
Automated Design of CombinationalLogi Ciruits using the Ant SystemCarlos A. Coello Coello�CINVESTAV-IPNDepto. de Ingenier��a El�etriaSei�on de Computai�onAv. Instituto Polit�enio Naional No. 2508Col. San Pedro ZaatenoM�exio, D. F. 07300, MEXICOoello�s.investav.mxRosa Laura Zavala Guti�errez & Benito Mendoza Gar��aMIA, LANIA-UVSebasti�an Camaho 5Xalapa, Veraruz 91090, MEXICOfrzavala,bmendozag�mia.uv.mxArturo Hern�andez AguirreEECS DepartmentTulane UniversityNew Orleans, LA 70118, USAhernanda�ees.tulane.eduMarh 20, 2001AbstratIn this paper we propose an appliation of the Ant System (AS) to opti-mize ombinational logi iruits at the gate level. We de�ne a measure ofquality improvement in partially built iruits to ompute the distanesrequired by the AS and we onsider as optimal those solutions that repre-sent funtional iruits with a minimum amount of gates. The proposedmethodology is desribed together with some examples taken from theliterature that illustrate the feasibility of the approah.Keywords: iruit design, ant olony system, evolvable hardware, iruit op-timization.�Most of this work was performed while the �rst author was at the Laboratorio Naionalde Inform�atia Avanzada (LANIA), in Xalapa, Veraruz, M�exio.1



1 IntrodutionThe design of digital iruits is a diÆult task that is normally assoiated withertain human attributes (i.e., reativity). Its automation is therefore a hal-lenging problem.There are several standard graphial design aids for ombinational iruitsynthesis (e.g., Karnaugh Maps and the Quine-MCluskey method). Althoughsome of these tehniques are fairly limited, others an handle truth tables withhundreds of inputs. In omparison, heuristis suh as the geneti algorithm(GA) are normally restrited to relatively small truth tables [19℄. Suh restri-tions also apply to other heuristis suh as the ant system (whih is the subjetof this paper).But evolutionary design has triggered the study of other aspets of designthat have been normally disregarded, for example, emergent design patterns[19, 3℄. It is therefore lear that when using heuristis, we aim not only tosynthesize a iruit (using a ertain metri), but also to produe novel designsthat do not orrespond to the solutions that a human designer would typiallyprodue [19, 17, 3℄. Additionally, the existene of tehniques (suh as the onedisussed in this paper) that allow us to produe ompat iruits (i.e., withfew gates) for relatively small truth tables ould be of great use for funtion-level design (where these ompat iruits would be used as building bloks fordesigning more omplex iruits). Suh a divide-and-onquer approah to iruitdesign has been suggested in the past [20, 19℄ and we believe that it onstitutesa viable alternative to deal with salability issues related to evolvable hardware(i.e., iruit design using heuristis).The remainder of this paper is organized as follows: �rst, we provide a shortdesription of the ant system. Then, we desribe some of the previous relatedwork on automated ombinational iruit design. After that, we introdue ourapproah, giving several examples of its performane. Results are omparedagainst those produed by a GA and a human designer. Then, we present ashort disussion of our results, our onlusions and some of the possible pathsof future researh.2 The Ant SystemThe ant system (AS) is a meta-heuristi inspired by olonies of real ants, whihdeposit a hemial substane on the ground alled pheromone [8℄. This substaneinuenes the behavior of the ants: they will tend to take those paths wherethere is a larger amount of pheromone. Pheromone trails an be seen as anindiret ommuniation mehanism among ants. From the omputer sieneperspetive, the AS is a multi-agent system where low level interations betweensingle agents (i.e., arti�ial ants) result in a omplex behavior of the whole antolony. Figure 1 shows graphially an example of the typial behavior of aolony of real ants. When the ants leave initially the nest, (1) they followrandom patterns. (2) Over time, they start following a ommon path. (3,4)2



Figure 1: Behavior of a olony of real ants.When faed with an obstale, some hoose to go around it through the left sideof the obstale and others avoid it going through the right. (5) Over time, thewhole olony will follow a ommon path (the shortest way) due to the pheromonetrials.There are three main ideas from olonies of real ants that have been adoptedin the AS:1. The indiret ommuniation through pheromone trials.2. Shortest paths tend to have a higher growth rate of pheromone values.3. Ants have a higher preferene (with a ertain probability) for paths thathave a higher amount of pheromone.Additionally, the AS has ertain apabilities nonexistent in olonies of realants. For example:1. Eah ant is apable of estimating how far it is from a ertain state.2. Ants have information about the environment and use it to make deisions.Therefore, their behavior is not only adaptive, but also exhaustive.3. Ants have memory, sine this is neessary to make sure that only feasiblesolutions are generated at eah step of the algorithm.The AS was originally proposed for the traveling salesman problem (TSP),and aording to Dorigo [9℄, to apply eÆiently the AS, it is neessary to refor-mulate our problem as one in whih we want to �nd the optimal path of a graphand to identify a way to measure the distanes between nodes. This might notbe an easy or obvious task in ertain appliations like the one presented in thispaper. 3



