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Abstract—During the last two decades, many multi-operator-
and multi-method-based evolutionary algorithms for solving
optimization problems have been proposed. Although, in general
terms, they outperform single-operator-based traditional ones,
they do not perform consistently for all the problems tested in
the literature. The designs of such algorithms usually follow a
trial and error approach that can be improved by using a rule-
based approach. In this paper, we propose a new way for two
algorithms to cooperate as an effective team, in which a heuristic
is applied using fuzzy rules of two complementary characteristics,
the quality of solutions and diversity in the population. In this
process, two sub-populations are used, one for each algorithm,
with greater emphasis placed on the better-performing one.
Inferior algorithms learn from trusted ones and a fine-tuning
procedure is applied in the later stages of the evolutionary
process. The proposed algorithm was analyzed on the CEC2014
unconstrained problems and then tested on other three sets
(CEC2013, CEC2005 and 12 classical problems), with its results
showing a high success rate and that it outperformed both single-
operator-based and different state-of-the-art algorithms.

Keywords—Multi-method, multi-operator, fuzzy logic, optimiza-
tion

I. INTRODUCTION

Continuous optimization problems involve finding the val-
ues of continuous decision variables so that one or more
objective functions is optimized (either maximized or mini-
mized). They can be found in many fields including, but not
limited to, science, engineering and business [17]. Generally,
the mathematical model of a single objective problem with
continuous search domains can be formulated as

minimize or maximize f(−→x )

subject to: xj≤xj≤xj , j = 1, 2, . . . , D (1)

where f (−→x ) is the objective function, −→x = [x1, x2, ..., xD] a
vector with D decision variables with each xj has lower and
upper limits xj and xj , respectively.

During the last decades, evolutionary algorithms (EAs)
(such as genetic algorithms (GAs) [12], differential evolution
(DE) [52] and evolution strategy (ES) [29]), and swarm
intelligence (SI) methods (such as ant colony optimization
(ACO) [51] and particle swarm optimization (PSO) [13]) have
demonstrated their success in solving such problems. How-
ever, it has been found that no single optimization algorithm
(OA) performs consistently well for all types of problems; for
instance, (1) a GA performs well in solving noisy problems
but its convergence is slow compared with that of DE [22],
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(2) the covariance matrix adaptation ES (CMA-ES) is very
good at solving uni-modal problems but becomes trapped in
local solutions when solving multi-modal functions [28], (3)
DE is a good choice when feasible patches are parallel to the
axes, but when solving multi-modal functions, it could become
stuck in local optima [22], and (4) PSO is characterized by its
high convergence rate in the early stages of the optimization
process, but becomes slow in its refinement stage, and may
move away from the global optima [22].

As a single OA design might not perform well for many
problems, several methods that utilize the search capabilities
of different algorithms and/or search operators in a single
algorithm framework have been proposed. They have different
names, such as (1) ensemble-based (which use a mix of
methods [38]), (2) hyper-heuristic (a heuristic that selects
other heuristics for an effective search [8]), (3) multi-method
(more than one OA is used in one framework [60][16]),
(4) multi-operator (emphasis is placed adaptively on the best
search operator, of many, in a single OA [19, 20, 17]), (5)
heterogeneous (e.g., heterogeneous PSO in which particles
in a swarm are allocated different search behaviors from
a behavior pool) [23] and (6) population-based algorithm
portfolios (PAP) (a combination of multiple EAs [44, 56]).
Although the abovementioned methods are different in their
designs, they share the common concept of using a pool of
different algorithms and/or operators and a selection procedure
for placing emphasis on the best-performing one during the
optimization process. However, they use different selection
mechanisms to rank the algorithms in the pool, multiple
populations rather than a single one and may consider different
OAs in the pool.

Generally, although such designs usually lead to better
performances than those of all OAs in a pool, they do not guar-
antee consistent results for all test problems in the literature;
for example, in [44], PAP was statistically outperformed by its
constituent algorithms for many problems, as was the case in
[39]. The apparent weaknesses of these algorithms are that: (i)
their designs are based mainly on trial and error approaches;
and (ii) they may not follow any design principles that may
either ensure an improvement in performance or reduce the
risk of failing.

Based on research on the organizational behaviour [31], an
effective organizational team is made up of group members
who possess complementary skills, which can lead to a
diverse group’s ability to generate decision making alterna-
tives. Therefore, in our design of a successful framework,
we introduce a definition of a team of OAs (TOAs) as “a
group of optimization methods/operators organized to work
interdependently as well as cooperatively to accomplish a
common goal, i.e., optimize an objective function, under
predefined guidelines”; in other words, an appropriate mix of
different algorithms and/or operators that utilizes the individ-
ual components’ strengths in the best possible way.

Motivated by these points, in this paper, we propose a TOAs

mailto:s.elsayed@unsw.edu.au, r.sarker@unsw.edu.au
mailto:ccoello@cs.cinvestav.mx


2

framework composed of a set of algorithms which possesses
complementary characteristics (CC). As CC measurements in
EAs are vague and imprecise, the TOAs framework uses a
novel heuristic with fuzzy rules to place the right emphasis on
the algorithm with the appropriate CC. This complementarity
(also called effectiveness) is calculated using the two basic
characteristics of EAs, (1) solution quality and (2) diversity,
with information shared between a trusted OA and inferior
ones. Also, as the measurement of the trust of an OA is
vague, fuzzy rules are useful and, in the later stages of a team
life-cycle, the group’s outcome is polished through a dynamic
fine-tuning procedure. Note that, in the proposed design, the
emphasis on each constituent algorithm (/operator) within the
framework may change adaptively for every problem under
consideration as the evolution progresses.

The framework was adopted with two well-known comple-
mentary algorithms, with its performance firstly analyzed on
30 unconstrained problems introduced in [34], with 10, 30 and
50 dimensions. The results demonstrated that the TOAs was
able to reach success rates (statistically better or the same
as those of its team members) of 100%, 100% and 97%,
respectively, for these problems and also outperformed well-
known state-of-the-art algorithms. TOAs was then tested on
other 65 unconstrained problems taken from three different
benchmark sets, with TOAs outperforming several state-of-
the-art algorithms.

The rest of this paper is organized as follows: an overview
of related work is presented in Section II; the proposed
algorithm is described in Section III; and the experimental
results and conclusions are discussed in Sections IV and V,
respectively.

II. BRIEF REVIEW

As previously mentioned, OAs refer to many methods
including, but not limited to, EAs and SI. EAs are population-
based search methods that employ some form of selection to
bias the search toward good solutions. Their steps are almost
the same, with variations in only their sequences and the ways
in which they generate new individuals with environmental
pressure usually causing natural selection (survival of the
fittest) to focus on the more promising search space. New
offspring are then created by executing crossover and/or
mutation operators or vice versa [14]. On the other hand, SI
algorithms, which were inspired by the behaviors of insects,
birds and fish, have unique capabilities for solving complex
tasks in the form of swarms, i.e., PSO starts with initial
particles which fly through the problem’s hyperspace at given
velocities and are then updated in each generation [13].

To effectively solve a wide range of test problems using
a single algorithm, concepts of combining more than one
method and/or operator in a single algorithmic framework
have been proposed, a brief review of which is provided below.

Vrugt et al. [59] introduced an algorithm known as a multi-
algorithm genetically adaptive multi-objective (AMALGAM)
that proved to be a powerful approach for solving multi-
objective problems. Later, it was modified to solve single-
objective ones (AMALGAM-SO) [60] which used a GA,
CMA-ES and PSO, and automatically tuned the number of
offspring these three OAs were allowed to contribute during
each generation. It obtained similar efficiencies as existing
algorithms for relatively simple problems but was increasingly
superior for more complex and higher-dimensional multi-
modal optimization ones. However, it was noted that, if

DE was included in the framework, the performance of
AMALGAM-SO could deteriorate [60].

