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We propose a modified version of the differential evolution approach to solve engineering design
problems. The aim is to allow each parent in the population to generate more than one offspring at
each generation and therefore, to increase its probability of generating a better offspring. To deal with
constraints, we use some criteria based on feasibility and a diversity mechanism to maintain infeasible
solutions in the population. The approach is tested on a set of well-known benchmark problems.
After that, it is used to solve engineering design problems and its performance is compared with
those provided by typical penalty function approaches and also against state-of-the-art techniques.
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1 Introduction

Many engineering design problems can be stated like the general nonlinear
programming problem in which we want to:

Find # which optimizes f(Z)

Subject to:
gz(:T:') SO,’IJ = 1,...,m
hi(#) =0, = 1.,
where # € R" is the vector of solutions & = [z1,Z,...,z,|7, where each

zi, 1=1,...,n is bounded by lower and upper limits L; < z; < U;; m is the
number of inequality constraints and p is the number of equality constraints
(in both cases, constraints could be linear or nonlinear).

Differential Evolution (DE) is a novel evolutionary algorithm proposed by
Storn and Price (1999). The approach works with a mutation operator which
is based on the current distribution of solutions in the population, instead
of being based on a fixed (usually Gaussian) distribution such as other Evo-
lutionary Algorithms (EAs) like Evolution Strategies (Back 1996). At each
generation in DE, each parent will generate one offspring. If this child is bet-
ter than its parent, it will replace him in the population; if not, the parent
will remain and the child is eliminated.

The motivation of this paper is to introduce an evolutionary optimizer which
fulfills two main goals: (1) is able to increase the probability of a parent to
generate a fitter offspring and (2) it does not use a penalty function to deal
with the constraints of the problem. The first objective is reached by allowing
each parent to generate more than one offspring at each generation. In this way,
a pre-selection mechanism is incorporated to select, by using a deterministic
process, the best solution among the offspring of one parent, and only this best
solution will compete against its parent in order to remain in the population.
The second objective refers to handling the objective function value and the
constraints of the problem separately and to use a mechanism to keep solutions
with a good value of the objective function, regardless of their feasibility, in the
population. This issue is important because maintaining promising infeasible
solutions will increase the exploration of new regions of the search space and
the feasible region and it will decrease the chances of getting trapped in local
optima.

The paper is organized as follows: In Section 2, we present the previous
related work. Section 3 provides the description of our approach. Afterwards,
in Section 4 we detail the experimental design and we present and discuss
the results obtained. Finally, in Section 5 some conclusions are drawn and the



future work is established.

2 Related Work

EAs have been widely used to solve engineering design problems. Storn (1999)
proposed a constraint-relaxation mechanism coupled with the aging concept
to solve optimization problems using DE. He explored the idea of allowing a
solution to generate more than one offspring, but in his approach, once a child
is better than its parent, the multiple offspring generation ends. Furthermore,
the comparison between solutions is always deterministic and the constraint-
handling mechanism is based on relaxing the constraint at the beginning in
order to consider all the feasible solutions. Among the state-of-the-art ap-
proaches available to solve engineering design problems, we present the fol-
lowing: He et al. (2004) proposed a PSO-based approach to solve engineering
design problems. The main advantage of the approach is its low computa-
tional cost measured in terms of the number of objective function evaluations.
However, He’s approach only works with feasible points; therefore, there is no
diversity mechanism at all and an initial population of feasible solutions is al-
ways required. This is obviously the main disadvantage of the technique. Ray
& Liew (2003) used a social model to solve engineering optimization problems.
In their model, the population of solutions is seen as a civilization and it is
divided into sub-populations known as societies. There are leaders in each so-
ciety and the leaders are also grouped in a leaders’ society. Then, solutions can
follow its corresponding leader, a leader of another society or follow the leader
of leaders. In this way, the approach aims to maintain diversity. Constraints
are handled by using dominance as a selection criterion. The main advantage
of the approach is that it requires a low number of evaluations of the objective
function to obtain competitive results. However, it requires a ranking process
at each generation besides a clustering algorithm which is used to initialize
the societies. Regarding constraint-handling in EAs, several techniques have
been proposed. The most common approach is the use of a penalty function
(Coello 2002), whose aim is to punish infeasible solutions in order to favor
feasible individuals in the selection process. As a result, the search will be bi-
ased to the feasible region of the search space. However, the main drawback of
this approach is the careful fine-tuning required by the penalty factors, which
determine the severity of the penalty and it has been shown that their values
are problem dependent (Smith and Coit 1997). To tackle this problem, sev-
eral alternatives have been proposed (Coello 2002). One of the most recent
approaches are the self-adaptive penalty function proposed by Tessema and
Yen (2006), where a new fitness value, called distance value (in the normal-
ized fitness-constraint violation space) and two penalties are applied to those



infeasible solutions so that the algorithm is able to identify the best infeasi-
ble individuals in the current population. Mezura and Coello (2005) proposed
an evolution strategy with a set of feasibility rules (Deb 2000), a combined
discrete-intermediate recombination operator and a smooth stepsize for the
mutation operator to solve constrained optimization problems.

