
Efficient Evolutionary Optimization through

the use of a Cultural Algorithm

Carlos A. Coello Coello and Ricardo Landa Becerra

CINVESTAV-IPN

Evolutionary Computation Group

Departamento de Ingenierı́a Eléctrica

Sección de Computación

Av. IPN No. 2508

Col. San Pedro Zacatenco

México, D. F. 07300

ccoello@cs.cinvestav.mx

rlanda@computacion.cs.cinvestav.mx

August 1, 2003

Abstract

This paper introduces a cultural algorithm that uses domain knowledge to im-

prove the performance of an evolutionary programming technique adopted for con-

strained optimization. The proposed approach extracts domain knowledge during



the evolutionary process and builds a map of the feasible region to guide the search

more efficiently. Additionally, in order to have a more efficient memory manage-

ment scheme, our implementation uses 2n-trees to store this map of the feasible

region. Our results indicate that the approach is able to produce very competi-

tive results with respect to other optimization techniques at a considerably lower

computational cost.

Keywords: Cultural algorithms, evolutionary programming, engineering optimization.

1 Introduction

The use of evolutionary algorithms for solving optimization problems has become very

extensive in the last few years [14, 2]. This popularity is mainly due to the robustness,

ease of use and wide applicability of evolutionary algorithms [12].

However, it is commonly the case that evolutionary algorithms are seen as “blind

heuristics” in the sense that they do not use or require any specific domain knowl-

edge. Nevertheless, several researchers have proposed different mechanisms to extract

knowledge (or certain design patterns) from an evolutionary algorithm in order to im-

prove convergence of another evolutionary algorithm (see for example [35, 20, 27]).

In this paper, we propose the use of a biological metaphor called a “cultural algo-

rithm” as a global optimization technique. Cultural algorithms are based on the fol-

lowing notion: in advanced societies, the improvement of individuals occurs beyond

natural selection; besides the information that an individual possesses within his ge-

netic code (inherited from his ancestors) there is another component called “culture”.



Culture can be seen as a sort of repository where individuals place the information ac-

quired after years of experience. When a new individual has access to this library of

information, it can learn things even when it has not experienced them directly. Hu-

mankind as a whole has reached its current degree of progress mainly due to culture.

In this paper, we propose an approach in which domain knowledge (using the con-

cept of a cultural algorithm) extracted during a run of an evolutionary algorithm is used

to guide the search more efficiently in constrained optimization problems [24, 7].

The remainder of this paper is organized as follows. In Section 2, we provide

some basics of cultural algorithms. Section 3 discusses the most important previous

related work. The use of cultural algorithms in constrained optimization is discussed

in Section 4. The way in which constraints are handled as a belief space is discussed in

Section 5. Our proposed approach is described in Section 6. The mathematical descrip-

tion of the examples used to validate our approach are provided in Section 7. Results

are compared with respect to other approaches in Section 8. Finally, our conclusions

and some possible paths for future research are provided in Section 9.

2 Basics of Cultural Algorithms

Cultural algorithms were developed by Robert G. Reynolds as a complement to the

metaphor used by evolutionary algorithms, which had focused mainly on genetic and

natural selection concepts [30].

Cultural algorithms are based on some theories originated in sociology and ar-

chaeology which try to model cultural evolution. Such theories indicate that cultural



evolution can be seen as an inheritance process operating at two levels: (1) a micro-

evolutionary level, which consists of the genetic material that an offspring inherits from

its parents, and (2) a macro-evolutionary level, which consists of the knowledge ac-

quired by individuals through generations. This knowledge, once encoded and stored,

is used to guide the behavior of the individuals that belong to a certain population

[29, 11].

Culture can be seen as a set of ideological phenomena shared by a population.

Through these phenomena, an individual can interpret its experiences and decide its

behavior. In these models, we can clearly appreciate the part of the system that is shared

by the population: the knowledge, acquired by members of a society, but encoded

in such a way that such knowledge can be accessed by every other member of the

society. And then there is an individual part, which consists of the interpretation of

such knowledge encoded in the form of symbols. This interpretation will produce

new behaviors as a consequence of the assimilation of the corresponding knowledge

acquired combined with the experiences lived by the individual itself.

Reynolds attempts to capture this double inheritance phenomenon through his pro-

posal of cultural algorithms [30]. The main goal of such algorithms is to increase the

learning or convergence rates of an evolutionary algorithm such that the system can

respond better to a wide variety of problems [13].

Cultural algorithms operate in two spaces. First, we have the population space,

which consists of (as in all evolutionary algorithms) a set of individuals. Each indi-

vidual has a set of independent features that are used to determine its fitness. Through

time, such individuals can be replaced by some of their descendants, which are obtained



from a set of operators applied to the population.

The second space is the belief space, which is where we store the knowledge ac-

quired by individuals through generations. The information contained in this space

must be accessible to each individual, so that they can use it to modify their behavior.

In order to join the two spaces, it is necessary to provide a communication link,

which dictates the rules regarding the type of information that must be exchanged be-

tween the two spaces. The pseudo-code of a cultural algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo-code of a cultural algorithm.

Generate the initial population
Initialize the belief space
Evaluate the initial population
Repeat

Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the belief
space)
Evaluate each child
Perform selection

While the end condition is not satisfied

Most of the steps of a cultural algorithm correspond with the steps of a traditional

evolutionary algorithm. It can be clearly seen that the main difference lies in the fact

that cultural algorithms use a belief space. In the main loop of Algorithm 1, we have the

update of the belief space. It is at this point in which the belief space incorporates the

individual experiences of a select group of members of the population. Such a group

is obtained with the function accept, which is applied to the entire population. On the

other hand, the variation operators (such as recombination or mutation) are modified

by the function influence. This function applies some pressure such that the children



resulting from the variation operators can exhibit behaviors closer to the desirable ones

and farther away from the indesirable ones, according to the information stored in the

belief space.