Peng et al. [44] proposed the PAP framework which used
multiple EAs as its constituent algorithms, each of which
was run for a given number of test problems for a part of
the given fitness evaluations (time budget), and a migration
scheme among the algorithms. It showed its superiority to
other algorithms on a set of unconstrained problems but,
interestingly, was statistically outperformed by some of the
OAs in the pool. This work was then extended by Tang et al.
[56], who used an estimated performance matrix (EPM-PAP)
module for automatic selection of the constituent algorithms,
each of which was applied to each problem for a predefined
number of runs. Then, an EPM was constructed for each
algorithm based on the quality of solutions obtained in each
run and, subsequently, the risk of using each algorithm was
determined, with the subset with the smallest risk used to run
in parallel and periodically share information. This method
was tested on a set of unconstrained problems and obtained
good results. However, calculating risk considering only the
quality of solutions might not be sufficient, i.e., complemen-
tary measures could be a better option. Also, the calculations
were based on running the algorithms for a predefined number
of generations in the early stages of the evolutionary process
which meant that a bias could occur as one algorithm might
perform better in the later stages [18, 17].

In [25], a multi-method hyper-heuristic algorithm using
seven common meta-heuristics in the lower level of a hyper-
heuristic framework was proposed. Different strategies for se-
lecting the most appropriate meta-heuristic in each generation
of the optimization process were tested. Its performance was
evaluated on a few real parameter benchmark problems and
obtained promising results. This algorithm was then extended
to investigate the impact of different heuristic space diversity
(HSD) strategies [26], with the exponentially increasing one
outperforming the others.

Elsayed et al. [16] proposed united multi-operator EAs
(UMOEAs), where multiple OAs were used, each of which
was a self-adaptive multi-operator algorithm. UMOEAs was
used to solve a set of unconstrained problems, with the
results showing significant improvements in comparison with
existing algorithms. However, its performance could be further
improved with a careful design of the algorithmic framework.

Masegosa et al. [40] proposed a centralized cooperative
strategy, where a set of trajectory-based methods were con-
trolled by a rule-driven coordinator. The algorithm consisted
of a set of agents that were run in parallel, with a coordinator
receiving information about their performance and sending
orders to them. The algorithm was tested on small-and large-
scale problems and showed competitive results, though for
some test problems it dit not outperform those of the other
methods. Xue et al. [64] integrated three self-adaptive learning
OAs by dividing the population into three sub-populations
each of which was evolved using a different OA, with an
information exchanging manners (IEM) used during the op-
timization process. The algorithm with different IEMs was
tested on a set of unconstrained problems and showed a
competitive performance to those of other OAs.

López-Ibáñez et al. [36] introduced the irace package which
implements a general iterated racing procedure, including
I/FRace as a special case [4]. The package involved (1)
sampling from a truncated normal distribution; (2) a paral-
lel implementation; (3) a restart strategy; (4) and an elitist
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racing. López-Ibáñez and Stützle [37] used the hypervolume
measure to compare the performances of OAs in terms of
Pareto-optimality and then integrated this measure in irace. In
[35], an automatic algorithm configuration tool was applied
to to improve the performance of ACMA-ES algorithm, by
separating the tuning and testing sets. The improved version of
CMA-ES was superior to algorithms in solving unconstrained
problems. However, doing the automatic configuration during
the evolutionary process would be interesting and more prac-
tical.

Considering multi-operator-based algorithms, Qin et al. [45]
proposed a self-adaptive DE algorithm (SaDE) that used four
mutation strategies, to one of which each individual in the
population was assigned based on a given probability. Then,
the selection probability of each operator was updated based
on its success and failure rates during previous generations (a
learning period). Zamuda and Brest [72] introduced an algo-
rithm that employed two mutation strategies in their earlier
algorithm proposed [6], with the population size adaptively
reduced during the evolutionary process. Its performance on
some real-world problems was better than that of two other
algorithms. An adaptive DE algorithm [9], which utilized four
mutation strategies in a sequential manner, i.e., one mutation
in every predefined number of generations, was introduced,
with a mechanism also used to reduce the population size.
Wang et al. [63] introduced a composite DE algorithm (CoDE)
in which, in each generation, a trial vector was generated
by randomly combining three DE variants with three control
parameter settings. This algorithm performed well on a set of
unconstrained test problems.

Regarding SI approaches, a mix of different PSO vari-
ants, each of which evolved with a different number of
individuals, was proposed in [21]. In each generation, the
algorithm assigned more individuals to the better- and fewer
to the worse-performing variants. It was tested on a rea-
sonable number of constrained problems, with the results
showing its effectiveness. Nepomuceno and Engelbrecht [42]
proposed a frequency-based heterogeneous PSO for solving
real-parameter optimization functions. This algorithm kept
track of the frequency of success of the behaviors of the
particles for a number of iterations in order to use it as a
selection criterion, and demonstrated better performances than
other heterogeneous PSOs.

A. Fuzzy Theory
As fuzziness is involved in our daily conversation, Zadeh

[70] introduced the field of fuzzy theory in the mid 60’s . In it,
to represent uncertainty, Zadeh defined the term “fuzzy sets”
as those sets whose boundaries are not clear [41]. Generally,
a fuzzy set y in S (S is a space of objects whose elements
are denoted by s, i.e., S = {s}) is described by a membership
function µy (s) of a real number ∈ [0, 1] associated with each
point in S, where µy (s) is the grade of membership s in y.
The closer the value of µy (s) is to 1, the more s belongs to y
[70]. There are many types of membership functions, such as
Gaussian, generalized bell curve, triangular and trapezoidal.

As a natural language is fuzzy (i.e., involves vague and
imprecise expressions) [48], fuzzy logic was developed for
computing with words [69]. The idea behind it is to map an
input space to an output one. To do this, the core mechanism
creates a list of ‘if-then’ rules (i.e., if the antecedent then the
consequent) which are then converted by a fuzzy system to
their mathematical equivalents.

Generally, to create a fuzzy logic system, the following
steps are required [50].

1) Fuzzification determines the degree to which a crisp
number (a system input) belongs to each of the appro-
priate fuzzy sets via a membership function.

2) An inference engine imitates a human’s thinking by
making fuzzy inferences regarding the inputs and if-
then rules, i.e., applying a fuzzy operator (AND or OR)
in the antecedent, which infers from the antecedent to
consequent and aggregates the consequent across the
rules (max, probabilistic OR and sum of each rule’s
output set).

3) Defuzzifucation transforms the fuzzy set obtained by
the inference engine into a crisp value. There are
different defuzzification methods, such as (i) centroid
which returns the center of an area under the curve,
(ii) bisector which divides the curve into two equal
parts, (iii) middle of maximum which is the average of
the maximum values of the output set, (iv) largest of
maximum which is the largest value of the domain with
the maximal degree of membership and (v) smallest of
maximum which is the smallest value of the domain
with the maximal degree of membership. Of these
methods, the centroid calculation is the most popular.

Over the years, fuzzy logic has shown its benefits which
include, but are not limited to, (1) its ease of understanding,
(2) more intuitive approach, (3) flexibility, (4) tolerance of im-
precise data and (5) suitability for many applications ranging
from the basic sciences to engineering, social and biomedical
systems, and consumer products [71].

B. Fuzzy logic in OAs
Generally, uses of fuzzy logic in OAs were mainly to adapt

their parameters which is not considered in this paper. Below
is a brief review on uses of fuzzy logic in OAs.

