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Abstract


One of the main tools for including decision maker (DM) preferences in the multiob-
jective optimization (MO) literature is the use of reference points and achievement
scalarizing functions [33]. The core idea in these approaches is converting the orig-
inal MO problem into a single-objective optimization problem through the use of a
scalarizing function based on a reference point. As a result, a single efficient point
adapted to the DM’s preferences is obtained. However, a single solution can be less
interesting than an approximation of the efficient set around this area, as stated
for example by Deb in [14]. In this paper, we propose a variation of the concept of
Pareto dominance, called g-dominance, which is based on the information included
in a reference point and designed to be used with any MO evolutionary method or
any MO metaheuristic. This concept will let us approximate the efficient set around
the area of the most preferred point without using any scalarizing function. On
the other hand, we will show how it can be easily used with any MO evolutionary
method or any MO metaheuristic (just changing the dominance concept) and, to
exemplify its use, we will show some results with some state-of-the-art-methods and
some test problems.
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1 Introduction


Multiple criteria optimization naturally appears in most real-world applica-
tions, and the term MultiObjective Programming (MOP) problem refers to
such problems. The first difficulty that we face when dealing with Multiob-
jective Optimization (MO) is that the notion of “optimum” changes. In this
case, rather than aiming to find the global optimum, we look for good trade-
offs among the objectives, which are obtained by using the definition of Pareto
efficiency. Such a definition will lead us to obtain not one, but a set of (Pareto)
efficient solutions (the Pareto front, PF ).


The idea of solving a multiobjective optimization problem is understood as
helping a human Decision Maker (DM) in considering the multiple criteria
simultaneously and in finding a Pareto efficient solution that pleases him/her
the most. More details about the resolution of a MOP can be found in [31].


The common element in all MOP techniques is the need to find a sufficiently
wide and representative set of efficient points where the DM is able to find an
alternative adjusted to his/her preferences. A commonly adopted approach
to find this type of solutions are the so-called Interactive Multi-Objective
methods (see Miettinen [25]), which assume that the DM is able to provide
consistent feedback regarding which preferences to include in the resolution
process. This interaction can guide a search towards the most preferred areas
of the Pareto front obtained and avoids exploring non-interesting solutions.
These methods are very useful in real-world cases, as they help the DM to
find the most preferred solutions in a consistent and reliable way.


The main problem when solving a real application is that some of the exist-
ing methods generate the entire Pareto set (most of the MO metaheuristics)
whilst others produce a single point (most of the Interactive Multi-Objective
methods). Our aim in this paper is producing something in-between. Thus,
we will show how the use of g-dominance within a MO metaheuristic will let
us produce a (reduced) set of efficient points adapted to the DM’s preferences
instead of the entire Pateto Set or a single efficient solution.


One of the main tools for expressing preference information is the use of ref-
erence points [33]. Reference points consist of aspiration levels reflecting de-
sirable values for the objective functions. This is a natural way of expressing
preference information and lets the DM express hopes about his/her most
preferred solutions. The reference point is projected onto the Pareto front by
minimizing a so-called achievement scalarizing function [33] outlined in Sec-
tion 3. Reference points and achievement scalarizing function play the main
role in some of the most commonly adopted methods, such as the light beam
search [19], the visual interactive approach [21] and the Pareto Race [22], the
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STOM method [26] or the NIMBUS method [24].


When solving real-world optimization problems, classical methods encounter
great difficulty in dealing with the complexity involved in these situations
and cannot offer a reliable solution. We can find many real applications in
fields such as economics, engineering or science where methods with ample
mathematical support (ensuring the optimality of solutions under ideal con-
ditions) cannot obtain a solution or cannot obtain one in a reasonable time.
These facts led researchers to develop metaheuristic methods to solve these
very complex models. The success of these types of strategies produced enor-
mous interest in their study giving rise to an active community and a num-
ber of very efficient metaheuristic algorithms for multiobjective optimization.
Such approaches, which are generically called MultiObjective Meta-Heuristics
(MOMH) are very popular nowadays, as shown in several surveys such as [20],
[15] or [5]. However, most of the MOMH focus on the approximation of the
Pareto front without including DM’s preferences. However, as shown before,
the determination or approximation of the Pareto front is not enough, and the
DM’s preferences have to be incorporated in order to determine the solution
that better represents these preferences. But very few works can be found us-
ing MOMH which incorporate DM’s preferences (and will be shown in Section
2) and a common fact in all of them is that many modifications on the main
architecture have to be done in order to include DM’s preferences into the
MOMH.