3 Our proposed approach

"[Insert Figure 1 about here]’

The aim of the approach proposed in this paper is to add simple modifica-
tions to the DE algorithm in order to adapt it to deal with constrained search
spaces and also to improve its performance by generating more offspring per
parent. At each generation, each parent will be able to generate n, offspring.
Among these newly generated solutions, the best of them will be selected to
compete against its parent. Then, each parent will increase its chances to
generate a fitter offspring. The selection of the best child is completely deter-
ministic based on the three following criteria (Deb 2000):

(i) Between 2 feasible solutions, the one with the highest fitness value wins.
(ii) Ifone solution is feasible and the other one is infeasible, the feasible solution
wins.
(iii) If both solutions are infeasible, the one with the lowest sum of constraint
violation is preferred

(212, maz(0, 9i(7)))-

After the best offspring is selected, it will compete against its corresponding
parent and the best of them will survive for the next generation. However, in
this case the comparison between parent and best offspring is performed with
a stochastic element. Based on a parameter called selection ratio S, the best
solution is chosen based only on the value of the objective function value. In
the remaining 1 — S, selections, the best solution is chosen based on the three
criteria mentioned before. In this way, the best feasible solutions will remain in
the population, besides those solutions with a promising value of the objective
function, regardless of feasibility. This mechanism, coupled with the DE’s way
of finding new search directions (based on the distribution of solutions in the
current population) will allow the algorithm to explore the search space and
its feasible region in a better way as to obtain better solutions. The detailed
pseudocode of our approach is presented in Figure 1.



4 Experiments and Discussion

Our experimental design has three parts: (1) to test our approach in a set
of well-known benchmark problems, (2) to compare our approach against dif-
ferent types of penalty function approaches and (3) to compare our results
against state-of-the-art approaches and against a traditional DE approach
which generates only one offspring per parent.

For the first experiment, we selected 13 test problems commonly used
to test evolutionary algorithms dealing with constrained search spaces
(Mezura-Montes and Coello Coello 2005). The main features of the problems
are presented in Table 1 an the details of each function are presented in an
Appendix at the end of the paper.

"[Insert Table 1 around here]’

We performed 30 independent runs with the same set of parameters as fol-
lows: NP =90, MAX _ GENERATIONS = 500 (225,000 evaluations of the
objective function), CR = 0.9, n, = 5 and S, = 0.45, F randomly gener-
ated within [0.3,0.9]. Equality constraints were transformed into inequality
constraints (|h(Z) — €| < 0) with a tolerance value of ¢ = 0.0001.

We will measure the quality of results (“better” best solution found) and
also the robustness of the approach (“better” mean and standard deviation
values. These statistical results are summarized in Table 2.

"[Insert Table 2 around here]’

The results obtained by our approach are also compared against a tradi-
tional DE approach which uses the same set of initial parameters adopted by
our approach as well as the same constraint handling mechanism. The only
difference between traditional DE and our approach is that in the first, only
one offspring per parent is generated and in our approach we generate 5 off-
spring per parent. The parameter values used in our approach are exactly the
same used in the previous experiment. Furthermore, we decided to compare
the performance obtained by our modified DE against two state-of-the-art
approaches: The self-adaptive penalty function (Tessema and Yen 2006) and
the Simple Multimembered Evolution Strategy (Mezura-Montes and Coello
Coello 2005). The results of all approaches are presented and compared also
in Table 2.



As it can be noted, our approach clearly outperformed the traditional DE
approach, based on quality and robustness. In fact, the traditional DE was
unable to generate feasible solutions for some test functions. With respect to
the self-adaptive penalty approach (Tessema and Yen 2006), our approach pro-
vided “better” best results in 7 problems (g02, g04, g05, g06, g07, g09, g10),
and “similar” best results in 5 problems (g01, g03, g08, gl1 and gl2). The
self-adaptive technique obtained a “better” best result in problem gl13. With
respect to robustness, our approach provided “better” mean and standard de-
viation in all 13 test problems. Compared to the SMES (Mezura-Montes and
Coello Coello 2005), our approach provided a “better” best result in five prob-
lems g05, g07, g09, gl0 and gl3; and a “similar” best result in the remaining
seven problems: g01, g02, g03, g04, g06, g08, g11 and gl2. Finally, our approach
provided “better” mean and standard deviation values in seven problems: g02,
g05, g06, g07, g09, gl0 and gl3 and “similar” mean and standard deviation
values in the remaining six: g01, g03, g04, g08, gl1 and gl2.

To get a statistical support to our findings regarding the robustness of the
proposed approach, we decided to calculate the 95%-confidence intervals for
the mean statistic. First, we used a Kolmogorov-Smirnov one-sample test to
verify the normality of the distribution. However, we found that none of the
distributions was close to a normal. Therefore, we chose the bootstrapping
method (which does not require to assume normality of the distribution) to
calculate the intervals. We used 1000 re-samples per original sample. The re-
sults are presented in Table 3. The results showed that the proposed approach
is able to accurately approximate, in the mean case, the best known solution
on each problem.

The overall results suggest that our approach provided a competitive
performance when solving this set of benchmark problems, where different
features are included (linear and nonlinear objective function, equality and/or
inequality constraints, either linear or nonlinear, different dimensionality,
different size of the feasible region with respect to the whole search space,
etc). Finally, it is important to remark that our approach required 225,000
evaluations to obtain the reported results, compared to 240, 000 used by SMES
(Mezura-Montes and Coello Coello 2005) and 500,000 by the self-adaptive
penalty approach (Tessema and Yen 2006).

"[Insert Table 3 around here]’

Based on the promising performance provided by our approach, we decided
to apply it in some engineering design problems. For this second set of
experiments, we selected four well known engineering design problems. The



7

details of each problem are presented in the Appendix at the end of this
document, but their main features are summarized in Table 4.

