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Abstract Although researchers have successfully in-


corporated metamodels in evolutionary algorithms to


solve computational-expensive optimization problems,


they have scarcely performed comparisons among dif-


ferent metamodeling techniques. This paper presents an


in-depth comparison study over four of the most popu-


lar metamodeling techniques: polynomial response sur-


face, Kriging, radial basis function neural network, and


support vector regression. We adopted six well-known


scalable test functions and performed experiments in


order to evaluate their suitability to be coupled with


an evolutionary algorithm, and the appropriateness to


surrogate problems by regions (instead of surrogating


the entire problem).


Notwithstanding that most researchers have under-


taken accuracy as the main measure to discern among


metamodels, this paper shows that the precision, mea-


sured with the ranking preservation indicator, gives a


more valuable information for selecting purposes.


Additionally, nonetheless each model has its own pe-


culiarities, our results concur that RBF fulfills most of
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our interests. Furthermore, the readers can also benefit


from this study if their problem at hand has certain


characteristics such as a low budget of computational


time or a low-dimension problem, since they can assess


specific results of our experimentation.


Keywords Surrogate models · Evolutionary algo-


rithms · Local models


1 Introduction


Evolutionary algorithms (EAs) gather a set of algo-


rithms, inspired by neo-Darwinism, that have been suc-


cessfully applied to an important variety of difficult op-


timization problems.


In many science and engineering problems, researchers


have used computer simulations to avoid expensive phys-


ical experiments with the aim of improving the quality


and performance of engineered products and devices,


but using a fraction of the needed effort. Analogously,


researchers have proposed a number of EAs that make


use of metamodels1 in order to solve computational-


expensive optimization problems (Nain and Deb, 2002;


Gaspar-Cunha and Vieira, 2005; Voutchkov and Keane,


2006; Isaacs et al., 2007).


Although distinct metamodeling techniques can pro-


duce different solutions, little emphasis has been placed


on exploring their behavior when coupled to EAs. Even


when we understand the scarcity of comparative works,


since such an exploration would require gaining deep


knowledge on each approach, it is important to note


that some approaches are bound to specific domains.


Therefore, it is necessary to carry out comparative stud-


ies among metamodeling techniques before selecting one.


1 We will use the terms approximation models, surrogate
models, and metamodels interchangeably in this paper.
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In this regard, Carpenter and Barthelemy (1992)


adopted several test problems with up to 15 decision


variables to compare the accuracy of polynomial re-


gression (PRS) and artificial neural networks (ANN)


in order to be used as metamodeling approaches. In


their study, although PRS required a lower construction


time, both approaches showed a similar performance


according to their achieved number of function eval-


uations and their required parameters. Therefore, they


stated that the selection would depend on the user pref-


erences.


Shyy et al. (2001) compared the accuracy of a PRS,


a back propagation ANN, and a radial basis function


neural network (RBF) approaches, concluding that PRS


and RBF performed similarly in several problems with


up to 11 variables.


Rasheed et al. (2002) adopted several test problems


with up to 16 decision variables to compared the behav-


ior of PRS, RBF, and Quickprop ANN when they were


coupled to a genetic algorithm (GA). Such a compari-


son showed that PRS had the fastest time for building


and executing the metamodel. Additionally, it did not


require any parameter to be fine-tuned. For these rea-


sons, the authors agreed in favor of PRS.


Willmes et al. (2003) compared the behavior of ANN


and Kriging (KRG) methods when they are coupled


to an evolution strategy (ES) with covariance matrix


adaptation (CMA) (Hansen and Ostermeier, 2001) in


three scalable test problems with up to 50 decision vari-


ables. However, there is not a clear conclusion about


which metamodel performed best.


Simpson et al. (1998) compared the performance


of KRG and PRS with respect to the design of an


aerospike nozzle with three decision variables. Accord-


ing to their results, both approaches were comparable


with respect to their accuracy.


Jin et al. (2000) compared the accuracy, robustness,


efficiency, transparency, and simplicity of PRS, multi-


variate adaptive splines, RBF, and KRG, using several


test problems with up to 16 decision variables. The


conclusion of their comparison was that PRS behaved


the best in low-dimension problems, while the RBF ap-


proach was the best when dealing with high-dimension


problems. It is worth noting that although this paper


compares several metamodeling approaches, they were


not incorporated into an EA.


Although the above proposals selected the best meta-


modeling technique from a comparison methodology,


some of them were evaluated based only on a small


group of metamodeling techniques, adopted a reduced


set of test problems, or took into account only a single


criterion (most works selected accuracy as their main


criterion).


Furthermore, they usually omit measuring two im-


portant factors: the performance with the increase in


the dimensionality and the suitability of the metamodel


to be combined with population-based metaheuristics.


Moreover, most of the existing algorithms used a sin-


gle metamodel to approximate the whole search space


of the problem, even though results from certain re-


searchers (Isaacs et al., 2007; Georgopoulou and Gian-


nakoglou, 2009; Pilat and Neruda, 2013) suggest that


using metamodels to approximate specific regions of the


search space produces an improvement in the accuracy


of the approximation.


In (Dı́az-Manŕıquez et al., 2011), we fine-tuned the


parameters of four metamodeling techniques using ac-


curacy as performance measure. Then, we evaluated the


metamodels’ accuracy, robustness, efficiency, scalabil-


ity, and suitability when they were combined with an


EA. From the results, we found that accuracy and suit-


ability were in conflict, in the sense that not always


the most accurate metamodel produced the best results


when it was coupled to a EA. On the other hand, we


found that our ranking preservation indicator, which


measures the percentage of solutions in the metamodel


that preserves the hierarchy according to the original


objective function, could be a better measure to evalu-


ate the performance of a metamodel.


This paper compares the results achieved by the


metamodels fine-tuned with the accuracy indicator (pre-


sented in (Dı́az-Manŕıquez et al., 2011)) with respect to


the results produced by ranking preservation fine-tuned


approaches. Such a new parametrization will endorse


the selection of the metamodeling technique. Then, we


will explore its capabilities to surrogate the entire prob-


lem (also known as the global surrogate model, or GM


for short) with respect to surrogating the problems by


regions (also known as the local surrogate model or LM


for short). It is worth noting that unlike the results


presented in Dı́az-Manŕıquez et al. (2013), the baseline


approach used to analyze the use of GM and LM was


fine-tuned trough the ranking preservation indicator.


The remainder of this paper is organized as follows.