In fat, the main ontribution of this paper is preisely our proposal regard-ing how to reformulate the iruit optimization problem so as to allow the useof the AS. We will use several examples to ompare the solutions generated byour approah against those produed by a human designer and by a GA withbinary representation previously developed by us for this problem [4℄.3 Related WorkWe ould not �nd any previous work on the design of iruits using the antsystem. Therefore, we will briey disuss some related work using evolutionarytehniques (geneti algorithms and geneti programming).In the ontemporary literature, the attempt to use evolutionary-based teh-niques to design eletrial iruits has been alled \evolvable hardware" [15, 6℄.Within evolvable hardware, we an distinguish three types of evolutionary pro-esses [13℄: extrinsi evolution (we use software models of the iruit and eval-uations are performed with a simulator), intrinsi evolution (we use a physialmodel of the iruit and evaluations are performed with test equipment), andmixtrinsi evolution (a mixture of the two previous types). Our work uses ex-trinsi evolution.There are also several levels at whih evolution an be performed. In thiswork, we are only onsidering the lowest, whih is alled gate-level evolvablehardware, beause the primitives used to design iruits are gates suh as AND,OR and NOT. It is known that gate-level evolution is only suitable for smalliruits [13℄. However, our belief is that if these small iruits an be highlyoptimized, they will be more useful at the following level of evolvable hardware(the so-alled \funtion-level"), at whih these small iruits will be used asprimitives to design more omplex iruits. In fat, similar mehanisms asthose adopted in this work an be used for funtion-level evolvable hardware,although suh design is beyond the sope of this paper.Despite the limitations of gate-level design, several researhers have workedin this area [16, 18, 11, 13℄. Furthermore, besides the normal use of gate-leveldesign (e.g., two-bit adders, two- and three-bit multipliers, deoders, et.), therehave been a few more omplex appliations reported in the speialized literature(see for example [12, 14℄).Our goal in this paper is to show the feasibility of using the ant systemfor gate-level design of iruits. We will desribe how to adapt the ant systemalgorithm to design ombinational iruits, and we will show how the resultingapproah is ompetitive with a traditional GA in terms of performane andquality of the solutions produed. The approah desribed in this paper is anextension of an approah previously reported [5℄ in whih the main limitationwas the fat that only iruits with one output ould be designed by the sys-tem. Our urrent approah also shows a signi�ant improvement in terms ofperformane with respet to our previous version.4



Input OutputFigure 2: Matrix used to represent a iruit to be proessed by an agent (i.e., anant). Eah gate gets its inputs from either of the gates at the previous olumn.4 Desription of the ApproahIn this setion, we will desribe the way in whih the iruit design problemhad to be reformulated in order to be able to use the AS to solve it. Themain problem that we faed was how to make an analogy (as muh as possible)between iruit design and the TSP. The main issues are: the representation tobe adopted, the notion of state in that representation, the way in whih a pathwould be built, and the way of updating the trails of eah ant. Eah of theseissues will be disussed in this setion4.1 RepresentationSine we need to view the iruit optimization problem as one in whih we wantto �nd the optimal path of a graph, we will use a matrix representation for theiruit as shown in Figure 2. This matrix is enoded as a �xed-length string ofintegers from 0 to N � 1, where N refers to the number of rows allowed in thematrix.More formally, we an say that any iruit an be represented as a bidimen-sional array of gates Si;j , where j indiates the level of a gate, so that thosegates loser to the inputs have lower values of j. (Level values are inrementedfrom left to right in Figure 2). For a �xed j, the index i varies with respetto the gates that are \next" to eah other in the iruit, but without beingneessarily onneted. Eah matrix element is a gate (�ve types of gates wereonsidered in our work: AND, NOT, OR, XOR and WIRE1) that reeives its2 inputs from any gate at the previous olumn as shown in Figure 2. We haveused this representation before with a GA [2, 4℄.A hromosomi string enodes the matrix shown in Figure 2 by using tripletsin whih the 2 �rst elements refer to eah of the inputs used, and the third isthe orresponding gate as shown in Figure 3 (only 2-input gates were used inthis work).1WIRE basially indiates a null operation, or in other words, the absene of gate.5



