a population of antibodies is evolved to over a set of antigens. In this proposal, binary stringswere proposed to model both antibodies and antigens, and an antibody was said to math an antigen if their bitstrings were omplementary (maximally di�erent).Although Smith el al. [163, 164℄ proposed this approah as a way to keep diversity in multimodal optimizationproblems, Hajela and Lee [70, 71℄ extended it to handle onstraints.The algorithm proposed by Hajela and Lee is the following [70℄:1. Generate a random population. Compute objetive funtion values and a umulative measure of onstraintviolation.2. Separate feasible and infeasible individuals. Rank individuals within eah group based on their objetivefuntion values. Compute an average objetive funtion value of a subset of feasible individuals.3. Choose a number of feasible individuals with objetive funtion value losest to the average value omputedin the previous step. Sort these individuals. They are alled the antigen population.4. Infeasible individuals are subjet to an immune system simulation, generating antibodies to the antigenpopulation of the previous step. This simulation yields a subpopulation of designs with a redution in thelevel of onstraint violations.5. Condut a traditional simulation of an EA with the objetive funtion as the only measure of �tness. Thepopulation is seeded with all urrently feasible individuals from step 2), and enough opies of onstraintonditioned individuals obtained in step 4). Several approahes are possible to introdue these onstraintonditioned individuals. Hajela and Lee used two: a) introdue multiple opies of the best onstraint on-ditioned individual, and b) introdue multiple opies, drawn at random from the best 25% of onstraintonditioned individuals.The immune system simulation onsists of using a simple mathing funtion that omputes the similarity (ona bit-per-bit basis, assuming binary enoding) between two hromosomes. Then, the population of antibodies iso-evolved until they beome suÆiently similar to their antigens by maximizing their degree of mathing.The idea is to adapt infeasible solutions to the urrent feasible individuals. The performane of the approahdepends on the seletion of antibodies (infeasible individuals) that are exposed to the antigens during the simulation.There are several hoies. For example, all the infeasible individuals ould be inluded in the antibody group that isexposed to the antigens from step 3). In this ase, we would try to adapt infeasible individuals to the harateristisof the average feasible population. Another approah ould be to use only those infeasible individuals that arelose to the average objetive funtion value of the antigen population. Suh an approah would be based on thepremise that individual features that determine objetive funtion value are similar for the antibodies and antigens.Therefore the antibodies would inherit those features from the antigens that promote onstraint satisfation [70, 71℄.A simpler instane of this tehnique, alled expression strategies was proposed by Hajela and Yoo [72℄. Inthis ase, feasible and infeasible individuals are ombined using uniform rossover [169℄ in suh a way that theirhromosomi material is exhanged.It is worth mentioning that Hajela and Yoo [72℄ proposed the use of the Kreisselmeir-Steinhauser funtion [165℄to handle equality onstraints. The idea is that if hi(~x) is the ith equality onstraint, then it an be representedby a pair of inequality onstraints as: 27







hi(~x) � 0 � hi(~x) � 0 (55)The Kreisselmeir-Steinhauser funtion an then be used to fold these onstraints into a umulative measure 
:
 = (1=�) ln(e�hi(~x) + e��hi(~x))� (1=�) ln 2 + 1 (56)where 1 represents the width of a band that replaes the original strit equaliy onstraint, and � is a user-de�nedonstant that sales the amount of onstraint violation (� must take a non-zero non-negative value). As � grows,the saling fator beomes one (i.e., there is no saling of the onstraint violation). If the equality onstraint hi(~x)is satis�ed, then hi(~x) = 0, and thus 
 = 1. By reduing 1 the solutions are fored to move loser to the equalityonstraint. Therefore, we an see 1 as a tolerane value. The idea then, is to replae onstraints of the formhi(~x) = 0, by onstraints of the form 