"[Insert Table 4 around here]’

To compare the performance of our approach, we decided first, to compare it
against typical penalty-based evolutionary algorithms. Thus, we implemented
four typical penalty approaches: (1) Assign a zero fitness value to infeasi-
ble solutions e.g. death penalty (Schwefel 1981), (2) static penalty, i.e. fixed
penalty factor during all the process (Hoffmeister and Sprave 1996), (3) dy-
namic penalty i.e. the penalty factor has a low value at the beginning and a
high value at the end of the process (Joines and Houck 1994) and finally, (4)
an adaptive penalty i.e. the penalty factor is updated based on the behavior
of the population (Hadj-Alouane and Bean 1997).

30 independent runs per technique per problem were performed. The
number of evaluations of the objective function was fixed to 24,000 for the
four penalty-based approaches and also for our approach. For the penalty-
based approaches we used a gray-coded genetic algorithm with roulette
wheel selection, one point crossover and uniform mutation. The population
size was 100 individuals and the number of generations 240. The rate of
crossover was 0.6 and the mutation rate was 0.01. The parameters for the
static, dynamic and adaptive approaches were defined after a trial-and-error
process. The reported parameters were those which provided the best results
and they are the following: Static approach: fixed penalty factor = 1000.
Dynamic approach: a = 2, § = 2, C = 0.5. Adaptive approach: 51 = 2.0,
Bo = 4.0, k = 50, dinitiar = 5000 Our DE-based approach used the following
parameters: NP = 60, MAX GENERATIONS = 80 (24,000 evaluations of
the objective function), CR = 0.9, n, = 5 and S, = 0.45, F was randomly
generated within the range [0.3,0.9]. Discrete variables were handled by just
truncating the real value to its closest integer value. The statistical results of
the 30 independent runs are shown in Table 5.

"[Insert Table 5 around here]’

Based on the results obtained, our approach was able to provide the most
robust (“better” mean and standard deviation values) and the best quality
results (“better” best solution found) in all four engineering design problems
adopted. In fact, none of the penalty-based approaches was able to find feasible
solutions for the speed reducer design problem. Besides, the dynamic penalty



approach could not find feasible solutions for the pressure vessel problem and it
could not find feasible solutions in two and eight runs for the welded beam and
the pressure vessel problems, respectively. Furthermore, the adaptive approach
could not find feasible solutions for the welded beam and for the pressure vessel
problems in three and nine runs, respectively. On the other hand, our approach
consistently found feasible solutions in each run for all design problems.

The overall results suggest that our approach provided the most consistent
performance, while the penalty-based approaches were competitive in some
problems, but in others the results were poor. This behavior indeed reflects
the need to update the penalty factors according to the problem to be solved.
This negative effect is not present in our approach, because with the same set
of parameters, avoiding the use of a penalty function and with the diversity
mechanism, the approach finds good feasible solutions consistently.

For the third set of experiments we compared the performance of our
approach against those provided by the last two approaches discussed in
Section 2. We used He’s and Ray’s approaches because they solved the same
set of test problems. In this case, the number of evaluations required by
each approach is included and it is used as a comparison criterion. We also
added the results obtained with a traditional DE approach with the same
set of initial parameters used by our approach and with the same constraint
handling mechanism. The only difference between traditional DE and our
approach is that at the beginning, only one offspring per parent is generated
and in our approach we generate 5 offspring per parent. The parameter values
used in our approach are exactly the same used in the previous experiment.
The comparison of the statistical results and the number of evaluations
required by each approach are presented in Table 6. In Tables 7, 8, 9 and
10, we provide the details of the best solution found by each state-of-the-art
technique and our approach.

"[Insert Table 6 around here]’

The results show that our approach clearly outperforms the two compared
approaches in the welded beam design problem (“better” best, mean and
standard deviation values, requiring less evaluations to provide such a perfor-
mance). For the pressure vessel problem, Ray’s approach required the lowest
number of evaluations. However, our approach provided clearly “better” best,
mean and standard deviation values than those provided by Ray’s technique
while just performing 4000 more evaluations. For the spring design problem,
He’s approach provided the same best solution found by our approach by
using just 15,000 evaluations of the objective function. Nonetheless, it is im-



portant to note that He’s approach requires to generate an initial feasible
population. In contrast, our approach starts with random solutions, regardless
of feasibility. Furthermore, our approach provided “better” mean and stan-
dard deviation values, which imply more robustness of our approach. For the
speed reducer problem, Ray’s approach provided the “best” best result, but
it required more than twice the number of evaluations used by our approach.
Besides, our best solution is close to the value provided by Ray’s approach
and also our mean and standard deviation values are clearly better, showing
again, the robustness of the approach. Finally, our approach provided better
results in all cases in all criteria with respect to the traditional DE approach
despite the fact that both share the same diversity mechanism. The details of
the best solutions found shown in Tables 7, 8, 9 and 10 seem to emphasize the
ability of the approach, based on the intensive use of the DE operator in one
parent, to explore solutions close to already good solutions and to improve the
quality of the final result. This behavior was found mostly in the beam and
the pressure vessel design problems.

The overall results of this third experiment suggest that our approach was
able to provide very competitive results compared with those provided by two
state-of-the-art approaches based on the quality, robustness and computational
cost measured by the number of evaluations of the objective function. Besides,
the chance to generate more offspring per parent provided an improvement
in the quality and robustness of the results obtained in the two DE-based
algorihtms compared.