This is an important fact when dealing with a complex problem because not
every MOMH can be suitable or efficient for any given problem. In the MOMH
literature, one can find efficient MOMH for nonlinear continuous problems, for
combinatorial problems, for problems where evaluating the objective functions
is very expensive, for vehicle routing problems, and for many other types of
complex problems. Thus, we can say that, regardless of the type of problem to
be solved, one can find an efficient MOMH method to deal with it. However,
in most cases, these MOMH methods are not designed to including DM’s
preferences and modifying it for such an aim may be cumbersome, as we will
see when reviewing MOMH methods including preferences.


In this paper, we propose a new concept of dominance that will allow us to
include easily the DM’s preferences into any MOMH, without having to modify
the main architecture of the specific search engine adopted. This concept will
combine the traditional Pareto efficiency (that will be defined in Section 1.1)
with the use of reference points (that will be described in Section 3), and
will be designed to be used together with a MO metaheuristic in order to
let it easily include the DM’s preferences. As mentioned before, one of the
main advantages with respect to the existing attempts to include preferences
when using a MO metaheuristic (that will be described in Section 2) is that
g-dominance can be used without having to modify the main architecture
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of the main method, as will be shown in Section 4. Finally, in Section 5 we
will validate our proposed approach implementing the g-dominance in two
different metaheuristics: the NSGA-II [12], which is a MOEA representative
of the state-of-the-art in the area, and the DEMORS method [29], which is a
hybrid of a differential evolution method with a Rough Sets tool.


1.1 Pareto efficiency


Given the MultiObjective Programming problem (MOP):


(MOP) Min ( f1 ( x ) , f2 ( x ) , ... , fp ( x ) )


s. t. : x ∈ X


where:


·x = ( x1 , x2 , ... , xn ) are the decision variables,


·X is the set of feasible solutions.


·fi are the objective functions.


·f = ( f1 , f2 , ... , fp ) is called the vector objective function.


A feasible solution x* ∈ X is (Pareto) efficient for the MOP problem if there
does not exist any other solution x ∈ X, such that:


fi ( x ) ≤ fi ( x* ) ∀i = 1, ... , p


with at least one j ∈ { 1, ... , p } such that fj(x)< fj(x*).


If this is not the case, this solution x* is said to be dominated by solution x.
The set of all the efficient solutions for MOP is called the Pareto front.


2 Including Preferences with a MultiObjective Metaheuristic


As indicated before, only a few works can be found using MOMH and including
DM’s preferences. In [3,4], we can find a survey on including preferences when
using a multiobjective evolutionary algorithm (MOEA). The following are
some of the methods reviewed therein:


In [16], we can find the earliest attempt to incorporate preferences, and the
proposal was to use MOGA (introduced in the same paper) together with
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goal information as an additional criterion to asign ranks to the popula-
tion. Greenwood and Hu [17] adopt utility functions to perform ranking of
attributes, and also incorporate preference information into the survival crite-
ria. Cvetkovic and Parmee, [6] and [7], use binary preference relations (trans-
lated into weights) to narrow the search. These weights are used in differ-
ent ways to modify the concept of dominance. Rekiek et al. [29] use the
PROMETHEE method to generate weights for a MOEA. Massebeuf et al.
[23] use PROMETHEE II in an a posteriori form: a MOEA generates efficient
solutions and PROMETHEE II selects some of them based on the DM’s pre-
ferences. In [8,12], Deb uses variations of Compromise Programming to bias
the search of a MOEA. Finally, in [10,11], Deb requires the DM to provide
specific goals for each objective.