 � 1.Advantages and DisadvantagesSine the bit mathing proess used by this approah does not require evaluating the �tness funtion, its ompu-tational ost is not really signi�ant. However, some other issues remain to be solved. For example, it is not learwhat is the e�et (in terms of performane) of mixing di�erent proportions of eah population (antibodies andantigens). It is also unlear what is the behavior of the algorithm when there are no feasible individuals in theinitial population.The underlying assumption of this approah might rise some ontroversy: by making the genotype of an infeasibleindividual more similar to the genotype of a feasible individual we an atually derease its amount of onstraintviolation. Smith et al. [164℄ provide some theoretial analysis regarding the expeted �tness of an individualwhen either perfet or partial mathing is required. However, their work was done in the ontext of �tness sharing(where the emphasis is to keep diversity in the population), and is not neessarily appliable to onstraint handling.Therefore, the only support to this hypothesis are the empirial results reported by Hajela and Lee [70, 71℄.Finally, although it is always possible to ompute genotypi distanes regardless of the enoding used by theEA, it is not entirely lear if it is possible to use this approah with non-binary representations.6.5 Cultural algorithmsSome soial researhers have suggested that ulture might be symbolially enoded and transmitted within andbetween populations, as another inheritane mehanism [49, 141℄. Using this idea, Reynolds [142℄ developed aomputational model in whih ultural evolution is seen as an inheritane proess that operates at two levels: themiro-evolutionary and the maro-evolutionary levels.At the miro-evolutionary level, individuals are desribed in terms of \behavioral traits" (whih ould be soiallyaeptable or unaeptable). These behavioral traits are passed from generation to generation using several soiallymotivated operators. At the maro-evolutionary level, individuals are able to generate \mappa" [141℄, or generalizeddesriptions of their experienes. Individual mappa an be merged and modi�ed to form \group mappa" using aset of generi or problem spei� operators. Both levels share a ommuniation link.Reynolds [142℄ proposed the use of geneti algorithms to model the miro-evolutionary proess, and VersionSpaes [112℄ to model the maro-evolutionary proess of a ultural algorithm.The main idea behind this approah is to preserve beliefs that are soially aepted and disard (or prune)unaeptable beliefs. The aeptable beliefs an be seen as onstraints that diret the population at the miro-evolutionary level [103℄. Therefore, onstraints an inuene diretly the searh proess, leading to an eÆientoptimization proess. In fat, Reynolds et al. [143℄ and Chung & Reynolds [20℄ have explored this area ofresearh with very enouraging results in numerial optimization. A ultural algorithm models the evolution ofthe ulture omponent of an evolutionary omputational system over time. This ulture omponent provides anexpliit mehanism for aquisition, storage and integration of individual and group's problem solving experiene andbehavior [82℄. In ontrast, traditional EAs only use impliit mehanisms for representing and storing individual'sglobal aquired knowledge, whih is passed from generation to generation.The approah taken by Chung and Reynolds [20℄ was to use a hybrid of evolutionary programming and GENO-COP [107℄ in whih they inorporated an interval onstraint-network [38, 80℄ to represent the onstraints of the28







problem at hand. An individual is onsidered as \aeptable" when it satis�es all the onstraints of the problem.When that does not happen, then the belief spae is adjusted (the intervals assoiated with the onstraints areadjusted). This approah is really a more sophistiated version of a repair algorithm in whih an infeasible solutionis made feasible by replaing its genes by a di�erent value between its lower and upper bounds. Sine GENOCOPassumes a onvex searh spae, it is relatively easy to design operators that an exploit a searh diretion towardsthe boundary between the feasible and infeasible regions.In more reent work, Jin and Reynolds [82℄ proposed an n-dimensional regional-based shema, alled belief-ell, as an expliit mehanism that supports the aquisition, storage and integration of knowledge about non-linear onstraints in a ultural algorithm. This belief-ell an be used to guide the searh of an EA (evolutionaryprogramming in this ase) by pruning the instanes of infeasible individuals and promoting the exploration ofpromising regions of the searh spae. The key aspet of this work is preisely how to represent and save theknowledge about the problem onstraints in the belief spae of the ultural algorithm.The idea of Jin and Reynolds' approah is to build a map of the searh spae similar to the \Divide-and-Label"approahes used for robot motion planning [94℄. This map is built using information derived from evaluating theonstraints of eah individual in the population of the EA. The map is formed by dividing the