Input 1 Input 2 Gate TypeFigure 3: Enoding used for eah of the matrix elements that represent a iruit.4.2 Building a pathThe path of an ant in our ase is a full iruit. In other words, eah anttraverses a path and, in the proess, it builds a iruit. In the TSP, the antsalso traverse a path and try to �nd the shortest way to the goal. In our ase,\shortest" relates to \less gates". However, in the TSP, any permutation is avalid solution, whereas in our ase, an arbitrary string enodes a iruit thatmay or may not be feasible. We only try to minimize the number of gates offeasible iruits.The aim is to maximize a ertain payo� funtion. Sine our ode was builtupon our previous GA implementation, we adopted the use of �xed matrix sizesfor all the agents, but this need not be the ase (in fat, we ould represent theBoolean expressions diretly rather than using a matrix, and other represen-tations are urrently a matter of further researh). The matrix ontaining thesolution to the problem is built in a olumn-order fashion as indiated next.Eah state is, in our ase, a olumn of the matrix, whih is omposed ofseveral elements. A ertain state is seleted element by element (gate by gate).Eah of these olumn elements is alled a substate. A substate is a triplet inwhih the �rst two elements refer to eah of the inputs used (taken from theprevious level or olumn of the matrix) and the third is the orresponding gate(hosen from AND, OR, NOT, XOR, WIRE) as shown in Figure 3. For thegates at the �rst level (or olumn), the possible inputs for eah gate were thosede�ned by the truth table given by the user (a modulo funtion was implementedto allow more rows than available inputs). The gate and inputs to be used foreah element of the matrix are hosen randomly from the set of possible gatesand inputs (a modulo funtion is used when the relationship between inputsand matrix rows is not one-to-one).The distane (between ities or states), whih we denote by h, is measuredin our ase as the inrement or derement in the �tness value of the iruit whenwe move from one level to the next. By level, we refer to a olumn in the matrix.Sine our algorithm builds the iruit progressively (starting from the leftmostolumn), as we move to the right, levels inrease and �tness values hange.Fitness in this domain is measured aording to the amount of hits ahieved(i.e., mathes between the outputs of the iruit and the outputs de�ned in thetruth table). Feasible iruits get an extra inrease in their �tness measuredas the amount of WIREs that they ontain. This allows us to perform a fairomparison between feasible and infeasible designs (i.e., feasible designs alwaysget a higher reward than infeasible designs).One important di�erene between the statement of this problem and theTSP is that in our ase not all the states within the path have to be visited,6



but both problems share the property that the same state is not to be visitedmore than one (this property is also present in some routing appliations [7℄).When we move from one substate to another in the path, a value is assignedto all the substates that have not been visited yet and the next substate (i.e.,the next triplet) is randomly seleted using a ertain seletion fator pk. Thisseletion fator determines the hane of going from state i to state j at theiteration t, and is omputed using the following formula that ombines thepheromone trail with the heuristi information used by the algorithm:pki;j;l = fj;l � hi;j;l (1)where k refers to the ant whose pheromone we are evaluating (the ant thatis building the path), fj;l is the amount of pheromone at state j at row l (thisvalue is initialized to zero), and hi;j;l is the sore inrement between substatei and substate j for row l (eah row is assoiated with an output in the truthtable). This sore is measured aording to the number of mathes between theoutput produed by the urrent iruit and the output desired aording to thetruth table given by the user. The value of hi;j;l is given by the amount of hitsthat the partially-built iruit produes so far with respet to the l output ofthe truth table provided by the user. This value is therefore a sore inrementanalogous to the distane between nodes used in the TSP.One every ombination has been assigned a seletion fator, we hoose oneof them. At this point, we apply roulette-wheel seletion2. We do this for everysubstate that belongs to one of the rows representing an output of the iruit.The other substates are randomly hosen.The previous proess is repeated until we �nish a path (i.e., until we reahthe last state of the iruit, or the last olumn of the matrix).4.3 Updating the trailsThe amount of pheromone is updated eah time an agent builds an entire path(i.e., one the whole iruit is built). This is done in two steps:1. First, we simulate the evaporation of the pheromone trails in all substates,suh as they our with real ants (over time). For the simulation, we adoptthe following formula: fi;l = (1� �)� fi;l (2)where 0 < � < 1 (� = 0:5 was used in all the experiments reported in thispaper) is the trail persistene and its use avoids the unlimited aumula-tion of pheromone in any path, and fi;l is the amount of pheromone atstate i at row l.2Roulette-wheel seletion belongs to the so-alled \proportional seletion methods". Inthese methods, the probability of seleting an individual is proportional to its �tness ontri-bution (with respet to the total �tness of the population) [10℄. Normally, the probability ofseleting option i is given by fi=(Pmj=1 fj), where m is the amount of options under onsid-eration and fj is the �tness of individual j. 7



2. Then, we deposit the pheromone in the substates through whih the antspassed, using the following formula:fi;l = fi;l + mXk=1 fki;l (3)where m refers to the number of agents (or ants), fki;l orresponds to theamount of pheromone deposited by ant k at state i at row l. This valueis obtained in the following way:� If the iruit is not feasible (i.e., if not all of its outputs math thetruth table), then: fki;l = payo� (4)� If the iruit is feasible (i.e., all of its outputs math the truth table),then: fki;l = payo�� 2 (5)� If it is the iruit with the highest �tness (i.e., the best path found):fki;l = payo�� 3 (6)� If the ant k did not pass through substate i of row l:fki;l = 0 (7)The value of payo� is given by the following expression:payo� = hits+ ((Cols�Rows)� TotCir) (8)where: hits is the number of mathes produed between the outputs gen-erated by the iruit produed by the AS and the truth table given by theuser; Cols is the amount of olumns in the matrix; Rows is the numberof rows in the matrix, and TotCir is the amount of gates used by theiruit generated by the AS.To build a iruit, we start by plaing a gate (randomly hosen) at a ertainmatrix position and we �ll up the rest of the matrix using WIREs. This tries toompute the e�et produed by a gate used at a ertain position (we omputethe sore orresponding to any partially built iruit). The distane is omputedby subtrating the hits obtained at the urrent level (with respet to the truthtable) minus the hits obtained up to the previous level (or olumn). When weare at the �rst level, we assume a value of zero for the previous level.The pseudo-ode of our approah is the following:8