4.1 Remarks

Based on the results of the three experiments developed, we summarize the
following findings:

o The effect of generating more than one offspring per parent in DE seems to
improve the quality and robustness of the solutions obtained significantly.

e The quality and robustness presented by the approach is competitive, and
better in some cases, with respect to those provided by state-of-the-art tech-
niques when solving a set of benchmark problems.

e The proposed approach required less evaluations of the objective function
of the problem, compared to the two state-of-the-art proposals used for
comparison when solving the benchmark problems.

e The diversity mechanism coupled with DE in the proposed approach im-
proves the capabilities of the approach to sample the constrained search
space as to reach better solutions than those obtained by the traditional
penalty-based techniques.

e The results obtained by our approach to solve four engineering design
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problems, compared with two state-of-the-art techniques, were competitive,
based on quality, robustness and computational cost (measured by the num-
ber of evaluations of the objective function).

"[Insert Table 7 around here]’
"[Insert Table 8 around here)’
"[Insert Table 9 around here)’

'[Insert Table 10 around here]’

5 Conclusions and Future Work

We have presented a DE-based approach to solve engineering design problems.
The approach was based on the more frequent use of the DE operator per
parent. The constraint handling technique adopted was based on simple
selection criteria and a diversity mechanism to maintain promising solutions
regardless on feasibility. The results obtained in three different experiments
show that the proposed approach provided a very competitive performance
with respect to those provided by two state-of-the-art evolutionary-based ap-
proaches and also with respect to a traditional differential evolution approach
to solve several constrained optimization test problems. Also, our technique
clearly outperformed four different typical penalty-based techniques when
tested in four engineering design problems. Also, in the last experiment, the
approach obtained better results than a traditional DE approach and it pro-
vided very competitive results against other two state-of-the-art approaches.
As future paths of research we will explore a mechanism to adapt the
parameters that control the number of offspring per parent and the diversity
in the population. Finally, we aim to test our approach in real-world problems.

Acknowledgements. The second author acknowledges support from CONA-
CyT through project no. 45683-Y.
Appendix

The details of the benchmark functions and the set of engineering design prob-
lems used in the experiments are the following:
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o gO01:
Minimize: f(Z) =5 23:1 z; — b Z?:l z? -3z
subject to:
gl(.’I_I') =2r1+ 229 +x190+211 —10<0

gg(:I_,") = 2.’L‘1 + 2:1,‘3 + x19 + 212 — 10 S 0
93(%) = 2z9 + 223+ 211 + 212 — 10 <0
94(%) = —8z1 + 1219 <0

g5(.’f) =—-8x9+x11 <0

96(%) = —8r3 4+ 112 <0

g7(%) = —2z4 — x5 + 210 <0

gg(.’i") =2z —x7+x11 <0

99(%) = —2z8 — g+ 112 <0

where the bounds are 0 < z; < 1 (4 = 1,...,9), 0 < z; < 100
(¢ = 10,11,12) and 0 < z13 < 1. The global optimum is located at
z*=(1,1,1,1,1,1,1,1,1,3,3,3,1) where f(z*) = —15. Constraints g1, go,
g3, g4, g5 and gg are active.

o g02:

2\ >or, cos? (@) —2 17, cos®(z;)

Maximize: f(Z) NOSRT
subject to:

a1 (f) =0.75 — H;L:l z; < 0

g2(Z) => 1z —7.5n <0

where n = 20 and 0 < z; < 10 (i = 1,...,n). The global maximum
is unknown; the best reported solution is (Runarsson and Yao 2000):
f(z*) = 0.803619. Constraint g; is close to being active (g1 = —107%).

e g03:
Maximize: f(Z) = (v/n)" [[1—, =i

subject to:
h(Z) =3 7] —1=0

wheren =10and 0 < z; <1 (i =1,...,n). The global maximum is located
at z; = 1/y/n (i=1,...,n) where f(z*) = 1.

o g04:
Minimize: f(%) = 5.3578547z2 + 0.8356891z; x5 + 37.293239z; — 40792.141
subject to:
91 (%) = 85.33440740.0056858x2 x5+0.0006262x1 £4—0.0022053x325—92 < 0
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(%) = —85.334407 — 0.0056858z2z5 — 0.0006262x; 24 + 0.0022053z325 < 0
(£) = 80.51249 +0.0071317z2 25 +0.00299551 7o +0.0021813z% — 110 < 0
g4(%) = —80.51249 —0.0071317z2 25 — 0.0029955x1 22 —0.002181323 +90 < 0
(%) = 9.300961+0.004702623 x5 +0.001254721 £340.0019085z324 —25 < 0
(Z) = —9.300961 —0.0047026x3 x5 —0.0012547x1 23 —0.0019085z324 +20 <

where: 78 < 21 < 102, 33 < 22 < 45, 27 < z; < 45 (i = 3,4,5). The global
optimum is located at z* = (78, 33,29.995256025682, 45, 36.775812905788)
where f(z*) = —30665.539. Constraints g; and gg are active.

g05
Minimize: f (£) = 3z1 + 0.000001z3 + 2x5 + (0.000002/3)z3

subject to:

=—x4+23—0.55 <0

—x3+ x4 —0.55 <0

1000 sin(—23 — 0.25) + 1000 sin(—z4 — 0.25) + 894.8 — z; = 0
1000 sin(z3 — 0.25) 4+ 1000 sin(z3 — x4 — 0.25) + 894.8 — x5 =0
1000 sin(z4 — 0.25) + 1000 sin(z4 — z3 — 0.25) + 1294.8 =0

(f)
92(%) =

hs(Z)
ha(Z)
hs(Z) =

where 0 < 21 < 1200, 0 < 29 < 1200, —0.55 < z3 < 0.55, and —0.55 <
z4 < 0.55. The best known solution is z* = (679.9453,1026.067,0.1188764,
—0.3962336) where f(z*) = 5126.4981.

