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Abstract: This paper addresses the optimum design of columns, in which the objective is to minimaize
their volume under a given load by changing their shape, and assuming that are subject to buckling and
strength constraints. We use a genetic algorithm (GA) to move through the search space of possible
column designs, and choose the best one. Several issues arise when using the GA, such as how to
decide which is the most appropriate representation scheme and how to fine tune its parameters. Both
floating point and binary representation (with and without Gray coding) were used and compared to a
more traditional optimization technique based on the generalized reduced gradient method. Qur results
show that the floating point representation provides the best solutions overall. Furthermore, we propose
a very simple methodology to fine tune the GA parameters when using this kind of representation, and
we show how the GA is able to find designs that reduce the column volume up to 30% in some cases,
with respect to more traditional techniques.

Keywords: structural optimization, genetic algorithms, design optimization, column design, non-
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INTRODUCTION

The optimization of structural members subject to compression forces has been of great interest for
a long time. Cox [1992] gives a good historical review of the attempts to provide a solid mathematical
analysis of the column. As he indicates, the aesthetic ideal was devised in the ancient Greece, and was
originally reported by Vitruvius (circa 25 B.C.). This design consisted of a subtle variation on the
cylindrical shape, with a bulge at approximately one third of the column’s height and a diminution
near its top. In 1738, Daniel Bernoulli sent a letter to Leonhard Euler in which he posed the problem
of finding a curved that described the bending of a column. In 1743, Euler derived the formula for
the critical buckling load of an ideal slender column (Euler 1743). He was also the first to solve the
problem of inextensible elastica (i.e., for constant modulus of elasticity and modulus of inertia, he
found the curve of prescribed length with prescribed terminal displacements and slopes and minimum
stored energy) in 1757. Euler solved the case of a column that has the lower end fixed and the
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upper end free. Later he extended (Euler 1757) his work on columns, and even today it has a great
influence in every strength of materials textbook. In 1773, Lagrange [1867] unsuccessfully attempted
to determine the optimum shape for a column, based on Euler’s scientific derivations rather than
only the physical appearance of the element. However, several missteps in his calculations led him
to the mistaken conclusion that the cylinder was the strongest hinged column. There were very few
contributions to Euler’s work during several years, until Lamarle [1845] noticed that Euler’s formula
should be used only for slenderness ratios over a certain limit, and that the experimental data should
be applied only to small ratios. T. Clausen [1851] was the first to find the optimal shape of a column
of circular cross section hinged (pinned) at the end points, but didn’t get much attention from the
scientific community. In 1889 the French engineer Consideére [1891] performed a set of 32 tests on
columns, establishing the so-called theory of the reduced module. During that same year, the German
engineer F. Engesser [1889] independently suggested the theory of tangential module. From these two
theories, the first one dominated until 1946, when American professor F. R. Shanley indicated the
logical paradoxes of both theories. In a remarkable paper of only one page [Shanley, 1946] he explained
not only what was wrong with both theories, but he also proposed his own theory that solved the
paradoxes.

The problem of non-prismatic columns (i.e., those with a variable cross-section area) has been
studied more recently. A. N. Dinnik [1932] discussed the design of columns in which the moment of
inertia of the cross-section areas varies according to a power of the distance along the member axis.
Keller [1960] and later Tadjbakhsh and Keller [1962] derived optimal solutions to the strongest-column
problem, which was characterized in the following way: “For a column of given length and volume
of material, determine the column shape for which the Euler buckling load is maximum”. In their
analysis, Tadjbakhsh and Keller established the necessary conditions for a maximum by performing
variations on the differential equations of equilibrium and associated boundary conditions, and the
constraint of constant volume. Keller showed that of all twisted columns, hinged at the end points,
with arbitrary convex cross sections, the strongest has all its cross sections equilateral triangles, and
is not uniform, but is thickest at its center and thinnest at its ends.