Program Ant System for Ciruit DesignOpen input and output �lesInitialize random numbers seedRead input dataFor i = 1 to Max Ci== Loop until reahing maximum number of iterationsFor j = 1 to popsize== For eah ant doBuild Solution(j)Evaluate Solution(j)EndUpdate TrailsPrint ReportEndPrint Global BestClose FilesEnd5 Comparison of ResultsWe used several examples taken from the literature to test our AS implementa-tion. Our results were ompared to those obtained by a human designer (usingKarnaugh maps plus simpli�ation using Boolean rules) and by a geneti al-gorithm using binary representation (BGA). In all the examples presented, thematrix used was of size 5�5, and the length of eah string representing a iruitwas 75. Sine 5 gates were allowed in eah matrix position, then the size of theintrinsi searh spae (i.e., the maximum size allowed as a onsequene of therepresentation used) for all of the examples is 5l, where l refers to the lengthrequired to represent a iruit (l = 75 in our ase). Thefore, the size of theintrinsi searh spae is 575 � 2:6�1052. Also, the parameters of the BGA werehosen so that they approximated the total number of �tness funtion evalua-tions required by the AS3. For eah of the following examples, we performed 20runs with eah tehnique.The experiments desribed next were performed on a PC with a PentiumIII proessor (running at 550 Mhz), with 128 Mbytes in RAM and a 13 Gbyteshard disk. The ode was implemented using Borland C++ Builder 4. To allow afair omparison, the binary geneti algorithm was tested under Red Hat Linux(version 7) and ran on the same omputer. We prefer to use the amount of�tness funtion evaluations required by eah approah to perform a omparisonof performane, sine di�erent arhitetures and software platforms an providedi�erent running times for the same program. However, for ompleteness, wewill mention the CPU required for a single run in eah of the following examples3In this work, the term \�tness funtion evaluation" refers to a unit used to omparethe performane of our algorithm against others. In terms of omputational e�ort, a �tnessfuntion evaluation is the amount of time required to evaluate a solution (i.e., a iruit).9



Table 1: Truth table for the iruit of the �rst example.X Y Z F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0Table 2: Comparison of the Boolean expressions produed by the AS, a GAwith binary representation (BGA), and a human designer for the iruit of the�rst example. Human DesignerF = Z(X � Y ) + Y (X � Z)5 gates2 ANDs, 1 OR, 2 XORsBGAF = (XZ)0 � ((X + Z)Y )6 gates2 ANDs, 1 OR, 1 XOR, 2 NOTsAnt SystemF = (Z �XY )(X + Y )4 gates2 ANDs, 1 OR, 1 XOR(and using the hardware and software platforms previously mentioned).5.1 Example 1Our �rst example has 3 inputs and 1 output as shown in Table 1.The parameters used by the Ant System and the BGA are shown in Table 3(� is the evaporation fator). In this ase, the BGA performed 25,000 �tnessfuntion evaluations per run, and the AS performed 20,600 �tness funtionevaluations per run.The summary of the results produed is shown in Table 4. The AS was ableto �nd a solution with a �tness of 29 (4 gates) 85% of the time, and in all asesit onverged to a feasible solution. The graphial representation of this iruitis shown in Figure 4. 10



X

Y

Z

F

Figure 4: Ciruit produed by the AS for the �rst example.Table 3: Parameters used by the AS and the BGA for the �rst example.AS BGANo. of ants 10 Pop. size 100Max. iters. 10 Max. gen. 250� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225The best solution that the BGA ould �nd had a �tness of 26 (this iruitreally had only 6 gates, but the BGA ould not eliminate a gate that did nothave any impat on the solution) and it appeared only one in the 20 runsperformed. For 30% of the runs, the BGA onverged to an infeasible solution.The omparison of the Boolean expressions produed by the AS, a genetialgorithm with binary representation (BGA), and a human designer are shownin Table 2. The solution produed by the AS is better (i.e., it uses less gates)than those produed by the human designer and the BGA.Table 4: Summary of results produed by the Ant System (AS) and a GenetiAlgorithm with binary representation (BGA) for the �rst example.AS BGABest �tness 29 26Average 28.85 18.25Std. dev. 0.366347549 7.663138013Mode 29 7Lowest �tness 28 7CPU time 0.1 ses. 9 ses.
11