searh spae insub-areas alled ells. Eah ell an be lassi�ed as: feasible (if it lies ompletely on a feasible region), infeasible (ifit lies ompletely on an infeasible region), semi-feasible (if it oupies part of the feasible and part of the infeasibleregions), or unknown (if that region has not been explored yet). This map is used to derive rules about how toguide the searh of the EA (avoiding infeasible regions and promoting the exploration of feasible regions). In otherwords, these ells are used to form a \navigation map" for the EA.Advantages and DisadvantagesThis approah presents an interesting hybrid of knowledge-based approahes and evolutionary omputation teh-niques. However, it does not require the expliit de�nition of rules by the user, sine the algorithm is able to learnits own rules over time. The approah has been re�ned in the last few years, and proposals suh as the one on-tained in Jin and Reynolds' paper [82℄ are appliable even to problems with disjoint feasible regions (normally quitediÆult for most onstraint-handling tehniques). However, the tehnique requires more re�nement and validation.For example, in Jin and Reynolds' paper, only one test funtion was used. Also, they had to experiment withdi�erent strategies to update the onstraint knowledge of the problem. The other issue that deserves onsiderationis the eÆieny of the method. Jin and Reynolds' do not disuss the omputation ost of building belief maps inthe presene of non-linear optimization onstraints, and their approah might be sensitive to high dimensionality.6.6 Ant olony optimizationThis tehnique was proposed by Dorigo et al. [30, 48, 47, 46℄ and it onsists of a meta-heuristi intended for hardombinatorial optimization problems suh as the traveling salesperson. The main algorithm is really a multi-agentsystem where low level interations between single agents (i.e., arti�ial ants) result in a omplex behavior of thewhole ant olony. The idea was inspired by olonies of real ants, whih deposit a hemial substane on the groundalled pheromone [46℄. This substane inuenes the behavior of the ants: they will tend to take those paths wherethere is a larger amount of pheromone.Reently, some researhers [13, 173℄ have extended this tehnique to numerial optimization problems, with verypromising results. The main issue when extending the basi approah to deal with ontinuous searh spaes is howto model a ontinuous nest neighborhood with a disrete struture. Bilhev and Parmee [14℄ for example, proposedto represent a �nite number of diretions whose origin is a ommon base point alled the nest. Sine the idea is toover eventually all the ontinuous searh spae, these vetors evolve over time aording to the �tness values ofthe ants.To handle onstraints, Bilhev and Parmee [13, 14℄ proposed to make a food soure \unaeptable" in aseit violated a onstraint regardless of the value of its objetive funtion (i.e., death penalty). As evolution pro-gresses, some food soures that were aeptable before, will vanish, as onstraints are tightened (i.e., the amountof \aeptable" onstraint violation is dereased). 29







To make this model e�etive, three di�erent levels of abstration were onsidered: (a) the individual searhagent (the lowest level in whih any loal searh tehnique ould be used), (b) the ooperation between agents (themiddle level, whih onsists of a joint searh e�ort in a ertain diretion), and () the meta-ooperation betweenagents (the highest level, whih determines ooperation among di�erent paths rather than just among di�erentindividuals).The results obtained by Bilhev & Parmee [13, 14℄ were very enouraging and showed learly the high potentialof this tehnique in multimodal and/or heavily onstrained searh spaes.Advantages and DisadvantagesThe �rst drawbak of this approah is that it needs several parameters to work: �rst, an additional proedurehas to be used to loate the nest (Bilhev and Parmee [13℄ suggest the use of a nihing EA), whih implies extraomputational e�ort. Seond, it requires a searh radius R, whih de�nes the portion of the searh spae that willbe explored by the ants and has an obvious impat on the performane of the algorithm. Third, it is neessaryto provide a model for the exhaustion of the food soure to avoid that the ants pass through the same (alreadyexhausted) path more than one.Finally, it is neessary to be very areful about the equilibrium between loal and global exploration, beausein some ases (e.g., highly multimodal landsapes), too muh CPU time ould be spent in loal searhes.7 Some Experimental ResultsTo have an idea of the di�erenes among some of the tehniques disussed in this paper, we have onduted asmall experimental study in whih we