Section 2 gives a brief overview of the metamodeling


techniques commonly used in the literature. Section 3


presents our experimental setting. We divided our ex-


perimentation into four parts. Section 4 introduces our


first experiment where besides fine-tuning the parame-


ters of the adopted metamodeling approaches with re-


spect to the accuracy performance measure, it com-


pares their obtained accuracy, robustness, and scala-


bility. Our second experiment, which is shown in Sec-


tion 5, measures the suitability of each technique to be


incorporated into an EA. Section 6 introduces our third


experiment. It presents the use of ranking preservation
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indicator to fine-tuning the parameters of the adopted


metamodeling approaches. We compare the results ob-


tained in this section with respect to the obtained with


the accuracy fine-tuned methods. Our fourth experi-


ment, presented in Section 7, measures the efficiency


of the compared approaches. Then, Section 8 presents


three different approaches for using LM, analyzes their


parameters, and compares their results with respect to


the use of GM. Finally, Section 9 summarizes our main


conclusions and outlines future work.


2 Background


A metamodel is an approximation of a simulation used


to construct simpler and lower computational cost mod-


els; if the original simulation is represented as f(x), and


the metamodel is represented as f ′(x), then, f ′(x) =


f(x) + e(x), where e(x) is the approximated error. The


internal behavior of f(x) does not need to be known


(or understood); only the input/output behavior is im-


portant. A model is constructed based on the response


of the simulator to a limited number of intelligently


chosen data points. Metamodels generate simpler rep-


resentations that capture relations between the relevant


information of the input and output variables and not


in the underlying process.


Among the techniques to create metamodels, we


have rational functions Press et al. (2007), radial ba-


sis functions Hardy (1971), Kriging models Sacks et al.


(1989), support vector machines Vapnik (1998), polyno-


mial regression Myers and Anderson-Cook (2009), and


splines Schumaker (2007). Below, we review the most


common approaches for constructing approximate mod-


els:


2.1 Polynomial approximation models


The response surface methodology (RSM) Myers and


Anderson-Cook (2009) employs statistical techniques


for regression and analysis of variance in order to obtain


a minimum variance of the responses.


The simplicity of polynomials makes them a good


approach to approximate most polynomial response sur-


faces (PRS).


A polynomial in the coded inputs x1,x2, ...,xn (n


data in the training set) is a function which is a linear


aggregate (or combination) of powers and products of


the input.


The polynomial model is usually written in matrix


notation, ŷ(p) = βTxp, where β is the vector of co-


efficients to be estimated, and xp is the vector corre-


sponding to the form of the x
(p)
1 and x


(p)
2 terms in the


polynomial model.


To estimate the unknown coefficients of the polyno-


mial model, both the least-squares method (LSM) and


the gradient method can be used. However, both ap-


proaches require the number of samples to be equal to


the number of coefficients.


PRS can also be built using stepwise regression Draper


and Smith (1981). The basic procedure for stepwise


regression involve (1) identifying an initial model, (2)


iteratively “stepping”, that is, repeatedly altering the


model at the previous step by adding or removing a


predictor variable in accordance with the “stepping cri-


terion”, and (3) terminating the search when a specified


maximum number of steps has been reached.


In practice, we can often proceed by supposing that,


a polynomial of first or second degree might represent


adequately the real function over limited regions of the


design space. Although higher-order polynomials can be


used, instabilities may arise Barton (1992), or it can be


highly difficult to take enough sample data to estimate


the coefficients of the polynomial equation (particularly


in high dimensions). This work considers second degree


PRS models.


2.2 Kriging-DACE


Kriging (KRG) Matheron (1963) is a spatial predic-


tion method that belongs to the group of geo-statistical


methods. It is based on minimizing the mean squared


error, and it describes the spatial and temporal corre-


lation among the values of an attribute.


The design and analysis of computer experiments


(DACE) is a parametric regression model developed by


Sack et al. Sacks et al. (1989), which is an extension of


the KRG approach in order to be able to manage three


or more dimensions.


The DACE model can be expressed as a combina-


tion of a known function a(x) (e.g., polynomial func-


tion, trigonometric series) and a Gaussian random pro-


cess b(x) that is assumed to have mean zero and covari-


ance:


E(b(x(i)), b(x(j))) = Cov(b(x(i)), b(x(j))) =


σ2R(θ,x(i),x(j)) (1)


where σ2 is the process variance of the response and


R(θ,x(i),x(j)) is the correlation function with parame-


ters θ. Among the different types of correlation models


we have: Gaussian, cubic, exponential, linear, spherical,


and splines.
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In the downside of KRG, we have that besides its


model construction can be very time-consuming, the


estimation of the parameters requires to solve an n-


dimensional optimization problem (where n is the num-


ber of variables in the design space), which can also be


computationally expensive.


2.3 Radial basis function neural network


The radial basis function method (RBF) was proposed


by Hardy Hardy (1971) in 1971. An RBF is a real-


value function whose value depends only on the dis-


tance from the input to the center of the neuron, so


that φ(x) = φ(||x||); or alternatively on the distance


from some other point c, called a center. Any function


φ that satisfies the property φ(x) = φ(||x||) is a radial


function. The norm is usually the Euclidean distance,


although other distance functions can be used.


Typical choices for the RBF include linear, cubic,


multi-quadratic, or Gaussian functions.


An RBF commonly has three layers: an input layer


with the identity function, a hidden layer with non-


linear RBF activation functions, and a linear output


layer. The output, ϕ : Rn → R, of the network is thus


ϕ(x) =


N∑
i=1


wiφ(||x− ci||).


In order to adapt the RBF network for a partic-


ular task, three parameters need to be fine tuned: the


weights wi, the center vector ci, and the RBF width pa-


rameters βi. In this work, the center vector was tuned


according to the centers of a clustering technique (there


are as many clusters as RBFs). The width parameter


was tuned averaging the distance from its own center to


its two closest RBFs. Finally, in this paper we adopted


the Gaussian function to serve as RBF.


2.4 Support vector regression


Support vector machines (SVMs) draw inspiration from


statistical learning theory Vapnik (1998). An SVM is a


set of related supervised learning methods which ana-


lyzes data and recognizes patterns. An SVM constructs


a hyperplane or a set of hyperplanes in a high-dimensional


space that can be used for classification, regression, or


other tasks.


An SVM maps its inputs to a larger space; however,


the cross products may be computed easily in terms of


the variables in the original space making the compu-


tational load reasonable. The cross products in larger


spaces are defined in terms of a kernel function K(x, y),


which can be selected to suit the problem.


Through the introduction of an alternative loss func-


tion, an SVM can also be applied to regression prob-


lems2. The loss function must be modified to include a


distance measure. In this work, we adopted the Gaus-


sian RBF as kernel function. Moreover, C, γ and ε were


fine-tuned using a methodology explained later.