Table 5: Truth table for the iruit of the seond example.A B W X Y Z0 0 0 0 0 10 1 0 0 1 01 0 0 1 0 01 1 1 0 0 0

Table 6: Comparison of the Boolean expressions produed by the AS, a GAwith binary representation (BGA), and a human designer for the iruit of theseond example. Human DesignerX = A0B0, Y = A0B, Z = AB0, W = AB6 gates4 ANDs, 2 NOTsBGAW = (AB)A, X = A� (AB), Y = ((A �B) +A)� A, Z = ((A�B) +A)07 gates3 XORs, 1 OR, 2 ANDs, 1 NOTAnt SystemX = AB � A, Y = BA0, Z = A0 �BA0, W = AB5 gates2 XORs, 2 ANDs, 1 NOT
12



Table 7: Parameters used by the AS and the BGA for the seond and thirdexamples. AS BGANo. of ants 30 Pop. size 200Max. iters. 30 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225
A

B
Z

Y

X

W

Figure 5: Ciruit produed by the AS for the seond example.5.2 Example 2Our seond example has 2 inputs and 4 outputs (it is a deoder 2-4) as shownin Table 5.The parameters used by the Ant System and the BGA are shown in Table 7.In this ase, the BGA performed 200,000 �tness funtion evaluations per run,and the AS performed 185,400 �tness funtion evaluations per run.The summary of the results produed is shown in Table 8. The AS was ableto �nd a solution with a �tness of 36 (i.e., a iruit with 5 gates) in all the runsperformed. The graphial representation of this iruit is shown in Figure 5.The best solution that the BGA ould �nd had a �tness of 34 (i.e., a feasibleiruit with 7 gates). In 10% of the runs, the BGA onverged to an infeasiblesolution.The omparison of the Boolean expressions produed by the AS, a genetialgorithm with binary representation (BGA), and a human designer are shownin Table 6. It an be learly seen that the AS produed better solutions thanboth the human designer and the BGA for this example. However, note inTable 6, that some of the Boolean expressions generated by the BGA an beeasily simpli�ed (e.g., W = (AB)A = AB). Nevertheless, we were interested in13



Table 8: Summary of results produed by the Ant System (AS) and a GenetiAlgorithm with binary representation (BGA) for the seond example.AS BGABest �tness 36 34Average 36 28.45Std. dev. 0.0 5.072889761Mode 36 30Lowest �tness 36 15CPU time 13 ses. 30 ses.
A

B

C

D

F

Figure 6: Ciruit produed by the AS for the third example.omparing the solutions generated by the AS and the BGA without any extrahuman intervention.5.3 Example 3Our third example has 4 inputs and 1 output, as shown in Table 9. The parame-ters used by the Ant System and the BGA are the same shown in Table 7. As inthe previous example, the BGA performed 200,000 �tness funtion evaluationsper run, and the AS performed 185,400 �tness funtion evaluations per run.The summary of the results produed is shown in Table 11. The best solutionthat the AS ould �nd had a �tness of 34 (i.e., a iruit with 7 gates). Thegraphial representation of this iruit is shown in Figure 6. In all ases, theAS onverged to a feasible iruit and 25% of the time a �tness value of 34 wasahieved.The best solution that the BGA ould �nd had a �tness of 34 (i.e., a feasibleiruit with 7 gates), but it appeared only one in the 20 runs performed. TheBGA onverged to an infeasible solution 60% of the time.The omparison of the Boolean expressions produed by the AS, a genetialgorithm with binary representation (BGA), and a human designer are shown14



Table 9: Truth table for the iruit of the third example.A B C D F0 0 0 0 10 0 0 1 00 0 1 0 10 0 1 1 00 1 0 0 10 1 0 1 10 1 1 0 10 1 1 1 11 0 0 0 11 0 0 1 11 0 1 0 01 0 1 1 11 1 0 0 11 1 0 1 01 1 1 0 11 1 1 1 0
Table 10: Comparison of the Boolean expressions produed by the AS, a GAwith binary representation (BGA), and a human designer for the iruit of thethird example. Human DesignerF = (D0 + (A�B))((AC)0 + (B �D))8 gates2 XORs, 2 ANDs, 2 ORs, 2 NOTsBGAF = (AC + (B +D))0 + (AD �B)7 gates2 ANDs, 3 ORs, 1 XOR, 1 NOTAnt SystemF = (AC +D)0 + (A�B)�D07 gates2 XORs, 1 AND, 2 ORs, 2 NOTs

15



Table 11: Summary of results produed by the Ant System (AS) and a GenetiAlgorithm with binary representation (BGA) for the third example.AS BGABest �tness 34 34Average 33.15 21.3Std. dev. 0.587142949 8.398621441Mode 33 15Lowest �tness 32 13CPU time 13 ses. 30 ses.
F

