

Comparison of Metamodeling Techniques in Evolutionary
Algorithms

Alan Dı́az-Manŕıquez · Gregorio Toscano · Carlos A. Coello Coello

Abstract Although researchers have successfully in-

corporated metamodels in evolutionary algorithms to

solve computational-expensive optimization problems,

they have scarcely performed comparisons among dif-

ferent metamodeling techniques. This paper presents an

in-depth comparison study over four of the most popu-

lar metamodeling techniques: polynomial response sur-

face, Kriging, radial basis function neural network, and

support vector regression. We adopted six well-known

scalable test functions and performed experiments in

order to evaluate their suitability to be coupled with

an evolutionary algorithm, and the appropriateness to

surrogate problems by regions (instead of surrogating

the entire problem).

Notwithstanding that most researchers have under-

taken accuracy as the main measure to discern among

metamodels, this paper shows that the precision, mea-

sured with the ranking preservation indicator, gives a

more valuable information for selecting purposes.

Additionally, nonetheless each model has its own pe-

culiarities, our results concur that RBF fulfills most of

A. Dı́az-Manŕıquez
Facultad de Ingenieŕıa y Ciencias.
Universidad Autónoma de Tamaulipas.
Centro Universitario Victoria
Cd. Victoria, Tamaulipas 87000, MÉXICO
E-mail: amanriquez@uat.edu.mx

G. Toscano
CINVESTAV-IPN, Unidad Tamaulipas.
Parque Cient́ıfico y Tecnológico TECNOTAM
Km. 5.5 carretera Cd. Victoria-Soto La Marina.
Cd. Victoria, Tamaulipas 87130, MÉXICO
E-mail: gtoscano@tamps.cinvestav.mx

C. A. Coello Coello
CINVESTAV-IPN, Departamento de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07360, MÉXICO
E-mail: ccoello@cs.cinvestav.mx

our interests. Furthermore, the readers can also benefit

from this study if their problem at hand has certain

characteristics such as a low budget of computational

time or a low-dimension problem, since they can assess

specific results of our experimentation.

Keywords Surrogate models · Evolutionary algo-

rithms · Local models

1 Introduction

Evolutionary algorithms (EAs) gather a set of algo-

rithms, inspired by neo-Darwinism, that have been suc-

cessfully applied to an important variety of difficult op-

timization problems.

In many science and engineering problems, researchers

have used computer simulations to avoid expensive phys-

ical experiments with the aim of improving the quality

and performance of engineered products and devices,

but using a fraction of the needed effort. Analogously,

researchers have proposed a number of EAs that make

use of metamodels1 in order to solve computational-

expensive optimization problems (Nain and Deb, 2002;

Gaspar-Cunha and Vieira, 2005; Voutchkov and Keane,

2006; Isaacs et al., 2007).

Although distinct metamodeling techniques can pro-

duce different solutions, little emphasis has been placed

on exploring their behavior when coupled to EAs. Even

when we understand the scarcity of comparative works,

since such an exploration would require gaining deep

knowledge on each approach, it is important to note

that some approaches are bound to specific domains.

Therefore, it is necessary to carry out comparative stud-

ies among metamodeling techniques before selecting one.

1 We will use the terms approximation models, surrogate
models, and metamodels interchangeably in this paper.

2 Alan Dı́az-Manŕıquez et al.

In this regard, Carpenter and Barthelemy (1992)

adopted several test problems with up to 15 decision

variables to compare the accuracy of polynomial re-

gression (PRS) and artificial neural networks (ANN)

in order to be used as metamodeling approaches. In

their study, although PRS required a lower construction

time, both approaches showed a similar performance

according to their achieved number of function eval-

uations and their required parameters. Therefore, they

stated that the selection would depend on the user pref-

erences.

Shyy et al. (2001) compared the accuracy of a PRS,

a back propagation ANN, and a radial basis function

neural network (RBF) approaches, concluding that PRS

and RBF performed similarly in several problems with

up to 11 variables.

Rasheed et al. (2002) adopted several test problems

with up to 16 decision variables to compared the behav-

ior of PRS, RBF, and Quickprop ANN when they were

coupled to a genetic algorithm (GA). Such a compari-

son showed that PRS had the fastest time for building

and executing the metamodel. Additionally, it did not

require any parameter to be fine-tuned. For these rea-

sons, the authors agreed in favor of PRS.

Willmes et al. (2003) compared the behavior of ANN

and Kriging (KRG) methods when they are coupled

to an evolution strategy (ES) with covariance matrix

adaptation (CMA) (Hansen and Ostermeier, 2001) in

three scalable test problems with up to 50 decision vari-

ables. However, there is not a clear conclusion about

which metamodel performed best.

Simpson et al. (1998) compared the performance

of KRG and PRS with respect to the design of an

aerospike nozzle with three decision variables. Accord-

ing to their results, both approaches were comparable

with respect to their accuracy.

Jin et al. (2000) compared the accuracy, robustness,

efficiency, transparency, and simplicity of PRS, multi-

variate adaptive splines, RBF, and KRG, using several

test problems with up to 16 decision variables. The

conclusion of their comparison was that PRS behaved

the best in low-dimension problems, while the RBF ap-

proach was the best when dealing with high-dimension

problems. It is worth noting that although this paper

compares several metamodeling approaches, they were

not incorporated into an EA.

Although the above proposals selected the best meta-

modeling technique from a comparison methodology,

some of them were evaluated based only on a small

group of metamodeling techniques, adopted a reduced

set of test problems, or took into account only a single

criterion (most works selected accuracy as their main

criterion).

Furthermore, they usually omit measuring two im-

portant factors: the performance with the increase in

the dimensionality and the suitability of the metamodel

to be combined with population-based metaheuristics.

Moreover, most of the existing algorithms used a sin-

gle metamodel to approximate the whole search space

of the problem, even though results from certain re-

searchers (Isaacs et al., 2007; Georgopoulou and Gian-

nakoglou, 2009; Pilat and Neruda, 2013) suggest that

using metamodels to approximate specific regions of the

search space produces an improvement in the accuracy

of the approximation.

In (Dı́az-Manŕıquez et al., 2011), we fine-tuned the

parameters of four metamodeling techniques using ac-

curacy as performance measure. Then, we evaluated the

metamodels’ accuracy, robustness, efficiency, scalabil-

ity, and suitability when they were combined with an

EA. From the results, we found that accuracy and suit-

ability were in conflict, in the sense that not always

the most accurate metamodel produced the best results

when it was coupled to a EA. On the other hand, we

found that our ranking preservation indicator, which

measures the percentage of solutions in the metamodel

that preserves the hierarchy according to the original

objective function, could be a better measure to evalu-

ate the performance of a metamodel.

This paper compares the results achieved by the

metamodels fine-tuned with the accuracy indicator (pre-

sented in (Dı́az-Manŕıquez et al., 2011)) with respect to

the results produced by ranking preservation fine-tuned

approaches. Such a new parametrization will endorse

the selection of the metamodeling technique. Then, we

will explore its capabilities to surrogate the entire prob-

lem (also known as the global surrogate model, or GM

for short) with respect to surrogating the problems by

regions (also known as the local surrogate model or LM

for short). It is worth noting that unlike the results

presented in Dı́az-Manŕıquez et al. (2013), the baseline

approach used to analyze the use of GM and LM was

fine-tuned trough the ranking preservation indicator.

The remainder of this paper is organized as follows.

Section 2 gives a brief overview of the metamodeling

techniques commonly used in the literature. Section 3

presents our experimental setting. We divided our ex-

perimentation into four parts. Section 4 introduces our

first experiment where besides fine-tuning the parame-

ters of the adopted metamodeling approaches with re-

spect to the accuracy performance measure, it com-

pares their obtained accuracy, robustness, and scala-

bility. Our second experiment, which is shown in Sec-

tion 5, measures the suitability of each technique to be

incorporated into an EA. Section 6 introduces our third

experiment. It presents the use of ranking preservation

Comparison of Metamodeling Techniques in Evolutionary Algorithms 3

indicator to fine-tuning the parameters of the adopted

metamodeling approaches. We compare the results ob-

tained in this section with respect to the obtained with

the accuracy fine-tuned methods. Our fourth experi-

ment, presented in Section 7, measures the efficiency

of the compared approaches. Then, Section 8 presents

three different approaches for using LM, analyzes their

parameters, and compares their results with respect to

the use of GM. Finally, Section 9 summarizes our main

conclusions and outlines future work.