implemented and tested six di�erent penalty-based approahes oupled to ageneti algorithm and an approah based on nondominane. The tehniques seleted are the following:� Stati penalty [78℄ (see Setion 2.1)� Dynami penalty [83℄ (see Setion 2.2)� Annealing penalty [105℄ (see Setion 2.3)� Adaptive penalty [10, 69℄ (see Setion 2.4)� Death penalty (see Setion 2.7)� Co-evolutionary penalty [25℄ (see Setion 2.5)� Use of nondominane [23℄ (see Setion 5.4)Additionally, we will ompare results against those found by other researhers using mathematial programmingtehniques and/or other types of GAs.The �rst �ve penalty-based approahes previously indiated are representative of the tehniques most ommonlyused in the standard literature on evolutionary optimization. The sixth and seventh approahes are proposals ofthe author. The o-evolutionary penalty uses two nested GAs so that one tries to adjust the penalty fators thatthe other one uses to optimize the objetive funtion. The last approah (whih we will denote as MGA, formultiobjetive geneti algorithm) was proposed as an alternative to the manual �ne tuning of the penalty fators.This last approah onsists of a real-oded GA with arithmetial rossover [104℄, non-uniform mutation, elitism,tournament seletion, and a simple self-adaptation mehanism for de�ning the rossover and mutation rates alongthe evolutionary proess (see [23℄ for details).All the penalty-based approahes indiated above (exept for the o-evolutionary penalty) were implementedusing a GA with binary representation, two-point rossover, tournament seletion, and uniform mutation. Theo-evolutionary penalty was implemented using a GA with �xed point representation [26℄, uniform rossover andnon-uniform mutation [104℄.Three test funtions were seleted to perform our small omparative study. Their orresponding desriptiontogether with our omparison of results follows. 30







7.1 Example 1 : Himmelblau's Nonlinear Optimization ProblemThis problem was originally proposed by Himmelblau [74℄, and it has been used before as a benhmark for severalother GA-based tehniques that use penalties [64℄. In this problem, there are �ve design variables (x1; x2; x3; x4; x5),6 nonlinear inequality onstraints and ten boundary onditions. The problem an be stated as follows:Minimize f(~x) = 5:3578547x23+ 0:8356891x1x5 + 37:293239x1 � 40792:141 (57)Subjet to: g1(~x) = 85:334407+ 0:0056858x2x5 + 0:00026x1x4 � 0:0022053x3x5 (58)g2(~x) = 80:51249+ 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 (59)g3(~x) = 9:300961+ 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 (60)0 � g1(~x) � 92 (61)90 � g2(~x) � 110 (62)20 � g3(~x) � 25 (63)78 � x1 � 102 (64)33 � x2 � 45 (65)27 � x3 � 45 (66)27 � x4 � 45 (67)27 � x5 � 45 (68)The omparison of results for several onstraint-handling approahes for the �rst example are shown in Tables 1and 2. This problem was originally solved using the Generalized Redued Gradient method (GRG) [74℄. Gen andCheng [64℄ solved this problem using a geneti algorithm based on both loal and global referene (they used apopulation size of 400 individuals, a rossover rate of 0.8, and a mutation rate of 0.0882). The solutions reportedfor the penalty-based approahes (stati penalty, dynami penalty, annealing penalty, adaptive penalty and deathpenalty) in Table 1 were produed after performing 30 runs, using the following parameters: population size =50, rossover rate = 0.8, mutation rate = 0.005, maximum number of generations = 100. Spei� parameters forthe dynami penalty are: C = 0:5, � = � = 2:0 (equation (12) was used to assign �tness). Spei� parametersfor annealing penalties are: �0 = 1:0, �f = 0:000001, and � is updated every 20 generations (equation (18) is usedto assign �tness). Spei� parameters for the adaptive penalty are: �1 = 1:0, �2 = 2:0, k = 20, �(0) = 100:0(equation (24) is used to assign �tness). For the stati penalty, loal and global penalty fators were de�ned asindiated by Homaifar et al. for this example [p. 253℄[78℄.The o-evolutionary penalty used the following parameters: rossover rate = 0.8, initial mutation rate = 0.1,Pop size1 = 60, Pop size2 = 30, Gmax1 = 25, Gmax2 = 20.The solutions shown for the MGA were produed after performing 30 runs, and using the following parameters:population size = 50, and maximum number of generations = 100 (rossover and mutation rates were obtainedthrough self-adaptation along the evolutionary proess).As expeted, the death penalty, whih does not use any onstraint-violation information, had a poorer perfor-mane than the other GA-based approahes. Also, the dynami penalty approah was better than a stati penalty,and there was not muh di�erene between using an adaptive penalty funtion and the dynami penalty suggestedby Joines & Houk [83℄. The annealing penalty, however, had a poorer performane than the dynami and adaptivepenalties.2The maximum number of generations used is unknown. 31