g06

Minimize: f(£) = (z1 — 10)3 + (z2 — 20)3
subject to:

g1(%) = —(z1 — 5)%2 — (2 — 5)2+100 < 0
92(%) = (1 — 6)? + (22 — 5)? — 82.81 < 0

where 13 < z; < 100 and 0 < z9 < 100. The global optimum is

located at z* = (14.095,0.84296) where f(z*) = —6961.81388. Both
constraints are active.
g07

Minimize: f(a'c') 2+ 23 + 3179 — 1427 — 1679 + (T3 — 10) +4(zq — 5)% +
(5 — 3)% + 2(xg — ) + 572 + 7(zg — 11)% + 2(z9 — 10)? + (w10 — 7)% + 45
subject to:
gl(_') = —105+4z1 + 5z9 — 3xz7 + 925 <0

(Z) = 101 — 8z9 — 17z7 + 228 <0
93(%) = —8x1 + 2z2 + 5xg — 2219 — 12 <0
g1(%) = 3(z1 — 2)? + 4(z2 — 3)? + 222 — T2, — 120 <0
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g5(%) = bz +8x2+(x3—6)2—2$4—40§0

g6(Z) = z? + 2(xo — 2)? — 2x129 + ldas — 626 < 0
g7(Z) = 0.5(z1 — 8)% + 2(z — 4)? +3a:§—x6—30 <0
gs(ZT) = —3z1 + 622 + 12(z9 — 8)2 — 7219 < 0

where —10 < z; < 10 (z = 1,...,10). The global optimum is located at

* = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726,8.280092, 8.375927) where f(z*) = 24.3062091. Constraints g1,
92, 93, 94, g5 and ge are active.

g08

- :
Maximize: f(Z) = = (iggl)j_lggmﬂ
subject to:

91(F) =2 —z2+1<0
g2(f):1—$1+(w2—4)2go

where 0 < 27 < 10 and 0 < z2 < 10. The global optimum is lo-
cated at z* = (1.2279713,4.2453733) where f(z*) = 0.095825.

g09

Minimize: f(&) = (z1 — 10)2 + 5(z2 — 12)2 + x5 + 3(z4 — 11)% + 1028 + 72 +
— 4.’L'6$7 — 10.’136 — 8.777

subject to:

= —127+2x1+3:1:2+x3 + 423 + 5z5 < 0
( —282+7x1+3x2+1()x3+x4—x5<O
g ( —196+23x1 + 23 + 612 — 877, <0
94(%) = 422 + 2% — 37179 + 223 + 5zg — 1127 < 0

91(&
)
) =

z
z

where —10 < z; <10 (¢ =1,...,7). The global optimum is located at z* =
(2.330499,1.951372, —0.4775414,4.365726, —0.6244870,1.038131, 1.594227)
where f(z*) = 680.6300573. Two constraints are active (g1 and g4).

gl0

Minimize: f(Z) = z1 + z2 + =3

subject to: g1(Z) = —1 + 0.0025(z4 + z6) <0
92(F) = —1 + 0.0025(z5 + 7 — 24) < 0

g3(:1:) = —1+001( xIs —{175) SO

g4(:f) = —x1x¢ + 833.33252x,4 + 100x; — 83333.333 <0
gs (f) = —x9x7 + 125025 + Tox4 — 125024 < 0

g6 (f) = —z3xg + 1250000 4+ z325 — 250025 < 0
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where 100 < z; < 10000, 1000 < z; < 10000, (i = 2,3),
10 < z; < 1000, (2 = 4,...,8). The global optimum is located at z* =
(579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979),
where f(z*) = 7049.25. g1, g2 and g3 are active.

gll

Minimize: f(Z) = 22 + (12 — 1)?
subject to:

h(Z) =29 — 22 =0

where: —1 < z; < 1, -1 < S The global optimum is located at
z* = (£1/4/2,1/2) where f(z*) = 0.7

gl2

Maximize: f(7) = 0@ 8] =& =5)—(zs=5)

subject to:

g1(%) = (z1 — p)? + (z2 — ¢)? + (z3 —7)? — 0.0625 < 0

where 0 < z; <10 (1 = 1,2,3) and p,q,7 = 1,2,...,9. The feasible region
of the search space consists of 92 disjointed spheres. A point (z1, 2, 3) is
feasible if and only if there exist p, g, such the above inequality (5) holds.
The global optimum is located at z* = (5,5,5) where f(z*) = 1.

gl3

Minimize: f(f) = e¥1#2%s%4%s

subject to:

(@) =22 +2i+2t+a?+22-10=0
92(%) = zox3 — bxazs =0

g3(&) =z +23+1=0

where —23 < z; < 23 (¢ = 1,2) and -32 <
32 (1 = 3,4,5). The global optimum is located at z*
(—1.717143,1.595709, 1.827247, —0.7636413, —0.763645) where f(z*)
0.0539498.