Bernal et al. [3] proposed a method of using fuzzy logic to
find the optimal values of the imperialist competitive algorithm
(ICA) parameters (β, ξ). Three fuzzy systems were used,
with the first conducted to determine the best value of β,
second ξ and third β and ξ. All the fuzzy systems were
of a Mamdani type with the input defined as the decades.
On only six unconstrained problems solved, the results were
competitive with other algorithms. Similarly, Valdez et al. [58]
applied fuzzy logic to dynamically adapt the inertia weight
and learning factors of a PSO. The algorithm was tested on
a set of unconstrained problems and showed better results
than those of the same algorithm with different adaptation
mechanisms. A similar mechanism was also carried out to
adapt the parameters of a grey wolf optimizer (GWO) [47] and
DE [43]. For GAs, Herrera and Lozano [30] presented a GA
variant with adaptive genetic operators based on coevolution
with fuzzy behaviors. In it, the adaptation took place at the
individual level by means of fuzzy logic and the fuzzy rule
bases used by fuzzy logic come from a separate GA. The
algorithm was tested on a set of unconstrained problem with
promising results achieved.

III. TEAM OF OPTIMIZATION ALGORITHMS (TOAS)

As previously discussed, the current frameworks which
combine more than one operator and/or OA, may not out-
perform all their individual algorithms/operators for all test
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problems. Therefore, as solving an unknown problem using
such an algorithm will provide no confidence about the quality
of solutions, we propose a new heuristic in the design of a
TOAs framework.

In the beginning, let Aset = {Ai|i = 1, 2, .., Nalg} be a set
of Nalg OAs, and Fset = {Fk|k = 1, 2, ...Nfun} be a set of
problems to solve.

The first rule is that Aset should be a set of complementary
algorithms and the second that, to determine which algorithm
to apply or the probability of evolving individuals using an
OA, the heuristic should be based on useful complementary
criteria, such as the quality of solutions and diversity.

For a minimization problem, assuming that Aset =
{A1,A2}, A1 and A2 can be considered complementary
algorithms if:

1) Nfun,1
(
fA1

< fA2

)
> 0 and Nfun,2

(
fA1

> fA2

)
> 0, where fAj is the average fitness value ob-
tained by running the ith algorithm a few times and(
Nfun,1 ∪Nfun,2 ∪Nfun

(
fA1

= fA2

))
= Nfun.

Note that the best fitness value can be used instead
of f , but the latter may give a better indication about
the algorithm’s performance.

2) the search capabilities of Aset, during the evolutionary
process, are complementary, i.e., Ng,1

(
fA1,g < fA2,g

)
≥ gε and Ng,2

(
fA1,g > fA2,g

)
≥ gε, where

Ng,1
(
fA1,g < fA2,g

)
denotes the number of

generations that A1 performs better than A2,
gε ∈ [1, Ngmax ] a defined number of generations,(
Ng,1 ∪Ng,2 ∪Ng

(
fA1,g = fA2,g

))
= Ngmax , and

Ngmax the maximum number of generations. Figure
1 depicts an example that fulfils this rule, in which
A2 has better average fitness values for the first
gε = 350 generations, then A1 converges faster in
later generations.

3) Aset holds CC, i.e., A1 is good based on the quality
of solutions, while A2 has a better diversity rate (div),
such that fA1

< fA2
and divA1

< divA2
or vice versa.

Note that the 2nd and 3rd conditions may hold for only one
problem.

g
0 100 200 300 400 500 600 700 800 900 1000

f

0

100

200

300

400

500

600

700

800

900

1000

fA1

fA2

Figure 1. Example of complementary algorithms during evolutionary process

In the literature, it is recognized that, although sharing
information among sub-populations (/individual algorithms)
is important for improving performance [44, 17], it may

deteriorate the team’s performance if it is not appropriately
conducted. Therefore, we propose rules for determining how
to share information between a trusted (high-performing)
algorithm and low-performing ones, with fuzzy rules used to
measure the effectiveness of an algorithm based on its results
in terms of diversity and quality of solutions, as discussed in
section III-B.

Finally, in practice, finely tuning the performance of a
team remains central to the systematic improvement of the
final product (result). Therefore, having a dynamic fine-tuning
procedure may ensure the achievement of quality, i.e., keep
using it if it is worthwhile.

Based on the abovementioned rules, a general framework
is generated, with its steps described in Algorithm 1. Firstly,
an initial population (X) of size PS is randomly generated(
X =

{−→
X 1,
−→
X 2, ...,

−→
XPS

})
with the probability of each

algorithm being applied set to 1, i.e., probi = 1∀ i =
{1, 2, ..Nalg}. Also, the initial diversity of each algorithm and
the best fitness value in X is recorded. Then, X is divided
into Nalgo sub-populations

(
X = {x1, x2, ..., xNalg}

)
, each of

which is conditionally evolved by a different A, i.e., based on
its probi, and each xi is of size PSi.

In each generation, Nalg random numbers are generated,
i.e., randi ∈ [0, 1] ∀ i = {1, 2, ..Nalg}, if randi ≤ probi, xi
is updated using Ai. Note that in the first cycle (a predefined
number of generations) all the algorithms are used to evolve
their corresponding sub-populations. This process is repeated
for a cycle (CS) and, when it is finished, every probi is
updated based on its effectiveness, as discussed in section
III-A.

For each generation in the 2nd cycle, Nalg random numbers
are generated, with at least one rand having to be less
than its corresponding probi to make sure that at least one
algorithm is applied in each generation. Similar to the first
cycle, if randi ≤ probi, then Ai is used to update xi
∀ i = {1, 2, ..Nalg}. Then, at the end of the second cycle,
the effectiveness of each algorithm is calculated. Subsequently,
two actions occur: (1) information is shared among algorithms
if a condition is satisfied (see section III-B); (2) each probi
is set to 1, i.e., returns to the first cycle. The reasons for the
second action are, (1) if the information-sharing procedure
has taken place, all algorithms are provided with a chance
to evolve equally with the new individuals which may help to
change their search capabilities, and (2) the search capabilities
of OAs may vary during the optimization process, i.e., one
algorithm may be good in the early stages but perform poorly
in later generations (this characteristic is shown in Figure 3
in the supplementary materials and will be discussed later).

Finally, a local search is used as a fine tuning of the
team performance during the last stages of the optimization
algorithm (section III-C). The algorithm continues until a
stopping criterion is met.

In the following subsections, each component of the TOAs
framework is discussed in detail.

A. Fuzzy rules-based heuristic
As previously mentioned, it is crucial to select an OA

during the optimization process based on CC. In this paper,
two factors are considered CC: (1) the quality of solutions
obtained; and (2) the diversity of a population generated by
an algorithm. As these factors can be described by linguistic
variables, e.g., the diversity is low and the quality of solutions
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Algorithm 1 General framework of TOAs
1: Define PS, cy ← 0, probi ← 1, g ← 1, and all other

parameters required (Section IV).
2: At g = 1, generate random individuals (X), and devide

them into Nalgo groups, i.e., X = {x1, x2, ..., xNalg}.
3: while cfe < FFEmax do
4: cy ← cy + 1.
5: if cy = CS then
6: Measure the effectiveness of each Ai (Section III-A).

7: Update probi.
8: end if
9: if cy = 2× CS then

10: Share information (Section III-B).
11: probi ← 1.
12: cy ← 0; .
13: end if
14: Generate randi ∈ [0, 1], with at least one satisfies

randi ∈ [0, 1] ≤ probi.
15: if randi ≤ probi then
16: Evolve xi using Ai.
17: Update cfe and sort xi.
18: end if
19: if finetuningstage then
20: if rand ∈ [0, 1] ≤ probls then
21: Apply local search.
22: Update probls.
23: end if
24: end if
25: g ← g + 1, and go to step 4.
26: end while

high, fuzzy logic can help in the decision-making process for
determining the most effective algorithm to use. In this paper,
five levels (subsets) of each fuzzy set are considered, that is,
{very low (VL), low (L), medium (M), high (H) and very high
(VH)}.

Firstly, the quality of solutions is represented as the dif-
ference between the optimal (or best known fitness value if
the optimal one is unknown) and best fitness values in each
sub-population such that

Qi = f∗ − f bestg,i ∀ i = 1, 2, ...Nalg (2)

where f∗ is the optimal or best known solution and f bestt,i the
best objective value of the ith sub-population. This means that
the closer the value of Qi to 0, the better quality it is.