2 Background

A metamodel is an approximation of a simulation used

to construct simpler and lower computational cost mod-

els; if the original simulation is represented as f(x), and

the metamodel is represented as f ′(x), then, f ′(x) =

f(x) + e(x), where e(x) is the approximated error. The

internal behavior of f(x) does not need to be known

(or understood); only the input/output behavior is im-

portant. A model is constructed based on the response

of the simulator to a limited number of intelligently

chosen data points. Metamodels generate simpler rep-

resentations that capture relations between the relevant

information of the input and output variables and not

in the underlying process.

Among the techniques to create metamodels, we

have rational functions Press et al. (2007), radial ba-

sis functions Hardy (1971), Kriging models Sacks et al.

(1989), support vector machines Vapnik (1998), polyno-

mial regression Myers and Anderson-Cook (2009), and

splines Schumaker (2007). Below, we review the most

common approaches for constructing approximate mod-

els:

2.1 Polynomial approximation models

The response surface methodology (RSM) Myers and

Anderson-Cook (2009) employs statistical techniques

for regression and analysis of variance in order to obtain

a minimum variance of the responses.

The simplicity of polynomials makes them a good

approach to approximate most polynomial response sur-

faces (PRS).

A polynomial in the coded inputs x1,x2, ...,xn (n

data in the training set) is a function which is a linear

aggregate (or combination) of powers and products of

the input.

The polynomial model is usually written in matrix

notation, ŷ(p) = βTxp, where β is the vector of co-

efficients to be estimated, and xp is the vector corre-

sponding to the form of the x
(p)
1 and x

(p)
2 terms in the

polynomial model.

To estimate the unknown coefficients of the polyno-

mial model, both the least-squares method (LSM) and

the gradient method can be used. However, both ap-

proaches require the number of samples to be equal to

the number of coefficients.

PRS can also be built using stepwise regression Draper

and Smith (1981). The basic procedure for stepwise

regression involve (1) identifying an initial model, (2)

iteratively “stepping”, that is, repeatedly altering the

model at the previous step by adding or removing a

predictor variable in accordance with the “stepping cri-

terion”, and (3) terminating the search when a specified

maximum number of steps has been reached.

In practice, we can often proceed by supposing that,

a polynomial of first or second degree might represent

adequately the real function over limited regions of the

design space. Although higher-order polynomials can be

used, instabilities may arise Barton (1992), or it can be

highly difficult to take enough sample data to estimate

the coefficients of the polynomial equation (particularly

in high dimensions). This work considers second degree

PRS models.

2.2 Kriging-DACE

Kriging (KRG) Matheron (1963) is a spatial predic-

tion method that belongs to the group of geo-statistical

methods. It is based on minimizing the mean squared

error, and it describes the spatial and temporal corre-

lation among the values of an attribute.

The design and analysis of computer experiments

(DACE) is a parametric regression model developed by

Sack et al. Sacks et al. (1989), which is an extension of

the KRG approach in order to be able to manage three

or more dimensions.

The DACE model can be expressed as a combina-

tion of a known function a(x) (e.g., polynomial func-

tion, trigonometric series) and a Gaussian random pro-

cess b(x) that is assumed to have mean zero and covari-

ance:

E(b(x(i)), b(x(j))) = Cov(b(x(i)), b(x(j))) =

σ2R(θ,x(i),x(j)) (1)

where σ2 is the process variance of the response and

R(θ,x(i),x(j)) is the correlation function with parame-

ters θ. Among the different types of correlation models

we have: Gaussian, cubic, exponential, linear, spherical,

and splines.

4 Alan Dı́az-Manŕıquez et al.

In the downside of KRG, we have that besides its

model construction can be very time-consuming, the

estimation of the parameters requires to solve an n-

dimensional optimization problem (where n is the num-

ber of variables in the design space), which can also be

computationally expensive.

2.3 Radial basis function neural network

The radial basis function method (RBF) was proposed

by Hardy Hardy (1971) in 1971. An RBF is a real-

value function whose value depends only on the dis-

tance from the input to the center of the neuron, so

that φ(x) = φ(||x||); or alternatively on the distance

from some other point c, called a center. Any function

φ that satisfies the property φ(x) = φ(||x||) is a radial

function. The norm is usually the Euclidean distance,

although other distance functions can be used.

Typical choices for the RBF include linear, cubic,

multi-quadratic, or Gaussian functions.

An RBF commonly has three layers: an input layer

with the identity function, a hidden layer with non-

linear RBF activation functions, and a linear output

layer. The output, ϕ : Rn → R, of the network is thus

ϕ(x) =

N∑
i=1

wiφ(||x− ci||).

In order to adapt the RBF network for a partic-

ular task, three parameters need to be fine tuned: the

weights wi, the center vector ci, and the RBF width pa-

rameters βi. In this work, the center vector was tuned

according to the centers of a clustering technique (there

are as many clusters as RBFs). The width parameter

was tuned averaging the distance from its own center to

its two closest RBFs. Finally, in this paper we adopted

the Gaussian function to serve as RBF.

2.4 Support vector regression

Support vector machines (SVMs) draw inspiration from

statistical learning theory Vapnik (1998). An SVM is a

set of related supervised learning methods which ana-

lyzes data and recognizes patterns. An SVM constructs

a hyperplane or a set of hyperplanes in a high-dimensional

space that can be used for classification, regression, or

other tasks.

An SVM maps its inputs to a larger space; however,

the cross products may be computed easily in terms of

the variables in the original space making the compu-

tational load reasonable. The cross products in larger

spaces are defined in terms of a kernel function K(x, y),

which can be selected to suit the problem.

Through the introduction of an alternative loss func-

tion, an SVM can also be applied to regression prob-

lems2. The loss function must be modified to include a

distance measure. In this work, we adopted the Gaus-

sian RBF as kernel function. Moreover, C, γ and ε were

fine-tuned using a methodology explained later.

3 Experimental settings

Evaluating the performance of a metamodeling tech-

nique is not an easy task. Most approaches only con-

sider the accuracy in performing the selection (Carpen-

ter and Barthelemy, 1992; Shyy et al., 2001; Simpson

et al., 1998; Giunta and Watson, 1998). However, other

approaches suggest the use of multiple criteria (e.g., the

robustness, the efficiency, or the simplicity) for assess-

ing the quality of a metamodel (Jin et al., 2000). The

success of a technique not only depends exclusively on

the accuracy, but also on several factors, such as the

parameters of the metamodeling technique, the dimen-

sionality of the problem, the data sampling technique,

etc.

To evaluate the performance of the compared ap-

proaches, six scalable unconstrained global optimiza-

tion test functions were taken from the specialized lit-

erature (De Jong, 1975; Rastrigin, 1974; Bäck, 1996;

Schwefel, 1981). The test functions were selected ac-

cording to both, the shape of the search space and the

number of local minima, i.e., they contain character-

istics that are representative of what can be consid-

ered “difficult” in global optimization. A summary of

such features is given in Table 1. Since all the adopted

problems can be scaled in the number of decision vari-

ables, we evaluate them using the following problem

sizes: v = {2, 4, 6, 8, 10, 15, 20, 25, 50}. If an instance has

more than 15 variables (v > 15), we list it as a high-

dimension instance. Contrariwise, if it has less than 15

variables, we named it as low-dimension (v ≤ 15).

We gathered our research from four main exper-

iments. The first experiment besides fine-tuning the

parameters of the adopted metamodeling approaches,

compares their accuracy, robustness, and scalability.