More recently, some other approaches can be found, as in [27] where Phelps
and Koksalan use pairwise comparisons to include the DM’s preferences into
the fitness funcion. In the Guided Multi-Objective Evolutionary Algorithm
(G-MOEA) proposed in [2], user preferences are taken into account using
trade-offs, supplied by the DM, in order to modify the definition of dominance.
In [1], Branke and Deb propose two schemes to include preference information
when using a MOEA (they use the NSGA-II [13] for validation purposes): (1)
modifying the definition of dominance (using the Guided Dominance Principle
of G-MOEA) and (2) using a biased crowding distance based on weights. In
Deb et. al [14], preferences are included through the use of reference points. In
this paper, the authors claim that “a single solution does not provide a good
idea of the properties of solutions near the desired region of the front” and that
“by providing a (reference point), the decision-maker is not usually looking for
a single solution, rather she/he is interested in knowing the properties of solu-
tions which correspond to the optimum and near-optimum solutions respecting
the (reference point).” But the approach followed to get this approximation
is based on rankings and then can only be applied with ranking based meth-
ods, such as the NSGA-II. Also, being the case of a ranking-based method,
important modifications of the main algorithm have to be carried out.


In [28] (using a tabu search and simulated annealing method) and in [32] (using
a simulated annealing method) the authors ask the DM to provide levels for
each of the objectives at each iteration, and use such levels to constrain the
solution space to be explored. Finally, Hapke et al. [18] (using a simulated
annealing method) compute the approximation of the Pareto front and then
invoke an interactive procedure to find the most preferred solution within that
set.


Summarizing, all of these methods require important modifications to the
MOMH used as a search engine in order to generate the Pareto front, and
then it becomes more difficult to introduce further modifications for incorpo-
rating the DM’s preferences. In general, a change in the main architecture of
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the MOMH is required for incorporating user’s preferences. This makes things
difficult for practicioners, who are normally interested only in a small set of
efficient solutions rather than the entire Pareto front. Thus, to solve a MOP
problem, one must be able to find efficient solutions (i.e., resolution capabili-
ties) and must be able to interact with the DM (i.e., interaction capabilities)
in order to incorporate his/her preferences during the search process. But,
as shown in Figure 1, the most suitable method (Evolutionary Algorithms
(EMO), Tabu Search (TS), Scatter Search (SS), etc) to solve a given problem
can be very difficult to modify in order to incorporate interaction, and then
one can be forced to change the MOMH adopted.
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Fig. 1. Including DM’s preferences


3 Reference points and Achievement Scalarizing Functions


Achievement scalarizing functions (asf) were first proposed in [33] and nowa-
days are part of many MOP methods. The achievement (scalarizing) function
projects any given (feasible or infeasible) reference point g∈ R


p onto the Pareto
front. Also, as shown in [25] any efficient solution can be found using an asf.
This approach transforms a MultiObjective Optimization problem (MOP)
into the following single-objective problem (ASFP):


(ASFP) Min sg(f(x)) = max
i=1,··· ,p


{ωi(fi(x) − gi)} + ρ
p


∑


i=1


(fi(x) − gi)


s. t. : x ∈ X


where ρ > 0 is a small augmentation coefficient and ω1, · · · , ωp are weights.
Figure 2 shows how an asf projects reference points into the Pareto front.
See [25] for more details about asf, the role of the weights, the augmentation
coefficient, etc.


This is, asfs let you transform a MOP into a single-objective problem and
obtain a single solution but adapted to the DM’s preferences. But in most
cases an iterative method is required to obtain the most preferred solutions
as the DM learns about his/her preferences and the problem throughout the
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interaction process, mainly changing the reference point or the weights in the
asf. Then, an approximation of the Pareto front around the projected solution
could be more interesting than simply the projected solutions, as a wider set
of alternatives could be shown, all of them adapted to the DM’s preferences,
as shown in Figure 3.


Fig. 2. Projection onto the Pareto front


Fig. 3. Sample around the projection


As indicated before, this can be done by changing the reference point or the
parameters in the asf and performing multiple runs. This requires the use of
a single-objective optimizer instead of a multi-objective solver, and as a result
a fixed number of solutions around the reference point are obtained. The main
issue with this approach is how to manage the parameters in order to obtain a
spread (but not too wide) approximation of the area of interest of the efficient
front, this is, a representative sample of the area around the projection.