The diversity rate is calculated as the average distance of
each individual in xi to the best solution among them:

divi =

∑PSi
z=1 div (−→x i,z,−→x best)

PSi
, ∀ i = 1, 2, ...Nalg (3)

where div (−→x z,−→x best) is the Euclidean distance between the
zth individual and best individual in xi. Note that the best
solution is −→x 1, as, in every generation, each sub-population
is sorted based on the fitness values.

Subsequently, it is crucial to define the scale of each fuzzy
set (universal space), i.e., its lower and upper limits. Based on
equation 2, the upper bound (UBQ) of the quality of solutions
is zero. Regarding the lower bound (LBQ), although the
simplest way is to fix it to the maximum (Qi) at g = 0, during

Algorithm 2 Steps of updating lower and upper bounds of
quality of solutions and diversity

1: At g = 0, cy ← 0; calculate Qi (eq. 2) and divi (eq. 3)
∀i = 1, 2, ..Nalg;

2: UBQ ← 0; LBQ ← Max (Qi ∀i=1,2,..Nalg );
3: LBdiv ← 0; UBdiv ← Max (divi ∀i=1,2,..Nalg );
4: while cfe < FFEmax do
5: cy ← cy + 1;
6: if cy = CS or cy = 2× CS then
7: calculate Qi (eq. 2) and divi (eq. 3) ∀i =

1, 2, ..Nalg;
8: LBQ ← Min (LBQ,Max (Qi ∀i=1,2,..Nalg ));
9: UBdiv ← Max (UBdiv,Max (divi ∀i=1,2,..Nalg ));

10: end if
11: if cy = 2× CS then
12: cy ← 0;
13: end if
14: end while

the optimization process, it is possible that the initial value will
be very large and the algorithm will become trapped in a local
solution in later generations which may be far from the optimal
solution but falls within the ‘VH’ level of quality. To clarify
this, assuming that the max min fg=0,i ∀ i = {1, 2, ...Nalg}
is 1e + 10 and f∗ = 0, the limits will be [−1e+ 10 0]. If
the membership follows a trapezoidal function, as discussed
later, any fitness value better than 2.5e+ 08 will take a high
membership value. However, this value is too far from the
optimal solution. Therefore, we propose an automatic update
of this value over generations, i.e., changing it every CS
generation.

Considering diversity, the lower bound (LBdiv) is zero and,
similar to (LBQ), the upper bound (UBdiv) is automatically
updated in every CS generations, with its initial value set to
UBdiv = max(divi)∀ i = {1, 2, ...Nalg}. Bearing in mind, if
the diversity at any stage is increased, UBdiv is updated as
max (UBdiv, max(divi)∀ i = {1, 2, ...Nalg}). The steps for
updating the lower bounds of both the diversity and quality
of solutions are shown in Algorithm 2.

Also, the trapezoidal membership function is considered to
map each point in the input space to a membership value. The
trapezoidal curve of a point y depends on four scalar values,
a, b, c, and d, such that

µy (s) =



0 y < a
y−a
b−a a ≤ y ≤ b
1 b ≤ y ≤ c
d−y
d−c c ≤ y ≤ d
0 y ≥ d

(4)

where a, b, c, and d of each level for the inputs (quality,
diversity) and output (effectiveness) are shown in Figure 2.

Once the fuzzy sets are defined, the if-then rules are used to
codify the conditional statements that encompass fuzzy logic
and formulate the effectiveness based on the inputs (diversity
and quality), as shown in Table I; for instance, if quality is
high and diversity low, then the effectiveness of an OA is
medium.

As described in section II-A, an if-then rule involves
two different processes: (1) evaluating the antecedent (which
involves fuzzifying the input and applying any necessary
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Figure 2. Membership function for inputs (quality, diversity) and output (effectiveness)

Table I. IF-THEN RULES
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fuzzy operators); and (2) applying that result to the con-
sequent (known as implication). Note that (1) the logical
AND is represented as the minimum of the membership
values (prob (O1 AND O2) = min (p(O1), p(O2))); (2) the
implication function, which modifies that fuzzy set to the
degree specified by the antecedent, is the min function; (3)
the output fuzzy sets for each rule are aggregated into a
single output fuzzy set, using the max function; and (4) the
defuzzification technique used is the centroid method. For a
trapezoidal fuzzy number, the centroid can be calculated as:
s̄(y) =

∫ d
a
s×µy(s)ds∫
µy(s)ds

= 1
3

[
a+ b+ c+ d− d×c−a×b

(d+c)−(a−b)

]
[62].

The abovementioned steps are carried out for every
OA, with the value obtained after defuzzification (∈ [0, 1])
considered its effectiveness, or simply called probi ∀i =
{1, 2, .., Nalg}.

B. Information sharing

A team of OAs without trust is not really an effective team,
that may not perform consistently well. One way to build the
trust is to share vital information among them in an effective
manner. To perform this crucial task, a few questions need to
be answered: (1) among which algorithms should we share
information? (2) when to share information? (3) how to share
information? and (4) what information we should share?

Regarding the first question, a trusted algorithm can pass in-
formation to inferior ones as it has above-average effectiveness
(as described in III-A), with an algorithm considered inferior if
its effectiveness is below average, i.e., (prob < 0.5). The rea-
son for avoiding sharing information among well-performing
algorithms is to give them space to search independently as
long as they continue to perform well.

As, for the same reason, sharing information should be
carried out periodically rather than in each generation [17],
it is conducted at the end of the second cycle (cy = 2× CS
in Algorithm 1).

Considering the third and fourth questions, a simple way
of sharing information is to replace the worst individual in an
inferior algorithm’s sub-population by the best one in that of
a trusted algorithm. However, this does not add any benefit

to CMA-ES if it is used and found to be among the inferior
algorithms. To clarify this, the main elements in CMA-ES are−→x m , σt and N (0, Ct), as described later.If we replace one
individual in its sub-population by the best individual in that
of the trusted algorithm without updating one of these factors
based on the new information, CMA-ES will evolve according
to its previous values. Therefore, in this paper, information
sharing for CMA-ES is considered a process of restarting
its individuals, i.e., replacing its entire sub-population by
random individuals from that of the trusted algorithm. Also,
its parameters are reset to their initial values, except that σ
is updated as σ = σinitial ×

(
1− cfe

FFEmax

)
to avoid huge

perturbations that may occur.For any algorithm in the group
of inferior algorithms, its worst individual is substituted by
the best one in the trusted algorithm’s sub-population.

C. Fine-tuning technique
In this research, a fine-tuning process is adopted which

applies a local search procedure during the final stages of
the optimization process, i.e., in each generation of the final
15% of the evolutionary process, with a probability of probls,
sequential quadratic programming (SQP) [5] applied to the
best individual found so far and for up to cf e LS fitness eval-
uations. However, to avoid applying SQP without obtaining
any benefit, probls is dynamically changed based on SQP’s
performance. To clarify this, if SQP does not successfully
obtain a better result, probls is set to a small value, otherwise
to its initial one.

The solution obtained by SQP is shared with all the
algorithms by replacing the worst individual in the sub-
population. For CMA-ES, if its effectiveness is below average,
its parameters are reset to their initial values, except thatσ is
set to σinitial ×

(
1− cfe

FFEmax

)
.

D. OAs
Research studies have indicated that a diverse group, that is,

its members complement each other, can provide the benefit of
generating good decision-making alternatives [31]. A diverse
group means that the group members should complement
each other. Although the framework proposed in this paper is
general and can be applied to any diverse group of algorithms,
two (Nalg = 2) powerful algorithms considered are (1) multi-
operator DE (MODE) which combines three DE mutation
operators to overcome the shortcoming that one may work
well for one problem but not another as such algorithms
having proven their capability to perform well [17, 49], and
(2) CMA-ES.
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1) MODE : MODE starts with PS1 individuals which
are randomly taken from the entire PS individuals. It uses
three DE variants: (1) DE1: current-to-pbest/bin with archive;
(2) DE2: current-to-pbest/bin without archive; and (3) DE3:
wighted-rand-to-φbest/bin. Descriptions of these operators are
give in the supplementary materials.

