
Pareto-adaptive ǫ-dominance

Alfredo G. Hernández-Dı́az agarher@upo.es
Department of Quantitative Methods, Pablo de Olavide University, Seville, Spain

Luis V. Santana-Quintero lvspenny@hotmail.com
Centro de Investigación y de Estudios Avanzados, México D.F., México

Carlos A. Coello Coello ccoello@cs.cinvestav.mx
Centro de Investigación y de Estudios Avanzados, México D.F., México

Julián Molina julian.molina@uma.es
Department of Applied Economics (Mathematics), University ofMálaga,Málaga Spain

Abstract

Efficiency has become one of the main concerns in evolutionary multiobjective op-
timization during recent years. One of the possible alternatives to achieve a faster
convergence is to use a relaxed form of Pareto dominance that allows us to regulate
the granularity of the approximation of the Pareto front that we wish to achieve. One
such relaxed forms of Pareto dominance that has become popular in the last few years
is ǫ-dominance, which has been mainly used as an archiving strategy in some multi-
objective evolutionary algorithms. Despite its advantages, ǫ-dominance has some lim-
itations. In this paper, we propose a mechanism that can be seen as a variant of ǫ-
dominance, which we call Pareto-adaptive ǫ-dominance (paǫ-dominance). Our pro-
posed approach tries to overcome the main limitation of ǫ-dominance: the loss of sev-
eral nondominated solutions from the hypergrid adopted in the archive because of the
way in which solutions are selected within each box.

Keywords

evolutionary multiobjective optimization, ǫ-dominance, differential evolution.

1 Introduction

Laumanns et al. (2002) proposed a relaxed form of dominance for multi-objective evo-
lutionary algorithms (MOEAs), named ǫ-dominance. Thismechanism acts as an archiv-
ing strategy to ensure both properties of convergence towards the Pareto-optimal set
and properties of diversity among the solutions found. Laumanns et al. (2002) pro-
posed an extension of the classical Pareto-dominance relation so that a point f ∈ R

m

not only dominates those points with lower or equal fitness in all their objectives and
strictly lower in at least one objective, but also all points close enough to f (i.e., those
with a distance to f less than an ǫ). This value, ǫ, can be provided by the decision maker
to control the size of the solution set. Nevertheless, because the geometrical character-
istics of the Pareto-optimal set (concavity, convexity, curvature, torsion, disconnected
segments, etc.) are usually unknown to the decision maker, we can lose a high number
of good solutions if the ǫ value is badly chosen.
Despite the obvious usefulness of ǫ-dominance, this mechanism has several draw-

backs from which the main one has to do with the difficulties of computing an ap-
propriate value of ǫ that provides the number of nondominated solutions that the user

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

Hernández-Dı́az, Santana, Coello Coello, Molina

wants. Another important limitation of this mechanism is the fact that it loses solutions
lying on segments of the Pareto front that are almost horizontal or almost vertical, as
well as the extreme points of the Pareto front. This has a direct impact on the spread of
solutions along the Pareto front.
This paper provides an extension of ǫ-dominance that shares its good convergence

properties while addressing the problems indicated above. This is the reason why we
will only consider diversity performancemetrics throughout this paper. The remainder
of this paper is organized as follows. In Section 2, we provide the basic definitions as-
sociated to ǫ-dominance, as well as a brief description of its main limitations. Section 3
contains the detailed description of our proposed scheme. Section 4 provides the ex-
perimental setup used to validate our proposed approach. Our scheme is incorporated
into a multi-objective evolutionary algorithm, and its results are comparedwith respect
to the same algorithm using ǫ-dominance and with respect to the ǫ-MOEA (Deb et al.,
2005a). Our results are presented and analyzed in Section 5. Finally, some conclusions
and possible paths for future research are provided in Section 6.

2 ǫ-dominance

Laumanns et al. (2002) proposed two different methods/schemes to implement ǫ-
dominance: the additive and the multiplicative approaches. We assume all objectives
are to be minimized. Then, given a vector f ∈ R

m and ǫ > 0, for the additive scheme f
is said to ǫ-dominate all points in the set

{g ∈ R
m : fi − ǫ ≤ gi, for all i = 1, ..., m}

whereas for the multiplicative scheme f is said to ǫ-dominate all points in the set

{g ∈ R
m : fi(1− ǫ) ≤ gi, for all i = 1, ..., m} .

Although the above definitions assume the same ǫ value for all the objectives, they
can be easily generalized to consider a different value for each objective. In order to do
this, we only have to take an ǫi for each i ∈ {1, 2, ..., m}. Without loss of generality, we
assume that 1 ≤ fi ≤ K, for all i.
Both schemes generate a hyper-grid in the objective functions space with

(

K−1
ǫ

)m

boxes in the additive scheme and
(

− log K
log(1−ǫ)

)m

for the multiplicative one. As ǫ-

dominance only allows one point in each box, these grids could accommodate a maxi-

mum of
(

K−1
ǫ

)m−1
non ǫ-dominated points for the additive scheme and

(

− log K
log(1−ǫ)

)m−1

non ǫ-dominated points for the multiplicative scheme. Another possibility would be
to ask the decision maker for the number of desired solutions and adjust the ǫ val-
ues in order to achieve that number. For example, if the decision maker wants T
points in the Pareto front, for the additive scheme we can easily compute the value

ǫ = (K − 1) /T
1

m−1 , that will generate a hyper-grid with a maximum capacity of T

points non ǫ-dominated. Similarly, this leads to an ǫ = 1−K−T
1

1−m
for the multiplica-

tive scheme.
ǫ-dominance has been found to be an efficient mechanism for maintaining diver-

sity in multiobjective optimization problems without losing convergence properties to-
wards the Pareto-optimal set (Deb et al., 2003; Deb et al., 2005a; Reyes Sierra and Coello
Coello, 2005). Moreover, its implementation is quite easy and the decision maker can
control the number of obtained solutions in a very intuitive way. As it is shown in Lau-
manns et al. (2002), ǫ-dominance creates a hyper-grid in the objective functions space

2 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Figure 1: Uniform grid with 400 boxes (maximum capacity of 20 points) for the curve
x2 + y2 = 1. This grid allows a maximum of 12 points (the other 8 points are lost)
because either the extreme points are easily ǫ-dominated or the precision of the grid is
insufficient.

Figure 2: Non-uniform grid with 400 boxes (maximum capacity of 20 points) for the
curve x2 + y2 = 1. In this case, because the front is concave, the grid only allows a
maximum of 10 points, losing again both extreme points of the Pareto front.