On the other hand, our proposal consists of modifying the Pareto dominance
definition in order to directly obtain an approximation of the Pareto front
around the projection using a multi-objective solver without setting or varying
any parameter. Our proposed approach has the advantage of being very easy
to implement and to couple into any MOMH. This aims to give the user the
freedom of choosing the MOMH that considers as the most appropriate for
the problem at hand, without having to worry about possible modifications to
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the architecture of the search engine, as a requirement to incorporate his/her
preferences.


4 g-dominance


Given a reference point g∈ R
p and a point f ∈ R


p, we define F lagg(f) in the
following way:


F lagg(f) =









































1 if fi ≤ gi ∀i = 1, · · · , p


1 if gi ≤ fi ∀i = 1, · · · , p


0 otherwise


This is, given a reference point g1, we divide the space in the following way
(Fig. 4):


Fig. 4. Flags based on g1


And, based on these flags, we propose the following dominance relation (g-
dominance):


Given two points f, f’ ∈ R
p, then, f’ is g-dominated by f if:


1. F lagg(f) > Flagg(f’)


or


2. Being F lagg(f) = F lagg(f’), we have:


fi ≤ f ′


i ∀i = 1, · · · , p
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with at least one j such that fj < f ′


j .


This will drive the search naturally to the desired area of the efficient front (it
does not matter if the reference point is feasible or not), as shown in Figures
5 and 6:


Fig. 5. Infeasible reference point


Fig. 6. Feasible reference point


Our proposed g-dominance can be easily implemented into any MOMH, by
just changing the dominance-checking function or by changing the way in
which the objective functions are evaluated. This last case is the most simple
way to implement g-dominance in an existing code, as only requires the modifi-
cation of the module evaluating the objective functions. For our problem (min-
imization) and given a reference point g, the g-dominance can be introduced
evaluating the functions in the way shown in Algorithm 1, where M is a big
number. This is based on a simple idea: penalize solutions with F lagg(f) = 0
with a big amount M in order to make any solution with F lagg(f) = 0 to be
dominated by any solution with F lagg(f) = 1. Computing the flags is very
simple, too, as it is illustrated in Algorithm 2.
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Algorithm 1 Function: evaluate f(x)


1: Evaluate fi(x), i = 1, · · · , p


2: Compute F lagg(f)
3: if F lagg(f) = 0 then
4: fi(x) = fi(x) + M i = 1, · · · , p


5: end if


Algorithm 2 Function: Compute F lagg(f)


1: F lagg(f) = 1
2: for i = 1, · · · , p do
3: if fi(x) > gi then
4: F lagg(f) = 0
5: end if
6: end for
7: if F lagg(f) = 0 then
8: F lagg(f) = 1
9: for i = 1, · · · , p do


10: if fi(x) < gi then
11: F lagg(f) = 0
12: end if
13: end for
14: end if


This simple modification makes it possible to use g-dominance with any
MOMH. In the next section we describe how to use the g-dominance inte-
grated into a generic interactive scheme, in order to let the DM to iteratively
achieve his/her most preferred solution.


4.1 Using g-dominance in an interactive way


Our proposed g-dominance can be used in an interactive scheme, where the
DM will be guided iteratively to the most preferred solution. The way prefe-
rences are going to be included at each iteration is by changing the current
reference point or by selecting a solution from the sample shown. Then, the
DM will be shown a set of efficient solutions adapted to this new information
provided. This is, the interaction will be carried out as shown in Algorithm 3,
where, once a reference point gt is provided at iteration t, the set of g-efficient
solutions is called PFgt


, and the sample from this set selected to be shown to
the DM is called RSt.


In other words, at each iteration, the DM is shown a set of solutions adapted
to a reference point gt, and if he/she does not feel satisfied with any of these
solutions, he/she can modify the reference point in order to refine the prefe-
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Algorithm 3 Interaction


1: t = 0. Ask the DM to provide a reference point g0


2: while the DM is not satisfied do
3: Compute the set PFgt


of gt-efficient solutions.
4: Select rs representative solutions from PFgt


; RSt = {s1
gt
, · · · , srs


gt
}.