Firstly, any individual (xz) in X1 can be evolved using DE1

or DE2 or DE3 with a predefined probability, i.e., PrDE1
=

PrDE2
= PrDE3

= 1
3 . To clarify, if randz ∈ [0, 1] ≤ 0.33,

then −→x z is evolved using DE1, if 0.33 ≤ randz ∈ [0, 1] ≤
0.667, use DE2, otherwise DE3 is used. Then, each probability
is updated based on the fitness improvements rate (IDEκ)
achieved by each DE:

IDEκ =

∑PS1

z=1 max (0, fnewz − foldz )∑PS1

z=1 foldz,κ
,

∀−→x κ updated by DEκ and κ = 1, 2, 3 (5)

where fnew and fold are the new and old fitness values,
respectively.

Then, each probability is updated as

PrDEκ = max
(

0.1,min
(

0.9,
IDEκ

IDE1
+ IDE2

+ IDE3

))
,

∀κ = 1, 2, 3 (6)

Note that, as one operator may perform good at different
stages of the evolutionary process, and perform badly in
others, a minimum value of probDEκ is considered [17].
Furthermore, if

(∑3
κ=1 Iκ

)
= 0, Prκ = 1

3 ∀i = 1, 2, 3.
Also, for maintaining diversity within the early evolutionary

process, while enhancing the exploitation ability in later ones
[54], a linear reduction of PS1 is carried out at the end of
each generation by removing the worst individual, such that

PS1,t+1 = round(((
PS1,min − PS1,max

FFEmax

)
× cfe

)
+ PS1,max

)
(7)

where PS1,max and PS1,min are the maximum and minimum
values of PS1, respectively, and FFEmax the maximum
number of fitness evaluations.

Adaptation of F and Cr : In this paper, the mechanism
proposed in [54] is adopted. Its main idea is to use two histor-
ical memories for F and Cr which showed good performance
during the previous generations. Then, new ones are generated
by sampling around those stored in the memory. Details about
such a mechanism are discussed in supplementary materials.

2) CMA-ES: Over the last two decades, CMA-ES has
shown its capability to efficiently solve diverse types of
optimization problems [28]. It was derived from the con-
cept of self-adaptation in ES, which adapts the covariance
matrix of a multivariate normal search distribution. In it the
new individuals are generated by sampling from a Gaussian
distribution, and instead of using a single mutation step, it
considers the path the population takes over generations [29].
The main steps in CMA-ES used in this paper are described
in the supplementary materials.

IV. EXPERIMENTAL RESULTS

This section presents, discusses and analyzes the compu-
tational results obtained by TOAs on a set of unconstrained
problems (the CEC2014 problems) [33]. Then, it shows the re-
sults of testing TOAs on 28 problems taken from the CEC2013
problems [34], 25 ones from the CEC2005 benchmark [53],
and other 12 classical unconstrained ones [67]1.

A. Analysis of TOAs on CEC2014 problems

The benchmark consists of 30 test problems, i.e., F set =
{1, 2, .., 30}, with F1 ∼ F3 are uni-modal, F4 ∼ F16

multi-modal, F17 ∼ F22 hybrid, and F23 ∼ F30 composite
functions.

All the algorithms were run 51 times for each test problem,
and the stopping criterion 10, 000D fitness evaluations, with
D = 10, 30, and 50, or

∣∣∣f (−→x best)− f
(−→
x∗
)∣∣∣ ≤ 1e−08, where

f
(−→
x∗
)

is the optimal solution. Note that all the algorithms
started with the same initial population, which changed in each
run.

For MODE, PS1,max was 18D individuals and PS1,min 4,
H = 6 [54]. For CMA-ES, PS2 = 4 + b(3log (D))c [28],
µ = PS

2 and σ = 0.3. CS was set to 50, 100 and 150, for
the 10, 30, and 150D problems, respectively and cfeLS to
0.2× FFEmax fitness evaluations.

The non-parametric Wilcoxon test [10] was carried out to
determine if there was a statistical difference between TOAs
and the other algorithms based on two options: (1) each
problem (51 results); and (2) a whole set of problems, i.e.,
30 results, each of which is the average of 51 runs. Using a
significance level of 5%, one of three symbols (+, − and ≈)
was used, where +, − and ≈ meant TOAs was statistically
superior, inferior and similar to the other algorithm, respec-
tively. Also, the Friedman test was undertaken to rank all the
algorithms based on their average fitness errors. In addition,
to visually compare the results, the performance profiles tool
was considered [2]. To use such a technique, a goal had to
be defined, which, in this paper, was the average fitness error
obtained obtained.

1) 10D Results: The average fitness errors of the best solu-
tions compared with the optimal ones and standard deviation
results are presented in Table 1 in the supplementary materials.
Note that, if

∣∣∣f (−→x best)− f
(−→
x∗
)∣∣∣ ≤ 1e − 08, the value is

considered 0.
Firstly, among 30 problems, the algorithm was able to ob-

tain optimal solutions for all the uni-modal and 7 multi-modal
ones, fitness errors very close to zero for the remaining 6
and performed well in solving the hybrid functions. However,
for the complex composition functions, it converged to local
solutions.

Based on the quality of solutions obtained, it was clear
that TOAs was always able to obtain better results than
both MODE and CMA-ES. To clarify, considering the best
solutions achieved, TOAs was better than, equal to and worse
than MODE and CMA-ES for 17, 12 and 1, and 23, 6 and 1
problems, respectively. Regarding the average results, neither
MODE nor CMA-ES outperformed TOAs for any problem;
in particular, TOAs was superior and similar to MODE for 22

1due to the number of pages limitation, some results and figures are moved
to the supplementary materials attached with the paper
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and 8 test problems, respectively, and to CMA-ES for 27 and
3, respectively.

Based on the Wilcoxon test, it was found that TOAs was
statistically better than MODE and CMA-ES for 13 and 26 test
problems, respectively, with no significant difference between
them for the remaining 17 and 4, respectively. Furthermore,
when this test was conducted considering the second option
previously mentioned, the results showed that TOAs was sta-
tistically superior to both these algorithms. Also, the Friedman
test was carried out to rank all the algorithms, with the results
demonstrating that TOAs was 1st, followed by MODE and
CMA-ES.

Finally, using the performance profiles graphical tool, it
was clear that TOAs was the best as it was able to reach
a probability of 1.0 with a value of τ = 1, as depicted in
Figure 1.a in the supplementary materials.

2) 30D Results: Generally, the TOAs was able to obtain
optimal solutions for the F1 ∼ F3 problems. For the multi-
modal functions, TOAs was able to attain the optimality in F4

and F6 ∼ F10. The best solutions obtained for F12 ∼ F15 were
very close to the optimal ones, but the algorithm became stuck
in local solutions when solving F5 and F11. For the hybrid
functions, although the best solutions obtained for F18 ∼ F22

were close to 0, the best for F17 was slightly worse. This
was also noticeable for the average results obtained for F17

and F21. For the composition functions, although TOAs was
not able to reach optimality, its fitness errors, especially for
F23 ∼ F28, were reasonably close to 0.

In comparison with the other two algorithms, TOAs con-
tinued to perform well, as evident from the results presented
in Table 2 in the supplementary materials, with the summary
provided in Table II showing that it was clearly better than
the other algorithms for the majority of test problems.