These two functions (accept and influence) constitute the communication link be-

tween the population space and the belief space. Such interactions can be appreciated

in Figure 1 [31].

In [30], Reynolds proposed the use of genetic algorithms to model the micro-

evolutionary process, and Version Spaces [25] to model the macro-evolutionary process

of a cultural algorithm. This sort of algorithm was called the Version Space guided Ge-

netic Algorithm (VGA). The main idea behind this approach is to preserve beliefs that

are socially accepted and discard (or prune) unacceptable beliefs. Therefore, if we ap-

ply a cultural algorithm for global optimization, the acceptable beliefs can be seen as

constraints that direct the population at the micro-evolutionary level [22].

3 Related Work

Reynolds et al. [32] and Chung & Reynolds [6] have explored the use of cultural algo-

rithms for global optimization with very encouraging results. Chung and Reynolds [6]

use a hybrid of evolutionary programming and GENOCOP [23] in which they incor-

porate an interval constraint-network [8] to represent the constraints of the problem at

hand. An individual is considered as “acceptable” when it satisfies all the constraints

of the problem. When that does not happen, then the belief space, i.e., the intervals

associated with the constraints, are adjusted. This approach is really a more sophisti-



cated version of a repair algorithm in which an infeasible solution is made feasible by

replacing its genes with a different value between its lower and upper bounds. Since

GENOCOP assumes a convex search space, it is relatively easy to design operators that

can exploit a search direction towards the boundary between the feasible and infeasible

regions.

In further work, Jin and Reynolds [17] proposed an n-dimensional regional-based

schema, called a belief-cell, as an explicit mechanism that supports the acquisition,

storage and integration of knowledge about non-linear constraints in a cultural algo-

rithm. This belief-cell can be used to guide the search of an Evolutionary Computation

(EC) technique (evolutionary programming in this case) by pruning the instances of in-

feasible individuals and promoting the exploration of promising regions of the search

space. The key aspect of this work is precisely how to represent and save the knowledge

about the problem constraints in the belief space of the cultural algorithm.

The idea of Jin and Reynolds’ approach is to build a map of the search space similar

to the “Divide-and-Label” approaches used for robot motion planning [19]. This map

is built using information derived from evaluating the constraints of each individual in

the population of the EC technique. The map is formed by dividing the search space in

sub-areas called cells. Each cell can be classified as: feasible (if it lies completely in a

feasible region), infeasible (if it lies completely in an infeasible region), semi-feasible

(if it occupies part of a feasible and part of an infeasible region), or unknown (if that

region has not been explored yet). This map is used to derive rules about how to guide

the search of the evolutionary algorithm (avoiding infeasible regions and promoting the

exploration of feasible regions).



This previous work, however, has an important drawback: the authors do not in-

dicate how to implement the belief space and, from their publications, one can infer

that static data structures were adopted in their work. This has some important scal-

ability issues since a relatively low dimensionality (about 20 decision variables) can

become impractical in terms of the cell representation needed (i.e., we would run out

of memory).

4 Constrained Optimization

In this paper, we use cultural algorithms with evolutionary programming (CAEP) [6].

The basic idea is to “influence” the mutation operator (the only operator in evolutionary

programming) so that current knowledge about the properties of the search space can

be properly exploited.

As indicated above, in a cultural algorithm there are two main spaces: the normal

population adopted with evolutionary programming and the belief space. The shared

acquired knowledge is stored in the belief space during the evolution of the population.

The interactions between these two spaces are detailed below [6]:

1. Select an initial population of p candidate solutions, from a uniform distribution

within the given domain for each parameter from 1 to n.

2. Assess the performance score of each parent solution by a given objective func-

tion f .

3. Initialize the belief space with the given problem domain and candidate solu-

tions.



4. Generate p new offspring solutions by applying a variation operator, V , as mod-

ified by the influence function, Influence. Now there are 2p solutions in the

population.

5. Assess the performance score of each offspring solution by the given objective

function f .

6. For each individual, select c competitors at random from the population of size

2p. Conduct pairwise competitions between the individual and the competitors.

7. Select the p solutions that have the greatest number of wins to be parents for the

next generation.

8. Update the belief space by accepting individuals using the acceptance function.

9. Go back to step 4 unless the available execution time is exhausted or an accept-

able solution has been discovered.

As we saw before, in this case, most of the steps previously described are the same

as in the evolutionary algorithm adopted (evolutionary programming [12]). The accep-

tance function accepts those individuals that can contribute with their knowledge to the

belief space. The update function creates the new belief space with the beliefs of the

accepted individuals. The idea is to add to the current knowledge the new knowledge

acquired by the accepted individuals.

The function to generate offspring used in evolutionary programming is modified

so that it includes the influence of the belief space in the generation of offspring. Evolu-

tionary programming uses only mutation and the influence function indicates the most



promising mutation direction. The remaining steps are the same as used in evolutionary

programming.

For unconstrained problems, Chung [5] proposes the use of two types of knowl-

edge: (1) situational, which provides the exact point where the best individual of each

generation was found; and (2) normative, which stores intervals for the decision vari-

ables of the problem that correspond to the regions where good results were found.

5 Beliefs as Constraints

As we mentioned before, Jin and Reynolds [17] modified Chung’s proposal so as to in-

clude in the belief space information about feasibility of the solutions. We will explain

next the changes performed in more detail, since our current proposal is an extension

of Jin & Reynolds’ algorithm.

First, Jin and Reynolds eliminated the situational knowledge and added constraints

knowledge. Taking advantage of the intervals of good solutions that are stored in the

normative portion of the belief space, they created what they called “belief cells”.