J. Taylor [1967] studied the same problem using an energy approach, and presented a method to
calculate a lower bound to the maximum eigenvalue. Spillers and Levy extended Keller’s solution for
the optimal design of columns to the case of plates [Spillers and Levy, 1990] and later, for axisymmetric
cylindrical shells [Spillers and Levy, 1991]. However, in all these works, only the constraint of constant
volume was considered and, as Fu and Ren [1992] point out, in a practical design, material strength
constraints are equally important. With that in mind, these two last authors added such constraint
to the optimization problem and used an algorithm called the generalized reduced gradient method
[Reklaitis et al., 1983] to select the design variables at nodal points. The results that they obtained
are very reasonable and verifiable. The generalized reduced gradient method linearizes the non-linear
constraints of this problem, and uses the convex simplex method to select the best direction of search
from all the candidate directions which are both feasible and descent. Then the search for the optimum
is started from the feasible initial point. Newton iteration is employed to adjust the basic variable
to maintain feasibility. The convergence is accelerated by incorporating conjugate direction or quasi-
Newton constructions. Naturally, the existence of continuous differentiability of the problem functions
is a fundamental requirement for using the method.

Our work consisted in following this last approach, and apply the Genetic Algorithm (GA) instead
of the generalized reduced gradient method. Some problems had to be faced, though, namely the



representation scheme and the optimal parameters to be used. However, our results are practically
as good as those found by Fu and Ren [1992], and in at least one case we got a better solution than
them. In fact, we’ll see how in a particular example, the GA was able to generate a design that shows
a reduction of the cross section in its center, introducing savings of about 32% with respect to the
optimum design produced by the reduced gradient method used by Fu and Ren. Since this problem
has a continuous search space, we experimented with both binary and floating point representation
schemes. As the GA requires a discretization of the search space, we used an algorithm to map it in
a form suitable for the GA. This turns out to be an easy task, since in real designs there is always a
lower and an upper bound on the dimensions of the column. Finally, we also provide a very simple
methodology that can be used to adjust the parameters of the GA, so that we can guarantee finding
at least sub-optimal designs in a reasonable amount of time when using floating point representation.

STATEMENT OF THE PROBLEM

Given a column subject to axial load along the horizontal direction, the governing differential
equation is

EIy" + Py =0 (1)

where E is the modulus of elasticity, I is the moment of inertia, P is the axial load, and y is the
function that represents the slenderness of the column. Let’s assume that the column that we are
going to study has the shape shown in Figure 1, where it has been divided into 6 equal-sized segments
throughout its length. Then, Equation (1) may be expressed in a finite difference form, as [Fu and
Ren, 1992]:
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For non-trivial solution, the determinant must vanish, namely
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where, for round and regular polygonal sections, the moments of inertia will be given by

I; = aD} (5)



D; is the diameter for round sections, or the side length for regular polygonal sections. Table 1
shows the values of « for the most commonly used cross-sections.
In general, for an n-sided regular polygon, o may be derived as
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For rectangular sections where width b is assumed to be constant throughout the length of the
column,

I = 1; i=2,3,4. (7)

In a column design, Equation (4) represents a buckling constraint. Furthermore, a compressive
strength constraint must also be satisfied, that is

P
A_l S Ty, (8)

where A; is a function of D;. Since P and o, are always given values, we can compute the
minimum [y or A; for each particular problem. This means that we may express the compressive
strength constraint only in terms of Dy or Aj.

Now, we have all the necessary elements to express the column design problem as an optimization
problem. If we assume that P, h and o, are given, the objective is to minimize the volume of the
column. Therefore, we’ll consider 2 cases:

(1) Square or Round Columns: The objective function may be stated as [Fu and Ren, 1992]

Minimize:

V, = K(D} 4+ 2D3 + 2D3 + D} + D1 Dy + D3 D3 + D3Dy) (9)

where K is a constant defined according to Table 2, and V, is the volume of the round or square
column.

The objective function is subjected to the equality constraint defined by Equation (4), and the
following additional inequality constraints:

C1 < D; < Cpyi=1,2,3,4 (10)

where D; are the design variables; C1 and C), are, respectively, the lower and upper bounds of the
design variables.

(2) Rectangular Columns: The objective function will be [Fu and Ren, 1992]:

Minimize:

bl
Vy = (D1 +2D; +2D5 + Dy + V/D1Dz + /D3 D3 + /D3Da) (11)

where V, is the volume of the rectangular column.
The objective function is subjected to the equality constraint defined by Equation (4), and the
following similar equation that is derived on the basis of buckling in the orthogonal direction:
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Furthermore, an additional set of inequality constraints have to be satisfied

bx Dy > A
C<D;<Cy, 1=1,2,3,4 (14)
C<b<C,

where A1 = P/oy,.