A0

A1

A2

A3 Figure 7: Ciruit produed by the AS for the fourth example.in Table 10.5.4 Example 4Our fourth example is an even 4-parity problem. The iruit has 4 inputs and1 output, as shown in Table 12.The parameters used by the Ant System and the BGA are shown in Table 13.In this ase, the BGA performed 100,000 �tness funtion evaluations per run,and the AS performed 82,400 �tness funtion evaluations per run.The summary of the results produed is shown in Table 15. The AS wasable to �nd a solution with a �tness of 37 (i.e., a feasible iruit with 4 gates)in all the runs performed. The graphial representation of this iruit is shownin Figure 7.The best solution that the BGA ould �nd had a �tness of 37 (i.e., a feasibleiruit with 4 gates), but it appeared only four times in the 20 runs performed(i.e., 20% of the time). For 20% of the runs, the BGA onverged to an infeasiblesolution.The omparison of the Boolean expressions produed by the AS, a geneti16



Table 12: Truth table for the iruit of the fourth example.A0 A1 A2 A3 F0 0 0 0 10 0 0 1 00 0 1 0 00 0 1 1 10 1 0 0 00 1 0 1 10 1 1 0 10 1 1 1 01 0 0 0 01 0 0 1 11 0 1 0 11 0 1 1 01 1 0 0 11 1 0 1 01 1 1 0 01 1 1 1 1
Table 13: Parameters used by the AS and the BGA for the fourth example.AS BGANo. of ants 20 Pop. size 100Max. iters. 20 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225

17



Table 14: Comparison of the Boolean expressions produed by the AS, a GAwith binary representation (BGA), and a human designer for the iruit of thefourth example (an even 4-parity problem).Human DesignerF = ((A0 �A1)0 � (A2 �A3)0)06 gates3 XORs, 3 NOTsBGAF = ((A1 �A2)� (A0 �A3))04 gates3 XORs, 1 NOTAnt SystemF = (A0 �A2)0 � (A1 �A3)4 gates3 XORs, 1 NOT
Table 15: Summary of results produed by the Ant System (AS) and a GenetiAlgorithm with binary representation (BGA) for the fourth example.AS BGABest �tness 37 37Average 37 29.90Std. dev. 0.0 9.181789758Mode 37 15Lowest �tness 37 15CPU time 6 ses. 68 ses.

18



Table 16: Truth table for the 2-bit multiplier of the �fth example.A1 A0 B1 B0 C3 C2 C1 C00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1algorithm with binary representation (BGA), and a human designer are shownin Table 14. The lassial human solution to this problem has 3 XNORs. Sinewe did not use XNORs in our representation, we ount eah XNOR as 2 gates (1XOR and 1 NOT). Therefore, the solution produed by a human is onsideredto have 6 gates. Note how the AS and the BGA found a rearrangement ofinputs that allows us to save two gates (the two solutions are equivalent, butnot idential).5.5 Example 5Our �fth example is the 2-bit multiplier (4 inputs and 4 outputs) whose truthtable is shown in Table 16.The parameters used by the Ant System and the BGA are shown in Table 18.In this ase, the BGA performed 800,000 �tness funtion evaluations per run,and the AS performed 725,400 �tness funtion evaluations per run.The summary of the results produed is shown in Table 19. The best solutionthat the AS ould �nd had a �tness of 82 (i.e., a feasible iruit with 7 gates)and is graphially depited in Figure 8. In all ases, the AS onverged to afeasible iruit and 40% of the time a �tness value of 82 was ahieved.The best solution that the BGA ould �nd had a �tness of 80 (i.e., a feasibleiruit with 9 gates), and it appeared only one in the 20 runs performed. For55% of the runs, the BGA onverged to an infeasible solution.The omparison of the Boolean expressions produed by the AS, a geneti19



Table 17: Comparison of the Boolean expressions produed by the AS, a GAwith binary representation (BGA), and a human designer for the iruit of the�fth example (a 2-bit multiplier).Human DesignerC0 = A0B0C1 = A0B1 �A1B0C2 = A1B1(A0B0)0C3 = A1A0B1B08 gates6 ANDs, 1 XORs, 1 NOTBGAC0 = ((A0B0)0)0C1 = A0B1 �A1B0C2 = A1B1(A0B0)0C3 = A1A0B1B09 gates1 XOR, 6 ANDs, 2 NOTsAnt SystemC0 = A0B0C1 = A1B0 �A0B1C2 = A1A0B1B0 �A1B1C3 = A1A0B1B07 gates2 XORs, 5 ANDs
C0