Evolutionary Computation Volume x, Number x 3

Hernández-Dı́az, Santana, Coello Coello, Molina

where each box uniquely contains one point. In order to do this, a two-level selection
mechanism is implemented. The first checks a box-level dominance relation, so that the
algorithm always maintains a set of nondominated boxes. In the second level, if two
points share the same box, the traditional Pareto dominance relation is applied, so that
the dominating point is retained. If none of these two points dominates the other, then
the criterion normally adopted is to keep the point closest to the lower left hand corner
of the box (or to the origin, for more than two objectives). Note that despite the use of
this selection mechanism inside each box, this does not affect the convergence rate, be-
cause we are always maintaining the best solutions found so far (following the ideas of
(Rudolph and Agapie, 2000)). These mechanisms are also used in our paǫ-dominance.
Thus, both our paǫ-dominance and ǫ-dominance guarantee convergence.
However, ǫ-dominance has some limitations such as the following:

1. We can lose a high number of efficient solutions if the decision maker does not take
into account (or does not know beforehand) the geometrical characteristics of the
true Pareto front of the problem to be solved.

2. It is normally the case that we lose the extreme points of the Pareto front, as well as
points located in segments of the Pareto front that are almost horizontal or vertical,
as shown in Figure 1.

3. The upper bound for the number of points allowed by a grid is not easy to achieve.
For a non-adaptive grid, the upper bound is only achieved when the real Pareto
front is linear.

4. When adopting a multiplicative scheme, the size of the region ǫ-dominated by the
point f ∈ R

m depends on the fi values. Then, the size of this region is larger in the
cases where the fi values increase. For the same reason, if the fi values are close
to zero, ǫ-dominance would be similar to the traditional Pareto-dominance. This
kind of grid is not suitable, for instance, for concave Pareto fronts (see Figure 2).

3 Pareto-adaptive ǫ-dominance

In order to address some of the problems previously described, we propose an alter-
native scheme for the additive ǫ-dominance. Our proposal is called Pareto-adaptive-
ǫ-dominance (paǫ-dominance). This scheme maintains the good properties of ǫ-
dominance while overcoming its main limitations.
In our proposal, we consider not only a different ǫ value for each objective but also

the vector ǫ = (ǫ1, ǫ2, ..., ǫm) associated to each f = (f1,f2, ..., fm) ∈ R
m depending on

the geometrical characteristics of the Pareto-optimal front. In other words, we consider
different intensities of dominance for each objective according to the position of each
point along the Pareto front. Then, the size of the boxes will be adapted depending
on the area in the objective functions space so that boxes will be smaller where needed
(normally at the extremes of the Pareto front), and larger in other less problematic parts
of the front.
For this aim, each Pareto front (that we will assume normalized: 0 ≤ fi ≤ 1 for any

i) will be associated to one curve of the following family

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞} .

for bi-objective optimization problems,

{xp + yp + zp = 1 : 0 ≤ x, y, z ≤ 1, 0 < p <∞}

4 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Figure 3: Curves in the reference set for p = 1
3 , 1

2 , 1, 2, 3. The ǫ values we have to con-
sider for p = 2 and p = 3 have to be different because x3 + y3 = 1 has longer horizontal
and vertical stretches than x2 + y2 = 1. The same happens for p = 1

3 and p = 1
2 .

for three dimensional problems, or

{xp
1 + xp

2 + · · ·+ xp
n = 1 : 0 ≤ x1, x2, ..., xn ≤ 1, 0 < p <∞} .

forN -dimensional problems. These families have the following property: for p > 1, the
curve (or surface) is concave and the bigger the p value the longer the almost horizontal
(and almost vertical) parts of the front; and, for p < 1, the curve (surface) is convex and
the lower the p value the longer the almost horizontal (and almost vertical) stretches in
the front. Finally, for p = 1we get the linear front x+y = 1. For this last value, it will be
shown that our scheme coincides with the additive ǫ-dominance. Thus, our proposal
generalizes the ǫ-dominance concept introduced by Laumanns et al. (2002) (just taking
p = 1 in (1)).
In Figure 3 we show five different curves of this family for p ∈

{

1
3 , 1

2 , 1, 2, 3
}

.
In order to decide the value of p, we need an initial Pareto front approximation,

denoted by F , which will determine which value of p fits better to our front. This is, we
will use F to be the model where the p-curve should fit. Then, the number of efficient
points included in F can be critical for the final performance, because if the value of p is
not appropriate, then the grid will not be appropriate neither. Obviously, the higher the
number of efficient points in F the better the performance of the grid generated. On the
other hand, if we want to maintain the diversity properties of ǫ-dominance, we should
generate the first grid as soon as possible. For example, for a grid with a maximum
capacity of 100 vectors, different experiments performed by the authors indicated that
the best results are obtained when the number of points in F is between 75 and 125
(we set it at 100 for our experiments). So, we store all the nondominated points found
in the archive (or secondary population) during the search process checking the Pareto
dominance relation among them until reaching the number of desired nondominated
points to generate the first grid.

Evolutionary Computation Volume x, Number x 5

Hernández-Dı́az, Santana, Coello Coello, Molina

To compute the value of p, we calculate the area (hypervolume) under the polig-
onal line (surface) formed by points in F (see Section 3.3 for further details). Once we
know this area, we estimate the value of p ∈ (0, +∞) by means of an interpolation pro-
cess. We choose p when the area under xp + yp = 1 is as similar to the F hypervolume
as desired (this precision is set beforehand).
Although we are assuming that the Pareto front is symmetrical, this method could

be generalized using the sets

{xp + yq = 1 : 0 ≤ x, y ≤ 1, 0 < p, q <∞} ,

{xp + yq + zr = 1 : 0 ≤ x, y, z ≤ 1, 0 < p, q, r <∞}
or

{xp1

1 + xp2

2 + · · ·+ xpn
n = 1 : 0 ≤ x1, x2, ..., xn ≤ 1, 0 < p1, p2, ..., pn <∞} .

Nevertheless, the association procedure is more unstable, as it depends on F to a higher
degree and the error for the estimated p and q values could be large.
Obviously, ǫ-dominance and paǫ-dominance work better for continuous fronts.

In the case of disconnected fronts, both schemes have to be handled more carefully.
The approximation of the p value could be less realistic depending on the number of
parts that conform the Pareto front and the distance between them. Nevertheless, paǫ-
dominance has been tested with Kursawe’s problem (see Sections 4 and 5) with success,
and this problem has a Pareto front consisting of four (disconnected) segments.

3.1 ǫ computation

Once the p value is estimated and the number T of points desired by the decision maker
is known, we compute the sizes of the boxes for each objective i ∈ {1, 2, ..., m}, that is,
the vector ǫi =

(

ǫi
1, ǫ

i
2, ..., ǫ

i
T

)

.