3 Experimental settings


Evaluating the performance of a metamodeling tech-


nique is not an easy task. Most approaches only con-


sider the accuracy in performing the selection (Carpen-


ter and Barthelemy, 1992; Shyy et al., 2001; Simpson


et al., 1998; Giunta and Watson, 1998). However, other


approaches suggest the use of multiple criteria (e.g., the


robustness, the efficiency, or the simplicity) for assess-


ing the quality of a metamodel (Jin et al., 2000). The


success of a technique not only depends exclusively on


the accuracy, but also on several factors, such as the


parameters of the metamodeling technique, the dimen-


sionality of the problem, the data sampling technique,


etc.


To evaluate the performance of the compared ap-


proaches, six scalable unconstrained global optimiza-


tion test functions were taken from the specialized lit-


erature (De Jong, 1975; Rastrigin, 1974; Bäck, 1996;


Schwefel, 1981). The test functions were selected ac-


cording to both, the shape of the search space and the


number of local minima, i.e., they contain character-


istics that are representative of what can be consid-


ered “difficult” in global optimization. A summary of


such features is given in Table 1. Since all the adopted


problems can be scaled in the number of decision vari-


ables, we evaluate them using the following problem


sizes: v = {2, 4, 6, 8, 10, 15, 20, 25, 50}. If an instance has


more than 15 variables (v > 15), we list it as a high-


dimension instance. Contrariwise, if it has less than 15


variables, we named it as low-dimension (v ≤ 15).


We gathered our research from four main exper-


iments. The first experiment besides fine-tuning the


parameters of the adopted metamodeling approaches,


compares their accuracy, robustness, and scalability.


Our second experiment measures the efficiency of the


compared metamodeling approaches, while our third


experiment measures their suitability to be incorpo-


rated into an EA. Finally, our fourth experiment is in-


tended to clarify the advantages and disadvantages of


local metamodels with respect to global metamodels.


2 The SVM for a regression problem is known as a support
vector regression (SVR).
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Problem Modality # of local minima Global minimum


Step unimodal no local minima excepting the
global one


x∗ = (0, . . . , 0), f(x∗) = 0


Sphere unimodal no local minima excepting the
global one


x∗ = (0, . . . , 0), f(x∗) = 0


Rosenbrock unimodal for n ≤
3 otherwise multi-
modal


several local minima for n > 3 x∗ = (1, . . . , 1), f(x∗) = 0


Ackley multimodal several local minima x∗ = (0, . . . , 0), f(x∗) = 0
Rastrigin multimodal large number of local minima x∗ = (0, . . . , 0), f(x∗) = 0
Schwefel multimodal several local minima x∗ = (420.96, . . . , 420.96),


f(x∗) = 0


Table 1 Important features of the adopted test problems.


4 Experiment 1: fine-tuning, accuracy,


robustness, and scalability


We performed a full factorial design of the most widely


used parameters in order to avoid affecting the tech-


niques with a poor parameter tuning. Therefore, we


discretized the parameters used by each technique as


follows:


– PRS: Degree of the polynomial=2, technique for


constructing the regression={traditional, stepwise}.
– KRG: correlation function = {Gaussian, cubic, ex-


ponential, linear, spherical, splines}.
– RBF: Neurons in the hidden layer={3-100} with a


step size of 1, Radial basis function=Gaussian, cen-


ter vector were set through the k−means algorithm,


the widths of each RBF were calculated according


to the average distance between the two closest cen-


ters.


– SVM: C ={2E−5−2E15}, γ ={0.1−2}, ε ={2E−10−
2E5} with a step size of 0.1, and a Gaussian RBF


kernel function.


We executed the different variants 31 times on all


problem sizes of each test problem according to the per-


formed full factorial design, and processed the results


with respect to the achieved accuracy. The accuracy


was measured according to the coefficient of determi-


nation (R2) performance measure (Jin et al., 2000).


R2 = 1−
∑NV


i=1 (yi − ŷi)2∑NV
i=1 (yi − ȳi)2


= 1− MSE


Variance
(2)


where NV is the size of the validation dataset, ŷi is


the predicted value for the input i, and yi is the real


value; ȳ is the mean of the real values. The mean square


error (MSE) measures the difference between the esti-


mator and the real value. In this metric, larger values of


R2 are preferred, since this represents a more accurate


metamodel.


Then, we selected two different set of parameters:


(1) the parameters that produced the best average ac-


curacy considering all problems and instances, and (2)


the parameters that behaved best for each problem and


on each instance size. We called them best overall set-


tings (BOS) and best local settings (BLS), respectively.


Since BLS involves a different setting for each approach


on each test function, we did not show the obtained re-


sults because of their length. However, BOS parameters


are shown below:


– PRS: Degree of the polynomial=2, technique for


construct the regression={stepwise}
– KRG: Correlation function = {Exponential}
– RBF: Number of neurons in the hidden layer={6}
– SVR: C ={2E10.5}, γ ={0.2}, ε ={2E−2.5}


Then, we measured the accuracy, robustness, and


scalability of the compared approaches according to the


following methodology.


1. We create a training dataset using Latin hypercubes3


(McKay et al., 1979) with 100 points (a size of 100


was selected since most EAs typically handle this


population size).


2. We train each technique (PRS, KRG, RBF, and


SVR) with the training dataset created in the pre-


vious step.


3. We use Latin hypercubes to create a validation dataset


with the double of query points of the training dataset


(200).


4. We predict the validation dataset with each meta-


model.


5. We compute the performance measure for the fol-


lowing adopted criteria:


– Accuracy: For accuracy, we refer to the ca-


pability of the technique to have a prediction


3 Statistical method of stratified sampling that can be ap-
plied to multiple variables
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close to the real objective function. The previ-


ously defined R2 performance measure was used


to achieve such a goal.


– Robustness: This refers to the capability of a


technique to achieve good accuracy on adopted


test problems. We measured the robustness of a


technique by averaging its obtained accuracy in


the adopted test cases.


– Scalability: The scalability refers to achieving


good accuracy even when the number of vari-


ables increases.


4.1 Analysis of results


We used boxplots graphics to present our results, since


they simultaneously show different descriptive measures


that facilitate the comprehension of many competing


approaches. In these graphics, the median (second quar-


tile) of the plotted data is shown with a straight line


inside the box. The average accuracy of the technique is


shown with a diamond. The beginning and end of the


box indicate the first and third quartile, respectively.


Therefore, we prefer smaller boxes, because they repre-


sent a more robust behavior.


Since multimodal problems usually induce erratic


behavior in probabilistic-based techniques, we divided


our test functions according their modality. Figure 1


displays the obtained results according the application


of the R2-metric to the solutions produced by each


metamodeling technique using the two adopted set of


parameters BLS and BOS.


Figures 1(a) and 1(b) show the average results con-


sidering unimodal and multimodal test functions, re-


spectively. Finally, the average results gathering all the


adopted test functions are shown in Figure 1(c). These


results indicate that BOS and BLS induced a similar


behavior in the adopted metamodeling approaches re-


gardless of whether they are unimodal or multimodal.


