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Abstract

Here, we propose an evolutionary algorithm (i.e., evolutionary programming) for tun-
ing the weights of a chess engine. Most of the previous work inthis area has normally
adopted co-evolution (i.e., tournaments among virtual players) to decide which players
will pass to the following generation, depending on the outcome of each game. In con-
trast, our method uses evolution to decide which virtual players will pass to the next
generation based on the number of positions solved from a number of chess grand-
master games. Using a search depth of 1-ply our method can solve 40.81% of the
positions evaluated from chess grandmaster games (this value is higher than reported
in the previous related work). Additionally, our method is capable to solve53.10% of
the positions using a historical mechanism that keeps a record of the “good” virtual
players found during the evolutionary process. Our proposal has also been able to in-
crease the competition level of our search engine, when playing against the program
Chessmaster(grandmaster edition), our chess engine reach a rating of2404 points for
the best virtual player with supervised learning, and2442 rating points for the best
virtual player with unsupervised learning. Finally, it is also worth mentioning that our
results indicate that the piece material values obtained byour approach are similar to
the values known from chess theory.
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1. Introduction

Computer chess is considered to be had started with the work of Alan Turing and
Claude Shannon in the mid and late 1940s. In 1947, Alan Turing[25] designed a pio-
neer program to play chess, and in 1949 Claude Shannon [22] proposed two strategies
to implement a chess engine. The first of them, called “Type A,” considered all pos-
sible moves to a fixed depth of the search tree, and the second,called “Type B,” used
chess knowledge to explore the main lines to a greater depth.

During the 1950s, chess programs played at a very basic level, but by the 1960s,
chess programs could defeat amateur chess players. During the 1970s, chess programs
began to use heuristics and specialized hardware to improvetheir rating. During the
1980s, tournaments between chess programs and humans started.

During the1990s, chess programs became powerful enough to start challenging
chess masters. In1997, Deep Bluedefeated the world chess champion, Garry Kas-
parov, with a final score of3.5 to 2.5 (Deep blue was capable of evaluating200 million
positions per second). In2002, Garry Kasparov had a six games match against the
chess program that was the world champion at that time,Deep Junior. The final score
was3 to 3. In 2006, the world chess champion Vladimir Kramnik, from Russia, was
defeated by the programDeep Fritz. The final score was4 to 2 in favor ofDeep Fritz.

The current paper is an extended and improved contribution of our previous work [27]
in which we initially provided a preliminary approach. In this work, we go into the
addressed topic and propose an evolutionary algorithm (properly evolutionary progra-
mming) to tune the weights of chess evaluation function through a database of chess
grandmaster games. The main difference with the previous work is that here, we tune a
larger number of weights. Furthermore, we also add a historic mechanism that allows
to retain “good” virtual players during the evolutionary process. In this work, we used
33 weights and David-Tabibi et al. [8] uses35 weights.

The remainder of this paper is organized as follows. In Section 2, we briefly review
the previous related work that makes use of co-evolution (tournaments among virtual
players), and the only two works that we could find, which makeuse of evolution
through a database of grandmaster games. In Section 3, we describe the characteris-
tics of our chess engine, and the mathematical expression adopted for the evaluation
function of our chess engine. In Section 4, we show the methodology that we adopted
to tune the weights of our chess engine. In Section 5, we present our experimental re-
sults. Finally, our conclusions and some possible paths forfuture research are provided
in Section 6.

2. Previous Related Work

First, we will briefly discuss works that do not make use of an evolutionary algo-
rithm for tuning the weights of the evaluation function of a chess engine. Thrun [24] de-
veloped the program NeuroChess which learned to play chess from final outcomes with
an evaluation function represented by neural networks. This work also included both
temporal difference learning [23] and explanation-based learning [9]. Hsu et al. [16]
tuned the weights of their evaluation function for the computer Deep Thought(later
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calledDeep Blue) using a database of grandmaster-level games. Beal and Smith [1] de-
termined the values of the pieces using temporal-difference learning. In further work,
the concept of piece-square values was introduced into their work [2].

Evolutionary algorithms have also been used before for tuning the evaluation func-
tion of a chess engine. Kendall and Whitwell [18] used them for tuning the evaluation
function of their chess program. Nasreddine et al. [21] proposed a real-coded evolu-
tionary algorithm that incorporated the so-called “dynamic boundary strategy” where
the boundaries of the interval of each weight are dynamic.

Bošković presented three works that make use of differential evolution to adjust
the weights of the evaluation function of their chess program. In their first work [4],
they tuned the chess material values and the mobility factorof the evaluation func-
tion. The weights obtained matched the values known from chess theory. In a se-
cond work, Bošković et al. [5] employed adaptation and opposition-based optimization
mechanisms with co-evolution to improve the rating of theirchess program. In a third
work, Bošković et al. [3] improved their opposition-based optimization mechanisms
with a new history mechanism which uses an auxiliary population containing compe-
tent individuals. This mechanism ensures that skilled individuals are retained during
the evolutionary process.

Genetic programming has also been used for tuning the weights of the chess eva-
luation function. Hauptman and Sipper [14] evolved strategies for playing chess end-
games. Their evolved program could drew against CRAFTY which is a state-of-the-art
chess engine with a rating of2614 points. In a second work, Hauptman and Sipper [15]
evolved entire game-tree search algorithms to solve mate-in-N problems in which the
opponent cannot avoid being mated in at mostN moves. It is worth noticing that this
work does not adopt the alpha-beta pruning algorithm.