We use geometric sequences to do this1: we compute these values according to a
geometric sequence depending on p, T and the size of the first box for each dimension,
ǫi
1, so that, for n ≥ 2,

ǫi
n =

ǫi
n−1

pvi
=

ǫi
n−2

(pvi)
2 = · · · = ǫi

1

(pvi)
n−1 (1)

where vi controls the speed of variation of the ǫ values in order to get a uniform distribu-
tion in the Pareto front.
Then, for each objective i ∈ {1, 2, ..., m} we have to estimate the size of the first

box, ǫi
1, and the speed vi. To this end, we propose the following system of nonlinear

equations, for each i,

T
∑

n=1
ǫi
n = 1

T/2
∑

n=1
ǫi
n = 1

2
(1

p
)

. (2)

The first equation represents the fact that the sum of the sizes of all boxes must
be equal to the range of fi. The second equation tries to spread the obtained efficient

1Geometric sequences allow us to easily control the size of the boxes either for increasing or for decreasing
sizes (that is, for convex or concave problems). Also, they do not have to be explicitly added, since the
expression to compute its summation is known beforehand.

6 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

points along the front and forces the accommodation of T/2 nondominated points in
one half of the objective i, and the remaining T/2 points in the other half. Taking into
account that xp + yp = 1 is symmetric, it is easy to obtain the middle point:

(

1
21/p , 1

21/p

)

.
As both series in (2) are geometric, it follows that

T
∑

n=1
ǫi
n =

∑T
n=1

ǫi
1

(pvi)n−1 = ǫi
1

1−(1
pvi)T

1− 1
pvi

= ǫi
1

pT vi−1
(pvi−1)p(T−1)vi

= 1

T/2
∑

n=1
ǫi
n =

∑T/2
n=1

ǫi
1

(pvi)n−1 = ǫi
1

1−(1
pvi

)T/2

1− 1
pvi

= ǫi
1

p
T
2

vi−1

(pvi−1)p(T
2

−1)vi
= 1

21/p

. (3)

Then, the solutions of (3) are

ǫi
1 = (pvi−1)p(T−1)vi

pT vi−1

(

1− 2
1
p

)

pTvi + 2
1
p p

T
2 vi − 1 = 0

. (4)

However ǫi
1 is already calculated in the first equation and it does not appear in the

second one. So, we only have to solve the second equation in (4). Due to its nonlinearity,
we propose to solve it using a numerical method, for example, a dichotomy method
(Rao, 1996). Although this is not the fastest numerical method available, we decided to
use it because of the simplicity of its implementation and the easy precision control it
gives us. Along our experiments, we applied a dichotomy method for vi in the interval
[0.001, 0.1] because we set T = 100 and 1

12 ≤ p ≤ 12.

3.2 Box Index Vector

As in the original ǫ-dominance, the dominance relation is generalized among boxes.
That is, at most one element is kept in each box and this representative vector can only
be replaced by a dominating one. To this end, we associate with each vector f ∈ R

m a
box index vector b(f) = (b1, ..., bm) ∈ Z

m. So, in a first level, the algorithm always main-
tains a set of nondominated boxes (this is, a set of nondominated box index vectors).
And in a second level, if two vectors share the same box, the representative vector is
eliminated if the other one dominates it.
In order to calculate the box index vector of f = (f1, f2, ..., fm), we take bi to be the

only integer so that
bi

∑

n=1

ǫi
n ≤ fi <

bi+1
∑

n=1

ǫi
n.

for all i ∈ {1, 2, ..., m}. Again, because both series are geometric, the above inequalities
are equivalent to

ǫi
1

pvi −
(

1
pvi

)bi−1

pvi − 1
≤ fi < ǫi

1

pvi −
(

1
pvi

)bi

pvi − 1
.

If we assume that pvi − 1 > 0, it is equivalent to

pvi −
(

1

pvi

)bi−1

≤ fi (pvi − 1)

ǫi
1

< pvi −
(

1

pvi

)bi

.

Evolutionary Computation Volume x, Number x 7

Hernández-Dı́az, Santana, Coello Coello, Molina

Then, by successive (elementary) operations, we have the following equivalent expres-
sions

ln

(

1

pvi

)bi−1

≥ ln

(

pvi − fi (pvi − 1)

ǫi
1

)

> ln

(

1

pvi

)bi

.

(bi − 1) ln

(

1

pvi

)

≥ ln

(

pvi − fi (pvi − 1)

ǫi
1

)

> bi ln

(

1

pvi

)

bi − 1 ≤
ln

(

pvi − fi(p
vi−1)
ǫi
1

)

ln
(

1
pvi

) < bi.

Finally, we choose

bi(f) =

log
(

ǫi
1pvi−(pvi−1)fi

ǫi
1

)

log
(

1
pvi

) + 1

 .

It is easy to check that the same bi is obtained if p
vi − 1 < 0.

In that way, although the whole objective function space is discretized into boxes,
the nondominated vectors are allocated into boxes whose box index vectors range from
(0, 0, ..., 0) to (T − 1, T − 1, ..., T − 1). Nevertheless, if vectors outside the above limits
are found, we must include them in the grid (if their box index vectors are non-paǫ-
dominated) in one of the two following ways:

1. Update the grid re-computing new box limits. In this case, a new p value would
also be calculated. This does not ensure the convergence property of ǫ-dominance
(see (Laumanns et al., 2002)) and the behavior could be worse.

2. Do not change any of the box limits (the assignment of the elements to the boxes
must remain the same). This guarantees the same convergence properties of ǫ-
dominance but the number of nondominated points could be larger than T . In this
case, a larger ǫ value can be chosen, but the grid would have to be updated again.

In our proposed approach we follow the second choice shown above, and, once
the grid is generated, its boundaries are never modified. Note however, that the grid
depends on the quality of the first set of nondominated points, F , as this set determines
the value of p. The best performance is attained if there is no need to re-adjust this initial
grid. We only update the grid when some of the coordinates of the new box index
vector are sufficiently far to require it, this is, when bi < −3 or bi > T + 3 for some i.
The best results have been obtained when the first grid is generated once F contains at
least 100 nondominated points, as the hyper-grid is almost never re-adjusted with this
setting. This minimum value has been empirically derived after numerous experiments
for the curves xp + yp = 1. In all the cases that the authors empirically tested, with
values close to 100, the value of p that was obtained was very close to the simulated
curve.
Finally, if two vectors f and g share the same box (so, b(f) = b(g)) and neither

dominates the other, we choose the one closer (using Euclidean distance, for example)
to the lower left hand corner of the box,2 denoted by c(b) = (c1, ..., cm). In order to

2For more than two objectives, a reference point could always be selected in each hypercube, bearing in
mind the characteristics of the problem. As long as the mechanism used to select this reference point does
not change, the convergence properties still hold.