Our second experiment measures the efficiency of the

compared metamodeling approaches, while our third

experiment measures their suitability to be incorpo-

rated into an EA. Finally, our fourth experiment is in-

tended to clarify the advantages and disadvantages of

local metamodels with respect to global metamodels.

2 The SVM for a regression problem is known as a support
vector regression (SVR).

Comparison of Metamodeling Techniques in Evolutionary Algorithms 5

Problem Modality # of local minima Global minimum

Step unimodal no local minima excepting the
global one

x∗ = (0, . . . , 0), f(x∗) = 0

Sphere unimodal no local minima excepting the
global one

x∗ = (0, . . . , 0), f(x∗) = 0

Rosenbrock unimodal for n ≤
3 otherwise multi-
modal

several local minima for n > 3 x∗ = (1, . . . , 1), f(x∗) = 0

Ackley multimodal several local minima x∗ = (0, . . . , 0), f(x∗) = 0
Rastrigin multimodal large number of local minima x∗ = (0, . . . , 0), f(x∗) = 0
Schwefel multimodal several local minima x∗ = (420.96, . . . , 420.96),

f(x∗) = 0

Table 1 Important features of the adopted test problems.

4 Experiment 1: fine-tuning, accuracy,

robustness, and scalability

We performed a full factorial design of the most widely

used parameters in order to avoid affecting the tech-

niques with a poor parameter tuning. Therefore, we

discretized the parameters used by each technique as

follows:

– PRS: Degree of the polynomial=2, technique for

constructing the regression={traditional, stepwise}.
– KRG: correlation function = {Gaussian, cubic, ex-

ponential, linear, spherical, splines}.
– RBF: Neurons in the hidden layer={3-100} with a

step size of 1, Radial basis function=Gaussian, cen-

ter vector were set through the k−means algorithm,

the widths of each RBF were calculated according

to the average distance between the two closest cen-

ters.

– SVM: C ={2E−5−2E15}, γ ={0.1−2}, ε ={2E−10−
2E5} with a step size of 0.1, and a Gaussian RBF

kernel function.

We executed the different variants 31 times on all

problem sizes of each test problem according to the per-

formed full factorial design, and processed the results

with respect to the achieved accuracy. The accuracy

was measured according to the coefficient of determi-

nation (R2) performance measure (Jin et al., 2000).

R2 = 1−
∑NV

i=1 (yi − ŷi)2∑NV
i=1 (yi − ȳi)2

= 1− MSE

Variance
(2)

where NV is the size of the validation dataset, ŷi is

the predicted value for the input i, and yi is the real

value; ȳ is the mean of the real values. The mean square

error (MSE) measures the difference between the esti-

mator and the real value. In this metric, larger values of

R2 are preferred, since this represents a more accurate

metamodel.

Then, we selected two different set of parameters:

(1) the parameters that produced the best average ac-

curacy considering all problems and instances, and (2)

the parameters that behaved best for each problem and

on each instance size. We called them best overall set-

tings (BOS) and best local settings (BLS), respectively.

Since BLS involves a different setting for each approach

on each test function, we did not show the obtained re-

sults because of their length. However, BOS parameters

are shown below:

– PRS: Degree of the polynomial=2, technique for

construct the regression={stepwise}
– KRG: Correlation function = {Exponential}
– RBF: Number of neurons in the hidden layer={6}
– SVR: C ={2E10.5}, γ ={0.2}, ε ={2E−2.5}

Then, we measured the accuracy, robustness, and

scalability of the compared approaches according to the

following methodology.

1. We create a training dataset using Latin hypercubes3

(McKay et al., 1979) with 100 points (a size of 100

was selected since most EAs typically handle this

population size).

2. We train each technique (PRS, KRG, RBF, and

SVR) with the training dataset created in the pre-

vious step.

3. We use Latin hypercubes to create a validation dataset

with the double of query points of the training dataset

(200).

4. We predict the validation dataset with each meta-

model.

5. We compute the performance measure for the fol-

lowing adopted criteria:

– Accuracy: For accuracy, we refer to the ca-

pability of the technique to have a prediction

3 Statistical method of stratified sampling that can be ap-
plied to multiple variables

6 Alan Dı́az-Manŕıquez et al.

close to the real objective function. The previ-

ously defined R2 performance measure was used

to achieve such a goal.

– Robustness: This refers to the capability of a

technique to achieve good accuracy on adopted

test problems. We measured the robustness of a

technique by averaging its obtained accuracy in

the adopted test cases.

– Scalability: The scalability refers to achieving

good accuracy even when the number of vari-

ables increases.

4.1 Analysis of results

We used boxplots graphics to present our results, since

they simultaneously show different descriptive measures

that facilitate the comprehension of many competing

approaches. In these graphics, the median (second quar-

tile) of the plotted data is shown with a straight line

inside the box. The average accuracy of the technique is

shown with a diamond. The beginning and end of the

box indicate the first and third quartile, respectively.

Therefore, we prefer smaller boxes, because they repre-

sent a more robust behavior.

Since multimodal problems usually induce erratic

behavior in probabilistic-based techniques, we divided

our test functions according their modality. Figure 1

displays the obtained results according the application

of the R2-metric to the solutions produced by each

metamodeling technique using the two adopted set of

parameters BLS and BOS.

Figures 1(a) and 1(b) show the average results con-

sidering unimodal and multimodal test functions, re-

spectively. Finally, the average results gathering all the

adopted test functions are shown in Figure 1(c). These

results indicate that BOS and BLS induced a similar

behavior in the adopted metamodeling approaches re-

gardless of whether they are unimodal or multimodal.

Therefore, we will use BOS settings in our remaining

experiments.

Also, when we analyzed the size and position of

the box of each boxplot, we found that RBF behaved

slightly better than KRG, and both outperform SVR.

In these graphics, we also found that PRS produced

the worst results according to R2 and our robustness

performance measures.

To corroborate our previous results, we separately

averaged the results obtained by the studied algorithms

on each test function, and plotted them in Figure 2.

This experiment confirms the lack of accuracy of PRS

even in low-dimension problems. PRS was capable of

creating a surrogate model for step and ackley func-

tions for up to eight variables (shown in Figures 2(a)

−2

−1.5

−1

−0.5

0

0.5

1

BLS BOS BLS BOS BLS BOS BLS BOS
Metamodeling technique

R
2

PRS KRG RBF SVR

(a) Unimodal problems.

−2

−1.5

−1

−0.5

0

0.5

1

BLS BOS BLS BOS BLS BOS BLS BOS
Metamodeling technique

R
2

PRS KRG RBF SVR

(b) Multimodal problems.

−2

−1.5

−1

−0.5

0

0.5

1

BLS BOS BLS BOS BLS BOS BLS BOS
Metamodeling technique

R
2

PRS KRG RBF SVR

(c) All the problems together.

Fig. 1 Boxplots graphics obtained from the application of
R2 metric to the results produced by PRS, KRG, RBF, and
SVR. Figures 1(a) and 1(b) show unimodal and multimodal,
while Figure 1(c) gathers the results for all the adopted test
functions.

and 2(d), respectively), but it had the poorest accuracy

among the tested approaches.

Although PRS improved its own performance in sphere,

rosenbrock, and rastrigin when using two, four, eight,

and ten variables (see Figures 2(b), 2(c), and 2(e), re-

spectively), it has the poorest results among the com-

pared metamodels. PRS behaved reasonably well only

for schwefel, which is shown in Figure 2(f) (where it

could approximate the problem in all the sizes tested,

and showed good performance even for the 50 variables

instance).

The SVR approach had an inconsistent behavior

in step and ackley when using two, four, six, eight,

and ten variables (shown in Figures 2(a) and 2(d)).