NOTIONS OF GENETIC ALGORITHMS

The famous naturalist Charles Darwin defined Natural Selection or Survival of the Fittest in his
book [Darwin, 1929] as the preservation of favorable individual differences and variations, and the
destruction of those that are injurious. In nature, individuals have to adapt to their environment
in order to survive in a process called evolution, in which those features that make an individual
more suited to compete are preserved when it reproduces, and those features that make it weaker are
eliminated. Such features are controlled by units called genes which form sets called chromosomes.
Over subsequent generations not only the fittest individuals survive, but also their fittest genes which
are transmitted to their descendants during the sexual recombination process which is called crossover.

John H. Holland became interested in the application of natural selection to machine learning,
and in the late 60s, while working at the University of Michigan, he developed a technique that
allowed computer programs to mimic the process of evolution. Originally, this technique was called
reproductive plans, but the term genetic algorithm became popular after the publication of his book
[Holland, 1975] [Holland, 1992].

In 1989, Goldberg published a book [Goldberg, 1989] that provided a solid scientific basis for this
area, and cited no less than 73 successful applications of the genetic algorithm. In the last few years
the growing interest on this technique is reflected in a larger number of conferences, a new international
journal, and an increasing amount of software and literature devoted to this subject.

Koza [Koza, 1992] provides a good definition of a GA:

The genetic algorithm is a highly parallel mathematical algorithm that transforms a
set (population of individual mathematical objects (typically fixed-length character strings
patterned after chromosome strings), each with an associated fitness value, into a new pop-
ulation (i.e., the next generation) using operations patterned after the Darwinian principle
of reproduction and survival of the fittest and after naturally occurring genetic operations
(notably sexual recombination).



Actually, the genetic algorithm derives its behavior from a metaphor of one of the mechanisms of
evolution in nature which is called hard selection [Heitkoetter and Beasley, 1995]. Under this scheme,
only the best available individuals are retained for generating descendants. This contrasts with soft
selection, which offers a probabilistic mechanism for maintaining individuals to be parents of future
progeny despite possessing relatively poorer objective values.

It has been argued [Heitkoetter and Beasley, 1995] that the term genetic algorithm (GA) is mis-
leading, since natural selection is only one of the mechanisms of evolution, and it would be more
appropriate to call them hard selection (HS) algorithms to reflect the fact that they deal with only
that particular selection scheme. However, the term is so common today, that a change does not seem
feasible, at least in the near future.

A genetic algorithm for a particular problem must have the following five components [Michalewicz,
1992]:

1. A representation for potential solutions to the problem.
2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solutions in terms of their
“fitness”.

4. Genetic operators that alter the composition of children.

5. Values for various parameters that the genetic algorithm uses (population size, probabilities of
applying genetic operators, etc.).

Some of the basic terminology used by the genetic algorithms (GAs) community is the following
[Heitkoetter and Beasley, 1995]:

e A chromosome is a data structure that holds a “string” of task parameters, or genes. This
string may be stored, for example, as a binary bit-string (binary representation) or as an array
of integers (floating point o real-coded representation) that represent a floating point number.
This chromosome is analogous to the base-4 chromosomes present in our own DNA. Normally,
in the GA community, the haploid model of a cell is assumed (one-chromosome individuals).
However, diploids have also been used in the past [Goldberg, 1989].

e A gene is a subsection of a chromosome that usually encodes the value of a single parameter.

e An allele is the value of a gene. For example, for a binary representation each gene may have an
allele of 0 or 1, and for a floating point representation, each gene may have an allele from 0 to 9.

e A schema (plural schemata) is a pattern of gene values in a chromosome, which may include “do
not care” states (represented by a # symbol). Thus in a binary chromosome, each schema can
be specified by a string of the same length as the chromosome, with each character being one of
{0,1,# }. A particular chromosome is said to “contain” a particular schema if it matches the
scheme (e.g. chromosome 01101 matches schema #1#0+#).



If the solution of a problem can be represented by a set of N real-valued parameters, then the
job of finding this solution can be thought of as a search in an N-dimensional space. This region
is simply referred as the search space of the problem.