8 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Figure 4: Alternative grid with 400 boxes (maximum capacity of 20 points) using paǫ-
dominance for the curve x2 + y2 = 1. In this case the grid allows a maximum of 19
points.

calculate ci, we sum the size of all the previous boxes, that is

ci =

bi
∑

n=1

ǫi
n = ǫi

1

pvibi

(pvi − 1)pvi(bi−1)

for all i = 1, 2, ..., m.
In Figure 3.2 we can see the grid obtained for x2 + y2 = 1. The figure clearly

indicates how the grid adapts the size of the boxes as needed.

3.3 Algorithm for the Hypervolume

As we mentioned above, each Pareto front is associated to one curve in

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞}

by estimating the area (hypervolume) under the polygonal line (surface) formed by the
points in F in objective function space.

Let us assume a bi-objective optimization problem and F = {f j = (f j
1 , f j

2) : j =
1, 2, ..., |F |} is the set of nondominated vectors obtained before generating the hyper-
grid. Obviously, if we rank points in F in ascending order of magnitude in the first
objective, f2 values are ranked in descending order. Then, the area under the polygo-
nal, A(F), is calculated by the mean value of the following lower, LA(F), and upper,
UA(F), approximation areas:

LA(F) =

|F |−1
∑

i=1

(

f i+1
1 − f i

1

)

f i+1
2 ,

and

UA(F) =

|F |−1
∑

i=1

(

f i+1
1 − f i

1

)

f i
2.

Evolutionary Computation Volume x, Number x 9

Hernández-Dı́az, Santana, Coello Coello, Molina

Algorithm 1 The paǫ-dominance algorithm - Part 1

Require: T← number of solutions given by user
1: procedure PAǫ-DOMINANCE GRID (PnPoints, nPoints, nObjectives)
2: maxV aluef [i]← PnPoints ⊲ maximum values per each nObjectives
3: minV aluef [i]← PnPoints ⊲ minimum values per each nObjectives
4: if nObjectives == 2 then
5: area← Area(PnPoints, nPoints) ⊲ Calculate area
6: p← get P(area, nObjectives)
7: else
8: hyper← HyperVolume(PnPoints, nPoints, nObjectives) ⊲ Hypervolume
9: p← get P(hyper, nObjectives)
10: end if
11: v← Speed variation(p, T) ⊲ Calculate Speed Variation
12: aux← {(pv − 1) · p(T−1)·v}/{p(T ·v) − 1}
13: for i← 0, nObjectives do ⊲ Calculate First ǫ1 in each dimension
14: ǫi

1 ← abs ‖maxV aluef [i]−minV aluef [i]‖· aux;
15: end for
16: end procedure

17: procedure GET P(hyper, nObjectives)
18: if nObjectives == 2 then
19: fp← openFile p.txt ⊲ generated for 2 objectives
20: else
21: fp← openFile 3p.txt ⊲ generated for 3 objectives
22: end if
23: repeat ⊲
24: line← ReadNextLine (fp) ⊲ read line. eg: {0.5, 0.1667}
25: if hyper < line2 then ⊲ line2 = Second value of line. eg: 0.1667

26: return lastline1 + (hyper−lastline2)·(line1−lastline1)
(line2−lastline2)

27: end if
28: lastline← line
29: until ¬ (endofFile fp)
30: end procedure

31: procedure SPEED VARIATION(p, T)
32: low← 0.001
33: up← 1.0
34: lowsign← Dichotomy fun (p, T , low);
35: repeat
36: medium← ((up + low) / 2.0)
37: auxsign← Dichotomy fun (p, T , medium)
38: if (auxsign == lowsign) then
39: low←medium
40: else
41: up←medium
42: end if
43: until ((up - low) < 10−4)
44: return ((up + low) / 2.0);
45: end procedure

10 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Algorithm 2 The paǫ-dominance algorithm - Part 2

1: procedure DICHOTOMY FUN(p, T , x)
2: fun← ((1− 2(1/p)) · p(T∗x)) + 2(1/p) · p(T∗x/2) − 1
3: if (0 < fun) then
4: return 1
5: else
6: return 0
7: end if
8: end procedure

¿From these areas,A(F) is

A(F) =
LA(F) + UA(F)

2
.

For the three-dimensional case, the difficulty increases because points cannot be
fully ranked. So, we propose the following procedure:
Initially, the nPoints points are sorted by their values in the third objective value.

These values are then used to make slices. Each slice has a hypervolume in the first 2
objectives (Area). This area is calculated and it is multiplied by its depth in the third
objective; then, the values obtained are summed up to obtain the total hypervolume of
the nPoints points.
Each slice in the hypervolume contains a different number of points, because we

iteratively remove the lowest value point in the third objective. However, not all the
points in each slice contribute to the Area in that slice. Some points may be dominated
in the first two objective values and contribute nothing. So, it is important to re-check
dominance (as a maximization problem) in the first two objective values (not including
the third objective) by each slice to calculate the hypervolume (Area).

4 Validation of our Proposed Approach

In order to validate our proposed paǫ-dominance, we adopted three algorithms: Two
of them use ǫ-dominance, and in one of them, this type of mechanism is replaced by
our paǫ-dominance to make the third algorithm. This will allow us to show also the
performance of the same algorithm with and without paǫ-dominance. The three multi-
objective evolutionary algorithms adopted for our experimental study are the follow-
ing:

1. ǫ-MyDE: This approachwas proposed by Santana-Quintero and Coello (2005), and
consists of an extension of the differential evolution algorithm (Storn and Price,
1997) used to solve multi-objective optimization problems. The operators typi-
cally adopted in differential evolution are incorporated into this approach (Price
et al., 2005), but the algorithm is extended with an archive (or secondary popu-
lation) which is used to retain the nondominated solutions obtained during the
evolutionary process. Also, ǫ-dominance is incorporated in order to get a well-
distributed set of solutions along the Pareto front.