These belief cells are a subdivision of the search space within the intervals of good

solutions, such that feasibility of the cells can be determined. When the intervals of

the variables are modified, the cells are also modified. As indicated before, there are

4 types of cells (see Figure 2)1: (1) feasible, (2) infeasible, (3) semi-feasible (contain

part of both areas) and (4) unknown.

The influence that the belief space has on the generation of offspring consists of

1Other authors have also proposed the use of a map of the feasible region. See for example [21].



moving individuals that lie in infeasible cells towards feasible cells. Actually, in this

process, semi-feasible cells are given preference because in most difficult constrained

problems, the optimum lies on the boundary between the feasible and infeasible re-

gions. However, Jin & Reynolds [17] do not modify the rules used to update the nor-

mative part of the belief space proposed by Chung [5]: the intervals are expanded if

the accepted individuals do not fit within them; conversely, they are tightened only if

the accepted individuals have a better fitness. This may reduce the intervals towards

infeasible regions in which the objective function values are higher.

6 Description of our Approach

The approach proposed here is a variation of Jin & Reynolds’ technique [17]. However,

in our case, we incorporate spatial data structures (2n-trees) in order to store the map

of the feasible region more efficiently. Next we will describe the main differences

between traditional evolutionary programming and our approach.

6.1 Initialization of the Belief Space

The lower and upper boundaries of the promising intervals for each variable are stored

in the normative part of the belief space, together with the fitness for each extreme of

the interval. This part is initialized by putting in the boundaries of the variables the

values given in the input data of the problem. The initial fitnesses in all cases are set to

� ∞.2

2This is assuming a minimization problem.



Regarding the constraints of the problem, the interval given in the normative part is

subdivided into s subintervals such that a portion of the search space is divided in hyper-

cubes (see Figure 3). The following information about each hypercube is stored: num-

ber of feasible individuals (within that cell), number of infeasible individuals (within

that cell), and the type of region. The type of region depends on the feasibility of the

individuals within. Four types are defined:

� if f easible individuals � 0 and in f easible individuals � 0, then cell type �

unknown

� if f easible individuals
� 0 and in f easible individuals � 0, then cell type �

f easible

� if f easible individuals � 0 and in f easible individuals
� 0, then cell type �

in f easible

� if f easible individuals
� 0 and in f easible individuals

� 0, then cell type �

semi � f easible

To initialize this part, all counters are set to zero and the cell type is initialized to

“unknown” (other values could be used in this case, but that would obviously affect the

performance of the algorithm).

6.2 Updating the Belief Space

The constraints part of the belief space is updated at each generation, whereas the nor-

mative part is updated every k generations. The update of the constraints part consists



only of adding any new individuals that fall into each region to the counter of feasible

individuals. The update of the normative part is more complex (that is the reason why

it is not performed at every generation). When the interval of each variable is updated,

the cells or hypercubes of the restrictions part are changed and the counters of feasi-

ble and infeasible individuals are reinitialized. Furthermore, this update is done taking

into consideration only a portion of the population. Such a portion is selected by the

function accept(), taking as a parameter (given by the user) the percentage of the total

population size to be used. We set this percentage to 25% in our experiments, based on

some empirical testing. Note that changing this value does not significantly affect the

computational cost of the algorithm, but it may affect the results that it produces. The

interpretation of this percentage in terms of its role in the algorithm is that it regulates

the rate at which the knowledge gets specialized. As this percentage approaches 100%,

the knowledge gets specialized at a slower rate, and viceversa. We found that 25% was

a good compromise. The function accept() selects the best individuals, based on their

number of victories obtained during the selection process.

In the approach proposed in this paper, the conditions to reduce the intervals are

stronger than those in previous approaches (e.g., [17]): an interval is reduced only if

the accepted individual has a better fitness AND it is feasible. In order to make this

mechanism work, it is necessary to modify the acceptance function so that feasible

individuals are preferred and fitness is adopted as a secondary criterion. If this is not

done, then the condition for interval reduction will not hold most of the time because

the accepted individuals are more likely to be infeasible.



6.3 Influence of Beliefs on the Mutation Operator

Mutation takes place for each variable of each individual, with the influence of the

belief space and in accordance with the following rules:

� If the variable j of the parent is outside the interval given by the normative part

of the constraints, then we attempt to move within this interval through the use

of a random variable.

� If the variable is within a feasible, a semi-feasible or an unknown hypercube, the

perturbation is made trying to place it within the same hypercube or very close

to it.

� Finally, if the variable is in an infeasible cell, we try to move it first to the closest

semi-feasible cell. However, if none is found, we try to move it to the closest

feasible or unknown cell. If that does not work either, then we move it to a

random position within the interval defined by the normative part.

6.4 Tournament Selection

The rules for updating the belief space may result in that knowledge becoming spe-

cialized at a slower rate. To improve the speed of the algorithm, we take advantage

of the rules for performing tournament selection. After performing mutation, we will

have a population of size 2p (p parents generate p children). The tournament is per-

formed considering the entire population (i.e., we use � µ � λ � selection with µ � λ � p).

Tournaments consist of c confrontations per individual, with the c opponents randomly

chosen from the entire population. When the tournaments finish, the p individuals with



the largest number of victories are selected to form the following generation. The tour-

nament rules adopted for the current proposal are very similar to those adopted by Deb

in his penalty approach based on feasibility [10].

The new tournament rules adopted by our approach are the following:

1. If both individuals are feasible, then the individual with the best objective func-

tion value wins.

2. If both individuals are infeasible, then the individual with the lowest constraint

violation wins. The constraint violation is measured using:

sumg ���x � � ∑
j
�

J

g j ���x �
gmax j

where gmax j is the largest value of the constraint g j found during the evolution-

ary process, and J �
�

j � g j ���x � is a constraint violated in �x � .