[l IA

Design of a Welded Beam
"[Insert figure 1 of the appendix about here|’

A welded beam is designed for minimum cost subject to constraints on
shear stress (7), bending stress in the beam (o), buckling load on the bar
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(P.), end deflection of the beam (§), and side constraints (Rao 1996). There
are four design variables as shown in Figure 5 (Rao 1996): h (z1), [ (z2), t
(z3) and b (z4). The problem can be stated as follows:

Minimize: f(%) = 1.10471z2z5 + 0.04811z374(14.0 + z)

Subject to:

91(.’3) = T("I_f) = Tmaz < 0

92(5’:) = U(f) — Omaz <0

93(%) =x1 —14 <0

94(Z) = 0.1047122 + 0.048112324(14.0 + 2) — 5.0 < 0
g5(§:') =0.125 — il S 0

gG(j’) = 5(5?) — Omaz <0

g1(@) = P~ P.Z) < 0

where 7(Z) = \/(7—/)2 ¥ 27—/7.1150_}2z T ()2
’ " =ME M =P (L+2

~

Tr) =
[2328
Py(#) = 401BB\[HE (g
c\t) = L2 2L\ 4G

P = 60001, L = 14in, E = 30 x 10% psi, G = 12 x 10% psi
Tmaz = 13,600 psi, Opmaz = 30,000 psi, dmaez = 0.25 in

where 0.1 <21 <2.0,01<29<10.0,0.1<23<100y0.1 <z4<20.

Design of a Pressure Vessel
"[Insert figure 2 of the appendix about here]’

A cylindrical vessel is capped at both ends by hemispherical heads as
shown in Figure 5. The objective is to minimize the total cost, including the
cost of the material, forming and welding. There are four design variables:
T, (thickness of the shell), T) (thickness of the head), R (inner radius)
and L (length of the cylindrical section of the vessel, not including the
head). T and T}, are integer multiples of 0.0625 inch, which are the available
thicknesses of rolled steel plates, and R and L are continuous. Using the same
notation given by Kannan and Kramer (1994), the problem can be stated
as follows:

Minimize : f(F) = 0.622471 7374 + 1.7781z273 + 3.166122 24 + 19.847% 73
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Subject to :
aq1 (f) = —x1+0.0193z3 <0

g2(T) = —x9 + 0.00954z3 < 0
93(%) = —ma3z, — gmzd 4+ 1,296,000 < 0
g4(§c') = T4 — 240 S 0

where 1 <z <99, 1 <29 <99, 10 <z3 <200y 10 < z4 < 200.

Minimization of the Weight of a Tension/Compression Spring
"[Insert figure 3 of the appendix about here|’

This problem was described by Arora (1989) and Belegundu (1982), and
it consists of minimizing the weight of a tension/compression spring (see
Figure 5) subject to constraints on minimum deflection, shear stress, surge
frequency, limits on outside diameter and on design variables. The design
variables are the mean coil diameter D (z3), the wire diameter d (z1) and
the number of active coils N (z3). Formally, the problem can be expressed

as:
Minimize: (N + 2) Dd?

Subject to:

q1(@) =1- AL <0

92(7) = 125§6D(25d%D—d4) + 5087 — 1 <0
05(7) = 1 - 150 <o

ga(@) = BH -1 <0

where 0.05 < 27 <2,025 <29 <13y2<z3<15.

Problem 4: (Minimization of the Weight of a Speed Reducer) The
weight of the speed reducer is to be minimized subject to constraints on
bending stress of the gear teeth, surfaces stress, transverse deflections of the
shafts and stresses in the shafts. The variables z1,x2,--- ,27 are the face
width, module of teeth, number of teeth in the pinion, length of the first
shaft between bearings, length of the second shaft between bearings and the
diameter of the first and second shafts. The third variable is integer, the rest
of them are continuous.
Minimize : (%) = 0.78547173(3.333373+14.933473—43.0934) —1.50871 (z2+
z2) + 7.AT77(z3 + 23) + 0.7854(z423 + z522)

Subject to :
91(%) = ﬁ -1<0

- _ 3975
92(Z) = ;0zr —1<0
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—» 1.93z3
93(3:) = :13258350% -1 S 0

o _ 1.93a8
94(Z) = 52 x —1<0

((7“ﬂ)2+16.9x106)1/2

g5(T) = === 110.022 -1<0
. ((%ﬁ)2+157.5x106)1/2
96({) ’ 85.023 -1<0
g7(%) = %52 —1<0
gs(%) =22 -1 <0
gg(f) = 1;;22 —1<0
910(5) — 1.5:6;;%1.9 -1 S 0
o Llzg+1.9
gll(m)—#—lgo

where 2.6 < z1 < 3.6, 0.7 < 22 < 0.8, 17 < z3 <28, 7.3 < z4 < 8.3,
7.8 <x5<8.3,29<z6<3.9and5.0<z;<5.5.
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Figure 1: Our algorithm. The steps modified with respect to the original DE
algorithm are marked with an arrow. randint(min, maz) returns an integer
value between min and maz. rand|0, 1) returns a real number between 0 and
1. Both functions adopt a uniform probability distribution. flip(W') returns 1
with probability W.

Appendix
Figure 1: The welded beam used for the first engineering design problem

Figure 2: Center and end section of the pressure vessel used for the
second engineering design problem.