Comparison of Metamodeling Techniques in Evolutionary Algorithms 7

However, it performed considerably better than PRS,

and it improved its behavior for the rest of the test

functions. Although, KRG had a similar behavior to

SVR for the sphere (see Figure 2(b)), rastrigin (see

Figure 2(e)), and schwefel functions (see Figure 2(f)),

it outperformed SVR in low-dimension instances when

optimizing the rosenbrock test function (shown in Fig-

ure 2(c)). KRG had an impressive performance in low-

dimension instances on all the tested problems, since it

outperformed the other techniques. However, its perfor-

mance decreased after 15 variables in all test functions

as we can see in Figure 2.

Contrary to the KRG behavior, RBF had an aver-

age performance with the initial sizes of all problems,

as is easily seen in Figure 2, but it was capable of main-

taining its performance according to the R2-metric in

high-dimension problems.

Figure 3 shows the performance of the compared

techniques on the adopted functions. KRG was the tech-

nique that showed the best performance when working

with low-dimension instances (v < 15), while RBF had

the best performance with high-dimension instances.

The results obtained by SVR show that the behavior of

this technique was just behind KRG. Finally, PRS was

the technique with the worst overall performance.

From the above results, we were able to identify an

instance size (with approximately ten variables) where

the performances of KRG and RBF are intersected.

This intersection can be used as a reference point to

choose the approach to be incorporated into an EA ac-

cording to the dimensionality of the problem at hand

(KRG in low-dimension problems, and RBF in high-

dimension problems).

According to the discussed results, RBF is the most

efficient approach among the reviewed ones. However,

when we search for the most accurate approach, then

we can say that KRG is the best approach to be used

in low-dimension problems (followed by SVR). On the

other hand, RBF is the best approach in high-dimension

problems (followed by SVR). However, if we want to se-

lect a single approach for bothlow- and high-dimension

problems, we suggest using RBF, since our results indi-

cate that this approach was the less affected with the in-

crease in the dimensionality. Therefore, we concur that

this approach is also the most scalable and robust ap-

proach.

5 Experiment 2: suitability

The suitability refers to the ability of an EA to optimize

the fitness landscape produced by a specific surrogate

model.

We propose two approaches in order to measure this

criterion. For the first approach, we used a differential

evolution (DE) algorithm (Storn and Price, 1997) in or-

der to optimize the created metamodel at hand. Then,

we computed the distance from the best solution (ob-

tained by the DE algorithm) to the optimum of the orig-

inal test function. The DE used is a DE/rand/1/bin,

with a population size of 100, a CR = 0.8, a F = 0.5

and the algorithm was executed for 100 iterations.

Since the optimum solution on each test function

is known, we can say that a metamodel approach A

induces better behavior than another approach B into

an EA; this is if the best solution found when optimizing

metamodel A is closer to the optimum than an obtained

solution when it is optimized with approach B.

The second approach was motivated by the manner

with which EAs select solutions. They usually compare

two solutions in order to select the one with the best

fitness value. Therefore, it would be interesting to com-

plete the following steps: (1) build a metamodel, (2)

produce a number of distributed points with it, and (3)

compare each pair of the generated points using both

the surrogate function and the original function. We

can say that a metamodel approach is more suitable to

be used with an EA if it best preserves the comparative

relation with respect to the original function. In order

to quantify this assumption, we propose measuring the

ranking preservation (RP) indicator.

RP refers to the ability of a metamodel to main-

tain the same rank of the query points with respect to

the original function. A metamodel f ′(x) has a perfect

ranking preservation under the original function f(x)

if:

∀x, y ∈ F : (f(x) < f(y)⇒ f ′(x) < f ′(y))

∨ (f(x) > f(y)→ f ′(x) > f ′(y)) (3)

∨ (f(x) = f(y)⇒ f ′(x) = f ′(y))

where F is the feasible region of the problem. Therefore,

the performance measure can be defined as follows:

RP =

ND∑
i=1

ND∑
j=i+1

h(i, j)

 /

(
ND

2

)
(4)

where h(i, j):

h(i, j) =

if((f(i) < f(j) ∧ f ′(i) < f ′(j))

1 ∨(f(i) > f(j) ∧ f ′(i) > f ′(j))

∨(f(i) = f(j) ∧ f ′(i) = f ′(j)))

0 otherwise

(5)

8 Alan Dı́az-Manŕıquez et al.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(a) Step test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG

PRS

SVR

RBF

(b) Sphere test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(d) Ackley test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG

PRS

SVR

RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

(f) Schwefel test function.

Fig. 2 Average values of the application of the R2 metric to the produced results by PRS, KRG, RBF, and SVR approaches
on each problem. The x-axis shows the number of variables, while the y-axis shows the R2 metric value obtained by each
metamodeling technique. This figure intends to clarify the accuracy robustness and scalability of the adopted approaches.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
2

KRG PRS SVR RBF

Fig. 3 Average values of the application of the R2 metric
to the produced results by PRS, KRG, RBF, and SVR ap-
proaches on all problems. The x-axis shows the number of
variables, while the y-axis shows the R2 metric value obtained
by each metamodeling technique. This figure intends to clar-
ify the accuracy robustness and scalability of the adopted
approaches.

where N refers to the number of solutions to validate

the model. The adopted methodology to measure the

RP consisted of training each metamodel with 100 solu-

tions, and then measuring the RP using 1000 solutions.

The procedure was applied to the six test problems pre-

viously introduced with their full range of instance sizes

(v = {2, 4, 6, 8, 10, 15, 20, 25, 50}).
For this performance measure, larger RP values are

preferred. Since this value is normalized between zero

and one, we will prefer the solutions closer to one.

5.1 Analysis of results

Figure 4 shows the results obtained by our first proposal

to measure the suitability. It indicates that although

Comparison of Metamodeling Techniques in Evolutionary Algorithms 9

KRG and SVR approaches were competitive, RBF was

the approach that induced the best performance for the

adopted EA. However, since in general, SVR, KRG,

and RBF showed a similar performance in most of the

problems, this experiment suggests that an EA (in this

case a DE) can produce acceptable results even with a

metamodel that is not very accurate.

Figure 5 displays a boxplot graphic of the general

behavior of the approaches with respect to RP on all

test problems. From this figure, we can see that the

RBF produced the best behaviour according to RP

since its boxplot is closest to one, and also presents the

smallest deviation. Therefore, we conclude that RBF

was the approach that induced the best RP. Figure 6

shows the behavior of RP with respect to the number

of variables of the adopted problems while Figure 7 il-

lustrates the results of the RP performance measure in

all the adopted problems by instance size. From both

figures, we observed that RBF was very consistent in

all problem sizes. Moreover, in most of the problems,

the performance of PRS up to 20 variables was better

than the performance of SVR. Finally, KRG presented

the worst performance with respect to the increase in

the dimensionality.

It is worth noting that the higher the RP value,

the lower the probability to add a false optimum to the

problem. This feature is a very important characteristic

when optimizing a metamodel.

With this analysis of results, we can state that even

if a metamodel had a poor performance according to R2

metric but a good performance according to our RP

metric, one could expect good behavior in the meta-

heuristic (in this case we used a DE). However, if the

metamodel had good performance on R2 metric but a

bad RP performance, then we do not have elements to

predict its behavior in the optimization process. RBF

was the metamodeling approach that behaved best ac-

cording to this experiment.

6 Experiment 3: suitability with RP -based

fine-tuning

Although the results obtained in our second experiment

(shown in Section 5) indicate that our adopted accuracy

measure does not reflect properly the behavior of the

adopted metamodels when we they are incorporated

within an EA, we found that the RP performance mea-

sure does. Therefore, we decided to perform the fine-

tuning process all over again, but using RP as perfor-

mance measure.

The fine-tuning process was undertaken on the same

parameters of our first experiment (shown in Section 4).