In words, we are saying that the winner is the individual that presents a lower

constraint violation, considering normalized constraints (this normalization is

done to avoid problems with the use of different units for each of the constraints

used).

3. Otherwise, the feasible individual always wins.

6.5 Use of 2n-Trees

One of the main drawbacks of Jin & Reynolds’ approach [17] is its intense memory

usage. Since the belief maps of each decision variable have to be stored, the approach



runs out of memory very fast and cannot possibly handle problems with more than a

few decision variables (memory requirements grow exponentially with the number of

decision variables of the problem). This led us to develop a scheme in which 2n-trees

are used to partition the feasible region into cells so that with higher-dimensionality

problems the memory usage is not exponentially increased. The idea was inspired by

the popularity of spatial data structures to store efficiently navigation maps in robotics

[19] and to represent efficiently 3D objects in computer graphics [16].

In order to be able to use 2n-trees within our implementation, we have to partition

only the projection of the search space in some dimensions, since 2n-trees have practi-

cal use only when n � 4, where n corresponds to the number of decision variables of

our problem [19]. An example of how to partition a 2D space using a quadtree with a

depth of 2 is shown in Figure 4.

Note that the decision of how to partition decision variable space so as to comply

with this restriction is very important since the number of nodes used may be incre-

mented rather than reduced! For example, if an octree is adopted, using a node division

we will divide three dimensions and our tree will have 23 �
1 � 9 nodes in total. How-

ever, if we use a tree that divides only one dimension and through 3 successive divisions

we partition a 3D space, the leaf nodes will give the same result as for the octree but

using 15 nodes.

From the previous discussion we can infer that we should use a 2n-tree with the

largest possible n, but being careful not to use too much memory. Our conjecture is

that n � 3 is the largest number with which the problem remains manageable.

Once the number of dimensions to be partitioned has been decided, we have to de-



cide which are the dimensions to be partitioned. The idea is to choose the 3D projection

that best divides the search space into a feasible and an infeasible region (or regions).

However, since the number of possible combinations of three dimensions grows ex-

ponentially with the number of variables, it soon becomes impossible to try them all.

Therefore, we can choose a group of combinations to be tried such that the size of this

group grows linearly with the number of variables of the problem. In order to deter-

mine the “goodness” of a certain partition, we have to count the number of feasible

and infeasible individuals in each leaf node. A node will be considered good as long

as one of these two values (i.e., feasible and infeasible individuals) tends to zero. For

example, let’s assume that n f is the number of feasible individuals in a certain node and

that ni is the number of infeasible individuals in that same node. Thus, a small number

min � n f � ni � in each node will indicate a good partition. From the previous discussion,

we can say that we are looking for a partition that minimizes:

λ � ∑
lea f nodes

min � n f � ni �

Having this partition, we can continue partitioning with the same method until

reaching the maximum allowable depth. Since we have tried several partitioning meth-

ods for a single node division, it is better to choose a small depth limit so that not much

time is spent in the creation of the tree.

The method described to expand nodes is only done for nodes corresponding to

semi-feasible cells, and it stops when it reaches the maximum depth of the tree. The

tree is rebuilt every time the normative part is updated.



7 Examples

To validate our approach, we have used some test functions from the well-known

benchmark proposed in [24] which has been often used in the literature to validate

new constraint-handling techniques. Additionally, we also used some well-known en-

gineering optimization problems. All the problems are described in Appendix A.

8 Comparison of Results

For all the experiments reported next, we performed 10 independent runs per problem,

and we used the following parameters in our approach: population size = 20, maximum

number of generations = 2500, the normative part is updated every 20 generations with

25% of the population (acceptance %), tournaments consist of 10 encounters per in-

dividual (half the population size), the maximum depth of the octree is equal to the

number of decision variables of the problem. These parameters were derived empiri-

cally after numerous experiments.

8.1 Example 1 : g01

In this case, the global optimum is at x
�

� � 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1 � 3 � 3 � 3 � 1 � where f � x � � �

� 15. The constraints g1, g2, g3, g4, g5 and g6 are active. The results of our approach

and the homomorphous maps of Koziel and Michalewicz [18] are shown in Tables 1

and 2.



8.2 Example 2: g02

The global maximum is unknown; the best reported solution is [33]: f � x � � � 0 � 803619.

Constraint g1 is close to being active (g1 � � 10
� 8). The results of our approach and

the homomorphous maps of Koziel and Michalewicz [18] are shown in Tables 1 and 2.

8.3 Example 3: g04

In this example, the optimum solution is x
�

� � 78 � 33 � 29 � 995256025682 � 45 �

36 � 775812905788 � where f � x � � � � 30665 � 539. Constraints g1 and g6 are active. The

results of our approach and the homomorphous maps of Koziel and Michalewciz [18]

are shown in Tables 1 and 2.

8.4 Example 4: g08

In this case, the optimum solution is located at x
�

� � 1 � 2279713 � 4 � 2453733 � where

f � x � � � 0 � 095825. The results of our approach and the homomorphous maps of Koziel

and Michalewciz [18] are shown in Tables 1 and 2.

8.5 Example 5: g12

In this test function, the global optimum is located at x
�

� � 5 � 5 � 5 � where f � x � � � 1.

The results of our approach and the homomorphous maps of Koziel and Michalewciz

[18] are shown in Tables 1 and 2.

Note that the homomorphous maps approach of Koziel & Michalewicz [18] is one

of the best constraint-handling techniques for evolutionary algorithms known to date.

Also, it is important to indicate that the results of Koziel and Michalewicz were ob-



tained with 1,400,000 fitness function evaluations, whereas our approach required only

50,020 fitness function evaluations. Note that our approach has been able to deal with

problems that have several variables (g01 has 13 decision variables and g02 has 20

decision variables).