The fitness of an individual is a value that reflects its performance (i.e., how well solves a certain
task). A fitness function is a mapping of the chromosomes in a population to their corresponding
fitness values. A fitness landscape is the hypersurface obtained by applying the fitness function
to every point in the search space.

A buwilding block is a small, tightly clustered group of genes which have co-evolved in such a
way that their introduction into any chromosome will be likely to give increased fitness to that
chromosome. The building block hypothesis [Goldberg, 1989] states that GAs generate their
solutions by first finding as many building blocks as possible, and then combining them together
to give the highest fitness.

Deception a condition under which the combination of good building blocks leads to reduced
fitness, rather than increased fitness. This condition was proposed by Goldberg [Goldberg,
1989] as a reason for the failure of GAs on certain tasks.

Elitism (or an elitist strategy) is a mechanism which ensures that the chromosomes of the highly
fit member(s) of the population are passed on to the next generation without being altered by
any genetic operator. The use of elitism guarantess that the maximum fitness of the population
never decreases from one generation to the next, and it normally produces a faster convergence
of the population.

Epistasts is the interaction between different genes in a chromosome. It is the extent to which
the contribution to fitness of one gene depends on the values of other genes. Geneticists use this
term to refer to a “masking” or “switching” effect among genes, and a gene is considered to be
“epistatic” if its presence suppresss the effect of a gene at another locus. This concept is closely
related to deception, since a problem with high degree of epistasis is deceptive, since building
blocks can not be formed. On the other hand, problems with little or no epistasis are trivial to
solve (hillclimbing is sufficient).

Ezploitation is the process of using information gathered from previously visited points in the
search space to determine which places might be profitable to visit next. Hillclimbing is an
example of exploitation, because it investigates adjacent points in the search space, and moves
in the direction giving the greatest increase in fitness. Exploitation techniques are good at
finding local minima (or maxima). The GA uses crossover as an exploitation mechanism.

Ezploration is the process of visiting entirely new regions of a search space, to see if anything
promising may be found there. Unlike exploitation, exploration involves leaps into unknown
regions. Random search is an example of exploration. Problems which have many local minima
(or maxima) can sometimes only be solved using exploration techniques such as random search.
The GA uses mutation as an exploration mechanism.

A genotype represents a potential solution to a problem, and is basically the string of values
chosen by the user, also called chromosome.



e A phenotype is the meaning of a particular chromosome, defined externally by the user.

e Genetic drift is the name given to the changes in gene/allele frequencies in a population over
many generations, resulting from chance rather than from selection. It occurs most rapidly in
small populations and can lead to some alleles to become extinct, thus reducing the genetic
variability in the population.

e A em niche is a group of individuals which have similar fitness. Normally in multiobjective
and multimodal optimization, a technique called sharing is used to reduce the fitness of those
individuals who are in the same niche, in order to prevent the population to converge to a single
solution, so that stable sub-populations can be formed, each one corresponding to a different
objective or peak (in a multimodal optimization problem) of the function.

The basic operation of a Genetic Algorithm is illustrated in the following segment of pseudo-code

[Buckles and Petry, 1992]:

generate initial population, G(0);
evaluate G(0);
t:=0;
repeat
ti=t+1;
generate G(t) using G(t-1);
evaluate G(t);
until a solution is found

First, an initial population is randomly generated. The individuals of this population will be a set of
chromosomes or strings of characters (letters and/or numbers) that represent all the possible solutions
to the problem. We apply a fitness function to each one of these chromosomes in order to measure the
quality of the solution encoded by the chromosome. Knowing each chromosome’s fitness, a selection
process takes place to choose the individuals (presumably, the fittest) that will be the parents of the
following generation. The most commonly used selection schemes are the following [Goldberg and

Deb, 1991]:

e Proportionate Reproduction: This term is used generically to describe several selection
schemes that choose individuals for birth according to their objective function values f. In these
schemes, the probability of selection p of an individual from the ¢th class in the tth generation
is calculated as

fi

=<t 7
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where k classes exist and the total number of individuals sums to n. Several methods have
been suggested for sampling this probability distribution, including Monte Carlo or roulette
wheel selection [Jong, 1975], stochastic remainder selection [Booker, 1982] [Brindle, 1981], and
stochastic universal selection [Baker, 1987] [Grefenstette and Baker, 1989)].