After analyzing the results, we selected two different set

of parameters: (1) the parameters that produced the

best average accuracy considering all problems and in-

stances (the best overall settings, or BOS-RP for short),

and (2) the parameters that behaved best for each prob-

lem and on each instance size (best local settings or

BLS-RP for short), respectively. However, since the re-

sults of BOS-RP and BLS-RP are similar, we decided to

adopt BOS-RP for simplicity. Below, we present these

parameters:

– PRS: Degree of the polynomial=2, technique for

construct the regression={stepwise}
– KRG: Correlation function = {Exponential}
– RBF: Number of neurons in the hidden layer={15}
– SVR: C ={2E12}, γ ={0.6}, ε ={2E−5.0}

The new parameter-tuning produced a different set

parameters for RBF and SVR. Therefore, we will focus

exclusively on these two approaches in the remaining of

this experiment.

Then, we optimized the created metamodel at hand

in a DE algorithm and computed the distance from the

best solution to the optimum of the original test func-

tion in order to identify the metamodel that produces

the best behavior in our implemented EA (similar to

the first approach of our second experiment).

6.1 Analysis of results

Similarly to our experiment 1 (shown in Section 4), we

divided our test functions according their modality. Fig-

ure 8 displays the obtained results according the appli-

cation of the RP -metric to the solutions produced by

each metamodeling technique using the two adopted set

of parameters BLS and BOS.

Figures 8(a) and 8(b) show the average results con-

sidering unimodal and multimodal test functions, re-

spectively. Finally, the average results gathering all the

adopted test functions are shown in Figure 8(c). Be-

sides these results indicate that BOS-RP and BLS-RP

induced a similar behavior in the adopted metamodel-

ing approaches regardless of whether they are unimodal

or multimodal, when we compare these results (see Fig-

ure 8(c)) with respect to the obtained in the second ap-

proach of our second experiment (shown in Figure 7, we

can clearly realize that the new results outperform the

previous ones. From these results we can observe that

RBF improved significantly as it consistency toped the

best result of our adopted performance measure. Addi-

tionally, we can observed that 75% of the solutions that

SVR produced on this new experiment outperformed

the median of the results of our previous one.

10 Alan Dı́az-Manŕıquez et al.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(a) Step test function.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(b) Sphere test function.

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(d) Ackley test function.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Number of variables

||
x

* −
x
||

KRG

PRS

SVR

RBF

(f) Schwefel test function.

Fig. 4 Distance from the best solution found by a tuple (metamodel, DE) to the optimum of the problem at hand. The x-axis
shows the number of variables, while the y-axis shows the distance of the best solution found by each model with respect to
the optimum.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PRS KRG RBF SVR
Metamodeling technique

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

Fig. 5 Boxplots summarizing the ranking preservation of a
metamodel with respect to the original test function of the
problem at hand. Higher values of this y-axis are preferred.

Figure 9 gathers the results produced by the ex-

ecution of the DE on each metamodel. Since we are

interested in evaluating the results produced by SVR

and RBF (the approaches with different parameters),

each graphic only show both results, as well as their

counterparts of our previous experiment. In order to

differentiate the results, we added ‘RP’ postfix to the

labels of the new results.

Figure 9(e) shows the comparison of results of when

the approaches solved Rastrigin test function. From this

figure, we realized that SVR worsen its performance

when it solved instances up to 25 variables. However, it

produced similar results with 50 variables. On the other

hand, the new parametrization of RBF slightly outper-

formed the results obtained with the previous one.

Figure 9(d) presents the results obtained in Ackley

test function. It is easy to identify on this figure that

RBF improved its performance with the new tuning,

Comparison of Metamodeling Techniques in Evolutionary Algorithms 11

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(a) Step test function.

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(b) Sphere test function.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(c) Rosenbrock test function.

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(d) Ackley test function.

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of variables

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

KRG

PRS

SVR

RBF

(f) Schwefel test function.

Fig. 6 Behavior of each metamodeling technique on each size of the adopted functions according to the ranking preservation.
The x-axis shows the number of variables, while the y-axis shows the ranking preservation achieved for each metamodeling
technique.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of variables

R
a

n
k
in

g
 P

re
s
e

rv
a

ti
o

n
 (

R
P

)

KRG

PRS

SVR

RBF

Fig. 7 Average behavior on all the adopted problems by each
metamodeling technique according to the ranking preserva-
tion. The x-axis shows the number of variables, while the
y-axis shows the ranking preservation achieved for each meta-
modeling technique.

since it outperform our former experiment on all prob-

lem sizes. Moreover, SVR also presented a noticeable

improvement, since in our former study, it presented an

undesirable behavior with low-dimensional problems.

Additionally, this approach improved the distance mea-

sure on every problem size.

The results shown in Figures 9(c), 9(b), and 9(f) in-

dicate that the new tuning of RBF and SVR induced

a slight improvement than the former tuning in Rosen-

brock, Schwefel, and sphere test functions, respectively.

Finally, the results obtained in the step test prob-

lem, presented in Figure 9(a), show that RBF and SVR

induces a slight improvement for instances with 25 vari-

ables and fewer, but only RBF enhanced its results for

the 50 variable instance.

12 Alan Dı́az-Manŕıquez et al.

The new parameters’ tuning ease the comparison

of results when we consider all the adopted test func-

tions, since RBF induced the best results of all the com-

pared metamodeling approaches across all the instance

sizes. Also, although SVR improved its over all perfor-

mance, it could not outfperformed the results produced

by KRG in all problems. Similar to our previous ex-

periment, PRS produced the worst results in this new

experiment.

0

0.2

0.4

0.6

0.8

1

BLS BOS BLS BOS
Metamodeling technique

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

RBF SVR

(a) Unimodal problems.

0

0.2

0.4

0.6

0.8

1

BLS BOS BLS BOS
Metamodeling technique

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

RBF SVR

(b) Multimodal problems.

0

0.2

0.4

0.6

0.8

1

BLS BOS BLS BOS
Metamodeling technique

R
a
n
k
in

g
 P

re
s
e
rv

a
ti
o
n
 (

R
P

)

RBF SVR

(c) All the problems together.

Fig. 8 Boxplots graphics obtained from the application of
RP metric to the results produced by PRS, KRG, RBF, and
SVR. Figures 8(a) and 8(b) show unimodal and multimodal,
while Figure 8(c) gathers the results for all the adopted test
functions.

7 Experiment 4: efficiency

Our fourth experiment measures the efficiency of the

adopted approaches. In order to calculate efficiency, we

measured the time employed to construct a metamodel

with 100 points and the required time that it takes to

predict 100 other responses. All the experiments were

executed in a computer Intel Core i3 with 2.6GHz and

4GB de RAM. The results of this experiment are shown

in Figure 10. These results indicate that the time con-

sumed by KRG is relatively large, mainly produced by

the embedded optimization method used to find the

best values of its parameter (θ). On the other hand,

SVR and RBF required almost constant time in this

experiment. Finally, the expended computational time

for PRS and KRG was very similar. In conclusion, if the

metamodel needs to be constructed several times in the

optimization process, we recommend using a metamod-

eling technique that requires a small amount of time,

i.e., RBF or SVR. However, if the metamodel only needs

to be constructed a single time, any metamodeling tech-

nique can be used.

8 Experiment 5: global and local metamodels

(GM vs. LMs)

When a metamodel is implemented into an EA, a fixed-

size repository of real-function-evaluated solutions is

usually managed (solutions from this repository are used

to create the metamodel). However, under the premise

that it is difficult to have a representative set of solu-

tions to approximate the whole search space of a func-

tion, we explored the idea to approximate it by regions.

This decision was strengthened in practice, since in our

previous experiments, we often found that there were

regions with either no solution or only a few solutions.

Such a scarcity of solutions in certain regions of the

search space induced a bias to dense regions (when us-

ing GM).

Below, three different approaches for creating LMs

are proposed; the first two are based on clustering tech-

niques while the third is based on a data structure.

These approaches are briefly explained below.

– The k nearest neighbors approach (k-nn) is a method

to classify objects based on the closest training ex-

amples in the design space (Silverman and Jones,

1989).

We will use k-nn to select the k real-evaluated solu-

tions nearest to a query point. The selected solutions

will serve to create an LM.