Results MGA [23℄ Gen [64℄ stati penalty [78℄ GRG [74℄ o-evolutionary penalty [25℄Best -31005.7966 -30183.576 -30790.27159 -30373.949 -31020.859Mean -30862.8735 N=A -30446.4618 N=A -30984.2407Worst -30721.0418 N=A -29834.3847 N=A -30792.4077Std. dev. 73.240 N=A 226.3428 N=A 73.6335Table 1: Comparison of several onstraint-handling tehniques for the �rst example (Himmelblau's funtion)(N=A= Not Available)(PART I).Results dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest -30903.877 -30829.201 -30903.877 -30790.271Mean -30539.9156 -30442.126 -30448.007 -30429.371Worst -30106.2498 -29773.085 -29926.1544 -29834.385Std. dev. 200.035 244.619 249.485 234.555Table 2: Comparison of several onstraint-handling tehniques for the �rst example (Himmelblau's fun-tion)(PART II).The best approahes were the o-evolutionary penalty and the MGA, with the �rst reporting slightly betterresults than the seond. Note however that while all penalty-based approahes and the MGA performed only5,000 �tness funtion evaluations, the o-evolutionary penalty tehnique performed a onsiderably higher numberof �tness funtion evaluations (900,000). One of the main advantages of the MGA is that no �ne-tuning of thepenalty fators are required. The o-evolutionary penalty also presents this advantage, but its use implies asigni�antly higher omputational ost.Also, note that the other penalty-based approahes an provide better results if some �ne-tuning of their param-eters (inluding their penalty fators) takes plae. Finally, it should be lear from these results that all GA-basedapproahes performed better than the mathematial programming tehnique used in this ase (GRG).7.2 Example 2 : Welded Beam DesignA welded beam is designed for minimum ost subjet to onstraints on shear stress (�), bending stress in the beam(�), bukling load on the bar (P), end deetion of the beam (Æ), and side onstraints [138℄. There are four designvariables as shown in Figure 1 [138℄: h (x1), l (x2), t (x3) and b (x4).The problem an be stated as follows:Minimize: f(~x) = 1:10471x21x2 + 0:04811x3x4(14:0 + x2) (69)
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Figure 1: The welded beam used for the seond example.32







R


Th


R


sTL


Figure 2: Center and end setion of the pressure vessel used for the �rst example.Subjet to : g1(~x) = �(~x)� �max � 0 (70)g2(~x) = �(~x)� �max � 0 (71)g3(~x) = x1 � x4 � 0 (72)g4(~x) = 0:10471x21 + 0:04811x3x4(14:0 + x2)� 5:0 � 0 (73)g5(~x) = 0:125� x1 � 0 (74)g6(~x) = Æ(~x)� Æmax � 0 (75)g7(~x) = P � P(~x) � 0 (76)where �(~x) =r(� 0)2 + 2� 0� 00 x22R + (� 00)2 (77)� 0 = Pp2x1x2 ; � 00 = MRJ ;M = P �L+ x22 � (78)R =sx224 +�x1 + x32 �2 (79)J = 2(p2x1x2 "x2212 +�x1 + x32 �2#) (80)�(~x) = 6PLx4x23 ; Æ(~x) = 4PL3Ex33x4 (81)P(~x) = 4:013Eqx23x6436L2  1� x32Lr E4G! (82)P = 6000 lb; L = 14 in; Æmax = 0:25 inE = 30� 106 psi; G = 12� 106 psi�max = 13; 600 psi; �max = 30; 000 psi33







Results MGA [23℄ Deb [42℄ Siddall [158℄ Ragsdell [137℄ o-evolutionary penalty [25℄Best 1.8245 2.4331 2.3815 2.3859 1.7483Mean 1.9190 N=A N=A N=A 1.7720Worst 1.9950 N=A N=A N=A 1.7858Std. dev. 0.05377 N=A N=A N=A 0.01122Table 3: Comparison of several onstraint-handling tehniques for the seond example (welded beam)(N=A = NotAvailable)(PART I).Results stati [78℄ dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest 2.0469 2.1062 2.0713 1.9589 2.0821Mean 2.9728 3.1556 2.9533 2.9898 3.1158Worst 4.5741 5.0359 4.1261 4.84036 4.5138Std. dev. 0.6196 0.7006 0.4902 0.6515 0.6625Table 4: Comparison of several onstraint-handling tehniques for the seond example (welded beam)(PART II).For this example, we used the same parameters for all the approahes, exept the stati penalty, for whih weused a value of 50.0 for all ases (loal and global penalty fators).The omparison of results for several onstraint-handling approahes for the seond example are shown in Tables 3and 4. This problem has been solved before by Deb [42℄ using a simple geneti algorithm with binary representation,and a traditional penalty funtion as suggested by Goldberg [67℄, and by Ragsdell and Phillips [137℄ using geometriprogramming. Ragsdell and Phillips also ompared their results with those produed by the methods ontainedin a software pakage alled \Opti-Sep" [158℄, whih inludes the following numerial optimization tehniques:ADRANS (Gall's adaptive random searh with a penalty funtion), APPROX (GriÆth and Stewart's suessivelinear approximation), DAVID (Davidon-Flether-Powell with a penalty