C1

C2

C3

A0

B1

B0

A1

Figure 8: Two-bit multiplier produed by the AS for the �fth example.20



Table 18: Parameters used by the AS and the BGA for the fourth example.AS BGANo. of ants 30 Pop. size 800Max. iters. 30 Max. gen. 1000� 0.5 Cross. rate 0.5Mut. rate 0.5/LChrom. length 225Table 19: Summary of results produed by the Ant System (AS) and a GenetiAlgorithm with binary representation (BGA) for the �fth example.AS BGABest �tness 82 80Average 81.4 68.25Std. dev. 0.50262469 7.731514456Mode 81 63Lowest �tness 81 62CPU time 55 ses. 253 ses.algorithm with binary representation (BGA), and a human designer are shownin Table 17. The solution produed by the AS is better (i.e., it uses less gates)than those produed by the human designer and the BGA. In fat, these lasttwo solutions are really the same, although the BGA was not able to eliminatea double NOT in the Boolean expression.6 Disussion of ResultsThe results presented in the previous setion indiate that the AS is very suitablefor ombinational iruit design at the gate level. In all ases, our approahprodued iruits that were, in the worst ase, equivalent to those generatedby a BGA and better than those produed by a human designer. In fat, inmost ases, the AS was able to improve the solutions produed by the BGA foran equivalent amount of �tness funtion evaluations. Also, the lower standarddeviation obtained from the runs of the AS indiate its robustness in this domain(in two examples a standard deviation of zero was ahieved).As in the ase of the BGA, the AS tends to use XOR gates to simplify airuit, and it also tends to degrade (in terms of performane) as we inrease theomplexity (e.g., the amount of outputs) of a iruit. While it is feasible to usethe AS to solve larger iruits than those inluded in this paper, its performanetends to degrade rapidly as we inrease the size of the iruit to be solved.21



This problem, however, is also present when using a GA, and it is ommonlyassoiated with gate-level design [13℄. As indiated at the beginning of thispaper, one way to takle salability issues of this kind is by using funtion-leveldesign. However, we believe that the use of tehniques suh as the AS for gate-level design an produe more ompat design units to be used for funtion-leveldesign and therefore gives relevane to the work reported here.The AS, like the GA, requires ertain parameters to work. To allow a fairomparison, we tried to keep the parameters of the AS �xed for all our experi-ments. The exeption was the �rst example, for whih a lower amount of antsand iterations (ten instead of thirty) made it possible to onverge to the bestknown solution with a low standard deviation (the use of a higher number ofants and iterations signi�antly redues the standard deviation). In order toompare the GA against the AS, we used a ombination of population size andmaximum number of generations suh that the total number of �tness funtionevaluations was approximately equivalent for both tehniques (in fat, the ASused always less �tness funtion evaluations than the GA). We favored lowerpopulation sizes for the GA based on the previous experiene of other researhersand ourselves [19, 1℄.7 Conlusions and Future WorkIn this paper we have presented an approah to use the ant system to optimizeombinational logi iruits (at the gate level). The proposed approah wasdesribed and several examples of its use were presented. Results omparedfairly well with those produed with a BGA (a GA with binary representation)and are better than those obtained by a human designer using Karnaugh mapsand Boolean rules for simpli�ation.Some of the future researh paths that we want to explore are the paral-lelization of the algorithm to improve its performane (eah agent an operateindependently from the others until they �nish a path and then they have to bemerged to update the pheromone trails).Finally, we are also interested in exploring alternative (and more powerful)representations of a Boolean expression in an attempt to overome the inherentlimitations of the matrix representation urrently used to solve real-world ir-uits in a reasonable amount of time and without the need of exessive omputerpower. The �rst hoie that we are onsidering is to use a tree representationsuh as in geneti programming [16℄.AknowledgementsThe authors thank the anonymous reviewers for their omments whih greatlyhelp them to improve the ontents of this paper.The �rst author aknowledges support from the Consejo Naional de Cieniay Tenolog��a (CONACyT) through projet number 32999-A.22



The seond and third authors aknowledge support from CONACyT througha sholarship to pursue graduate studies at the Maestr��a en Inteligenia Arti�ialof LANIA and the Universidad Veraruzana.The last author states that his ontribution to this paper desribes researhdone in the Department of Eletrial Engineering and Computer Siene atTulane University. He aknowledges partial support for this work through grantNAG5-8570 from NASA/Goddard Spae Flight Center, and in part by DoDEPSCoR and the Board of Regents of the State of Louisiana under grant F49620-98-1-0351.Referenes[1℄ Carlos A. Coello Coello, Arturo Hern�andez Aguirre, and Bill P. Bukles.Evolutionary Multiobjetive Design of Combinational Logi Ciruits. InJason Lohn, Adrian Stoia, Didier Keymeulen, and Silvano Colombano, ed-itors, Proeedings of the Seond NASA/DoD Workshop on Evolvable Hard-ware, pages 161{170. IEEE Computer Soiety, Los Alamitos, California,July 2000.[2℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Automated Design of Combinational Logi Ciruits using GenetiAlgorithms. In D. G. Smith, N. C. Steele, and R. F. Albreht, editors,Proeedings of the International Conferene on Arti�ial Neural Nets andGeneti Algorithms, pages 335{338. Springer-Verlag, University of EastAnglia, England, April 1997.[3℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Use of Evolutionary Tehniques to Automate the Design of Com-binational Ciruits. International Journal of Smart Engineering SystemDesign, 2(4):299{314, June 2000.[4℄ Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Hern�andezAguirre. Towards Automated Evolutionary Design of Combinational Cir-uits. Computers and Eletrial Engineering. An International Journal,27(1):1{28, January 2001.[5℄ Carlos A. Coello Coello, Rosa L. Zavala Guti�errez, Benito Mendoza Gar��a,and Arturo Hern�andez Aguirre. Ant Colony System for the Design of Com-binational Logi Ciruits. In Julian Miller, Adrian Thompson, Peter Thom-son, and Terene C. Fogarty, editors, Evolvable Systems: From Biology toHardware, pages 21{30, Edinburgh, Sotland, April 2000. Springer-Verlag.[6℄ Hugo de Garis. Evolvable Hardware: Geneti Programming of a DarwinMahine. In Colin Reeves, R. F. Albreht, and N. C. Steele, editors, Pro-eedings of the International Conferene on Arti�ial Neural Nets and Ge-neti Algorithms, pages 117{123, Inssbruk, Austria, 1993. Springer-Verlag.23