Therefore, we will use BOS settings in our remaining


experiments.


Also, when we analyzed the size and position of


the box of each boxplot, we found that RBF behaved


slightly better than KRG, and both outperform SVR.


In these graphics, we also found that PRS produced


the worst results according to R2 and our robustness


performance measures.


To corroborate our previous results, we separately


averaged the results obtained by the studied algorithms


on each test function, and plotted them in Figure 2.


This experiment confirms the lack of accuracy of PRS


even in low-dimension problems. PRS was capable of


creating a surrogate model for step and ackley func-


tions for up to eight variables (shown in Figures 2(a)
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(a) Unimodal problems.
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(b) Multimodal problems.
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(c) All the problems together.


Fig. 1 Boxplots graphics obtained from the application of
R2 metric to the results produced by PRS, KRG, RBF, and
SVR. Figures 1(a) and 1(b) show unimodal and multimodal,
while Figure 1(c) gathers the results for all the adopted test
functions.


and 2(d), respectively), but it had the poorest accuracy


among the tested approaches.


Although PRS improved its own performance in sphere,


rosenbrock, and rastrigin when using two, four, eight,


and ten variables (see Figures 2(b), 2(c), and 2(e), re-


spectively), it has the poorest results among the com-


pared metamodels. PRS behaved reasonably well only


for schwefel, which is shown in Figure 2(f) (where it


could approximate the problem in all the sizes tested,


and showed good performance even for the 50 variables


instance).


The SVR approach had an inconsistent behavior


in step and ackley when using two, four, six, eight,


and ten variables (shown in Figures 2(a) and 2(d)).
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However, it performed considerably better than PRS,


and it improved its behavior for the rest of the test


functions. Although, KRG had a similar behavior to


SVR for the sphere (see Figure 2(b)), rastrigin (see


Figure 2(e)), and schwefel functions (see Figure 2(f)),


it outperformed SVR in low-dimension instances when


optimizing the rosenbrock test function (shown in Fig-


ure 2(c)). KRG had an impressive performance in low-


dimension instances on all the tested problems, since it


outperformed the other techniques. However, its perfor-


mance decreased after 15 variables in all test functions


as we can see in Figure 2.


Contrary to the KRG behavior, RBF had an aver-


age performance with the initial sizes of all problems,


as is easily seen in Figure 2, but it was capable of main-


taining its performance according to the R2-metric in


high-dimension problems.


Figure 3 shows the performance of the compared


techniques on the adopted functions. KRG was the tech-


nique that showed the best performance when working


with low-dimension instances (v < 15), while RBF had


the best performance with high-dimension instances.


The results obtained by SVR show that the behavior of


this technique was just behind KRG. Finally, PRS was


the technique with the worst overall performance.


From the above results, we were able to identify an


instance size (with approximately ten variables) where


the performances of KRG and RBF are intersected.


This intersection can be used as a reference point to


choose the approach to be incorporated into an EA ac-


cording to the dimensionality of the problem at hand


(KRG in low-dimension problems, and RBF in high-


dimension problems).


According to the discussed results, RBF is the most


efficient approach among the reviewed ones. However,


when we search for the most accurate approach, then


we can say that KRG is the best approach to be used


in low-dimension problems (followed by SVR). On the


other hand, RBF is the best approach in high-dimension


problems (followed by SVR). However, if we want to se-


lect a single approach for bothlow- and high-dimension


problems, we suggest using RBF, since our results indi-


cate that this approach was the less affected with the in-


crease in the dimensionality. Therefore, we concur that


this approach is also the most scalable and robust ap-


proach.


5 Experiment 2: suitability


The suitability refers to the ability of an EA to optimize


the fitness landscape produced by a specific surrogate


model.


We propose two approaches in order to measure this


criterion. For the first approach, we used a differential


evolution (DE) algorithm (Storn and Price, 1997) in or-


der to optimize the created metamodel at hand. Then,


we computed the distance from the best solution (ob-


tained by the DE algorithm) to the optimum of the orig-


inal test function. The DE used is a DE/rand/1/bin,


with a population size of 100, a CR = 0.8, a F = 0.5


and the algorithm was executed for 100 iterations.


Since the optimum solution on each test function


is known, we can say that a metamodel approach A


induces better behavior than another approach B into


an EA; this is if the best solution found when optimizing


metamodel A is closer to the optimum than an obtained


solution when it is optimized with approach B.


The second approach was motivated by the manner


with which EAs select solutions. They usually compare


two solutions in order to select the one with the best


fitness value. Therefore, it would be interesting to com-


plete the following steps: (1) build a metamodel, (2)


produce a number of distributed points with it, and (3)


compare each pair of the generated points using both


the surrogate function and the original function. We


can say that a metamodel approach is more suitable to


be used with an EA if it best preserves the comparative


relation with respect to the original function. In order


to quantify this assumption, we propose measuring the


ranking preservation (RP) indicator.


RP refers to the ability of a metamodel to main-


tain the same rank of the query points with respect to


the original function. A metamodel f ′(x) has a perfect


ranking preservation under the original function f(x)


if:


∀x, y ∈ F : (f(x) < f(y)⇒ f ′(x) < f ′(y))


∨ (f(x) > f(y)→ f ′(x) > f ′(y)) (3)


∨ (f(x) = f(y)⇒ f ′(x) = f ′(y))


where F is the feasible region of the problem. Therefore,


the performance measure can be defined as follows:


RP =


ND∑
i=1


ND∑
j=i+1


h(i, j)


 /


(
ND


2


)
(4)


where h(i, j):


h(i, j) =



if((f(i) < f(j) ∧ f ′(i) < f ′(j))


1 ∨(f(i) > f(j) ∧ f ′(i) > f ′(j))


∨(f(i) = f(j) ∧ f ′(i) = f ′(j)))


0 otherwise


(5)
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(a) Step test function.
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(b) Sphere test function.
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(c) Rosenbrock test function.
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(d) Ackley test function.
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(e) Rastrigin test function.
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(f) Schwefel test function.


Fig. 2 Average values of the application of the R2 metric to the produced results by PRS, KRG, RBF, and SVR approaches
on each problem. The x-axis shows the number of variables, while the y-axis shows the R2 metric value obtained by each
metamodeling technique. This figure intends to clarify the accuracy robustness and scalability of the adopted approaches.
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Fig. 3 Average values of the application of the R2 metric
to the produced results by PRS, KRG, RBF, and SVR ap-
proaches on all problems. The x-axis shows the number of
variables, while the y-axis shows the R2 metric value obtained
by each metamodeling technique. This figure intends to clar-
ify the accuracy robustness and scalability of the adopted
approaches.


where N refers to the number of solutions to validate


the model. The adopted methodology to measure the


RP consisted of training each metamodel with 100 solu-


tions, and then measuring the RP using 1000 solutions.