Table II. COMPARISON SUMMARY OF TOAS AGAINST MODE AND
CMA-ES FOR 30D PROBLEMS

Algorithms Criteria Better Similar Worse

TOAs vs. MODE Best fitness values 12 13 5
Average fitness values 16 12 2

TOAs vs. CMA-ES Best fitness values 22 7 1
Average fitness values 26 3 1

However, it was crucial to check whether TOAs was sta-
tistically inferior to the other algorithms for the problems
for which it obtained slightly worse results. To do this, the
Wilcoxon test was used, with the results showing that no
statistical difference could be found between TOAs and those
algorithms for those problems. The Wilcoxon test was also
carried out based on option 2 previously mentioned, with
the results demonstrating that it was statistically superior to
MODE and CMA-ES for solving the 30D test problems.
Again, considering the Friedman test, TOAs was ranked 1st,
with MODE and CMA-ES 2nd and 3rd, respectively.

Based on the plot generated by the performance profiles,
depicted in Figure 1.b in the supplementary materials, TOAs
was found to be the best, followed by MODE and CMA-ES.

3) 50D Results: From the results presented in Table 3 in
the supplementary materials, regarding the quality of solutions
obtained, it was noted that TOAs was able to reach optimal
solutions for 2 uni-modal problems and very close to optimal-
ity for the remaining 1 (F01). For the multi-modal problems,
it achieved optimality for 3, very close to 0 for 7, close to
optimality for F5 and F16 and poor results for only F11, with
its performances for solving hybrid functions reasonable. For

the composition functions, it was able to converge to a local
solution which was close to optimality but its average result
for F30 was far from the global solution.

As the complexity of a problem increases with an increasing
number of decision variables, it was expected that TOAs
would not perform as well as it did for smaller-dimensional
problems but would be better than, or similar to, both MODE
and CMA-ES. This was achieved for the majority of test
problems as it was able to obtain better results (based on
the best fitness values) than MODE and CMA-ES for 16
and 22 problems, respectively, similar results for 10 and 6,
respectively, and inferior for only 4 and 2, respectively. Based
on the average fitness values, TOAs was superior, similar and
inferior to MODE for 16, 9 and 5, test problems, respectively,
and to CMA-ES for 26, 2 and 2, respectively.

As TOAs performed worse than the other algorithms for
a few test problems, it was vital to check their statistical
differences. Based on the recorded results, it was found
that TOAs was statistically superior or similar to the other
algorithms for the majority of test problems. Unfortunately,
although the differences between average results were not
large, it was statistically inferior to MODE in 2 problems
(F10, F16), and to CMA-ES for (F1, F29).

As it was important to understand this drawback, an investi-
gation showed that the population size of MODE was the main
cause, i.e., MODE’s population size (PS1) was 18D=900
individuals while CMA-ES used 4 + b3log (D)c = 15, as
suggested in [28], which affected the convergence rate of
TOAs. We noticed that CMA-ES converged very slowly for
F29 during the early generations and then improved during
the later stages of the optimization process, as shown by the
average fitness errors of both MODE and CMA-ES for in
Figure 3 in the supplementary materials. This meant that TOAs
always preferred using MODE in every decision step, and re-
initialized CMA-ES due to its poor performance.

For those problems affected by the first reason, i.e., a large
PS1, we easily managed that by setting its value to D for
the uni-modal problem (F1), 3D for F10 and 6D for F16. To
compare algorithms in a fair manner, both MODE, and TOAs
with the new the initial PS were run for 51 runs, and their
results recorded, as presented in Table III. It is clear now that
TOAs was able to obtain better, or same, fitness errors to
those of the other algorithms. Furthermore, TOAs was always
statistical superior, or similar to the other algorithms.

Moreover, from the Wilcoxon test based on the second
option, TOAs was statistically superior to both algorithms and
ranked 1st based on the Friedman test, with MODE and CMA-
ES 2nd and 3rd, respectively.

Unfortunately as, for F29, for which CMA-ES outperformed
TOAs, the population size was not a remedy, further investi-
gations will be required.

Finally, the performance profiles tool was used to graphi-
cally compare all the algorithms, as shown in Figure 1.c in
the supplementary materials. The plots show that TOAs was in
first place, as it achieved a probability of 1.0 at τ = 0.2×105

whereas until τ = 2× 105, neither MODE nor CMA-ES was
able to reach Rho = 1.

4) Computational Times: In this subsection, the computa-
tional times of TOAs, MODE and CMA-ES are compared.

For each method, the average computational times taken to
solve all the test problems were calculated if one of the follow-
ing two criteria was met: (1) the maximum number of fitness
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Table III. FITNESS ERRORS
(∣∣∣f (−→x best

)
− f

(−→
x∗

)∣∣∣) OBTAINED BY MODE, CMA-ES AND TOAS FOR F1 , F10 AND F16 WITH 50D (BETTER MEAN

FITNESS ERRORS SHOWN IN BOLDFACE)

Prob. Best fitness errors mean (std.) fitness errors Stat. Test (p,Dec.)
MODE CMA-ES TOAs MODE CMA-ES TOAs MODE CMA-ES

F1 2.5519E+03 0.0000E+00 0.0000E+00 1.7806E+04(2.0051E+04) 0.0000E+00 (0.000E+00) 2.0663E-04 (1.476E-03) 0.0000(+) 1.000(≈)
F10 0.0000E+00 6.0102E+03 0.0000E+00 2.4493E-04(1.749E-03) 7.7879E+03 (7.233E+02) 1.2247E-03 (3.752E-03) 0.2188(≈) 0.0000(+)
F16 1.5494E+01 2.1740E+01 1.5000E+01 1.6567E+01(4.689E-01) 2.2693E+01 (5.590E-01) 1.6615E+01 (4.650E-01) 0.4647(≈) 0.0000(+)

evaluations was reached; or (2)
∣∣∣f (−→x best)− f

(−→
x∗
)∣∣∣ ≤ 1e−

08. Note that all the experiments were run on a PC with a
Core(TM) i7-3770 CPU @ 3.40GHz (8 CPUs), 16 GB RAM
and Windows 7 using MATLAB 8.5.0.197613 (R2015a).

Based on the results presented in Table IV, MODE was the
fastest algorithm, consuming only slightly less time than TOAs
but significantly less than CMA-ES. In fact, it was expected
that TOAs would be slower than MODE as it used CMA-ES in
its process which is computationally expensive. Generally, as
the solutions obtained by TOAs were significantly better than
those by MODE, this small increase in the computational time
can be ignored.

Table IV. AVERAGE COMPUTATIONAL TIMES, IN SECONDS, FOR
TOAS, MODE AND CMA-ES FOR 10D,30D AND 50D

CMA-ES MODE TOAs
10D 7.97E+00 2.72E+00 3.45E+00
30D 3.15E+01 1.06E+01 1.26E+01
50D 8.07E+01 2.93E+01 3.10E+01

5) Benefits of using Complementary Selection Character-
istics : In this subsection, we analyze the benefits of using
complementary criteria to determine the effectiveness of an
algorithm. To do this, TOAs was run by setting the selec-
tion method to only (1) the quality of solutions (var1), (2)
diversity (var2), and (3) random (var3). All the variants
were compared based on only the 30D problems, with the
summary presented in Table V demonstrating the benefits of
using complementary selection characteristics.

Table V. COMPARISON SUMMARY OF TOAS AGAINST var1FOR 30D
PROBLEMS (WHERE STATE. TEST REFERS TO RESULTS BASED ON

WILCOXON TEST)

Algorithms Criteria Better Similar Worse Stat. test

TOAs vs. var1
Best fitness values 11 13 6 0.356(≈)

Average fitness values 15 11 4 0.022(+)

TOAs vs. var2
Best fitness values 12 13 5 0.019(+)

Average fitness values 16 10 4 0.001(+)

TOAs vs. var3
Best fitness values 12 13 5 0.136(≈)

Average fitness values 19 10 1 0.001(+)

Considering the Wilcoxon test, although no statistical dif-
ference was found between TOAs and both var1 and var3
regarding the best fitness values achieved. TOAs was sta-
tistically better considering the average results and always
statistically superior to var2. Also, the Friedman test ranked
TOAs 1st with a mean rank of 1.95, and var1, var2, and var3
came 2nd, 3rd and 4th with scores of 2.18, 2.80 and 3.07,
respectively. The performance profiles method also produced
consistent results, as TOAs was able to reach a probability of 1
first with τ ≈ 2.85 (Figure 2 in the supplementary materials).