Pit (15)



e Ranking Selection: In this scheme, proposed by Baker [Baker, 1985] the population is sorted
from best to worst, and each individual is copied as many times as it can, according to a non-
increasing assignment function, and then proportionate selection is performed according to that
assignment.

e Tournament Selection: The population is shuffled and then is divided into groups of k ele-
ments from which the best individual (i.e., the fittest) will be chosen. This process has to be
repeated k times because on each iteration only m parents are selected, where

__ population size

k

For example, if we use binary tournament selection (k = 2), then we have to shuffle the population
twice, since in each stage half of the parents required will be selected. The interesting property
of this selection scheme is that we can guarantee multiple copies of the fittest individual among
the parents of the next generation.

e Steady State Selection: This is the technique used in Genitor [Whitley, 1989], which works
individual by individual, choosing an offspring for birth according to linear ranking, and choosing
the currently worst individual for replacement.

After being selected, crossover takes place. During this stage, the genetic material of a pair of
individuals is exchanged in order to create the population of the next generation. The two main ways
of performing crossover are called single-point and two-point crossover. When a single-point crossover
scheme is used, a position of the chromosome is randomly selected as the crossover point as indicated
in Figure 2. When a two-point crossover scheme is used, two positions of the chromosome are randomly
selected as indicated in Figure 3.

Mutation is another important genetic operator that randomly changes a gene of a chromosome. If
we use a binary representation, a mutation changes a 0 to 1 and viceversa. This operator allows the
introduction of new chromosomic material to the population and, from the theoretical perspective, it
assures that—given any population—the entire search space is connected [Buckles and Petry, 1992].

If we knew in advance the final solution, it would be trivial to determine how to stop a genetic
algorithm. However, as this is not normally the case, we have to use one of the two following criteria
to stop the GA: either give a fixed number of generations in advance, or verify when the population
has stabilized (i.e., all or most of the individuals have the same fitness).

GAs differ from traditional search techniques in several ways [Buckles and Petry, 1992]:

¢ GAs don’t require problem specific knowledge to carry out a search.

e GAs use stochastic instead of deterministic operators and appear to be robust in noisy environ-
ments.

e GAs operate on multiple partial solutions simultaneously (sometimes called implicit parallelism),
gathering information from a population of search points to direct subsequent search efforts.
Their ability to maintain multiple partial solutions concurrently helps make GAs less susceptible
to the problems of local maxima and noise.



The traditional representation used by the genetic algorithms community is the binary scheme ac-
cording to which a chromosome is a string the form (b1,bo,...,b.), where by,bs,..., b, are called
alleles (either zeros or ones). Since the binary alphabet offers the maximum number of schemata per
bit of information of any coding [Goldberg, 1989], its use has became very popular among scientists.
This coding also facilitates theoretical analysis of the technique and allows elegant genetic opera-
tors. However, since the “implicit parallelism” property of GAs does not depend on using bit strings
[Michalewicz, 1992] it is worthwhile to experiment with larger alphabets, and even with new genetic
operators. In particular, for optimization problems in which the parameters to be adjusted are contin-
uous, a floating point representation scheme seems a logical choice. According to this representation,
a chromosome is a string of the form (d;,ds,...,d,,), where d1,ds,...,d,, are digits (numbers between
zero and nine). Consider the examples shown in Figure 4, in which the same value is represented using
binary and floating point encoding.

The term “floating” may seem misleading since the position of the implied decimal point is at a
fixed position, and the term “fixed point representation” seems more appropriate. However, the reason
that the term “floating point” is preferred is because in this representation each variable (representing
a parameter to be optimized) may have the point at any position along the string. This means that
even when the point is fixed for each gene, is not necessarily fixed along the chromosome. Therefore,
some variables could have a precision of 3 decimal places, while others are integers, and still they
could all be represented with the same string. Nevertheless, the term real-coded GAs is also used in
the literature [Goldberg, 1990] [Wright, 1991].

Floating point representation is faster and easier to implement, and provides a higher precision than
its binary counterpart, particularly in large domains, where binary strings would be prohibitively long.
One of the advantages of floating point representation is that it has the property that two points close
to each other in the representation space must also be close in the problem space, and vice versa
[Michalewicz, 1992]. This is not generally true in the binary approach, where the distance in a
representation is normally defined by the number of different bit positions.