2. ǫ-MOEA: This approach was proposed by Deb et al. (Deb et al., 2003; Deb et al.,
2005a), and it consists of a steady-state genetic algorithm which maintains an

Evolutionary Computation Volume x, Number x 11

Hernández-Dı́az, Santana, Coello Coello, Molina

Parameter ǫ-MyDE ǫ-MOEA paǫ-MyDE
P 100 100 100
NP 100 (approx) 100(approx) 100 (approx)

Gmax 75 75 75
Pc 0.95 1.0 0.95

Pm 1/nVar 1/nVar 1/nVar
F 0.5 nr 0.5

nr = not required

Table 1: Parameters used by the algorithms compared.

archive of nondominated individuals. Note however, that this algorithm does not
use the Pareto dominance relation when updating the archive. Instead, it uses the
ǫ-dominance relation. One parent is selected from the main population and the
other from the archive. Then, an offspring is produced and it is allowed to enter
into the archive if ǫ-dominates at least one element of the archive, and if no archive
member ǫ-dominates it.

3. paǫ-MyDE: This is a modification of the ǫ-MyDE approach indicated above, in
which we include paǫ-dominance instead of the regular ǫ-dominance concept.

Table 1 summarizes the parameter settings adopted for all the algorithms com-
pared. In Table 1, P refers to the population at each generation, Gmax is the total num-
ber of generations (or iterations) to be performed. Note that all the algorithms perform
the same number of objective function evaluations: 7,500 for all test problems. NP is
the number of solutions expected by each algorithm; this parameter is controlled by the
value of ~ǫ (~ǫ values for ǫ-MyDE and ǫ-MOEA have been selected to this end following
the guidelines provided by Laumanns et al. (2002)). F is a parameter applicable only
to differential evolution. Pc and Pm are the crossover and mutation rates, respectively.

4.1 Test functions and metrics

We chose five continuous (unconstrained) test problems with different geometrical
characteristics for our experimental study. Note that our choice of problems was di-
rected by the geometrical characteristics of the Pareto fronts rather than by the diffi-
culty of solving each test problem, since our goal is to show the advantages of our
paǫ-dominance scheme over the original ǫ-dominance.
The problems selected are the following: Deb11 (convex and bimodal) and Deb52

(the Pareto front is concave) from (Deb, 1999); Kursawe’s problem (Kursawe, 1991) (the
Pareto front is disconnected); ZDT1 (multimodal problem) from (Zitzler et al., 2000);
and DTLZ2 from (Deb et al., 2005b) (a three-objective problem). Tables 2 and 3 show
further details of these problems.
The main goal of paǫ-dominance is to obtain as many Pareto optimal solutions as

possible (up to the maximum capacity of the grid), but within a homogeneous spread.
Thus, the performance measures adopted in our study are focused on aspects such as
the following:

Number of points: It shows us how far the number of solutions found is from themax-
imum capacity of the grid. In all our experiments, the grid was defined with a
capacity of 100 points. So, the closer to 100 that an algorithm gets, the better the
value of this performance measure.

12 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Test Function NObj NVar Type Characteristics

Deb11 2 2 min(f1, f2) Convex, bimodal
Deb52 2 2 min(f1, f2) Concave
Kursawe 2 3 min.(f1, f2) Disconnected
ZDT1 2 30 min.(f1, f2) Multimodal
DTLZ2 3 12 min(f1, f2, f3) Concave, three-dimensional

Table 2: NObj denotes the number of objectives, NVar the number of decision vari-
ables, Type specifies the type of optimization problem (maximization or minimization)
andCharacteristicsprovides a summary of the geometrical characteristics of the Pareto
front.

Test Function Objectives Bounds

Deb11
f1(x1) = x1

f2(x1, x2) = 1
x1

(

2− e−(x2−0.2

0.004)
2

− 0.8e−(x2−0.6

0.4)
2)

0 ≤ xi ≤ 1
i = 1, 2

Deb52

f1(x1) = 1− e−4x1 sin4(10πx1)
f2(x1, x2) = g(x2) ∗ h(x1),
where g(x2) = 1 + x2

2 and

h(x1) =

{

1−
(

f1(x1)
g(x2)

)10

0

if f1(x1) ≤ g(x2)
otherwise.

0 ≤ xi ≤ 1
i = 1, 2

Kursawe
f1(x1, x2) =

2
∑

i=1

−10e−0.2
√

x2
i +x2

i+1

f2(x1, x2) =
2
∑

i=1

(

|xi|0.8 + 5 sin(x3
i)

)

−5 ≤ xi ≤ 5
i = 1, 2, 3

ZDT1

f1(~x) = x1

f2(~x, g) = 1−
√

f1/g(~x)

where: g(~x) = 1 + 9
n−1

n
∑

i=2

xi

n = 30
0 ≤ xi ≤ 1
i = 1, 2, . . . , 30

DTLZ2

f1(~x) = cos(π
2 x1) cos(π

2 x2)(1 + g(~x))
f2(~x) = cos(π

2 x1) sin(π
2 x2)(1 + g(~x))

f3(~x) = sin(π
2 x1)(1 + g(~x))

where g(~x) =
12
∑

i=1

(xi − 0.5)
2

0 ≤ xi ≤ 1
i = 1, ..., 12

Table 3: Objective functions and bounds of the decision variables for each of the test
problems adopted for our experimental study.

Evolutionary Computation Volume x, Number x 13

Hernández-Dı́az, Santana, Coello Coello, Molina

Chi-Square-LikeDeviation Measure: This metric was proposed by Srinivas and Deb
(1994) to measure the diversity of the set of solutions obtained. Solutions are com-
pared with respect to a uniformly distributed set of the true Pareto front. Let P
be the set of vectors uniformly distributed along the Pareto-optimal front and F
the set of solutions to be compared. Then, for each i ∈ {1, ..., |P |}, let us denote
by ni the number of solutions in F whose distance from i is less than δ (δ is set
beforehand and we use Euclidean distance). Then, the deviation is measured like
a Chi-square distribution such as

χ =

√

√

√

√

|P |+1
∑

i=1

(
ni − ni

σi
)2.

The ideal distribution is achieved when all of the neighborhoods of points in P
have the same number of vectors, that is, if for each point in P there are ni =
|F |/|P | points in F whose distance from this vector is less than δ. Then χ = 0.
The variance σ2

i is proposed to be σ2
i = ni(1 − ni

|F |), for all i ∈ {1, 2, ..., |P |}. Index
i = |P | + 1 is used for those points that are far from all points in P . For this
index, n|P |+1 = 0 and σ2

|P |+1 = |F |(1− 1
|P |) are also proposed in (Srinivas and Deb,

1994). Then, it easy to see that 0 ≤ χ <∞ and the lower the χ value the better the
distribution of F with respect to P . The parameter δ depends on P and it is crucial
for the final χ value. Neighborhoods must be disjoint, so we take δ as a half of the
minimum distance between two points in P .