funtion), MEMGRD (Miele's memorygradient with a penalty funtion), SEEK1 & SEEK2 (Hooke and Jeeves with two di�erent penalty funtions),SIMPLX (Simplex method with a penalty funtion) and RANDOM (Rihardson's random method). In the ase ofSiddall's tehniques [158℄, only the best solution produed by the tehniques ontained in \Opti-Sep" is displayed.In this ase, the results were somewhat more surprising. The dead penalty turned out to be better than thedynami penalty. This may due to the use of an inappropriate penalty fator, but it illustrates well the idea of whythe �ne tuning of the penalty fators beomes an important issue when using penalty-based onstraint-handlingtehniques. Regarding the other approahes, the use of a stati penalty was again no better than using an adaptivepenalty or a death penalty. However, the stati penalty was better than the annealing penalty in this example.This is due to an inappropriate ooling shedule for the annealing penalty. The best results were produed by theo-evolutionary penalty (even its worst results was better than the best result of the MGA). Note however that theomputational ost of this tehnique remains signi�antly higher (900,000 �tness funtion evaluations vs. 5,000 ofthe other approahes). One again, all the mathematial programming tehniques provided muh poorer resultsthan any of the GA-based approahes.7.3 Example 3 : Design of a Pressure VesselA ylindrial vessel is apped at both ends by hemispherial heads as shown in Figure 2. The objetive is tominimize the total ost, inluding the ost of the material, forming and welding. There are four design variables:Ts (thikness of the shell), Th (thikness of the head), R (inner radius) and L (length of the ylindrial setion of thevessel, not inluding the head). Ts and Th are integer multiples of 0.0625 inh, whih are the available thiknessesof rolled steel plates, and R and L are ontinuous. Using the same notation given by Kannan and Kramer [84℄, theproblem an be stated as follows: 34







Results MGA [23℄ Deb [43℄ Kannan [84℄ Sandgren [150℄ o-evolutionary penalty [25℄Best 6069.3267 6410.3811 7198.0428 8129.1036 6288.7445Mean 6263.7925 N=A N=A N=A 6293.8432Worst 6403.4500 N=A N=A N=A 6308.1497Std. dev. 97.9445 N=A N=A N=A 7.4133Table 5: Comparison of several onstraint-handling tehniques for the third example (pressure vessel)(N=A = NotAvailable)(PART I).Results stati [78℄ dynami [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest 6110.8117 6213.6923 6127.4143 6110.8117 6127.4143Mean 6656.2616 6691.5606 6660.8631 6689.6049 6616.9333Worst 7242.2035 7445.6923 7380.4810 7411.2532 7572.6591Std. dev. 320.8196 322.7647 330.7516 330.4483 358.8497Table 6: Comparison of several onstraint-handling tehniques for the third example (pressure vessel)(PART II).Minimize : f(~x) = 0:6224x1x3x4 + 1:7781x2x23 + 3:1661x21x4 + 19:84x21x3 (83)Subjet to : g1(~x) = �x1 + 0:0193x3 � 0 (84)g2(~x) = �x2 + 0:00954x3 � 0 (85)g3(~x) = ��x23x4 � 43�x33 + 1; 296; 000 � 0 (86)g4(~x) = x4 � 240 � 0 (87)The omparison of results for several onstraint-handling approahes for the seond example are shown in Tables 5and 6. This problem has been solved before by Deb [43℄ using GeneAS (Geneti Adaptive Searh), by Kannan andKramer using an augmented Lagrangian Multiplier approah [84℄, and by Sandgren [150℄, using Branh & Bound.All the penalty-based tehniques (exept for the o-evolutionary penalty that kept the same parameters indiatedbefore) used a population size of 500 and a maximum number of generations of 5,000 for this example. Thishange was required so that these approahes ould provide ompetitive results (the population size and maximumnumber of generations were empirially determined). All their other parameters remained the same (loal andglobal penalties were de�ned with a value of 50 for the stati penalty approah, as in the previous example). Forthe MGA, we only extended the maximum number of generations to 1,000 (using the same population size of 50,as before).This example illustrates how the use of penalty-based approahes is highly dependant on the problem at hand.Despite the fat that all the penalty-based approahes performed 2; 500; 000 �tness funtion evaluations (exept forthe o-evolutionary penalty approah that performed 900; 000 evaluations, as before), they were not able to maththe results of the dominane-based approah (MGA), whih only performed 50; 000 �tness funtion evaluations.Note that the o-evolutionary penalty approah did not perform very well in this example, mainly due to its hoieof parameters (allowing a larger number of �tness funtion evaluations ould slightly improve its performane).Again, the mathematial programming tehniques produed poorer results than any of the GA-based approahes.8 Some ReommendationsHaving suh a wide variety of possible tehniques to handle onstraints in evolutionary optimization may beoverwhelming for a newomer. However, as suggested by our small omparative study, even the simple use of a35