5: Show the set RSt to the DM.
6: if the DM is not satisfied with any of these solutions then
7: if the DM wants to provide a new reference point gt+1 then
8: Ask the DM to provide the new reference point gt+1.
9: end if


10: if the DM wants to select a solution in RSt then
11: Ask the DM to choose the most preferred solution in RSt.
12: Use this information to compute the new reference point gt+1.
13: end if
14: t = t + 1
15: end if
16: end while


rences or he/she can select a solution sk
gt


in RSt and a new reference point
gt+1 will be computed using this information.


In this last case, the way to compute the new reference point gt+1 is by doing
a convex combination of sk


gt
and gt+1:


gt+1 = (1 − θ) · gt + θ · sk
gt


where θ is a parameter in (0, 1) and represents the speed of convergence of
the algorithm. The closer θ is to 1, the closest the new reference point is to
sk


gt
and then the closest is the new set from gt+1-efficient solutions around sk


gt
.


This effect is shown in Figure 7.


The construction of RSt is not trivial or simple. Some important questions
arise, such as, for example, the number of solutions to include. Quite a lot of
literature on Interactive Methods could be used to deal with these questions,
and we consider it an interesting future research path.


The way we propose to select rs representative solutions from PFgt
, is by using


a clustering procedure. What we try to do here is to show the DM a number
(rs > p) of representative solutions from which to choose the most preferred
ones. These rs reference solutions at iteration t will be the representative item
of a cluster in PFgt


. Given an iteration t and its corresponding set of solutions
PFgt


, the following procedure is used to choose the reference solutions:


Thus, this set contains a representative sample of PFgt
including its p extreme


points and rs − p diverse compromise solutions. As mentioned above, this is
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Fig. 7. New reference point


Algorithm 4 Building the set RSt


1: for i = 1, · · · , p do
2: Choose the best solution in PFgt


for criteria i.
3: Include it in RSt.
4: end for
5: while #(RSt) < rs do
6: Choose the solution in PFgt


\RSt maximizing the distance from RSt.
7: Include it in RSt.
8: end while


only one possible way to build this set, but many questions remain open at
this point.


5 Computational Experiments


In order to validate our proposed approach, we coupled g-dominance to two
different metaheuristics: the NSGA-II [13], which is a MOEA representative
of the state-of-the-art in the area, and the DEMORS method [30], which is a
hybrid of a differential evolution method with a Rough Sets tool. We used two
test problems for our experiments: ZDT1 from the ZDT set [34] and deb32
from the Deb set [9]. Each problem is solved for three different reference
points, feasible and infeasible.


Figures 8 and 9 show how both methods (i.e., the NSGA-II and DEMORS)
are able to find a set of efficient points adapted to the information contained
in the reference points. None of them required a deep modification in their
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Fig. 8. Efficient solutions generated by the NSGA-II (left) and DEMORS(right) for
the ZDT1 problem.


structure and they worked both for the feasible and the infeasible case.


6 Conclusions


In this paper, we propose a new concept of dominance, which we call g-
dominance. This concept lets us approximate the efficient set around the area
of the most preferred point without using any scalarizing function. This kind
of dominance is independent of the MOMH used and can be easily coupled
to any of them (either evolutionary or not) without any deep modification to
the main structure of the method chosen.


We propose the use of g-dominance in an interactive scheme, where the DM is
guided iteratively to the most preferred solution. The way preferences are to
be included at each iteration is by changing the current reference point or by
selecting a solution from the sample shown, and then the DM is shown a set
of efficient solutions adapted to this new information provided. This kind of
interaction is easy and intuitive for the DM and, together with the possibility
of choosing any MOMH available, we believe that it may become an efficient
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Fig. 9. Efficient solutions generated by the NSGA-II (left) and DEMORS(right) for
the deb32 problem.


tool to deal with real-world problems.


On the other hand, some related aspects deserve a deeper analysis in the
future. This is the case of the construction of the representative sample to be
shown to the DM, or the performance of this approach when the number of
objectives is increased.
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