The procedure was applied to the six test problems pre-


viously introduced with their full range of instance sizes


(v = {2, 4, 6, 8, 10, 15, 20, 25, 50}).
For this performance measure, larger RP values are


preferred. Since this value is normalized between zero


and one, we will prefer the solutions closer to one.


5.1 Analysis of results


Figure 4 shows the results obtained by our first proposal


to measure the suitability. It indicates that although
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KRG and SVR approaches were competitive, RBF was


the approach that induced the best performance for the


adopted EA. However, since in general, SVR, KRG,


and RBF showed a similar performance in most of the


problems, this experiment suggests that an EA (in this


case a DE) can produce acceptable results even with a


metamodel that is not very accurate.


Figure 5 displays a boxplot graphic of the general


behavior of the approaches with respect to RP on all


test problems. From this figure, we can see that the


RBF produced the best behaviour according to RP


since its boxplot is closest to one, and also presents the


smallest deviation. Therefore, we conclude that RBF


was the approach that induced the best RP. Figure 6


shows the behavior of RP with respect to the number


of variables of the adopted problems while Figure 7 il-


lustrates the results of the RP performance measure in


all the adopted problems by instance size. From both


figures, we observed that RBF was very consistent in


all problem sizes. Moreover, in most of the problems,


the performance of PRS up to 20 variables was better


than the performance of SVR. Finally, KRG presented


the worst performance with respect to the increase in


the dimensionality.


It is worth noting that the higher the RP value,


the lower the probability to add a false optimum to the


problem. This feature is a very important characteristic


when optimizing a metamodel.


With this analysis of results, we can state that even


if a metamodel had a poor performance according to R2


metric but a good performance according to our RP


metric, one could expect good behavior in the meta-


heuristic (in this case we used a DE). However, if the


metamodel had good performance on R2 metric but a


bad RP performance, then we do not have elements to


predict its behavior in the optimization process. RBF


was the metamodeling approach that behaved best ac-


cording to this experiment.


6 Experiment 3: suitability with RP -based


fine-tuning


Although the results obtained in our second experiment


(shown in Section 5) indicate that our adopted accuracy


measure does not reflect properly the behavior of the


adopted metamodels when we they are incorporated


within an EA, we found that the RP performance mea-


sure does. Therefore, we decided to perform the fine-


tuning process all over again, but using RP as perfor-


mance measure.


The fine-tuning process was undertaken on the same


parameters of our first experiment (shown in Section 4).


After analyzing the results, we selected two different set


of parameters: (1) the parameters that produced the


best average accuracy considering all problems and in-


stances (the best overall settings, or BOS-RP for short),


and (2) the parameters that behaved best for each prob-


lem and on each instance size (best local settings or


BLS-RP for short), respectively. However, since the re-


sults of BOS-RP and BLS-RP are similar, we decided to


adopt BOS-RP for simplicity. Below, we present these


parameters:


– PRS: Degree of the polynomial=2, technique for


construct the regression={stepwise}
– KRG: Correlation function = {Exponential}
– RBF: Number of neurons in the hidden layer={15}
– SVR: C ={2E12}, γ ={0.6}, ε ={2E−5.0}


The new parameter-tuning produced a different set


parameters for RBF and SVR. Therefore, we will focus


exclusively on these two approaches in the remaining of


this experiment.


Then, we optimized the created metamodel at hand


in a DE algorithm and computed the distance from the


best solution to the optimum of the original test func-


tion in order to identify the metamodel that produces


the best behavior in our implemented EA (similar to


the first approach of our second experiment).


6.1 Analysis of results


Similarly to our experiment 1 (shown in Section 4), we


divided our test functions according their modality. Fig-


ure 8 displays the obtained results according the appli-


cation of the RP -metric to the solutions produced by


each metamodeling technique using the two adopted set


of parameters BLS and BOS.


Figures 8(a) and 8(b) show the average results con-


sidering unimodal and multimodal test functions, re-


spectively. Finally, the average results gathering all the


adopted test functions are shown in Figure 8(c). Be-


sides these results indicate that BOS-RP and BLS-RP


induced a similar behavior in the adopted metamodel-


ing approaches regardless of whether they are unimodal


or multimodal, when we compare these results (see Fig-


ure 8(c)) with respect to the obtained in the second ap-


proach of our second experiment (shown in Figure 7, we


can clearly realize that the new results outperform the


previous ones. From these results we can observe that


RBF improved significantly as it consistency toped the


best result of our adopted performance measure. Addi-


tionally, we can observed that 75% of the solutions that


SVR produced on this new experiment outperformed


the median of the results of our previous one.
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(a) Step test function.
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(b) Sphere test function.
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(c) Rosenbrock test function.
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(d) Ackley test function.
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(e) Rastrigin test function.
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(f) Schwefel test function.


Fig. 4 Distance from the best solution found by a tuple (metamodel, DE) to the optimum of the problem at hand. The x-axis
shows the number of variables, while the y-axis shows the distance of the best solution found by each model with respect to
the optimum.
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Fig. 5 Boxplots summarizing the ranking preservation of a
metamodel with respect to the original test function of the
problem at hand. Higher values of this y-axis are preferred.


Figure 9 gathers the results produced by the ex-


ecution of the DE on each metamodel. Since we are


interested in evaluating the results produced by SVR


and RBF (the approaches with different parameters),


each graphic only show both results, as well as their


counterparts of our previous experiment. In order to


differentiate the results, we added ‘RP’ postfix to the


labels of the new results.


Figure 9(e) shows the comparison of results of when


the approaches solved Rastrigin test function. From this


figure, we realized that SVR worsen its performance


when it solved instances up to 25 variables. However, it


produced similar results with 50 variables. On the other


hand, the new parametrization of RBF slightly outper-


formed the results obtained with the previous one.


Figure 9(d) presents the results obtained in Ackley


test function. It is easy to identify on this figure that


RBF improved its performance with the new tuning,
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(a) Step test function.
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(b) Sphere test function.
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(c) Rosenbrock test function.
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(d) Ackley test function.
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(e) Rastrigin test function.
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(f) Schwefel test function.


Fig. 6 Behavior of each metamodeling technique on each size of the adopted functions according to the ranking preservation.
The x-axis shows the number of variables, while the y-axis shows the ranking preservation achieved for each metamodeling
technique.
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Fig. 7 Average behavior on all the adopted problems by each
metamodeling technique according to the ranking preserva-
tion. The x-axis shows the number of variables, while the
y-axis shows the ranking preservation achieved for each meta-
modeling technique.


since it outperform our former experiment on all prob-


lem sizes. Moreover, SVR also presented a noticeable


improvement, since in our former study, it presented an


undesirable behavior with low-dimensional problems.