Figure 3: Tension/compression spring used for the third engineering de-
sign problem.
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Begin
G=0
Create a random initial population i’G Vi,i=1,...,NP
Evaluate f(flg) Vi,i=1,...,NP

For G=1 to MAX_GENERATIONS Do
F=rand[0.3,0.9]
For i=1 to NP Do
= For k=1 to n, Do
Select randomly 71 # ro # 73 # @
Jrand = randint(1, D)
For j=1 to n, Do
If (rand;[0,1) < CR or j = jrgnq) Then
child; = m;s + F(m;}G —2'2))

.G .G
Else .
child; = m;-!G
End If
End For
If k > 1 Then )
= If (child is better than @ 4

(based on the three selection criteria)) Then
g1 =child

End If
Else .
'E’G+1:Child
End For
= If flip(S») Then .
= If (f('u”'G_H) 5 f(£g)) Then
=1 S
Ta+1 = ¥Gg+1
Else
Fg1 =2g
End If
Else . .
= If (@ 41is better than Zg

(based on the three selection criteria)) Then

2 1
TG+1 = UG+1

Else
Tg41 =2
End If
End If
End For
G=G+1
End For
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[ Problem | n | Type of function | P [LI [ NI [ LE | NE |
g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 2 0 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 4 2 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
gl0 8 linear 0.0020% 6 0 0 0
gll 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
gl3 5 nonlinear 0.0000% 0 0 1 2

Table 1. Main features for each benchmark problem used in the first set of experiments. p is the estimated
size of the feasible region with respect to the whole search space (Michalewicz and Schoenauer 1996), n
is the number of decision variables, LI is the number of linear inequality constraints , NI the number of
nonlinear inequality constraints, LE is the number of linear equality constraints and NE is the number of
nonlinear equality constraints.
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Problem & Statistical results obtained by each compared approach
Best Known Stats. Tessema Mezura Traditional | Our approach
Sol. Yen (2006) | & Coello (2005) DE
g01 Best -15.000 -15.000 - -15.000
-15.000 Mean 14.552 -15.000 - -15.000
St. Dev. 0.7 0 - 0
g02 Best 0.803202 0.803601 0.624750 0.803610
0.803619 Mean 0.755798 0.785238 0.512637 0.796437
St. Dev. 0.13321 0.0167 0.049706 0.008929
g03 Best 1.000 1.000 - 1.000
1.000 Mean 0.964 1.000 - 1.000
St. Dev. 0.301 0.000209 - 0
g04 Best -30665.401 -30665.539 -297979.515 -30665.539
-30665.539 Mean -306659.221 -30665.539 -30135.475 -30665.539
St. Dev. 2.043 0 140.167 0
g05 Best 5126.907 5241.599 - 5126.497
5126.498 Mean 5214.232 5174.492 - 5126.497
St. Dev. 247.476 50.06 - 0
g06 Best -6961.046 -6961.814 -6127.775 -6961.814
-6961.814 Mean -6953.061 -6961.284 -6741.669 -6961.814
St. Dev. 5.876 1.85 186.275 0
g07 Best 24.838 24.327 58.184 24.306
24.306 Mean 27.328 24.475 39.135 24.306
St. Dev. 2.172 0.132 5.672 0
g08 Best 0.095825 0.095825 0.095825 0.095825
0.095825 Mean 0.095635 0.095825 0.095825 0.095825
St. Dev. 0.001055 0 0 0
g09 Best 680.773 680.632 762.947 680.630
680.63 Mean 681.246 680.643 707.190 680.630
St. Dev. 0.332 0.0155 15.936 0
glo Best 7069.981 7051.903 - 7049.25
7049.25 Mean 7238.964 7253.047 - 7049.35
St. Dev. 137.773 136.02 - 0.1945110
gll Best 0.749 0.75 0.7483 0.75
0.75 Mean 0.751 0.75 0.8376 0.75
St. Dev. 0.002 0.000152 0.0738 0
gl2 Best 1.000 1.000 1.000 1.000
1.000 Mean 0.99994 1.000 1.000 1.000
St. Dev. 0.000141 0 0 0
gl3 Best 0.053941 0.053986 - 0.053942
0.0539498 Mean 0.28627 0.166385 - 0.053942
St. Dev. 0.275463 0.177 - 0

Table 2. Comparison of statistical results on 13 benchmark problems obtained by some state-of-the-art
approaches, a traditional DE and our proposed approach. “-” means no feasible solutions were found.
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Problem | Best Known sol. Confidence intervals
Our approach

g01 -15.000 [-15.000, -15.000]
g02 0.803619 [ 0.7925494,0.7988851]
g03 1.000 [1.000,1000]
g04 -30665.539 [-30665.539,-30665.539]
g05 5126.498 [5126.497,5126.497]
g06 -6961.814 [-6961.814,-6961.814)]
g07 24.306 [24.306,24.306]
g08 0.095825 [0.095826,0.095826]
g09 680.63 [680.630,680.63]
gl0 7049.25 [7049.289,7049.401]
gll 0.75 [0.75,0.75]
gl2 1.000 [1.000,1.000]
gl3 0.053949 [0.0539415,0.0539415]

Table 3. 95%-confidence intervals for the mean statistic per test problem obtained by our approach.
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[ Problem [ n | Type of function | P [LI [ NI [ LE | NE |
beam 4 quadratic 2.6859% 6 1 0 0
vessel 4 quadratic 39.6762% 3 1 0 0
spring 3 quadratic 0.7537% 1 3 0 0
truss 10 nonlinear 46.8070% 0 22 0 0