The computational complexity to find the solutions

to create the LM of this approach depends linearly

Comparison of Metamodeling Techniques in Evolutionary Algorithms 13

0 10 20 30 40 50
0

5

10

15

20

25

Number of variables

||
x

* −
x
||

SVR−R

2

RBF−R
2

SVR−RP

RBF−RP

(a) Step test function.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Number of variables

||
x

* −
x
||

SVR−R

2

RBF−R
2

SVR−RP

RBF−RP

(b) Sphere test function.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of variables

||
x

* −
x
||

SVR−R

2

RBF−R
2

SVR−RP

RBF−RP

(c) Rosenbrock test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of variables

||
x

* −
x
||

SVR−R
2

RBF−R
2

SVR−RP

RBF−RP

(d) Ackley test function.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Number of variables

||
x

* −
x
||

SVR−R

2

RBF−R
2

SVR−RP

RBF−RP

(e) Rastrigin test function.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Number of variables

||
x

* −
x
||

SVR−R
2

RBF−R
2

SVR−RP

RBF−RP

(f) Schwefel test function.

Fig. 9 Distance from the best solution found by a tuple (metamodel, DE) to the optimum of the problem at hand. The
metamodel was fine-tuned with the R2 or with RP performance measure. The x-axis shows the instance size, represented
by its number of variables, while the y-axis shows the distance of the best solution found by each model with respect to the
optimum.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of variables

T
im

e
 (

s
e
c
o
n
d
s
)

KRG PRS SVR RBF

Fig. 10 Average execution time required by each metamodel
when training and predicting the adopted problems. The x-
axis shows the number of variables, while y-axis shows the
average training+prediction time.

on the size of the repository (Nrep). For a problem

of a specific dimensionality (dp) and using the Eu-

clidean distance, the computational complexity to

find the solutions belonging to the LM is of order

O(Nrepdp).

– The use of k-means (Forgy, 1965) to create meta-

models consists of splitting the decision space into

k subspaces. The LM is created with the solutions

that are located in the same subspace as the solution

to be evaluated.

The computational complexity of the k-means is

given with respect to the number of iterations (I)

required in the k-means algorithm, the size of the

repository (Nrep), the dimensionality of the prob-

lem (dprob), and the required number of clusters (k).

14 Alan Dı́az-Manŕıquez et al.

Therefore, the complexity to obtain the clustered so-

lutions required to create the LM is ofO(NrepkIdprob).

– Binary space partitioning (BSP) is a technique for

subdividing a space into a convex set by hyper-

planes. The subdivision can be represented by means

of a tree data structure known as a BSP Tree. A

BSP Tree is thus a point access method that stores

all the solutions of the repository. The construc-

tion of the tree is similar as the proposals of Chow

and Yuen (Chow and Yuen, 2011; Yuen and Chow,

2009), although in both works the BSP Tree was

used for other purposes. The tree will store the po-

sitions and fitness of the real-evaluated solutions (in

the variable space). The pseudo-code for the inser-

tion in the BSP Tree is shown in Algorithm 1. The

root S of the BSP Tree represents the whole search

space and each node in a BSP Tree represents a

hyperplane that divides the space into two halves.

Therefore, the terminal nodes are the stored solu-

tions, and each non-terminal node or root node rep-

resents a subspace (Spi) of the search space.

Algorithm 1 BSP-Tree-Insertion(s, f(x), T).

Input: Solution x, Fitness f(x), Tree T
Output: Tree T

Node =root node of T
while Node has two child nodes a and b do

if x = a or x = b then
Exit without inserting the element

end if
j = arg maxk∈D |a(k) − b(k)| {D is the dimensionality
of the problem}
if |a(j)− x(j)| ≤ |b(j)− x(j)| then

Node=a
else

Node=b
end if

end while
Insert a virtual child node to Node
Create a real child node that records x and f(x) under the
virtual child node

It is possible to create an LM in each subspace of the

BSP Tree. Therefore, in order to select the solutions

to create the metamodel, the BSP Tree is traversed

until the solution to be evaluated is found. All so-

lutions belonging to the solution’s subspace are go-

ing to feed the training set of the metamodel. If the

number of solutions is fewer than expected, then the

solutions belonging to the parent node are taken.

This procedure is repeated until a minimum num-

ber of required solutions (k) is reached. The compu-

tational complexity to find the solutions in a BSP

Tree with a certain number of solutions (NBSP) and

a problem of D dimensions is of O(log(NBSP)D). In

this approach, it is necessary to take into account

the complexity to store the solutions in the BSP

Tree, which is O(log(NBSP)D). However, the store

procedure is carried out exclusively when the train-

ing dataset is updated.

8.1 Influence of the parameters in the local surrogate

models

To evaluate the performance of the different approaches,

we selected the same test functions used in our previous

experiments. Below, we describe in detail the employed

methodology to compare the metamodels.

1. Create a training dataset with a Latin hypercube of

size 100.

2. Train the LMs and the GM with the previously cre-

ated training dataset.

3. Create the validation dataset with Latin hypercubes

of size 200.

4. Predict the validation dataset using LM and GM.

5. Compute the mean squared error (MSE)

The metamodels were created using an RBF, since

it resulted in the most suitable approach in our previous

experiments. The parameters used in the RBF were the

BOS − RP found in the experiment 6. Moreover, in

this case we classified the size of our problems in low-,

medium-, and high-dimension sizes, having 2, 15, and

30 variables, respectively.

The results from this experiment are shown in Ta-

bles 2, 3, and 4. These tables contain the normalized

MSE obtained by each tested approach on each of the

six tested functions. We normalized the MSE according

to the highest and lowest errors in the entire table4 in

order to have errors between zero and one, since this

would facilitate the comparison of results. We prefer

values with error predictions closer to zero.

In order to have a deeper understanding about the

behavior of the adopted metamodeling techniques, we

studied the behavior induced by different parameter

settings.

8.2 k-nn tuning

We studied the required k closest training examples

to a query point. We selected 10, 25, and 50 values

to be given as input to this approach, since by hav-

ing 100 individuals as the population, the selection of

these values are intended to represent small, medium,

4 This normalization is known as normalized root-mean-
square deviation

Comparison of Metamodeling Techniques in Evolutionary Algorithms 15

and big clusters with respect to the whole population.

The obtained results are shown in Table 2. The first

three columns of this table display the behavior for two

variables (low-dimension sizes). These results indicate

that the metamodeling technique behaves better when

a high number of solutions is used (50 out of 100) in

low-dimension instances. Therefore, we suggest using

as much information as possible when we are working

with low-dimension instances. However, when the size

of the instance increases, the metamodel requires nar-

rowing its width, concentrating on local information, as

Table 2 clearly indicates. Accordingly, we suggest the

use of k = 50 in low-dimension instances, and k = 10

in medium- and high-dimension instances.

8.3 k-means tuning

We studied the required number of clusters (k) of the

k-means algorithm. We selected 2, 4, and 10 to be given

as input to this approach. The idea behind the selection

of these values is that by having two clusters (k = 2),

in the best case each cluster will have about 50% of

the population, i.e., 50 solutions each. Similarly, when

having 4 and 10 clusters we intended to group about

25% and 10% of the population in each cluster. Results

shown in Table 3 corroborate our previous findings that

the metamodel prefers having as much information as

possible (i.e., k = 2) in low-dimension sizes, while for

medium- and high-dimension instances it is better to

concentrate in specific regions (i.e., k = 10).

8.4 BSP Tree tuning

In the BSP Tree approach, the parameter k refers to the

number of minimal solutions to create the LM; however,

this number does not restrict the whole set of points

to train the metamodel. For example, if the subspace

of the solution to evaluate contains more than k solu-

tions, the LM will also contain more than k solutions.

The adopted values were k = {10, 25, 50}. The main

idea behind the selection of these parameters was to be

fair with respect to the previous two approaches. The

results shown in Table 4 indicate that for low-dimension

instances, the metamodel prefers to use as much infor-

mation as possible (k = 50), while for medium- and

high-dimension instances, it performs better by focus-

ing on a specific region (k = 10).