As can be seen in Tables 1 and 2, our approach produces very competitive results

with respect to the homomorphous maps (which is considerably more difficult to im-

plement) at a fraction of its computational cost (in some cases, we converge to the

global optimum). The main reason for this cost reduction is that the belief cells are

used to guide the search of the evolutionary algorithm very efficiently, avoiding the

algorithm moving to unpromising regions of the search space.

Let us analyze now the results for the engineering optimization problems chosen

for this comparative study.

8.6 Example 6: Design of a Welded Beam

This problem was solved before by Deb [9] using a simple genetic algorithm with bi-

nary representation, and a traditional penalty function as suggested by Goldberg [14].

It has also been solved by Ragsdell and Phillips [26] using geometric programming.

Ragsdell and Phillips also compared their results with those produced by the methods

contained in a software package called “Opti-Sep” [34], which includes the following

numerical optimization techniques: ADRANS (Gall’s adaptive random search with a

penalty function), APPROX (Griffith and Stewart’s successive linear approximation),

DAVID (Davidon-Fletcher-Powell with a penalty function), MEMGRD (Miele’s mem-

ory gradient with a penalty function), SEEK1 & SEEK2 (Hooke and Jeeves with 2



different penalty functions), SIMPLX (Simplex method with a penalty function) and

RANDOM (Richardson’s random method).

The results of the techniques previously indicated are compared against those pro-

duced by the approach proposed in this paper (see Table 3). In the case of Sid-

dall’s techniques [34], only the best solution produced by the techniques contained

in “Opti-Sep” is displayed. The mean from the runs performed with our approach

was f ���x � � 1 � 9718091, with a standard deviation of 0 � 4431313. The worst solution

found was f ���x � � 3 � 1797085, although this solution appeared only once in the runs

performed.

8.7 Example 7: Minimization of the Weight of a Tension/Compression

Spring

This problem was solved before by Belegundu [3] using the following numerical op-

timization techniques: Feasible directions (CONMIN and OPTDYN), Pshenichny’s

Recursive Quadratic Programming (LINRM), Gradient Projection (GRP-UI), Exterior

Penalty Function (SUMT), and Multiplier Methods (M-3, M-4 and M-5). Only the best

feasible result reported by him is shown in Table 4. Additionally, Arora [1] also solved

this problem using a numerical optimization technique called Constraint Correction at

constant Cost (CCC). It is important to notice that Arora’s solution is actually infea-

sible because it violates one of the constraints slightly. In the experiments reported

here, our approach handled all constraints as hard, so that the solutions produced were

considered valid only if all of them were fully satisfied. Nevertheless, the proposed

approach was able to find a better (feasible) solution than Arora’s technique, as can be



seen in Table 4.

The mean from the runs performed with our approach was f ���x � � 0 � 0135681, with

a standard deviation of 0 � 00084152. The worst solution found was f ���x � � 0 � 0151156.

We can see that also in the engineering problems chosen, our approach produced

very competitive results at a low computational cost (the computational costs of the

other approaches against which we compared our algorithm were not available).

9 Conclusions and Future Work

We have presented an approach based on cultural algorithms and evolutionary pro-

gramming for constrained optimization. The approach proposed has provided good

results at a relatively low computational cost both in some well-known test functions

used with evolutionary algorithms and in some engineering optimization problems.

We argue that our results suggest that the proper use of domain knowledge can

certainly improve the performance of an evolutionary algorithm when such domain

knowledge is properly handled. Also, we argue that our results suggest that this domain

knowledge can be extracted during the evolutionary process in which we aim to reach

the global optimum of a problem. This contrasts with the more conventional approach

of using domain knowledge extracted from previous runs of an evolutionary algorithm

(see for example [15, 20]).

One of the main drawbacks of cultural algorithms in constrained search spaces (i.e.,

memory usage) is attacked using spatial data structures that can efficiently store the

belief space. To illustrate this point, we will briefly discuss a simple example. With the



2n-trees adopted in this paper, we defined a maximum depth of 5. Since an octree (such

as those used in our approach) has exactly eight child nodes, using a maximum depth

of 5, the maximum number of nodes of a tree will be: 80 �
81 �

82 �
83 �

84
� 4681

nodes. However, this number is not always reached in practice. If we now consider

a static data structure, to divide the space with 12 decision variables, if we just split

each dimension in half, we will need 212
� 4096 nodes. This number is slightly lower

than the one used. However, if we now assume 20 decision variables (as in g02), our

approach still requires the same number of nodes, whereas a static data structure would

require 220
� 1 � 048 � 576 nodes. This would introduce obvious memory management

problems. Thus, the mechanism for memory management introduced in our approach

is one of our main contributions and it constitutes the main difference with respect to

previous proposals.

As part of our future work, we are considering the possibility of using self-adaptation

or online adaptation mechanisms that make it unncessary to fine tune the parameters

required by our approach. Additionally, we are also considering the possibility of using

additional rules in the tournaments performed, so that we can provide more feasibility

information to our evolutionary algorithm so as to guide the search in a more effec-

tive way (for example, in g02 we were unable to converge to the best known solution).

Finally, we are also considering the possible use of alternative data structures for rep-

resenting the belief space (e.g., k-d trees [4]).



Acknowledgements

The authors thank the anonymous reviewers for their comments which greatly helped

them to improve the contents of this paper.

The first author acknowledges support from the Consejo Nacional de Ciencia y

Tecnologı́a (CONACyT) through project number 32999-A.

The second author acknowledges support from CONACyT through a scholarship to

pursue graduate studies at the Computer Science Section of the Electrical Engineering

Department of CINVESTAV-IPN.

References

[1] Jasbir S. Arora. Introduction to Optimum Design. McGraw-Hill, New York, 1989.

[2] Thomas Bäck, David Fogel, and Zbigniew Michalewicz, editors. Handbook of

Evolutionary Computation, volume 1. IOP Publishing Ltd. and Oxford University

Press, 1997.