Goldberg [Goldberg, 1990] has presented a theory of convergence for real-coded or floating-point
GAs, and also real numbers and other alphabets have been proposed [Wright, 1991], particularly for
numerical optimization, in a resemblance of the power of evolutionary strategies [Schwefel, 1981] in
this domain.

USE OF THE GENETIC ALGORITHM

To solve this problem, we used the Simple Genetic Algorithm (SGA) proposed by Goldberg [1989].
An issue in this application is the representation scheme, because we are dealing with real-valued
parameters, and therefore it is necessary to use some kind of discretization, so that we can apply a
binary representation scheme. The algorithm that we used for the discretization of the search space
was the following:

difference = Ly — L;

Determine necessary number of bits using difference
If dv > difference then dv = difference

dv = (L; + dv)/1000.0



Here, dv stands for decoded value, and L; and L; are respectively the upper and lower bounds
multiplied by one thousand (we considered only a 3 decimals precision, but this value can be modified
as desired). As we can see in this algorithm, we first determine how many bits we require to represent
the total amount of responses—i.e., by rounding up to a certain fixed amount of decimals, we discretize
the search space—. As this value will hardly be an exact power of two, then we use the next immediate
value. The decision showed after that is necessary to adjust the responses to valid values. The last line
of the algorithm allows us to get the real value that we want, since the results always will be shifted
L; positions with respect to the starting point, and they also have to be divided by a thousand.

We also tried to use Gray codes as suggested by Goldberg [1989]. Consider a binary number
b= (b1,...,b,) that we want to convert into a Gray code number g= (g1,...,gm), where m denotes
the number of bits. The following two procedures can be used to convert a binary number into Gray
coding and viceversa [Michalewicz, 1992]:

procedure Binary-to-Gray
begin
g1="b1
for k=2 to m do
gr = br_1 XOR by,

end

procedure Gray-to-Binary
begin

value = g1

b1 = value

for k=2 tom do

begin
if g, = 1 then value = NOT value
by, = value

end

end

The Gray code representation has the property that any two points next to each other in the
problem space differ by only one bit [Michalewicz, 1992]. In other words, an increase of one step in
the parameter value corresponds to a change of a single bit in the code. This is a well known technique
used to reduce the distance of two points in the problem space, and it is argued to bring some benefit
because of their adjacency property, and the small perturbation caused by many single mutations.
Nevertheless, the use of Gray codes didn’t improve much the performance of the GA in this particular
application, as we’ll see later on.

Finally, we used a floating point representation, since it is conceptually closest to the problem space
[Michalewicz, 1992], and allows the easy and efficient implementation of closed and dynamic operators.



We’ll see how this last approach provided the best results, both in terms of the precision obtained and
in terms of the computation time needed.
The fitness function that we used is illustrated by the following algorithm:

checkl = Error in Equation (4)
If P/(Ay x 0y) — 1.0 > 0.0 then check2 = 1.0

else check2 = 0.0
fitness = 1.0/ (vol x 800 x (checkl + check2) + 1.0)

As we can see, if our answer violates the constraint imposed by Equation (4) then the fitness function
will be penalized by the error produced. On the other hand, if it violates the stress constraint (i.e.
P/A; < oy), then the penalty is 1.0. For rectangular columns, the constraint is that b x Dy > P/o,.
In this last case, we must also check the orthogonal direction, so that we have three penalty values
instead of two. These values are added and the result is multiplied by 800-we magnify the error—
so that we “punish” our result. Note that when there are no violations to any of the constraints
the fitness function returns the inverse of the volume (we had to use the inverse, because GAs only
maximize, and this is a minimization problem).

We used a simple genetic algorithm (SGA) as that described by Goldberg [1989], but with some
modifications: we used two-point crossover and binary tournament selection. The four diameters that
we want to find were represented by consecutive strings of the same length. The halting criteria was
through a maximum number of generations. The GA was implemented in Turbo Pascal 7.0 using
the technique proposed by Porter [1988] for dynamic memory management. We found experimentally
that the following parameters seem to give the best results when using binary representation:

Population size = 400
Crossover probability = 0.80
Mutation probability = 0.01

We had to derive our own methodology to fine tune the GA parameters when using floating point
representation, since the chromosomes were more sensitive to changes in this case, because the muta-
tion operator produced larger jumps in the search space.