Additionally, this approach improved the distance mea-


sure on every problem size.


The results shown in Figures 9(c), 9(b), and 9(f) in-


dicate that the new tuning of RBF and SVR induced


a slight improvement than the former tuning in Rosen-


brock, Schwefel, and sphere test functions, respectively.


Finally, the results obtained in the step test prob-


lem, presented in Figure 9(a), show that RBF and SVR


induces a slight improvement for instances with 25 vari-


ables and fewer, but only RBF enhanced its results for


the 50 variable instance.
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The new parameters’ tuning ease the comparison


of results when we consider all the adopted test func-


tions, since RBF induced the best results of all the com-


pared metamodeling approaches across all the instance


sizes. Also, although SVR improved its over all perfor-


mance, it could not outfperformed the results produced


by KRG in all problems. Similar to our previous ex-


periment, PRS produced the worst results in this new


experiment.
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(a) Unimodal problems.
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(b) Multimodal problems.
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(c) All the problems together.


Fig. 8 Boxplots graphics obtained from the application of
RP metric to the results produced by PRS, KRG, RBF, and
SVR. Figures 8(a) and 8(b) show unimodal and multimodal,
while Figure 8(c) gathers the results for all the adopted test
functions.


7 Experiment 4: efficiency


Our fourth experiment measures the efficiency of the


adopted approaches. In order to calculate efficiency, we


measured the time employed to construct a metamodel


with 100 points and the required time that it takes to


predict 100 other responses. All the experiments were


executed in a computer Intel Core i3 with 2.6GHz and


4GB de RAM. The results of this experiment are shown


in Figure 10. These results indicate that the time con-


sumed by KRG is relatively large, mainly produced by


the embedded optimization method used to find the


best values of its parameter (θ). On the other hand,


SVR and RBF required almost constant time in this


experiment. Finally, the expended computational time


for PRS and KRG was very similar. In conclusion, if the


metamodel needs to be constructed several times in the


optimization process, we recommend using a metamod-


eling technique that requires a small amount of time,


i.e., RBF or SVR. However, if the metamodel only needs


to be constructed a single time, any metamodeling tech-


nique can be used.


8 Experiment 5: global and local metamodels


(GM vs. LMs)


When a metamodel is implemented into an EA, a fixed-


size repository of real-function-evaluated solutions is


usually managed (solutions from this repository are used


to create the metamodel). However, under the premise


that it is difficult to have a representative set of solu-


tions to approximate the whole search space of a func-


tion, we explored the idea to approximate it by regions.


This decision was strengthened in practice, since in our


previous experiments, we often found that there were


regions with either no solution or only a few solutions.


Such a scarcity of solutions in certain regions of the


search space induced a bias to dense regions (when us-


ing GM).


Below, three different approaches for creating LMs


are proposed; the first two are based on clustering tech-


niques while the third is based on a data structure.


These approaches are briefly explained below.


– The k nearest neighbors approach (k-nn) is a method


to classify objects based on the closest training ex-


amples in the design space (Silverman and Jones,


1989).


We will use k-nn to select the k real-evaluated solu-


tions nearest to a query point. The selected solutions


will serve to create an LM.


The computational complexity to find the solutions


to create the LM of this approach depends linearly
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(a) Step test function.


0 10 20 30 40 50
0


2


4


6


8


10


12


14


Number of variables


||
x


* −
x
||


 


 
SVR−R


2


RBF−R
2


SVR−RP


RBF−RP


(b) Sphere test function.
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(c) Rosenbrock test function.
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(d) Ackley test function.
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(e) Rastrigin test function.
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(f) Schwefel test function.


Fig. 9 Distance from the best solution found by a tuple (metamodel, DE) to the optimum of the problem at hand. The
metamodel was fine-tuned with the R2 or with RP performance measure. The x-axis shows the instance size, represented
by its number of variables, while the y-axis shows the distance of the best solution found by each model with respect to the
optimum.
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Fig. 10 Average execution time required by each metamodel
when training and predicting the adopted problems. The x-
axis shows the number of variables, while y-axis shows the
average training+prediction time.


on the size of the repository (Nrep). For a problem


of a specific dimensionality (dp) and using the Eu-


clidean distance, the computational complexity to


find the solutions belonging to the LM is of order


O(Nrepdp).


– The use of k-means (Forgy, 1965) to create meta-


models consists of splitting the decision space into


k subspaces. The LM is created with the solutions


that are located in the same subspace as the solution


to be evaluated.


The computational complexity of the k-means is


given with respect to the number of iterations (I)


required in the k-means algorithm, the size of the


repository (Nrep), the dimensionality of the prob-


lem (dprob), and the required number of clusters (k).
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Therefore, the complexity to obtain the clustered so-


lutions required to create the LM is ofO(NrepkIdprob).


– Binary space partitioning (BSP) is a technique for


subdividing a space into a convex set by hyper-


planes. The subdivision can be represented by means


of a tree data structure known as a BSP Tree. A


BSP Tree is thus a point access method that stores


all the solutions of the repository. The construc-


tion of the tree is similar as the proposals of Chow


and Yuen (Chow and Yuen, 2011; Yuen and Chow,


2009), although in both works the BSP Tree was


used for other purposes. The tree will store the po-


sitions and fitness of the real-evaluated solutions (in


the variable space). The pseudo-code for the inser-


tion in the BSP Tree is shown in Algorithm 1. The


root S of the BSP Tree represents the whole search


space and each node in a BSP Tree represents a


hyperplane that divides the space into two halves.


Therefore, the terminal nodes are the stored solu-


tions, and each non-terminal node or root node rep-


resents a subspace (Spi) of the search space.


Algorithm 1 BSP-Tree-Insertion(s, f(x), T ).


Input: Solution x, Fitness f(x), Tree T
Output: Tree T


Node =root node of T
while Node has two child nodes a and b do


if x = a or x = b then
Exit without inserting the element


end if
j = arg maxk∈D |a(k) − b(k)| {D is the dimensionality
of the problem}
if |a(j)− x(j)| ≤ |b(j)− x(j)| then


Node=a
else


Node=b
end if


end while
Insert a virtual child node to Node
Create a real child node that records x and f(x) under the
virtual child node


It is possible to create an LM in each subspace of the


BSP Tree. Therefore, in order to select the solutions


to create the metamodel, the BSP Tree is traversed


until the solution to be evaluated is found. All so-


lutions belonging to the solution’s subspace are go-


ing to feed the training set of the metamodel. If the


number of solutions is fewer than expected, then the


solutions belonging to the parent node are taken.