Spread: Deb et al. (2002) proposed the metric ∆ with the idea of measuring both
progress towards the Pareto-optimal front and the extent of spread. To this end, if
P is a subset of the Pareto-optimal front,∆ is defined as follows

∆ =

m
∑

i=1

de
i +

|F |
∑

i=1

|di − d|
m
∑

i=1

de
i + |F |d

.

where de
i denotes the distance between the i-th coordinate for both extreme points

in P and F , and dimeasures the distance of each point in F to its closest point in F .
For our experiments, we use the crowding distance for di (see (Deb, 2001) for more
details on this distance). Nevertheless, other types of measures could be used for
di.

From the above definition, it is easy to conclude that 0 ≤ ∆ ≤ 1 and the lower
the ∆ value, the better the distribution of solutions. A perfect distribution, that is
∆ = 0, means that the extreme points of the Pareto-optimal front have been found
and di is constant for all i.

Standard Deviation of the Crowding Distances: Trying to get more information re-
lated with the crowding distance, we include its standard deviation:

SDC =

√

√

√

√

1

|F |

|F |
∑

i=1

(di − di)2

14 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 99.833 7.714 0.230 0.009

SDev 1.003 0.209 0.016 0.001
Max 101 8.255 0.273 0.011
Min 98 7.280 0.191 0.009

ǫ-MyDE Mean 46.433 8.125 0.490 0.042
SDev 1.086 0.216 0.016 0.001
Max 50 8.668 0.526 0.047
Min 45 7.832 0.464 0.038

ǫ-MOEA Mean 49.900 8.581 0.559 0.038
SDev 6.730 1.680 0.120 0.003
Max 60 11.010 0.734 0.041
Min 45 7.317 0.461 0.033

Table 4: Mean, standard deviation, maximum and minimum values over 30 runs for
the first test problem (Deb11).

Now, 0 ≤ SDC ≤ ∞ and the lower the value of SDC, the better the distribution
of vectors in F . di is the mean value of all di. Again, a perfect distribution, that is
SDC = 0, means that di is constant for all i.

5 Discussion of Results

In this section, we compare the performance of our proposed paǫ-dominance using the
aforementioned algorithms and test functions. Tables 4, 5, 6, 7 and 8 show, for each per-
formance measure considered, its mean value, standard deviation and the maximum
and minimum value over 30 independent runs. We emphasize the best values using
boldface. Moreover, a nonparametric statistical test is selected in order to find signifi-
cance differences among the three algorithms with a confidence level of 95%. Specifi-
cally, we performed a Kruskal-Wallis test for three mutually independent samples and
a Dunn test for pairwise comparisons (Sheskin, 2004).
Table 4 shows the results for the first problem considered (Deb11). It is worth

mentioning that paǫ-MyDE achieved the best results in this case, not only regarding
the distribution of solutions, but also with respect to the number of solutions retained
(its average was 99.8 from a maximum of 100). In fact, the paǫ-MyDE obtained the best
results with respect to all the performance measures considered. The Kruskal-Wallis
tests show that there exist significance differences among the three algorithms for each
of the 4 metrics considered. The Dunn tests for the number of points and spreadmetrics
show that paǫ-MyDE is significantly better than ǫ-MyDE and ǫ-MOEA but there are no
differences between these two. Regarding the Chi-square metric, the Dunn test shows
that paǫ-MyDE obtains similar results as ǫ-MOEA, being both significantly better than
ǫ-MyDE. Finally, regarding the crowding metric, the Dunn test shows that paǫ-MyDE
gets better results than ǫ-MOEA, and this one gets better results than ǫ-MyDE. In Figure
5, we show the Pareto fronts obtained by the three algorithms. This figure graphically
shows that our approach (paǫ-MyDE) has benefited from adopting paǫ-dominance in-
stead of ǫ-dominance.
Table 5 shows the results for the second test problem (Deb52). In this case, due

to an almost horizontal region in the Pareto front, ǫ-dominance loses a big number of
points. Although the number of points generated by paǫ-MyDE is also far from 100,

Evolutionary Computation Volume x, Number x 15

Hernández-Dı́az, Santana, Coello Coello, Molina

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8 Deb 11 Pareto Front
 pa -MyDE

Fu
nc

tio
n
2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8 Deb 11 Pareto Front
 -MyDE

Fu
nc

tio
n
2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8
 Deb 11 Pareto Front
 -MOEA

Fu
nc

tio
n
2

Function 1

Figure 5: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (middle) and ǫ-
MOEA (bottom) for the first test problem (Deb11).

16 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 75.033 6.875 0.377 0.056

SDev 1.494 0.1942 0.046 0.006
Max 78 7.461 0.474 0.068
Min 72 6.510 0.328 0.048

ǫ-MyDE Mean 34.800 8.385 0.502 0.073
SDev 0.833 0.100 0.031 0.007
Max 37 8.646 0.585 0.083
Min 33 8.165 0.452 0.058

ǫ-MOEA Mean 33.600 8.494 0.534 0.105
SDev 0.663 0.188 0.049 0.001
Max 35 8.799 0.580 0.106
Min 33 8.105 0.390 0.101

Table 5: Mean, standard deviation, maximum and minimum values over 30 runs for
the second test problem (Deb52).

it finds more than twice the number of points obtained by the two other algorithms
adopting ǫ-dominance. Again, the paǫ-MyDE obtained the best results with respect to
all the performance measures considered. The Kruskal-Wallis tests show that there ex-
ist significance differences among the three algorithms for each of the 4 metrics consid-
ered. The Dunn tests for the number of points, spread, and crowding metrics show that
paǫ-MyDE is significantly better than ǫ-MyDE, which gets better results than ǫ-MOEA.
Regarding the Chi-square metric, paǫ-MyDE is significantly better than ǫ-MyDE and ǫ-
MOEA, but there are no differences between these two. In Figure 6, we show the Pareto
fronts obtained by the three algorithms. Notice that paǫ-MyDE and ǫ-MOEAwere both
able to find the extreme points despite the difficult geometrical characteristics of this
Pareto front. Although paǫ-dominance presents the best distribution, there is a gap in
the horizontal part of the front due to the strong asymmetry of the Pareto front.
Table 6 shows the results for the third test problem (Kursawe). In this case, the

performance measures are very similar for the three approaches compared, although
our paǫ-MyDE outperformed the others with respect to two of them. The reason for
this similar performance is that the p value associated to this problem is close to 1 and,
as previously mentioned, ǫ- dominance and paǫ-dominance are almost the same as the
p value gets close to 1. The number of points found is around 60 because this front
is disconnected. The Kruskal-Wallis tests show that there exist significance differences
among the three algorithms for each of the 4 metrics considered. The Dunn test for
the number of points shows that paǫ-MyDE gets better results than ǫ-MyDE, and this
one gets better results than ǫ-MOEA. Regarding the Chi-square metric, the Dunn test
shows that paǫ-MyDE is significantly better than ǫ-MyDE and ǫ-MOEA but there are
no differences between these two. Regarding the Spread metric, the Dunn test shows
that ǫ-MyDE gets better results than ǫ-MOEA, and this one gets better results than paǫ-
MyDE. Finally, regarding the crowding metric, the Dunn test shows that there is no
difference between ǫ-MyDE and ǫ-MOEA but both get better results than paǫ-MyDE.
In Figure 7 we show the Pareto fronts obtained by the three methods. In this case,
paǫ-dominance and ǫ-dominance generate similar grids.
Table 7 shows the results for the fourth test problem (ZDT1). Also, our paǫ-MyDE

obtained the best results with respect to all the performance measures considered.