death penalty may be suÆient in some appliations, if nothing about the problem is known. Our suggestion forbeginners in the use of evolutionary algorithms is therefore to use penalty-based approahes �rst (maybe a simplestati or dynami penalty approah), sine they are the easiest to implement and are also quite eÆient. Lateron, and depending on the appliation at hand, other tehniques may be desirable. For example, if a ombinatorialoptimization problem has to be solved, then repair algorithms (see Setion 4) may be the best hoie. If dealingwith linear onstraints, then the use of speial representations and operators (see Setion 3) may beome neessary.If dealing with highly onstrained searh spaes, then the use of tehniques that separate onstraints and objetives(see Setion 5) may be useful. If something about the problem is known, or if there is a need of saving time �netuning the penalty fators of a penalty funtion of any type, then one an onsider the use of approahes suhas those disussed in Setion 5.4 or in Setion 6. More sophistiated tehniques are normally reserved for moreomplex problems in whih the results found by penalty-based approahes are far from satisfatory, or when theomputational osts related to these tehniques are too high.Also, it is important to add that most of the omparative studies of onstraint-handling tehniques reported inthe literature are inonlusive. Whereas some tehnique may perform better in a ertain lass of funtions (e.g.,nonlinear optimization problems), it will tend to be inferior in a di�erent domain (e.g., ombinatorial optimization).Despite the goal of generality that should haraterize new onstraint-handling tehniques, it is known that beauseof the No Free-Lunh Theorems [174℄, it is expeted that the best onstraint-handling tehniques for a ertain typeof problems will tend to exploit spei� domain knowledge.9 Conlusions and future researh pathsIn this paper we have given a very omprehensive review of the most important onstraint-handling tehniquesdeveloped for evolutionary algorithms. We reviewed a wide variety of tehniques that go from several variationsof a simple penalty funtion to biologially inspired tehniques that emulate the behavior of the immune system,ulture, or ant olonies. However, there is still plenty of room for new tehniques and more researh in this area.For example, regarding the development of new approahes, the following issues deserve speial attention:� Generality. Ideally, the same onstraint-handling approah should work with any kind of problem andonstraints. If modi�ations are required, they should be minor. There are several approahes suh asdeoders and the use of speial representations, that depend on ertain harateristis of the problem andannot be easily generalized. Although we should not aim to produe a single (universal) onstraint-handlingtehnique that will defeat any other [174℄, it is reasonable to aim to make it easier to be adapted to di�erenttypes of problems/onstraints.� Minimum �ne tuning. Finding an appropriate penalty funtion for an optimization problem in generalnormally requires a lot of �ne tuning. Ideally, a good onstraint-handling tehnique should minimize therequirement of this �ne tuning, or should not need it at all. When �ne tuning is neessary, the performaneof the algorithm tends to depend on it. Furthermore, this trial and error proess adds up to the parametertuning required by most EAs (i.e., how to de�ne the values of: population size, rossover and mutation rates,maximum number of generations, et.).� EÆieny. In many real-world appliations, a single evaluation of the �tness funtion might be very expen-sive. Therefore, a good onstraint-handling tehnique should not require a high evaluation ost. In setion 2.5we saw an example of a tehnique that requires a high number of �tness funtion evaluations to obtain theinformation that will guide the searh. As we mentioned before, in some appliations, the problem of �ndinga feasible solution might be itself NP-hard [161℄.� Well-known Limitations. If we assume that no single onstraint-handling tehnique will be the best forall kinds of problems, then it is important to identify learly the limitations of eah available tehnique toknow when to use them. Mihalewiz and Shoenauer [109℄ disussed this issue, but the question remainsopen regarding the harateristis that we ould use from a problem to deide what tehnique to use.36