6) Effect of CS: In this section, the effect of CS is analyzed
by running TOAs with different CS values (i.e., 10, 50, 100,
150) to solve the 10, 30 and 50D problems. Subsequently,
the Friedman test was carried out to rank all variants, with a

summary given in Table VI. Based on the results obtained, it
was noticed that it would be good to increase CS with the
increase of dimensionality, i.e., CS=50, 100 and 150 were the
best for the 10, 30 and 50D problems, respectively.

Table VI. RANKS OF TOAS WITH WITH DIFFERENT CS VALUES BASED ON

FRIEDMAN TEST

CS 10D 30D 50D
10 2.85 2.85 2.70
50 2.23 2.75 2.83

100 2.55 2.02 2.40
150 2.37 2.36 2.07

7) Effect of LS: To analyze the effect of LS, MODE and
CMA-ES (with and without LS) were run to solve the 30D
test problems and compared to the proposed algorithm with
and without LS. A comparison summary is given in Table
VII, with the results showing that the proposed algorithm was
the best even when LS was incorporated into the opponent
algorithms.

Table VII. COMPARISON AMONG ALGORITHMS WITH AND WITHOUT
LS FOR THE 30D PROBLEMS

Algorithms Better Similar Worse
TOAs without LS vs. MODE 13 11 6

TOAs vs. MODE with LS 13 11 6
TOAs without LS vs. CMA-ES 25 3 2

TOAs vs. CMA-ES with LS 26 3 1

Also, the Friedman test was carried out to rank all six
variants. The results showed that TOAs with LS was the
best followed by MODE with LS, TOAs without LS, MODE
without LS, CMA-ES with LS and CMA-ES without LS,
with scores, 2.03, 2.63, 2.93, 3.27, 5.03 and 5.1, respectively.
Generally, incorporating LS into any of the abovementioned
variants was better than the same without LS.

8) Comparison with State-of-the-art Algorithms: TOAs was
compared with two well-known algorithms, (1) LSHADE [54]
and (2) UMOEAs [16], with the detailed results shown in
Tables 4 and 5 in the supplementary materials.

Based on the quality of solutions, a comparison summary
is presented in Table VIII, which indicates that TOAs was the
best for the majority of test problems. Also, it was observed
that all the algorithms were able to obtain optimal solutions
for all the uni-modal problems, except the 50D ones for which
LSHADE could not achieve it for F1. Also, Also, for the
multi-modal problems, TOAs showed its superiority to the
other algorithms, except for F12 and F13, for which UMOEAs
was slightly better. TOAs also performed well for the majority
of hybrid functions, and for most the composition functions,
was able to obtain significantly better results than all the other
algorithms.

Statistically, the Wilcoxon test showed that TOAs was
significantly better than LSHADE and UMOEAs for all di-
mensions. Furthermore, Table IX shows the ranking of each
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algorithm according to the Friedman test in which it is clear
that TOAs was ranked 1st for all dimensions while UMOEAs
was better than LSHADE for the 10D ones, but had the lowest
rank for all other dimensions.

Table IX. RANKS OF ALL ALGORITHMS BASED ON FRIEDMAN TEST

Algorithms 10D 30D 50D
LSHADE 2.37 2.22 2.13
UMOEAs 2.22 2.33 2.43

TOAs 1.42 1.45 1.43

Finally, the performance profiles graphical tool showed con-
sistent conclusions for all dimensions, as depicted in Figure 4
in the supplementary materials.

9) Comparison with other Algorithms: In this section,
TOAs was compared with other 4 well-known algorithms,
(1) DE with self-adaptation of its control parameters (jDE)
[6]; (2) DE with an ensemble of parameters and mutation
strategies (EPSDE) [39]; (3) DE with composite trial vector
generation strategies (CoDE) [63]; and (4) success-history
parameter adaptation of DE (SHADE) [55]. The results were
taken from [15]. Due to the number of pages limitation, the
comparison was conducted only on the 30D problems, with the
average fitness errors reported in Table 6 in the supplementary
materials. Regarding the quality of solutions, a comparison
summary is given in Table X, where the non-parametric
Wilcoxon test was carried based on option 2 previously
discussed. The results clearly confirm the superiority of the
proposed algorithm. Furthermore, the Friedman test ranked
TOAs 1st with a mean rank of 1.28, as reported in Table XI.
Also, the performance profile tool showed the superiority of
TOAs, as depicted in Figure 5 in the supplementary materials.

Table X. COMPARISON SUMMARY OF TOAS AGAINST JDE, EPSDE, CODE
AND SHADE ON 30D PROBLEMS (DEC. STATISTICAL DECISION TAKEN BASED ON

WILCOXON TEST)

Algorithms 30D
Better Similar Worse Dec.

TOAs vs. jDE 26 4 0 +
TOAs vs. EPSDE 25 5 0 +
TOAs vs. CoDE 29 0 1 +
TOAs vs. SHADE 25 4 1 +

Table XI. RANKS OF ALL ALGORITHMS BASED ON FRIEDMAN TEST

jDE EPSDE CoDE SHADE TOAs
3.08 3.73 4.35 2.55 1.28

B. Testing TOAs on additional benchmark problems
In this section, three other benchmark sets are solved, taken

from the CEC2013 and CEC 2005 special sessions on real-
parameter optimization [34][53], and 12 classical ones [67]
described in Table 7 in the supplementary materials. The
performance of TOAs was evaluated against several state-of-
the-art algorithms based their capability of obtaining high-
quality solutions, non-parametric Wilcoxon test, their rankings
based on the Friedman test and the performance profile tool.

1) CEC2013 problems: 28 problems were solved with each
ran 51 times with D = 30 variables and the stopping
criterion 10, 000D or the fitness error between the best and
optimal solutions reached 1E − 08. The results obtained by
TOAs were compared with those of other 8 algorithms, (1)
DE with an individual-dependent mechanism (IDE) [57]; (2)
JADE with eigenvector-based mutation (JADE/eig) [27]; (3)
DE with an evolution path (JADEEP) [32]; (4) CoDE; (5)
EPSDE; (6) dynNP_jDE [7]; (7) SHADE; and (8) collective
information-powered DE (CIPDE)[73]. Note that the results
of the first three algorithms and CIPDE were taken from their
corresponding papers, while the rest from [55]. The average
fitness errors of all algorithms are shown in Table 8 in the
supplementary materials. The comparison summary presented
in Table XII demonstrates that TOAs was able to achieve the
best results for the majority of test problems. Also, TOAs
was statistically better than all the other algorithm, and ranked
1st based on the Friedman test. In addition, the performance
profile tool clearly showed the superiority TOAs to all the
other algorithms, as depicted in Figure 6 in the supplementary
materials.

Table XII. COMPARISON SUMMARY OF TOAS AGAINST 8 STATE-OF-THE-ART

ALGORITHMS ON CEC2005 UNCONSTRAINED PROBLEMS WITH 30 VARIABLES

Algorithms 30D
Better Similar Worse Stat. Test (p,Dec.)