Evolutionary Computation Volume x, Number x 17

Hernández-Dı́az, Santana, Coello Coello, Molina

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 pa -MyDE

Fu
nc

tio
n
2

Function 1

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 -MyDE

Fu
nc

tio
n
2

Function 1

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Deb 52 Pareto Front
 -MOEA

Fu
nc

tio
n
2

Function 1

Figure 6: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (middle) and ǫ-
MOEA (bottom) for the second test problem (Deb52).

18 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 63.733 6.113 0.351 0.036

SDev 1.711 0.275 0.025 0.001
Max 68 6.739 0.404 0.040
Min 60 5.645 0.303 0.034

ǫ-MyDE Mean 60.933 6.682 0.300 0.035

SDev 1.031 0.207 0.022 0.001
Max 63 7.303 0.339 0.039
Min 59 6.401 0.241 0.033

ǫ-MOEA Mean 57.433 6.653 0.327 0.035

SDev 0.761 0.224 0.016 0.001
Max 59 7.273 0.358 0.037
Min 56 6.298 0.287 0.033

Table 6: Mean, standard deviation, maximum and minimum values over 30 runs for
the third test problem (Kursawe).

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 93.366 4.684 0.158 0.009

SDev 2.057 0.650 0.013 0.001
Max 98 5.788 0.200 0.011
Min 90 3.401 0.141 0.006

ǫ-MyDE Mean 77.233 5.611 0.211 0.014
SDev 1.605 0.317 0.015 0.002
Max 81 6.392 0.240 0.023
Min 74 5.067 0.181 0.010

ǫ-MOEA Mean 75.266 5.975 0.220 0.012
SDev 0.512 0.189 0.007 0.0005
Max 77 6.505 0.242 0.014
Min 75 5.675 0.205 0.011

Table 7: Mean, standard deviation, maximum and minimum values over 30 runs for
the fourth problem (ZDT1).

Again, the number of points retained is close to 100 and their distribution is quite good.
The Kruskal-Wallis tests show that there exist significance differences among the three
algorithms for each of the 4 metrics considered. The Dunn tests for the number of
points and the Chi-square metrics show that paǫ-MyDE is significantly better than ǫ-
MyDE, which gets better results than ǫ-MOEA. Regarding the Spread and crowding
metrics, paǫ-MyDE is significantly better than ǫ-MyDE and ǫ-MOEA but there are no
differences between these two. In Figure 8 we show the Pareto fronts obtained by the
three methods. Notice that paǫ-MyDE was able to find the extreme points despite the
almost vertical region of this Pareto front.
Finally, Table 8 shows the results for the fifth test problem (DTLZ2). Again, best

mean values are obtained by paǫ-dominance except for the Chi-square metric. The
Kruskal-Wallis tests show that there exist significance differences among the three al-
gorithms for each of the 4 metrics considered. The Dunn test for the number of points
shows that there is no difference between paǫ-MyDE and ǫ-MyDE but both get better

Evolutionary Computation Volume x, Number x 19

Hernández-Dı́az, Santana, Coello Coello, Molina

Algorithm No. of points Chi-Square Spread Crowding
paǫ-MyDE Mean 82.633 11.592 0.461 0.043

SDev 16.113 0.442 0.060 0.011
Max 123 12.673 0.598 0.076
Min 61 10.775 0.367 0.026

ǫ-MyDE Mean 69.433 10.944 0.560 0.060
SDev 3.008 0.127 0.065 0.010
Max 77 11.300 0.664 0.081
Min 64 10.786 0.444 0.046

ǫ-MOEA Mean 60.033 10.838 0.523 0.067
SDev 2.168 0.092 0.049 0.007
Max 64 11.199 0.633 0.086
Min 56 10.688 0.426 0.057

Table 8: Mean, standard deviation, maximum and minimum values over 30 runs for
the fifth test problem (DTLZ2).

results than ǫ-MOEA. Regarding the Chi-square metric, the Dunn test confirms that
ǫ-MOEA gets better results than ǫ-MyDE, and this algorithm gets better results than
paǫ-MyDE. Finally, regarding the spread and crowding metrics, the Dunn tests show
that there is no difference between ǫ-MyDE and ǫ-MOEA and paǫ-MyDE gets better re-
sults than the other two. In Figure 9 we show the Pareto fronts obtained. Note that the
graphical results may be misleading in this case, since the distribution obtained by ǫ-
MOEAmay appear to have the best spread. However, that seems to be due to the lower
number of points that it obtains. However, the new grid finds more points specially on
the extreme areas of the Pareto front.

6 Conclusions and Future Work

In this paper, we have proposed an alternative approach for the ǫ-dominance (which
we call paǫ-dominance) due to Laumanns et al. (2002). In our proposed scheme, we
considered different ǫ-dominance regions depending on the geometrical characteristics
of the Pareto-optimal front. In order to do this, each Pareto front is associated to one
curve of the family

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞} .

for bi-objective optimization problems, or

{xp + yp + zp = 1 : 0 ≤ x, y, z ≤ 1, 0 < p <∞}

for three dimensional problems. This way, we take advantage of the positive aspects of
ǫ-dominance (already shown), while addressing some of its limitations.
On the one hand, paǫ-dominance finds a higher number of efficient points because

the size of the boxes are adjusted specially in those areas where the Pareto front needs
less solutions in any of its dimensions (almost horizontal or vertical regions of the
Pareto front). Also, these solutions are better uniformly distributed along the Pareto
front because the new grid balances the size of the boxes being more precise in those
areas of the objective function space in which more solutions are needed.
Three evolutionary multiobjective algorithms are used to show the effectiveness

of our proposed scheme: ǫ-MyDE and ǫ-MOEA, which both use ǫ-dominance as their

20 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

diversification mechanism and paǫ-MyDE, which consists of the ǫ-MyDE approach, but
adopting paǫ-dominance instead of ǫ-dominance.
In order to assess the performance of our proposed paǫ-dominance, we solved five

test problemswith different geometrical characteristics and used three standardmetrics
designed to measure diversity properties and one more measure related to the number
of points found. In all cases, paǫ-dominance has been shown more efficient in getting
a higher number of nondominated solutions with a better spread. Thus, we conclude
that paǫ-dominance is an advantageous alternative to ǫ-dominance, particularly when
the Pareto front has geometrical characteristics that cause difficulties for ǫ-dominance.
As part of our future work, we plan to generalize our proposal, so that we can

drop our symmetry hypothesis assumed in the curves of the form xp + yp = 1. This
would certainly be more unstable than the current proposal, but we believe that such
instability can be controlled using a different way of determining the values of p, and
q (and r, if dealing with a three-objective problem), for a given Pareto front. Discon-
nected Pareto front also require a more in-depth analysis, since they deserve a special
treatment when using relaxed forms of Pareto dominance such as ǫ-dominance or our
proposed scheme. Additionally, we are also looking into ways of using our proposed
scheme to handle the user’s preferences in an interactive way (Coello Coello, 2000;
Coello Coello et al., 2002).

Acknowledgements

The authors thank the anonymous reviewers and the Editor-in-Chief for their valuable
comments, which greatly helped them to improve the contents of this paper. The sec-
ond author acknowledges support from CONACyT through a scholarship to pursue
graduate studies at the Computer Science Department of CINVESTAV-IPN. The third
author gratefully acknowledges support from CONACyT through project 45683-Y.

References

Coello Coello, C. A. (2000). Handling Preferences in Evolutionary Multiobjective Opti-
mization: A Survey. In 2000 Congress on Evolutionary Computation, volume 1, pages
30–37, Piscataway, New Jersey. IEEE Service Center.

Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B. (2002). Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New
York. ISBN 0-3064-6762-3.

Deb, K. (1999). Multi-Objective Genetic Algorithms: ProblemDifficulties and Construc-
tion of Test Problems. Evolutionary Computation, 7(3):205–230.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester, UK. ISBN 0-471-87339-X.

Deb, K., Mohan, M., and Mishra, S. (2003). Towards a Quick Computation of Well-
Spread Pareto-Optimal Solutions. In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb,
K., and Thiele, L., editors, Evolutionary Multi-Criterion Optimization. Second Inter-
national Conference, EMO 2003, pages 222–236, Faro, Portugal. Springer. Lecture
Notes in Computer Science. Volume 2632.

Deb, K., Mohan, M., and Mishra, S. (2005a). Evaluating the ǫ-Domination Based Multi-
Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal So-
lutions. Evolutionary Computation, 13(4):501–525.

Evolutionary Computation Volume x, Number x 21

Hernández-Dı́az, Santana, Coello Coello, Molina

Deb, K., Pratap, A., Agarwal, S., andMeyarivan, T. (2002). A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005b). Scalable Test Problems for
Evolutionary Multiobjective Optimization. In Abraham, A., Jain, L., and Gold-
berg, R., editors, Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, USA.

Kursawe, F. (1991). AVariant of Evolution Strategies for VectorOptimization. In Schwe-
fel, H. P. and Männer, R., editors, Parallel Problem Solving from Nature. 1st Workshop,
PPSN I, volume 496 of Lecture Notes in Computer Science Vol. 496, pages 193–197,
Berlin, Germany. Springer-Verlag.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining Convergence and
Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation,
10(3):263–282.

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution. A Practical
Approach to Global Optimization. Springer, Berlin. ISBN 3-540-20950-6.

Rao, S. S. (1996). Engineering Optimization. John Wiley & Sons, third edition.

Reyes Sierra, M. and Coello Coello, C. A. (2005). Improving PSO-BasedMulti-objective
Optimization Using Crowding, Mutation and ǫ-Dominance. In Coello Coello,
C. A., Hernández Aguirre, A., and Zitzler, E., editors, Evolutionary Multi-Criterion
Optimization. Third International Conference, EMO 2005, pages 505–519, Guanajuato,
México. Springer. Lecture Notes in Computer Science Vol. 3410.

Rudolph, G. and Agapie, A. (2000). Convergences Properties of Some Multi-Objective
Evolutionary Algorithms. In Zalzala, A. and Eberhart, R., editors, Congress on
Evolutionary Computation (CEC 2000), pages 1010–1016, Piscataway, NJ. IEEE Press,
Vol. 2.

Santana-Quintero, L. V. and Coello Coello, C. A. (2005). An Algorithm Based on Dif-
ferential Evolution for Multiobjective Problems. In Dagli, C. H., Buczak, A. L.,
Enke, D. L., Embrechts, M. J., and Ersoy, O., editors, Smart Engineering System De-
sign: Neural Networks, Evolutionary Programming and Artificial Life, volume 15, pages
211–220, St. Louis Missouri, USA.

Sheskin, D. J. (2004). Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, Boca Raton, Florida, USA, third edition.

Srinivas, N. and Deb, K. (1994). Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248.

Storn, R. and Price, K. (1997). Differential Evolution - A Fast and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimization,
11:341–359.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195.

22 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 pa -MyDE

Fu
nc

tio
n
2

Function 1

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 -MyDE

Fu
nc

tio
n
2

Function 1

-20 -18 -16 -14

-12

-10

-8

-6

-4

-2

0
 Kursawe Pareto Front
 -MOEA

Fu
nc

tio
n
2

Function 1

Figure 7: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (middle) and ǫ-
MOEA (bottom) for the third test problem (Kursawe).

Evolutionary Computation Volume x, Number x 23

Hernández-Dı́az, Santana, Coello Coello, Molina

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 pa -MyDE

Fu
nc

tio
n
2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 -MyDE

Fu
nc

tio
n
2

Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 ZDT1 Pareto Front
 -MOEA

Fu
nc

tio
n
2

Function 1

Figure 8: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (middle) and ǫ-
MOEA (bottom) for the fourth test problem (ZDT1).

24 Evolutionary Computation Volume x, Number x

Pareto-adaptive ǫ-dominance

0

10.0
0.4

0.8
1.2

0.0

0.4

0.8

 F
un

ct
io

n
3

 F
un

ct
io

n
1

 pa -MyDE

Function 2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

"paretodtlz2_200.dat"
"frentes/eps_dtlz2.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

"paretodtlz2_200.dat"
"frentes/emoea_dtlz2.dat"

Figure 9: Efficient solutions generated by paǫ-MyDE (top), ǫ-MyDE (middle) and ǫ-
MOEA (bottom) for the fifth test problem (DTLZ2).

Evolutionary Computation Volume x, Number x 25