[3] Ashok Dhondu Belegundu. A Study of Mathematical Programming Methods for

Structural Optimization. Department of civil and environmental engineering,

University of Iowa, Iowa, Iowa, 1982.

[4] Jon Louis Bentley and Jerome H. Friedman. Data Structures for Range Searching.

ACM Computing Surveys, 11(4):397–409, December 1979.

[5] Chan-Jin Chung. Knowledge-Based Approaches to Self-Adaptation in Cultural

Algorithms. PhD thesis, Wayne State University, Detroit, Michigan, 1997.



[6] Chan-Jin Chung and Robert G. Reynolds. A Testbed for Solving Optimization

Problems using Cultural Algorithms. In Lawrence J. Fogel, Peter J. Angeline, and

Thomas Bäck, editors, Evolutionary Programming V: Proceedings of the Fifth

Annual Conference on Evolutionary Programming, Cambridge, Massachusetts,

1996. MIT Press.

[7] Carlos A. Coello Coello. Theoretical and Numerical Constraint-Handling Tech-

niques used with Evolutionary Algorithms: A Survey of the State of the Art.

Computer Methods in Applied Mechanics and Engineering, 191(11–12):1245–

1287, January 2002.

[8] Ernest Davis. Constraint propagation with interval labels. Artificial Intelligence,

32:281–331, 1987.

[9] Kalyanmoy Deb. Optimal Design of a Welded Beam via Genetic Algorithms.

AIAA Journal, 29(11):2013–2015, November 1991.

[10] Kalyanmoy Deb. An Efficient Constraint Handling Method for Genetic

Algorithms. Computer Methods in Applied Mechanics and Engineering,

186(2/4):311–338, 2000.

[11] W. H. Durham. Co-evolution: Genes, Culture, and Human Diversity. Stanford

University Press, Stanford, California, 1994.

[12] Lawrence J. Fogel. Artificial Intelligence through Simulated Evolution. Forty

Years of Evolutionary Programming. John Wiley & Sons, Inc., New York, 1999.



[13] Benjamin Franklin and Marcel Bergerman. Cultural algorithms: Concepts and

experiments. In Proceedings of the 2000 Congress on Evolutionary Computation,

pages 1245–1251, Piscataway, New Jersey, 2000. IEEE Service Center.

[14] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[15] Eduardo Islas Pérez, Carlos A. Coello Coello, and Arturo Hernández Aguirre.

Extraction of Design Patterns from Evolutionary Algorithms using Case-Based

Reasoning. In Yong Liu, Kiyoshi Tanaka, Masaya Iwata, Tetsuya Higuchi, and

Moritoshi Yasunaga, editors, Evolvable Systems: From Biology to Hardware

(ICES’2001), pages 244–255. Springer-Verlag. Lecture Notes in Computer Sci-

ence No. 2210, October 2001.

[16] C.L. Jackins and S.L. Tanimoto. Octrees and Their Use in Representing Three-

Dimensional Objects. Computer Graphics and Image Processing, 14(3):249–270,

1980.

[17] Xidong Jin and Robert G. Reynolds. Using Knowledge-Based Evolutionary Com-

putation to Solve Nonlinear Constraint Optimization Problems: a Cultural Algo-

rithm Approach. In 1999 Congress on Evolutionary Computation, pages 1672–

1678, Washington, D.C., July 1999. IEEE Service Center.

[18] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homo-

morphous Mappings, and Constrained Parameter Optimization. Evolutionary

Computation, 7(1):19–44, 1999.



[19] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Norwell, Massachusetts, 1993.

[20] Sushil J. Louis and Judy Johnson. Solving Similar Problems using Genetic Algo-

rithms Case-Based Memory. In Thomas Bäck, editor, Proceedings of the Seventh

International Conference on Genetic Algorithms, pages 283–290, San Francisco,

California, 1997. Morgan Kaufmann Publishers.

[21] Carlos E. Mariano and Eduardo F. Morales. Distributed Reinforcement Learning

for Multiple Objective Optimization Problems. In 2000 Congress on Evolution-

ary Computation, volume 1, pages 188–195, Piscataway, New Jersey, July 2000.

IEEE Service Center.

[22] Zbigniew Michalewicz. A Survey of Constraint Handling Techniques in Evolu-

tionary Computation Methods. In J. R. McDonnell, R. G. Reynolds, and D. B.

Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Pro-

gramming, pages 135–155. The MIT Press, Cambridge, Massachusetts, 1995.

[23] Zbigniew Michalewicz and Cezary Z. Janikow. Handling Constraints in Genetic

Algorithms. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth

International Conference on Genetic Algorithms, pages 151–157, San Mateo,

California, 1991. Morgan Kaufmann Publishers.

[24] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for Con-

strained Parameter Optimization Problems. Evolutionary Computation, 4(1):1–

32, 1996.



[25] Tom Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis,

Computer Science Department, Stanford University, Stanford, California, 1978.

[26] K. M. Ragsdell and D. T. Phillips. Optimal Design of a Class of Welded Struc-

tures Using Geometric Programming. ASME Journal of Engineering for Indus-

tries, 98(3):1021–1025, 1976. Series B.

[27] Connie Loggia Ramsey and John J. Grefenstette. Case-Based Initialization of

Genetic Algorithms. In Stephanie Forrest, editor, Proceedings of the Fifth Inter-

national Conference on Genetic Algorithms, pages 84–91, San Mateo, California,

1993. Morgan Kauffman Publishers.

[28] Singiresu S. Rao. Engineering Optimization. John Wiley and Sons, third edition,

1996.

[29] A. C. Renfrew. Dynamic Modeling in Archaeology: What, When, and Where?