FINE TUNING THE GA PARAMETERS

One of the main problems when using GAs is how to choose the most appropriate parameter values
(i-e., population size, maximum number of generations, mutation and crossover rate). This is normally
a trial and error process which takes some time. One of the experiences derived from this research was
the fact that it turns out to be much harder to fine tune the parameters of the GA when a floating
point representation scheme is used. We faced a dilemma: the floating point representation gave the
best results, but was also the hardest to deal with in terms of finding the most appropriate parameters.



Obviously any optimization system won’t be very useful if its outcomes are completely unpredictable.
After a lot of experimentation, we came out with a systematic empirical process that seems to be able
to generate optimal (or at least sub-optimal) solutions in a very short period of time. However, we
don’t have yet any theoretical support of its reliability, even though the empirical evidence is quite
solid. The method is the following:

e Choose a certain value for the random numbers seed and make it a constant.

e Make constants also the population size and the maximum number of generations (we used 400
chromosomes and 50 generations, respectively).

e Loop the mutation and crossover rates from 0.1 to 0.9 at increments of 0.1 (this is actually a
nested loop). This implies that 81 runs are necessary.

e For each run, update 2 files. One contains only the final costs, and the other has a summary that
includes, besides the cost, the corresponding values of the design parameters and the mutation
and crossover rates used. These files only contain information about relevant designs—i.e.,
designs that don’t violate any constraints in a greater degree than the optimization technique
with which the GA was compared—.

e When the whole process ends up, the file with the costs is sorted in ascending order, and the
smallest value is searched in the other file, returning the corresponding design parameters as the
final answer.

Since each run is completely independent from the others, we can perform all this process in parallel,
so that the total execution time will be practically the same required for a single run (approximately
10 seconds in a PC DX/2 running at 66 MHz and with a mathematical coprocessor).

EXAMPLES

The following examples were taken from Fu and Ren [1992]:

(1) Example 1: Select the best diameters at nodal points for a steel round column of 10’ length
which is subjected to an axial load of 400 kips. The modulus of elasticity is £ = 30 x 10° psi
and the yield strength, o, is 60,000 psi. Thus, the minimum diameter may be computed as 2.914”.
The design variables are the diameters at nodal point, D1, D2, D3 and D4. The lower and upper
bounds, C; and C, are 2.914” and 207, respectively. The size of the search space for this problem is
(20000 — 2914)* = 8.52 x 1016, The results are shown on Table 3. It is interesting to observe how
our approach generates a design that has a slightly higher volume than Fu and Ren’s method, but it
violates in a lower degree the constraints imposed by Equation (4). This is because of the penalty
applied to the fitness function, that drives the GA towards solutions that minimize all the constraints
at the same time. Also, notice how the Gray coding produced a poorer solution, both in terms of the
volume and in terms of the constraints. Figures 5, 6 and 7 show the convergence graph of the genetic
algorithm for this example using binary representation with and without Gray encoding, and using
floating point representation, respectively.

(2) Example 2: Select the best side-widths at nodal points for a steel square column of 10’ length
which is subjected to an axial load of 400 kips. The modulus of elasticity is £ = 30 x 10° psi



and the yield strength, o, is 60,000 psi. Thus, the minimum diameter may be computed as 2.582”.
The design variables are the diameters at nodal point, Dy, D3, D3 and D4. The lower and upper
bounds, C; and C), are 2.582” and 20”, respectively. The size of the search space for this problem is
(20000 — 2582)* 22 9.20 x 10'®. The results are shown on Table 4. In this case we find a solution that
produces a greater volume that Fu and Ren’s method, but violating fewer of the constraints imposed
by Equation (4). In this case the use of Gray coding produced a poorer solution in terms of the volume
but a better one in terms of the constraints. Figures 8, 9 and 10 show the convergence graph of the
genetic algorithm for this example using binary representation with and without Gray encoding, and
using floating point representation, respectively.