Table 4. Main features for each engineering design problem used in the second set of experiments. p is the
estimated size of the feasible region with respect to the whole search space (Michalewicz and Schoenauer
1996), n is the number of decision variables, LI is the number of linear inequality constraints , NI the
number of nonlinear inequality constraints, LE is the number of linear equality constraints and NE is the
number of nonlinear equality constraints.
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a) Welded beam design
Death Penalty Static Dynamic ¥(28) | Adaptive *(27) Our approach
Best 1.739736 1.792248 1.781232 1.792266 1.724852
Mean 2.104756 2.023434 2.138872 2.164542 1.724853
‘Worst 2.803005 2.739448 2.904370 3.018553 1.724854
St. Dev 3.0E-1 2.2E-1 2.8E-1 3.4E-1 1.0E-15
b) Pressure vessel design
Death Penalty | Static | Dynamic ¥(22) | Adaptive ¥(21) Our approach
Best 6172.421387 — 6162.862793 6292.51022 6059.701660
Mean 7417.028727 — 7042.828564 7703.780354 6059.701660
Worst 10477.677734 — 7798.198242 10830.894278 6059.701660
St. Dev 9.6E+2 — 5.3E42 1.6E+3 1.0E-12
c) Ten./Comp. spring design
Death Penalty Static Dynamic Adaptive Our approach
Best 0.012719 0.012753 0.012702 0.012692 0.012665
Mean 0.014665 0.014636 0.013998 0.014002 0.012666
Worst 0.018139 0.018918 0.017044 0.016661 0.012674
St. Dev 1.4E-3 1.6E-3 1.0E-3 1.2E-4 2.0E-6
d) Speed reducer design
Death Penalty Static Dynamic Adaptive Our approach
Best — — — — 2996.356689
Mean - - — - 2996.367220
Worst - - — - 2996.390137
St. Dev — — — — 8.2E-3
Table 5. Comparison of statistical results for the penalty-based approaches and our approach. “-” means

no feasible solutions found. A result in boldface means a better result. “x(X)” means that only in X runs
(out of 30) feasible solutions were found.
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Problem Stats Ray & He et al. Our Traditional
| || Liew (2003) (2004) approach ” DE
best 2.385435 2.380957 1.724852 1.904312
Welded mean 3.255137 2.381932 1.724853 2.237370
beam St. Dev 9.6E-1 5.2E-3 1.0E-15 2.3E-1
Evals 33000 30000 24000 24000
best 6171.00 6059.7143 6059.701660 7247.938477
Pressure mean 6335.05 6289.92881 | 6059.701660 8854.318896
vessel St. Dev NA 3.1E+2 1.0E-12 1.3E+4+3
Evals 20000 30000 24000 24000
best 0.012669 0.012665 0.012665 0.012851
Ten/Comp. mean 0.012923 0.012702 0.012666 0.014119
spring St. Dev 5.9E-4 4.1E-5 2.0E-6 1.0E-3
Evals. 25167 15000 24000 24000
best 2994.744241 NA 2996.356689 3064.211426
Speed mean 3001.758264 NA 2996.367220 3244.569010
reducer St. Dev 4.0E4+0 NA 8.2E-3 2.0E+2
Evals. 54456 NA 24000 24000

Table 6.

29

Comparison of results with respect to two state-of-the-art approaches and a traditional DE
approach. A result in boldface means a better result. “NA” means not available.
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Welded Problem 1
beam Ray He et al. Our
& Liew (2003) (2004) Approach
x1 0.244438 0.244369 0.205730
T2 6.237967 6.217520 3.470489
z3 8.288576 8.291471 9.036624
T4 0.244566 0.244369 0.205730
g1 (x) —5760.110471 —5741.176933 —0.000335
ga(xz) —3.245428 0.000001 —0.000753
g3(x) —0.000128 0.000000 —0.000000
ga(z) —3.020055 —3.022955 —3.432984
g5(x) —0.119438 —0.119369 —0.080730
g6(z) —0.234237 —0.234241 —0.235540
g7 (@) —13.079305 —0.000309 —0.000882
f(x) 2.38119 2.380956 1.724852

Table 7. Details of the best solution found by each compared state-of-the-art technique and our approach
for the welded beam design problem.
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Pressure Problem 2
vessel Ray He et al. Our
& Liew (2003) (2004) Approach
T 0.8125 0.8125 0.8125
To 0.4375 0.4375 0.4375
3 41.9768 42.098446 42.098446
T4 182.2845 176.636052 176.636047
g1 (z) —0.0023 —0.000000 0.000000
g2 (z) —0.0370 —0.035881 —0.035881
g3(z) —23420.5966 —0.000000 —0.000002
g4 () —57.7155 —63.363948 —63.363949
f(x) 6171.0 6059.7143 6059.701660

for the pressure vessel design problem.

Details of the best solution found by each compared state-of-the-art technique and our approach
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Ten./Comp. Problem 3
spring Ray He et al. Our
& Liew (2003) (2004) Approach
x1 0.0521602 0.051690 0.051688
T2 0.368159 0.356750 0.356692
3 10.648442 11.287126 11.290483
g1(z) —0.000000 —0.000000 —0.000000
ga(z) —0.000000 0.000000 —0.000000
g3(x) —4.075805 —4.053827 —0.727747
g4(z) —0.719787 —0.727706 | —4.053734
f(x) 0.012669 0.012665 0.012665

Table 9. Details of the best solution found by each compared state-of-the-art technique and our approach
for the tension/compression spring design problem.
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Speed Problem 4
reducer Ray & Liew Our
(Ray and Liew 2003) approach
x1 3.500000 3.500010
T2 0.700000 0.700000
z3 17 17
x4 7.327602 7.300156
x5 7.715321 7.800027
6 3.350267 3.350221
x7 5.286655 5.286685
g1(x) NA —0.073918
g2 () NA —0.198001
g3 (z) NA ~0.499144
ga(z) NA ~0.901471
g5 (2) NA —0.000005
ge(z) NA —0.000001
g7 () NA —0.702500
98 (z) NA —0.000003
g9(z) NA —0.583332
g10(z) NA —0.051345
g11(z) NA —0.010856
f(x) 2994.744241 2996.356689

Table 10. Details of the best solution found by each compared state-of-the-art technique and our approach
for the speed reducer design problem.