TOAs vs. IDE 22 3 3 (0.001,+)
TOAs vs. JADE/eig 24 4 0 (0.000,+)
TOAs vs. JADEEP 22 4 2 (0.000,+)
TOAs vs. CoDE 21 5 2 (0.000,+)
TOAs vs. EPSDE 25 3 0 (0.000,+)
TOAs vs. dynNP_jDE 21 4 3 (0.000,+)
TOAs vs. SHADE 21 4 3 (0.000,+)
TOAs vs. CIPDE 21 4 3 (0.000,+)

Table XIII. RANKS OF ALL ALGORITHMS BASED ON FRIEDMAN TEST BASED

ON CEC2013 PROBLEMS

IDE JADE/eig JADEEP CoDE EPSDE dynNP_jDE SHADE CIPDE TOAs
4.54 6.02 4.98 5.39 7.89 5.39 4.39 4.25 2.14

2) CEC2005 problems: In this subsection, considering the
CEC2005 problems, TOAs is evaluated against (1) self-
adaptive DE with discrete mutation control parameters (DMP-
SADE) [24]; (2) JADE with auto-enhanced population di-
versity (AEPD-JADE) [65]; (3) DE with a hybrid mutation
operator and self-adapting control parameters (HSDE) [68];
(4) efficient player selection strategy based diversified PSO
((EPS-dPSO) [1]; (5) a trajectory-based centralized cooper-
ative strategy based on an approaching action (TCCS-AC)
[40]; (6) DE with dynamic parameters selections (DE-DPS)
[49]; (7) CoDE. Each algorithm was run 25 times, except
DMPSADE ran 50 times, with D = 30 variables. The average
fitness errors and standard deviation values were taken from
their corresponding papers and compared to those of TOAs.
The detailed results are shown in Table 9 in the supplementary
materials, with a comparison summary presented in XIV. The
results demonstrated that TOAs outperformed all the other
algorithms for the majority of test problems. Statistically
speaking, ToAs was better than all the other algorithms,
except DE-DPS, as both algorithms were statistically similar.
However, if we conduct the Wilcoxon test with a significance
level of 10%, ToAs will statistically outperform DE-DPS.
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Table VIII. COMPARISON SUMMARY OF TOAS AGAINST LSHADE AND UMOEAS (DEC. STATISTICAL DECISION TAKEN BASED ON WILCOXON TEST)

Algorithms Criteria 10D 30D 50D
Better Similar Worse Dec. Better Similar Worse Dec. Better Similar Worse Dec.

TOAs vs. LSHADE Average fitness values 25 4 1 + 21 6 3 + 22 3 5 +
TOAs vs. UMOEAs Average fitness values 18 5 7 + 20 5 5 + 22 3 5 +

Considering the mean rank of each algorithm calculated by
the Friedman test, TOAs was the best, as reported in Table
XV. The performance profile tool also showed the superiority
of TOAs (Figure 7 in the supplementary materials).

Table XIV. COMPARISON SUMMARY OF TOAS AGAINST DMPSADE,
AEPD-JADE, HSDE, EPS-DPSO, TCCS-AC, DE-DPS AND CODE ON CEC2005

UNCONSTRAINED PROBLEMS WITH 30 VARIABLES

Algorithms 30D
Better Similar Worse Stat. Test (p,Dec.)

TOAs vs. DMPSADE 17 7 1 (0.002,+)
TOAs vs. AEPD-JADE 20 3 2 (0.001,+)
TOAs vs. HSDE 17 5 3 (0.008,+)
TOAs vs. EPS-dPSO 19 4 2 (0.000,+)
TOAs vs. TCCS-AC 20 3 2 (0.001,+)
TOAs vs. DE-DPS 14 7 4 (0.052,≈)
TOAs vs. CoDE 19 5 1 (0.000,+)

Table XV. RANKS OF DMPSADE, AEPD-JADE, HSDE, EPS-DPSO,
TCCS-AC AND TOAS BASED ON FRIEDMAN TEST ON CEC2005 PROBLEMS

DMPSADE AEPD-JADE HSDE EPS-dPSO TCCS-AC DE-DPS CoDE TOAs
4.90 6.12 4.34 5.62 5.46 3.22 4.06 2.28

3) 12 classical problems: In this subsection, TOAs is eval-
uated against 5 of the-state-of-the-art algorithms, (1) jDE; (2)
DE with neighborhood search (NSDE) [66]; (3) Opposition-
based DE(ODE) [46]; (4) DEGL with self-adaptive weight
factor (DEGL/SAW) [11]; and (5) Gaussian bare-bones DE
(MGBDE) [61]. For each problem, every algorithm was run
50 times with D = 25 variables. The results of these
algorithms were taken from Table V in [61]. Based on the
results obtained (Table 10 in the supplementary materials), a
comparison summary is presented in XVI, with the results
showing that TOAs was always better than, or similar to,
all the algorithms, except DEGL/SAW, in which, for only
two problems, TOAs was slightly inferior. Also, TOAs was
statistically better than all the algorithms, except DEGL/SAW,
in which both algorithms were statistically similar. The rank of
TOAs was 1.56 which put it in the 1st place, as presented in
Table XVII. Regarding the performance profile tool, Figure
8 in the supplementary materials demonstrated that TOAs
had the capability of outperforming all other state-of-the-art
algorithms considered. TOAs was also run with D = 30
and showed better performance compared with other two
algorithms, with more details given in Tables 11 and 12 in
the supplementary materials.

V. CONCLUSION AND FUTURE WORK

Many EAs and SI methods for solving optimization prob-
lems have been introduced. As no single optimization method
has proven to be the best for all types of problems, researchers

Table XVI. COMPARISON SUMMARY OF TOAS AGAINST JDE, NDE, ODE,
DEGL/SAW AND MGBDE ON 12 UNCONSTRAINED PROBLEMS WITH 25

VARIABLES

Algorithms Better Similar Worse Stat. Test (p,Dec.)
TOAs vs. jDE 11 1 0 (0.003,+)
TOAs vs. NSDE 11 1 0 (0.003,+)
TOAs vs. ODE 9 3 0 (0.008,+)
TOAs vs. DEGL/SAW 9 1 2 (0.248,≈)
TOAs vs. MGBDE 8 4 0 (0.012,+)

Table XVII. RANKS OF ALL ALGORITHMS BASED ON FRIEDMAN TEST

jDE NSDE ODE DEGL/SAW MGBDE TOAs
4.42 5.00 4.04 3.00 2.96 1.58

have started developing frameworks that use a mix of al-
gorithms and/or operators. Although these frameworks have
shown more success than single-based methods or operators,
their designs were based on trial and error approaches. Also,
their performances might be statistically outperformed by
those of single-based methods.

Therefore, based on organizational behavior, this research
study introduced a set of rules for designing such frameworks.
As a consequence, a new one was proposed which could be
considered a step toward better designs of teams of OAs. Our
TOAs was constructed using powerful and complementary
OAs and then, based on complementary search characteristics,
a fuzzy rules system was used to place emphasis on the
best-performing one. Also, based on the effectiveness of this
algorithm, an information-sharing scheme was implemented
with a fine-tuning procedure used in the latter stages of the
optimization search process.

This framework was adopted with MODE and CMA-ES as
OAs, and SQP as a fine-tuning procedure. Then, TOAs was
used to solve a set of real-parameter benchmark problems
with 10, 30 and 50 dimensions. The results showed that
it was 100% successful in obtaining statistically better, or
similar, results to its individual algorithms for the 10D and
30D problems while achieving the same performance for 29
of 30 of the 50D ones. The results were also compared in
terms of the quality of solutions using the Friedman test
and performance profiles tool, both of which showed the
superiority of the proposed method. Furthermore, TOAs was
statistically competitive with different state-of-the-art algo-
rithms. TOAs was also evaluated on the CEC2013, CEC2005
and 12 standard problems and was found better than the state-
of-the-art algorithms.

Generally, this paper can offer new directions for designing
multi-operator and multi-method frameworks using a single
population rather than multiple sub-populations, and dynami-
cally selecting their parameters although any new algorithms
should be carefully developed. Another vital future work is
developing a remedy for the shortcoming encountered when
solving F29 (in the CEC2014 benchmark) with 50 dimensions.
Also, extending the proposed fuzzy system for constrained
problems will be beneficial. The idea of a trusted algorithm
can be adapted to trusted operators and or parameters, which
may be an interesting future direction to explore.
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