(3) Example 3: Select the best side-widths at nodal points for a steel equilateral triangle column of
10’ length which is subjected to an axial load of 400 kips. The modulus of elasticity is F = 30 x 10° psi
and the yield strength, o, is 60,000 psi. Thus, the minimum diameter may be computed as 3.924”.
The design variables are the diameters at nodal point, Dy, D2, D3 and Dy. The lower and upper
bounds, C; and C}, are 3.924” and 207, respectively. The size of the search space for this problem is
(20000 — 3924)* = 6.70 x 1016, The results are shown on Table 5. In this problem, the GA behave
as in the previous example, finding a solution less optimal in terms of the volume, but that violates
fewer of the constraints imposed by Equation (4). Also in this case the use of Gray coding produced
a poorer solution in terms of the volume but a slightly better one in terms of the constraints. Figures
11, 12 and 13 show the convergence graph of the genetic algorithm for this example using binary
representation with and without Gray encoding, and using floating point representation, respectively.

(4) Example 4: Select the best side-widths at nodal points for a steel rectangular column of 10’
length which is subjected to an axial load of 400 kips. The modulus of elasticity is £ = 30 x 10° psi
and the yield strength, o, is 60,000 psi. Thus, the minimum diameter may be computed as 1.500”.
The design variables are the diameters at nodal point, Dy, D3, D3 and D4. The lower and upper
bounds, C; and C), are 1.500” and 20”, respectively. The size of the search space for this problem is
(20000 — 1500)* =2 1.20 x 10'7. The results are shown in Table 6. In this problem we had to use a
larger population than in the others (500 chromosomes as compared to the 400 used in the others),
and we ran the algorithm for 100 generations, instead of the 50 generations used before. The reason
for this change of parameters was the extra length added to our chromosomic strings in this case
(we have 15 extra bits) because of the extra parameter needed (the width b of the column). We can
see how in this case we found a design that has 32% less volume than the solution produced by the
generalized reduced gradient method. Given the values of the diameters, we can see that the shape
of this column is thinnest at its center, as oppossed to the previous designs in which the center is
precisely the thickest part of the element. It’s also interesting to notice that, even though our design
introduces such savings of material, the constraints imposed by Equations (4) and (14) are violated
in a lower degree than Fu and Ren’s design. In fact, strictly speaking, they are slightly violating one
of the constraints imposed by Equation (14), because P/o, > b x D;. Also in this case the use of
Gray coding produced a poorer solution in terms of the volume but a slightly better one in terms
of the constraints. Figures 14, 15 and 16 show the convergence graph of the genetic algorithm for
this example using binary representation with and without Gray encoding, and using floating point
representation, respectively.

FUTURE WORK



We are now working in a generalization of this problem, so that columns of any material (probably
even of composite materials) can be considered. This will complicate the analysis a bit more. Also,
we are trying to approach the problem of considering more than one objective function at a time
(multiobjective optimization), in which we could have conflicting objectives. This will introduce some
changes in the way in which the GA has to be applied, but it will drive us towards a more realistic view
of structural design. Our final goal is to have a complete computer-aided structural design system for
framed structures. So far, our work with columns [Coello and Christiansen, 1995], plane and space
trusses [Coello and Christiansen, 1994] [Coello et al., 1994], and reinforced concrete beams [Coello et
al., 1995] has provided us with very encouraging results, and we expect to develop prototypes for the
remaining framed structures (i.e., plane and space frames and plane grids) in the next few months.

CONCLUSIONS

We have shown another successful application of the genetic algorithm to an engineering optimiza-
tion problem. In this case we saw how a floating point representation worked better when dealing
with a continuous search space. This representation not only beats the binary representation scheme
(with or without Gray encoding) in terms of the precision obtained, but also in terms of the speed,
because we can use the same genetic operators with only slight modifications, and the convergence
will be faster since the chromosomes are of a considerable shorter length. This problem is an interest-
ing one because, even when its analysis is very simple, it normally has fairly large search spaces and
several constraints. The penalty technique that we used has proved to be useful in incorporating the
constraints into the fitness function for this particular application, as can be seen from our results.
The selection mechanism of the GA was able to find interesting solutions that escape to the search
capabilities of more conventional techniques. Finally, we also proposed a methodology to fine tune the
parameters of the GA, so that the designer may generate an optimal (or at least sub-optimal) solution
in a reasonable amount of time.

The problem treated here is one that still challenges mathematicians and engineers all over the
world, because it refers to the design of the optimal geometrical shape of a column. Even if the precise
mathematical answer of our method may not be suitable for practical civil engineering applications,
it may be very useful in industry, mainly for mass-production of structural elements.
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