8.5 Comparison of results

According to our results, the selected metamodeling ap-

proach (RBF) prefers to have as much information as

possible when solving low-dimension instances. How-

ever, for medium- and high-dimension instances, RBF

prefers to have solutions focused around the region of

interest.

Table 5 shows that the GM had the best perfor-

mance in low-dimension instances, confirming our pre-

vious results with this, while Tables 6 and 7 assure

that the compared LMs approaches outperformed the

GM in medium- and high-dimension instances. These

results provide evidence that LMs are a viable strategy

for improving the prediction of metamodels. Finally, in

medium- and high-dimension instances the best aver-

aged results were obtained by the BSP Tree approach

followed by the k-nn approach.

9 Conclusions and future work

In order to avoid a biased comparison for bad parame-

ter tuning, we decided to search for the parameter con-

figuration of each meta-modeling technique that per-

forms best (in average) in all the adopted test functions.

We called this the “best overall settings” (BOS). Also,

we wanted to discover the parameters that induced the

best performance on each meta-modeling technique for

each test function. We called this the “best local set-

tings” (BLS). A comparison of the results shows us that

the advantage of having BLS is minimal. Therefore, we

suggest tuning the metamodeling parameters according

to our BOS.

We also found that RBF and SVR are the most effi-

cient approaches among the reviewed ones. However,

when we search for the most accurate approach, we

select KRG as the best approach to be used in low-

dimension problems (followed by SVR). On the other

hand, RBF is the most accurate approach in high-dimension

problems (followed by SVR). However, if we consider all

instance sizes, we would select RBF as the most robust

and scalable approach.

Moreover, since we wanted to evaluate how conve-

nient metamodeling techniques are when incorporated

into EAs, we propose measuring their suitability. We

proposed two approaches to evaluate such a criterion;

our first approach measured the distance from best so-

lution obtained by the metamodeling technique-EA to

the optimal solution (in the objective function space),

while our second approach measures the percentage of

solutions in the metamodel that preserves the hierarchy

according to the original objective function. Our results

indicate that RBF was the best approach in both stud-

ies.

After realizing that our RP performance measure

was better aligned with the manner with which EAs se-

16 Alan Dı́az-Manŕıquez et al.

low-dimension medium-dimension high-dimension
Problem k=10 k=25 k=50 k=10 k=25 k=50 k=10 k=25 k=50
Rosenbrock 0.121826 0.021356 0.000121 0.000009 0.002316 0.361654 0.000001 0.000522 0.221734
Sphere 0.132118 0.049620 0.001234 0.102314 0.121815 0.273419 0.076130 0.142721 0.299782
Step 0.191102 0.061893 0.000098 0.000010 0.003018 0.412185 0.000001 0.001012 0.499836
Ackley 0.201286 0.027981 0.000920 0.000008 0.003015 0.401243 0.000001 0.001311 0.372318
Rastrigin 0.152369 0.053147 0.001519 0.000009 0.001721 0.432418 0.000002 0.001723 0.539018
Schwefel 0.206192 0.071992 0.002015 0.000007 0.001218 0.231235 0.000002 0.001271 0.424123
Average 0.167482 0.047665 0.000985 0.017060 0.022184 0.352026 0.012690 0.024760 0.392802

Table 2 Adjustment of the required k closest training examples to a query point in low-, medium-, and high-dimension
instances according to normalized root-mean-square deviation.

low-dimension medium-dimension high-dimension
Test function k=2 k=4 k=10 k=2 k=4 k=10 k=2 k=4 k=10
Rosenbrock 0.001973 0.011723 0.113124 0.311023 0.001121 0.000009 0.521243 0.002214 0.000015
Sphere 0.012985 0.041211 0.201633 0.202155 0.172147 0.162410 0.401123 0.266863 0.214201
Step 0.007123 0.025371 0.192317 0.380021 0.001346 0.000015 0.501321 0.001452 0.000003
Ackley 0.003418 0.0321245 0.201622 0.371457 0.002001 0.000019 0.501351 0.002271 0.000009
Rastrigrin 0.003685 0.033123 0.223119 0.337123 0.001612 0.000010 0.494142 0.001539 0.000004
Schwefel 0.005725 0.030162 0.139281 0.304611 0.001001 0.000011 0.361946 0.001122 0.000004
Average 0.005818 0.028952 0.178516 0.317732 0.029871 0.027079 0.463521 0.045910 0.035706

Table 3 Adjustment of the required number of clusters (k) required by k-means in low, medium-, and high-dimension instances
according to normalized root-mean-square deviation.

low-dimension medium-dimension high-dimension
Test function k=10 k=25 k=50 k=10 k=25 k=50 k=10 k=25 k=50
Rosenbrock 0.083425 0.019081 0.001912 0.000001 0.006612 0.308912 0.000000 0.042301 0.409313
Sphere 0.091712 0.007312 0.000601 0.0751245 0.169918 0.247121 0.062217 0.168232 0.219912
Step 0.046163 0.002581 0.000194 0.000000 0.005628 0.355012 0.000000 0.031842 0.381020
Ackley 0.117163 0.016612 0.002131 0.000001 0.008712 0.313243 0.000001 0.042192 0.401450
Rastrigin 0.100118 0.009453 0.000512 0.000001 0.005743 0.313201 0.000000 0.036080 0.449501
Schwefel 0.103617 0.008771 0.000056 0.000001 0.017324 0.379128 0.000001 0.020112 0.277961
Average 0.090366 0.010635 0.000901 0.012521 0.035656 0.319436 0.010370 0.056793 0.356526

Table 4 Adjustment of the k number of minimal solutions to create the LM using a BSP Tree in low-,medium-, and high-
dimension instances according to normalized root-mean-square deviation.

Test function k-nn k-means BSP GM

Rosenbrock 0.001761 0.049271 0.007110 0.003210
Sphere 0.004920 0.025766 0.002451 0.000000
Step 0.000156 0.008101 0.002732 0.000000
Ackley 0.001408 0.012915 0.002350 0.000000
Rastrigrin 0.003324 0.026400 0.010901 0.000001
Schwefel 0.002716 0.019593 0.003341 0.000001

Average 0.002381 0.023674 0.004814 0.000535

Table 5 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
low-dimension instances.

Test function k-nn k-means BSP GM

Rosenbrock 0.000000 0.000000 0.000003 0.344958
Sphere 0.160315 0.231249 0.292345 0.129843
step 0.000000 0.000001 0.000009 0.365923
ackley 0.000000 0.000001 0.000004 0.353567
Rastrigrin 0.000000 0.000001 0.000003 0.331678
Schwefel 0.000000 0.000002 0.000012 0.563293
Average 0.026719 0.038542 0.048729 0.348210

Table 6 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
medium dimensional problems.

Comparison of Metamodeling Techniques in Evolutionary Algorithms 17

Test function k-nn k-means BSP GM

Rosenbrock 0.000000 0.000001 0.000008 0.384567
Sphere 0.227124 0.332456 0.200012 0.112567
step 0.000000 0.000003 0.000008 0.455183
ackley 0.000000 0.000001 0.000009 0.425788
Rastrigrin 0.000000 0.000002 0.000003 0.495866
Schwefel 0.000000 0.000001 0.000004 0.325552
Average 0.037854 0.055411 0.033341 0.366587

Table 7 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
high-dimension problems.

lect solutions, we decided to perform a parameters’ tun-

ing based on such a performance measure. The new tun-

ing phase produced a different parameters’ selection on

two out of four metamodels. The new parameter sets in-

duced the better performance on their approaches. This

new experiment endorse our previous findings that RBF

is the metamodeling technique that induced the best

performance of our EA. This experiment also found

that although the accuracy of the metamodel does not

reflect properly the behavior of the adopted metamod-

els when we they are incorporated within an EA, the

RP performance measure does. Therefore, we suggest

the use of this performance measure for future compar-

isons among metamodeling techniques.