In S. E. van der Leeuw, editor, Dynamical Modeling and the Study of Change in

Archaelogy. Edinburgh University Press, Edinburgh, Scotland, 1994.

[30] Robert G. Reynolds. An Introduction to Cultural Algorithms. In A. V. Sebald and

L. J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary

Programming, pages 131–139. World Scientific, River Edge, New Jersey, 1994.

[31] Robert G. Reynolds. Cultural algorithms: Theory and applications. In David

Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization, pages

367–377. McGraw-Hill, London, UK, 1999.



[32] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Using cultural

algorithms for constraint handling in GENOCOP. In J. R. McDonnell, R. G.

Reynolds, and D. B. Fogel, editors, Proceedings of the Fourth Annual Conference

on Evolutionary Programming, pages 298–305. MIT Press, Cambridge, Mas-

sachusetts, 1995.

[33] Thomas P. Runarsson and Xin Yao. Stochastic Ranking for Constrained Evo-

lutionary Optimization. IEEE Transactions on Evolutionary Computation,

4(3):284–294, September 2000.

[34] James N. Siddall. Analytical Design-Making in Engineering Design. Prentice-

Hall, 1972.

[35] Zhiming Zhang and T. Warren Liao. Combining Case-Based Reasoning with

Genetic Algorithms. In Scott Brave and Annie S. Wu, editors, Late Breaking

Papers at the 1999 Genetic and Evolutionary Computation Conference, pages

305–310, Orlando, Florida, 1999.



A Test Problems

1. Example 1: g01:

Minimize:

f ���x � � 5
4

∑
i � 1

xi � 5
4

∑
i � 1

x2
i �

13

∑
i � 5

xi

subject to:

g1 ���x � � 2x1
�

2x2
�

x10
�

x11 � 10 � 0

g2 ���x � � 2x1
�

2x3
�

x10
�

x12 � 10 � 0

g3 ���x � � 2x2
�

2x3
�

x11
�

x12 � 10 � 0

g4 ���x � � � 8x1
�

x10 � 0

g5 ���x � � � 8x2
�

x11 � 0

g6 ���x � � � 8x3
�

x12 � 0

g7 ���x � � � 2x4 � x5
�

x10 � 0

g8 ���x � � � 2x6 � x7
�

x11 � 0

g9 ���x � � � 2x8 � x9
�

x12 � 0

where the bounds are 0 � xi � 1 (i � 1 � � � � � 9), 0 � xi � 100 (i � 10 � 11 � 12) and

0 � x13 � 1.

2. Example 2: g02:



Maximize:

f ���x � �

������
∑n

i � 1 cos4 � xi � � 2∏n
i � 1 cos2 � xi ��

∑n
i � 1 ix2

i

������

subject to:

g1 ���x � � 0 � 75 �

n

∏
i � 1

xi � 0

g2 ���x � �

n

∑
i � 1

xi � 7 � 5n � 0

where n � 20 and 0 � xi � 10 � i � 1 � � � � � n � .

3. Example 3: g04:

Minimize:

f ���x � � 5 � 3578547x2
3

�
0 � 8356891x1x5

�

37 � 293239x1 � 40792 � 141

subject to:

g1 ���x � � 85 � 334407
�

0 � 0056858x2x5
�



0 � 0006262x1x4 � 0 � 0022053x3x5 � 92 � 0

g2 ���x � � � 85 � 334407 � 0 � 0056858x2x5 �

0 � 0006262x1x4
�

0 � 0022053x3x5 � 0

g3 ���x � � 80 � 51249
�

0 � 0071317x2x5
�

0 � 0029955x1x2
�

0 � 0021813x2
3 � 110 � 0

g4 ���x � � � 80 � 51249 � 0 � 0071317x2x5 �

0 � 0029955x1x2 � 0 � 0021813x2
3

�
90 � 0

g5 ���x � � 9 � 300961
�

0 � 0047026x3x5
�

0 � 0012547x1x3
�

0 � 0019085x3x4 � 25 � 0

g6 ���x � � � 9 � 300961 � 0 � 0047026x3x5 �

0 � 0012547x1x3 � 0 � 0019085x3x4
�

20 � 0

where: 78 � x1 � 102, 33 � x2 � 45, 27 � xi � 45 � i � 3 � 4 � 5 � .

4. Example 4: g08

Minimize:

f ���x � �
sin3 � 2πx1 � sin � 2πx2 �

x3
1 � x1

�
x2 �

subject to:

g1 ���x � � x2
1 � x2

�
1 � 0

g2 ���x � � 1 � x1
� � x2 � 4 � 2 � 0



where 0 � x1 � 10, 0 � x2 � 10.

5. Example 5: g12

Maximize:

f ���x � � � 100 � � x1 � 5 � 2
� � x2 � 5 � 2

� � x3 � 5 � 2 ��� 100

subject to:

g ���x � � � x1 � p � 2 � � x2 � q � 2 �

� x3 � r � 2
� 0 � 0625 � 0

where: 0 � xi � 10 � i � 1 � 2 � 3 � , and p � q � r � 1 � 2 � � � � � 9. The feasible region of

the search space consists of 93 disjointed spheres. A point � x1 � x2 � x3 � is feasible

if and only if there exist p � q � r such that the above inequality holds.

6. Example 6: Design of a welded beam

A welded beam is designed for minimum cost subject to constraints on shear

stress (τ), bending stress in the beam (σ), buckling load on the bar (Pc), end de-

flection of the beam (δ), and side constraints [28]. There are four design variables

as shown in Figure 5 [28]: h (x1), l (x2), t (x3) and b (x4).