� Inorporation of knowledge about the domain. Inorporating knowledge about an spei� domainredues the generality of an evolutionary approah [67℄. However, in highly omplex problems (e.g., heavilyonstrained searh spaes) some knowledge about the domain an onsiderably improve performane of anEA. Therefore, it is desirable that a good onstraint-handling approah has the apability to inorporateeÆiently suh domain knowledge whenever is available.The \utopial" onstraint-handling tehnique for EAs should ombine the best of these issues. The developmentof suh a tehnique, however, might prove impossible in pratie [174℄. For example, if we emphasize eÆieny,our onstraint-handling tehnique might lose generality. The onverse is also normally true. Nevertheless, even ifthese issues are inompatible to a ertain extent, they should at least be taken into onsideration when developinga new approah and aim to obtain reasonable trade-o�s among these objetives.Regarding open areas of researh, the following are partiularly important:� Comparisons of approahes: Despite the several omparative studies of onstraint-handling tehniquesused with EAs reported in the literature (see for example [109, 101, 102, 103℄), more work is required. Itis desirable, for example, to study in more detail the behavior of ertain approahes under di�erent sorts ofonstraints (linear, non-linear, et.), so that we an establish under what onditions is more onvenient touse them.Mihalewiz et al. [106℄ argue that any problem an be haraterized by a ertain set of parameters inludingthe following: number of linear and nonlinear onstraints, number of equality onstraints, number of ativeonstraints, ratio between the feasible searh spae and the whole searh spae, and the type of objetivefuntion (number of variables, number of loal optima, ontinuity of the funtion, et.). However, testsperformed in the past regarding eleven (now onsidered lassial) test funtions (see [109℄) have produedinonlusive evidene about the behavior of several onstraint-handling tehniques. This means that theappropriate hoie of a ertain tehnique in the absene of knowledge about the domain remains as an openresearh problem [109, 106℄.� Test suites: A very important issue losely related to the previous one is the existene of good test suitesthat are publily available. Regarding this issue, there is some literature that an be used (see for example3[56, 102℄). Chung and Reynolds [20℄ have provided a test suite for ultural algorithms. More reently,Mihalewiz et al. [106℄ have proposed the design of a salable test suite of onstrained optimization problemsin whih many features an be easily tuned to allow the evaluation of the advantages and disadvantages of aertain onstraint-handling tehnique. The test ase generator proposed by Mihalewiz et al. [106℄ has sixparameters that an be tuned to investigate advantages and disadvantages of a ertain onstraint-handlingtehnique: dimensionality of the searh spae, multimodality of the searh spae, number of onstraints used,onnetedness of the feasible subspaes, ratio between the feasible searh spae and the whole searh spae,and funtion ruggedness. However, more work in this diretion is desirable.� Metris: Closely related to the previous issue is the development of good metris that allow to omparedi�erent tehniques in a quantitative way. Beyond the obvious omparative issues suh as quality of the�nal solution found and amount of �tness funtion evaluations required, there are other aspets of a ertaintehnique that might be relevant in ertain ases. For example, it would be interesting to have a metri thattraes down the behavior of a tehnique in terms of the number of feasible solutions found. Also, metris thatdetermine that robustness and onvergene rate of a ertain tehnique are highly desirable. These metriswould be very useful to determine the limitations of a onstraint-handling approah in quantitative form.� Multiobjetive Optimization: Despite the onsiderably large amount of researh on evolutionary multiob-jetive optimization (EMO) [21℄, little emphasis has been made on onstraint-handling. In fat, many of theearly EMO approahes onsidered only unonstrained problems. As we saw in Setion 5.4, EMO tehniquesan be used also to handle onstraints, but ironially, their use in multiobjetive optimization has been verylimited until now. Most EMO researhers tend to use traditional (stati) penalty funtions instead of tryingto exploit the power of EMO tehniques to handle onstraints as additional objetives.3The web page http://solon.ma.univie.a.at/~neum/glopt/test.html also ontains test problems for onstrained optimizationalgorithms. 37
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