In addition, we also evaluated three different ap-

proaches to select solutions in order to create LMs.

The first two approaches are based on clustering algo-

rithms. The last approach uses a data structure called

BSP Tree to split the entire search space according to

the repository of solutions. The compared algorithms

were tuned with respect to a single parameter. Re-

sults showed that the RBF method prefers to have as

much information as possible in low-dimension prob-

lems. However, the method prefers to have more clus-

tered information when the problem size increases.

A comparison of results indicates that for medium-

and high-dimension instances the best approach to be

selected is either BSP or the k-nn (the average per-

formance of BSP was better than k-nn, but the latter

performed better in more instances).

Part of our future work will include the incorpo-

ration of more metamodeling techniques into the com-

parative study. Additionally, some meta-modeling tech-

niques train a metamodel that minimizes the MSE in a

validation dataset. The maximization of RP may pro-

duce good results. Therefore, we would like to use the

RP indicator to train metamodels. Finally, we would

like to evaluate the LM with other meta-modeling tech-

niques, because there may be interesting results.

Acknowledgements The second author gratefully acknowl-
edges support from CONACyT through project no. 105060.

The last author gratefully acknowledges support from CONA-
CyT project no. 221551.

References

Bäck T. (1996) Evolutionary Algorithms in Theory and

Practice. Oxford University Press

Barton R. (1992) Metamodels for Simulation Input-

Output Relations. In: Proceedings of the 24th con-

ference on Winter simulation, ACM, New York, NY,

USA, WSC ’92, pp. 289–299

Carpenter W., Barthelemy J. (1992) A Comparison

of Polynomial Approximation and Artificial Neural

Nets as Response Surface

Chow C., Yuen S. (2011) An Evolutionary Algorithm

That Makes Decision Based on the Entire Previ-

ous Search History. IEEE Transactions Evolutionary

Computation 15(6):741–769

De Jong K. (1975) An Analysis of the Behavior of a

Class of Genetic Adaptive Systems. PhD thesis, Uni-

versity of Michigan, Ann Arbor, MI, USA

Dı́az-Manŕıquez A., Toscano-Pulido G., Gomez-Flores

W. (2011) On the Selection of Surrogate Models

in Evolutionary Optimization Algorithms. In: IEEE

Congress on Evolutionary Computation, pp. 2155–

2162

Dı́az-Manŕıquez A., Toscano-Pulido G., Coello Coello

C. A., Landa-Becerra R. (2013) A Ranking Method

Based on the R2 Indicator for Many-Objective Op-

timization. In: 2013 IEEE Congress on Evolution-

ary Computation (CEC’2013), IEEE Press, Cancún,

México, pp. 1523–1530, iSBN 978-1-4799-0454-9

Draper N., Smith H. (1981) Applied Regression Anal-

ysis, 2nd edn. Wiley series in probability and math-

ematical statistics, Wiley, New York

Forgy E. W. (1965) Cluster analysis of multivariate

data: Efficiency versus interpretability of classifica-

tions. Biometrics 21:768–769

Gaspar-Cunha A., Vieira A. (2005) A Multi-Objective

Evolutionary Algorithm Using Neural Networks to

Approximate Fitness Evaluations. Int J Comput Syst

Signal pp. 18–36

18 Alan Dı́az-Manŕıquez et al.

Georgopoulou C., Giannakoglou K. (2009) Multiob-

jective Metamodel–Assisted Memetic Algorithms.

In: Multi-Objective Memetic Algorithms, Studies in

Computational Intelligence, vol 171, Springer Berlin

/ Heidelberg, pp. 153–181

Giunta A., Watson L. (1998) A Comparison of Approx-

imation Modeling Techniques: Polynomial Versus In-

terpolating Models. Tech. rep., NASA Langley Tech-

nical Report Server

Hansen N., Ostermeier A. (2001) Completely deran-

domized self-adaptation in evolution strategies. Evo-

lutionary computation 9(2):159–195

Hardy R. (1971) Multiquadric Equations of Topogra-

phy and Other Irregular Surfaces. Journal of Geo-

physical Research 76:1905–1915

Isaacs A., Ray T., Smith W. (2007) An Evolutionary

Algorithm with Spatially Distributed Surrogates for

Multiobjective Optimization. In: Randall M., Abbass

H., Wiles J. (eds) Progress in Artificial Life, Lecture

Notes in Computer Science, vol 4828, Springer Berlin

/ Heidelberg, pp. 257–268

Jin R., Chen W., Simpson T. (2000) Comparative Stud-

ies of Metamodeling Techniques under Multiple Mod-

eling Criteria

Matheron G. (1963) Principles of Geostatistics. Eco-

nomic Geology 58(8):1246–1266

McKay M., Beckman R., Conover W. (1979) A Com-

parison of Three Methods for Selecting Values of In-

put Variables in the Analysis of Output from a Com-

puter Code. Technometrics 21(2):239–245

Myers R., Anderson-Cook C. (2009) Response Surface

Methodology: Process and Product Optimization us-

ing Designed Experiments, vol 705. John Wiley &

Sons

Nain P., Deb K. (2002) A Computationally Effec-

tive Multi-Objective Search and Optimization Tech-

nique Using Coarse-to-Fine Grain Modeling. In: 2002

PPSN Workshop on Evolutionary Multiobjective Op-

timization Comprehensive Survey of Fitness Approx-

imation in Evolutionary Computation

Pilat M., Neruda R. (2013) Aggregate meta-models for

evolutionary multiobjective and many-objective op-

timization. Neurocomputing 116:392 – 402

Press W., Teukolsky S. A., Vetterling W., Flannery B.

(2007) Numerical Recipes 3rd Edition: The Art of

Scientific Computing, 3rd edn. Cambridge University

Press, New York, NY, USA

Rasheed K., Ni X., Vattam S. (2002) Comparison of

Methods for Developing Dynamic Reduced Models

for Design Optimization. In: IEEE Congress on Evo-

lutionary Computation, pp. 390–395

Rastrigin L. (1974) Extremal Control Systems. Theo-

retical Foundations of engineering cybernetics series

3

Sacks J., Welch W., Mitchell T., Wynn H. (1989) De-

sign and Analysis of Computer Experiments. Statis-

tical Science 4(4):409–423

Schumaker L. (2007) Spline functions: basic theory.

Cambridge University Press

Schwefel H. (1981) Numerical Optimization of Com-

puter Models. John Wiley & Sons, Inc., New York,

NY, USA

Shyy W., Papila N., Vaidyanathan R., Tucker K.

(2001) Global Design Optimization for Aerodynam-

ics and Rocket Propulsion Components. Progress in

Aerospace Sciences 37(1):59–118

Silverman B., Jones M. (1989) An important contribu-

tion to nonparametric discriminant analysis and den-

sity estimation: Commentary on fix and hodges. In-

ternational Statistical Review/Revue Internationale

de Statistique pp. 233–238

Simpson T., Mauery T., Korte J., Mistree F. (1998)

Comparison of Response Surface and Kriging Models

for Multidiscilinary Design Optimization

Storn R., Price K. (1997) Differential evolution ? a sim-

ple and efficient heuristic for global optimization over

continuous spaces. Journal of Global Optimization

11(4):341–359

Vapnik V. (1998) Statistical Learning Theory. Wiley-

Interscience

Voutchkov I., Keane A. (2006) Multiobjective Opti-

mization using Surrogates. In: International Confer-

ence on Adaptive Computing in Design and Manu-

facture, The M.C.Escher Company, pp. 167–175

Willmes L., Baeck T., Jin Y., Sendhoff B. (2003) Com-

paring Neural Networks and Kriging for Fitness Ap-

proximation in Evolutionary Optimization. In: IEEE

Congress on Evolutionary Computation, pp. 663–670

Yuen S., Chow C. (2009) A Genetic Algorithm That

Adaptively Mutates and Never Revisits. IEEE Trans-

actions Evolutionary Computation 13(2):454–472