The problem can be stated as follows:



Minimize:

f ���x � � 1 � 10471x2
1x2

�
0 � 04811x3x4 � 14 � 0

�
x2 �

Subject to:

g1 ���x � � τ ���x � � τmax � 0

g2 ���x � � σ ���x � � σmax � 0

g3 ���x � � x1 � x4 � 0

g4 ���x � � 0 � 10471x2
1

�
0 � 04811x3x4 � 14 � 0

�
x2 � � 5 � 0 � 0

g5 ���x � � 0 � 125 � x1 � 0

g6 ���x � � δ ���x � � δmax � 0

g7 ���x � � P � Pc ���x � � 0

where

τ ���x � �

�
� τ � � 2 �

2τ � τ � � x2

2R
� � τ � � � 2

τ � �
P�

2x1x2
� τ � � �

MR
J � M � P � L � x2

2 �
R � � x2

2

4
��� x1

�
x3

2 � 2

J � 2 	 � 2x1x2 
 x2
2

12
��� x1

�
x3

2 � 2 ��
σ ���x � �

6PL

x4x2
3

� δ ���x � �
4PL3

Ex3
3x4



Pc ���x � �
4 � 013E

�
x2

3x6
4

36

L2 � 1 �
x3

2L

�
E

4G �
P � 6000 lb � L � 14 in � E � 30 � 106 psi � G � 12 � 106 psi

τmax � 13 � 600 psi � σmax � 30 � 000 psi � δmax � 0 � 25 in

7. Example 7: Minimization of the Weight of a Tension/Compression Spring

This problem was described by Arora [1] and Belegundu [3], and it consists of

minimizing the weight of a tension/compression spring (see Figure 6) subject

to constraints on minimum deflection, shear stress, surge frequency, limits on

outside diameter and on design variables. The design variables are the mean coil

diameter D, the wire diameter d and the number of active coils N.

Formally, the problem can be expressed as:

Minimize:

f ���x � � � N �
2 � Dd2

Subject to

g1 ���x � � 1 �
D3N

71785d4 � 0

g2 ���x � �
4D2

� dD
12566 � Dd3 � d4 �

� 1
5108d2 � 1 � 0

g3 ���x � � 1 �
140 � 45d

D2N
� 0

g4 ���x � �
D

�
d

1 � 5
� 1 � 0



Performance
Function

Beliefs

PopulationSelection

Variation

InfluenceAcceptance

Adjust

Figure 1: Spaces used by a cultural algorithm.



Feasible region

Infeasible cell

Semi-feasible cell

Feasible cell

Figure 2: The figure at the top illustrates the feasible region of a problem. The figure
at the bottom illustrates the representation of the constraints part of the belief space
for the search space of the same problem. In this example, the intervals stored in the
normative part must be [0.6, 2.6] for x1, and [3, 5] for x2.



1

2

x

x

Feasible region

Figure 3: Graphical representation of the division of the semi-feasible cells.



F G H I J K ML N O P RQ S T U

B C D E

A

2
x

1
x

2
x

1
x

2
x

1
x A

F G

H I

J K

L M

P Q

R S

T U

B C

D E
N O

Figure 4: Example of the partition of a 2D space using a quadtree of depth two.



b

P

l

L

t

h

t

Figure 5: The welded beam used for the sixth example.



P P

d

D

Figure 6: Tension/compression string used for the seventh example.



TF optimal Best Mean Worst Std Dev
g01 -15.0 -15.0000 -14.4999 -12.0000 1.0801
g02 0.803619 0.77351 0.66995 0.51762 0.09456
g04 -30665.539 -30665.5 -30662.5 -30636.2 9.3
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.000000
g12 1.0 1.000000 0.996375 0.969375 0.009650

Table 1: Results produced by our CAEP using 2n-trees.



TF optimal Best Mean Worst Std Dev
g01 -15.0 -14.7864 -14.7082 -14.6154 N.A.
g02 0.803619 0.79953 0.79671 0.79119 N.A.
g04 -30665.539 -30664.5 -30655.3 -30645.9 N.A.
g08 -0.095825 -0.095825 -0.089157 -0.029144 N.A.
g12 1.0 0.999999 0.999135 0.991950 N.A.

Table 2: Results produced by the homomorphous maps of Koziel and Michalewicz
[18]. N.A. = Not Available



Design Best solution found
Variables CAEP Deb [9] Siddall [34] Ragsdell [26]

x1 � h � 0.2057 0.2489 0.2444 0.2455
x2 � l � 3.4705 6.1730 6.2189 6.1960
x3 � t � 9.0366 8.1789 8.2915 8.2730
x4 � b � 0.2057 0.2533 0.2444 0.2455
g1 ���x � -0.000472 -5758.603777 -5743.502027 -5743.826517
g2 ���x � -0.001561 -255.576901 -4.015209 -4.715097
g3 ���x � 0.000000 -0.004400 0.000000 0.000000
g4 ���x � -3.432984 -2.982866 -3.022561 -3.020289
g5 ���x � -0.080730 -0.123900 -0.119400 -0.120500
g6 ���x � -0.235540 -0.234160 -0.234243 -0.234208
g7 ���x � -0.000779 -4465.270928 -3490.469418 -3604.275002
f ���x � 1 � 7248523 2 � 4331160 2 � 3815434 2 � 3859373

Table 3: Comparison of the results for the sixth example (optimal design of a welded
beam).



Design Best solution found
Variables CAEP Arora [1] Belegundu [3]

x1 � d � 0.050000 0.053396 0.050000
x2 � D � 0.317395 0.399180 0.315900
x3 � N � 14.031795 9.185400 14.250000
g1 ���x � 0.000000 0.000019 -0.000014
g2 ���x � -0.000075 -0.000018 -0.003782
g3 ���x � -3.967960 -4.123832 -3.938302
g4 ���x � -0.755070 -0.698283 -0.756067
f ���x � 0 � 0127210 0 � 0127303 0 � 0128334

Table 4: Comparison of results for the seventh example (minimization of the weight of
a tension/compression spring).