This procedure is repeated until a minimum num-


ber of required solutions (k) is reached. The compu-


tational complexity to find the solutions in a BSP


Tree with a certain number of solutions (NBSP ) and


a problem of D dimensions is of O(log(NBSP )D). In


this approach, it is necessary to take into account


the complexity to store the solutions in the BSP


Tree, which is O(log(NBSP )D). However, the store


procedure is carried out exclusively when the train-


ing dataset is updated.


8.1 Influence of the parameters in the local surrogate


models


To evaluate the performance of the different approaches,


we selected the same test functions used in our previous


experiments. Below, we describe in detail the employed


methodology to compare the metamodels.


1. Create a training dataset with a Latin hypercube of


size 100.


2. Train the LMs and the GM with the previously cre-


ated training dataset.


3. Create the validation dataset with Latin hypercubes


of size 200.


4. Predict the validation dataset using LM and GM.


5. Compute the mean squared error (MSE)


The metamodels were created using an RBF, since


it resulted in the most suitable approach in our previous


experiments. The parameters used in the RBF were the


BOS − RP found in the experiment 6. Moreover, in


this case we classified the size of our problems in low-,


medium-, and high-dimension sizes, having 2, 15, and


30 variables, respectively.


The results from this experiment are shown in Ta-


bles 2, 3, and 4. These tables contain the normalized


MSE obtained by each tested approach on each of the


six tested functions. We normalized the MSE according


to the highest and lowest errors in the entire table4 in


order to have errors between zero and one, since this


would facilitate the comparison of results. We prefer


values with error predictions closer to zero.


In order to have a deeper understanding about the


behavior of the adopted metamodeling techniques, we


studied the behavior induced by different parameter


settings.


8.2 k-nn tuning


We studied the required k closest training examples


to a query point. We selected 10, 25, and 50 values


to be given as input to this approach, since by hav-


ing 100 individuals as the population, the selection of


these values are intended to represent small, medium,


4 This normalization is known as normalized root-mean-
square deviation
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and big clusters with respect to the whole population.


The obtained results are shown in Table 2. The first


three columns of this table display the behavior for two


variables (low-dimension sizes). These results indicate


that the metamodeling technique behaves better when


a high number of solutions is used (50 out of 100) in


low-dimension instances. Therefore, we suggest using


as much information as possible when we are working


with low-dimension instances. However, when the size


of the instance increases, the metamodel requires nar-


rowing its width, concentrating on local information, as


Table 2 clearly indicates. Accordingly, we suggest the


use of k = 50 in low-dimension instances, and k = 10


in medium- and high-dimension instances.


8.3 k-means tuning


We studied the required number of clusters (k) of the


k-means algorithm. We selected 2, 4, and 10 to be given


as input to this approach. The idea behind the selection


of these values is that by having two clusters (k = 2),


in the best case each cluster will have about 50% of


the population, i.e., 50 solutions each. Similarly, when


having 4 and 10 clusters we intended to group about


25% and 10% of the population in each cluster. Results


shown in Table 3 corroborate our previous findings that


the metamodel prefers having as much information as


possible (i.e., k = 2) in low-dimension sizes, while for


medium- and high-dimension instances it is better to


concentrate in specific regions (i.e., k = 10).


8.4 BSP Tree tuning


In the BSP Tree approach, the parameter k refers to the


number of minimal solutions to create the LM; however,


this number does not restrict the whole set of points


to train the metamodel. For example, if the subspace


of the solution to evaluate contains more than k solu-


tions, the LM will also contain more than k solutions.


The adopted values were k = {10, 25, 50}. The main


idea behind the selection of these parameters was to be


fair with respect to the previous two approaches. The


results shown in Table 4 indicate that for low-dimension


instances, the metamodel prefers to use as much infor-


mation as possible (k = 50), while for medium- and


high-dimension instances, it performs better by focus-


ing on a specific region (k = 10).


8.5 Comparison of results


According to our results, the selected metamodeling ap-


proach (RBF) prefers to have as much information as


possible when solving low-dimension instances. How-


ever, for medium- and high-dimension instances, RBF


prefers to have solutions focused around the region of


interest.


Table 5 shows that the GM had the best perfor-


mance in low-dimension instances, confirming our pre-


vious results with this, while Tables 6 and 7 assure


that the compared LMs approaches outperformed the


GM in medium- and high-dimension instances. These


results provide evidence that LMs are a viable strategy


for improving the prediction of metamodels. Finally, in


medium- and high-dimension instances the best aver-


aged results were obtained by the BSP Tree approach


followed by the k-nn approach.


9 Conclusions and future work


In order to avoid a biased comparison for bad parame-


ter tuning, we decided to search for the parameter con-


figuration of each meta-modeling technique that per-


forms best (in average) in all the adopted test functions.


We called this the “best overall settings” (BOS). Also,


we wanted to discover the parameters that induced the


best performance on each meta-modeling technique for


each test function. We called this the “best local set-


tings” (BLS). A comparison of the results shows us that


the advantage of having BLS is minimal. Therefore, we


suggest tuning the metamodeling parameters according


to our BOS.


We also found that RBF and SVR are the most effi-


cient approaches among the reviewed ones. However,


when we search for the most accurate approach, we


select KRG as the best approach to be used in low-


dimension problems (followed by SVR). On the other


hand, RBF is the most accurate approach in high-dimension


problems (followed by SVR). However, if we consider all


instance sizes, we would select RBF as the most robust


and scalable approach.


Moreover, since we wanted to evaluate how conve-


nient metamodeling techniques are when incorporated


into EAs, we propose measuring their suitability. We


proposed two approaches to evaluate such a criterion;


our first approach measured the distance from best so-


lution obtained by the metamodeling technique-EA to


the optimal solution (in the objective function space),


while our second approach measures the percentage of


solutions in the metamodel that preserves the hierarchy


according to the original objective function. Our results


indicate that RBF was the best approach in both stud-


ies.