[7℄ G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergeti Controlfor Communiations Networks. Journal of Arti�ial Intelligene Researh,9:317{365, 1998.[8℄ M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristi.In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization.MGraw-Hill, 1999.[9℄ M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedbak as a searhstrategy. Tehnial Report 91-016, Dipartimento di Elettronia, Politeniodi Milano, Italy, 1991.[10℄ David E. Goldberg and Kalyanmoy Deb. A omparison of seletion shemesused in geneti algorithms. In G.J. E. Rawlins, editor, Foundations of Ge-neti Algorithms, pages 69{93. Morgan Kaufmann, San Mateo, California,1991.[11℄ Hitoshi Iba, Masaya Iwata, and Tetsuya Higuhi. Gate-Level EvolvableHardware: Empirial Study and Appliation. In Dipankar Dasgupta andZbigniew Mihalewiz, editors, Evolutionary Algorithms in EngineeringAppliations, pages 260{275. Springer-Verlag, Berlin, 1997.[12℄ I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauhi,T. Inuo, N. Kahijara, M. Iwata, D. Keymeulen, and T. Higuhi. A Gate-Level EHW Chip: Implementing GA Operations and Reon�gurable Hard-ware on A Single LSI. In M. Sipper, D. Mange, and A. P�erez-Uribe, edi-tors, Proeedings of the Seond International Conferene on Evolvable Sys-tems: From Biology to Hardware (ICES'98), volume 1478 of Leture Notesin Computer Siene, pages 1{12, Lausanne, Switzerland, 1998. Springer-Verlag.[13℄ Tatiana G. Kalganova. Evolvable Hardware Design of Combinational LogiCiruits. PhD thesis, Napier University, Edinburgh, Sotland, 2000.[14℄ D. Keymeulen, M. Durantez, K. Konaka, J. Kuniyoshi, and T. Higuhi.An Evolutionary Robot Navigation System using a Gate-Level EvolvableHardware. In Proeedings of the First International Conferene on Evolv-able Systems: From Biology to Hardware (ICES'96), volume 1259 of Le-ture Notes in Computer Siene, pages 195{209, Tsukuba, Japan, 1996.Springer-Verlag.[15℄ Hiroaki Kitano and James A. Hendler, editors. Massively Parallel Arti�ialIntelligene. MIT Press, Cambridge, Massahusetts, 1994.[16℄ John R. Koza. Geneti Programming. On the Programming of Computersby Means of Natural Seletion. MIT Press, Cambridge, Massahusetts,1992. 24



[17℄ J. Miller, T. Kalganova, N. Lipnitskaya, and D. Job. The Geneti Algorithmas a Disovery Engine: Strange Ciruits and New Priniples. In Proeed-ings of the AISB Symposium on Creative Evolutionary Systems (CES'99),Edinburgh, UK, 1999.[18℄ J. F. Miller, P. Thomson, and T. Fogarty. Designing Eletroni CiruitsUsing Evolutionary Algorithms. Arithmeti Ciruits: A Case Study. InD. Quagliarella, J. P�eriaux, C. Poloni, and G. Winter, editors, GenetiAlgorithms and Evolution Strategy in Engineering and Computer Siene,pages 105{131. Morgan Kaufmann, Chihester, England, 1998.[19℄ Julian F. Miller, Domini Job, and Vesselin K. Vassilev. Priniples in theEvolutionary Design of Digital Ciruits|Part I. Geneti Programming andEvolvable Mahines, 1(1/2):7{35, April 2000.[20℄ Jim Torresen. A Divide-and-Conquer Approah to Evolvable Hardware. InMoshe Sipper, Daniel Mange, and Andr�es P�erez-Uribe, editors, Proeedingsof the Seond International Conferene on Evolvable Systems (ICES'98),pages 57{65, Lausanne, Switzerland, 1998. Springer-Verlag.

25