After realizing that our RP performance measure


was better aligned with the manner with which EAs se-
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low-dimension medium-dimension high-dimension
Problem k=10 k=25 k=50 k=10 k=25 k=50 k=10 k=25 k=50
Rosenbrock 0.121826 0.021356 0.000121 0.000009 0.002316 0.361654 0.000001 0.000522 0.221734
Sphere 0.132118 0.049620 0.001234 0.102314 0.121815 0.273419 0.076130 0.142721 0.299782
Step 0.191102 0.061893 0.000098 0.000010 0.003018 0.412185 0.000001 0.001012 0.499836
Ackley 0.201286 0.027981 0.000920 0.000008 0.003015 0.401243 0.000001 0.001311 0.372318
Rastrigin 0.152369 0.053147 0.001519 0.000009 0.001721 0.432418 0.000002 0.001723 0.539018
Schwefel 0.206192 0.071992 0.002015 0.000007 0.001218 0.231235 0.000002 0.001271 0.424123
Average 0.167482 0.047665 0.000985 0.017060 0.022184 0.352026 0.012690 0.024760 0.392802


Table 2 Adjustment of the required k closest training examples to a query point in low-, medium-, and high-dimension
instances according to normalized root-mean-square deviation.


low-dimension medium-dimension high-dimension
Test function k=2 k=4 k=10 k=2 k=4 k=10 k=2 k=4 k=10
Rosenbrock 0.001973 0.011723 0.113124 0.311023 0.001121 0.000009 0.521243 0.002214 0.000015
Sphere 0.012985 0.041211 0.201633 0.202155 0.172147 0.162410 0.401123 0.266863 0.214201
Step 0.007123 0.025371 0.192317 0.380021 0.001346 0.000015 0.501321 0.001452 0.000003
Ackley 0.003418 0.0321245 0.201622 0.371457 0.002001 0.000019 0.501351 0.002271 0.000009
Rastrigrin 0.003685 0.033123 0.223119 0.337123 0.001612 0.000010 0.494142 0.001539 0.000004
Schwefel 0.005725 0.030162 0.139281 0.304611 0.001001 0.000011 0.361946 0.001122 0.000004
Average 0.005818 0.028952 0.178516 0.317732 0.029871 0.027079 0.463521 0.045910 0.035706


Table 3 Adjustment of the required number of clusters (k) required by k-means in low, medium-, and high-dimension instances
according to normalized root-mean-square deviation.


low-dimension medium-dimension high-dimension
Test function k=10 k=25 k=50 k=10 k=25 k=50 k=10 k=25 k=50
Rosenbrock 0.083425 0.019081 0.001912 0.000001 0.006612 0.308912 0.000000 0.042301 0.409313
Sphere 0.091712 0.007312 0.000601 0.0751245 0.169918 0.247121 0.062217 0.168232 0.219912
Step 0.046163 0.002581 0.000194 0.000000 0.005628 0.355012 0.000000 0.031842 0.381020
Ackley 0.117163 0.016612 0.002131 0.000001 0.008712 0.313243 0.000001 0.042192 0.401450
Rastrigin 0.100118 0.009453 0.000512 0.000001 0.005743 0.313201 0.000000 0.036080 0.449501
Schwefel 0.103617 0.008771 0.000056 0.000001 0.017324 0.379128 0.000001 0.020112 0.277961
Average 0.090366 0.010635 0.000901 0.012521 0.035656 0.319436 0.010370 0.056793 0.356526


Table 4 Adjustment of the k number of minimal solutions to create the LM using a BSP Tree in low-,medium-, and high-
dimension instances according to normalized root-mean-square deviation.


Test function k-nn k-means BSP GM


Rosenbrock 0.001761 0.049271 0.007110 0.003210
Sphere 0.004920 0.025766 0.002451 0.000000
Step 0.000156 0.008101 0.002732 0.000000
Ackley 0.001408 0.012915 0.002350 0.000000
Rastrigrin 0.003324 0.026400 0.010901 0.000001
Schwefel 0.002716 0.019593 0.003341 0.000001


Average 0.002381 0.023674 0.004814 0.000535


Table 5 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
low-dimension instances.


Test function k-nn k-means BSP GM


Rosenbrock 0.000000 0.000000 0.000003 0.344958
Sphere 0.160315 0.231249 0.292345 0.129843
step 0.000000 0.000001 0.000009 0.365923
ackley 0.000000 0.000001 0.000004 0.353567
Rastrigrin 0.000000 0.000001 0.000003 0.331678
Schwefel 0.000000 0.000002 0.000012 0.563293
Average 0.026719 0.038542 0.048729 0.348210


Table 6 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
medium dimensional problems.







Comparison of Metamodeling Techniques in Evolutionary Algorithms 17


Test function k-nn k-means BSP GM


Rosenbrock 0.000000 0.000001 0.000008 0.384567
Sphere 0.227124 0.332456 0.200012 0.112567
step 0.000000 0.000003 0.000008 0.455183
ackley 0.000000 0.000001 0.000009 0.425788
Rastrigrin 0.000000 0.000002 0.000003 0.495866
Schwefel 0.000000 0.000001 0.000004 0.325552
Average 0.037854 0.055411 0.033341 0.366587


Table 7 Comparison of the normalized root-mean-square deviation obtained by k-nn, k-means, BSP Tree, and the GM in
high-dimension problems.


lect solutions, we decided to perform a parameters’ tun-


ing based on such a performance measure. The new tun-


ing phase produced a different parameters’ selection on


two out of four metamodels. The new parameter sets in-


duced the better performance on their approaches. This


new experiment endorse our previous findings that RBF


is the metamodeling technique that induced the best


performance of our EA. This experiment also found


that although the accuracy of the metamodel does not


reflect properly the behavior of the adopted metamod-


els when we they are incorporated within an EA, the


RP performance measure does. Therefore, we suggest


the use of this performance measure for future compar-


isons among metamodeling techniques.


In addition, we also evaluated three different ap-


proaches to select solutions in order to create LMs.


The first two approaches are based on clustering algo-


rithms. The last approach uses a data structure called


BSP Tree to split the entire search space according to


the repository of solutions. The compared algorithms


were tuned with respect to a single parameter. Re-


sults showed that the RBF method prefers to have as


much information as possible in low-dimension prob-


lems. However, the method prefers to have more clus-


tered information when the problem size increases.


A comparison of results indicates that for medium-


and high-dimension instances the best approach to be


selected is either BSP or the k-nn (the average per-


formance of BSP was better than k-nn, but the latter


performed better in more instances).


Part of our future work will include the incorpo-


ration of more metamodeling techniques into the com-


parative study. Additionally, some meta-modeling tech-


niques train a metamodel that minimizes the MSE in a


validation dataset. The maximization of RP may pro-


duce good results. Therefore, we would like to use the


RP indicator to train metamodels. Finally, we would


like to evaluate the LM with other meta-modeling tech-


niques, because there may be interesting results.
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Bäck T. (1996) Evolutionary Algorithms in Theory and


Practice. Oxford University Press


Barton R. (1992) Metamodels for Simulation Input-


Output Relations. In: Proceedings of the 24th con-


ference on Winter simulation, ACM, New York, NY,


USA, WSC ’92, pp. 289–299


Carpenter W., Barthelemy J. (1992) A Comparison


of Polynomial Approximation and Artificial Neural


Nets as Response Surface


Chow C., Yuen S. (2011) An Evolutionary Algorithm


That Makes Decision Based on the Entire Previ-


ous Search History. IEEE Transactions Evolutionary


Computation 15(6):741–769


De Jong K. (1975) An Analysis of the Behavior of a


Class of Genetic Adaptive Systems. PhD thesis, Uni-


versity of Michigan, Ann Arbor, MI, USA
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