Genetic algorithms have also been used for tuning the weights of the chess evalua-
tion function. David-Tabibi et al. [7] used reverse engineering to adjust the weights
of an evaluation function. Basically, they used a grandmaster-level chess program for
tuning the weights of their chess program. In a second work, David-Tabibi et al. [8]
combined supervised and unsupervised learning to build a grandmaster-level program.
This work presented the first attempt to adjust the weights ofa chess program by lear-
ning only from a database of games played by humans. Evolutionary programming
has been used before for tuning the weights of the chess evaluation function. Fogel et
al. [10] used this sort of algorithms to improve the rating ofa chess program by400
points. They tuned the material values of the pieces, the piece-square values, and the
weights of three neural networks. Their computer programs learned chess by playing
games against itself. In a second work, Fogel et al. [11] incorporated co-evolution,
but this time, they evolved their program during7462 generations, reaching a rating of
2650. The resultant program was calledBlondie25. In a third work, Fogel et al. [12],
used rules for managing the time allocated per move inside their programBlondie25.
They achieved a rating of2635 points against the programFritz8.0, who was rated
#5 in the world. It is noteworthy thatBlondie25was also the first machine learning
based chess program able to defeat a human chess master.

Vázquez-Fernández et al. [26] used a database of typical chess problems to ad-
just the weights of the evaluation function of their chess engine. Using evolutionary
programming as their search engine, they mutated only thoseweights involved in the
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solution of the current problem and adapted the mutation mechanism through the num-
ber of problems solved by each virtual player. With their algorithm they obtained the
“theoretical” values of the pieces and achieved an increasein the strength of their chess
engine of335 points. In a further paper, Vázquez-Fernández et al. [27]used a database
of games played by chess grandmasters to adjust the weights of the material values and
the mobility factor of the pieces. In this case, they obtained the “theoretical” values of
the pieces with their evolutionary algorithm.

There are only two works in which the selection mechanism of an evolutionary
algorithm used to play chess is based on databases of chess grandmaster to decide
which virtual players will pass to the following generation(in the remaining works in
which evolutionary algorithms were adopted in some way, theproposed approaches
used the final results of a game: win, loss or draw). In the firstwork [8], the authors
carried out the learning (called supervised) using a genetic algorithm. Additionally,
in that paper, the authors use co-evolution (called unsupervised learning) to improve
the adjust of the weights of their chess engine. In the secondwork [27], the authors
adjusted the weights of both the material values of the pieces and the mobility factor
through an evolutionary algorithm. Our work differs from this last paper in that we
adopt a larger number of weights. Additionally, we also adopt a historic mechanism to
allow the best virtual players to survive throughout the evolutionary process.

3. Our Chess Engine

To carry out our experiments, we developed a chess engine with the following
characteristics:

• The search depth adopted by our engine is

• We use the alpha-beta pruning search algorithm [19].of one ply (which corre-
sponds to the movement of one side) for the training phase as used in [8], and of
six ply for the games among virtual players as recommended in[16].

• We incorporated a mechanism to stabilize positions throughthe Quiescence algo-
rithm, which takes into account the exchange of material andthe king’s checks.

• We use hash tables and iterative deepening [6].

Our chess program evaluates the position of the virtual playerA with the following
expression:

eval =

22
∑

i=1

Weighti ∗ fi (1)

whereWeighti is one of the weights shown in Table 1, andfi is the feature of
the weightWeighti for the virtual playerA. The description of the features are the
following:

• fPAWN V ALUE is the number of pawns of the virtual playerA.
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• fKNIGHT V ALUE is the number of knights of the virtual playerA.

• fBISHOP V ALUE is the number of bishops of the virtual playerA.

• fROOK V ALUE is the number of rooks of the virtual playerA.

• fQUEEN V ALUE is the number of queens of the virtual playerA.

• fPAWN DOUBLED PENALTY V ALUE denotes the number of doubled pawns
of the virtual playerA.

• fPAWN ISOLATED PENALTY V ALUE denotes the number of isolated pawns
of the virtual playerA.

• fPAWN BACKWARD PENALTY V ALUE denotes the number of backward pawns
of the virtual playerA.

• fPAWN PASSED denotes the number of passed pawns of the virtual playerA.

• fPAWN CENTRAL denotes the number of central pawns of the virtual playerA.

• fKNIGHT SUPPORTED denotes the number of knights (of the virtual playerA)
supported or defended by one of his pawns.

• fKNIGHT OPERATIONS BASE denotes the number of knights (of the virtual
playerA) in an operation’s base (it is when a knight cannot be evictedfrom its
position by an opponent’s pawn).

• fKNIGHT PERIPHERY 0 denotes the number of knights (of the virtual player
A) in the squaresa1, . . . , a8, b1, . . . , g1, h1, . . . , h8, andb8, . . . , g8.

• fKNIGHT PERIPHERY 1 denotes the number of knights (of the virtual player
A) in the squaresb2, . . . , b7, c2, . . . , f2, g2, . . . , g7, andc7, . . . , f7.

• fKNIGHT PERIPHERY 2 denotes the number of knights (of the virtual player
A) in the squaresc3, . . . , c6, d3, e3, f3, . . . , f6, andd6, . . . , e6.

• fKNIGHT PERIPHERY 3 denotes the number of knights (of the virtual player
A) in the squaresd4, e4, d5, e5.

• fROOK OPEN COLUMN denotes the number of rooks (of the virtual playerA)
in an open column.

• fROOK SEMIOPEN COLUMN denotes the number of rooks (of the virtual player
A) in a semi-open column (a column that contains only opponent’s pawns).

• fROOK CLOSED COLUMN BEHIND denotes the number of rooks (of the vir-
tual playerA) in a closed column behind of its pawns. We defined a closed
column as the column that contains pawns of both players.

• fROOK CLOSED COLUMN AHEAD denotes the number of rooks (of the virtual
playerA) in a closed column ahead of its pawns.
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• fROOK SEV EN RANK denotes the number of rooks (of the virtual playerA) in
the seventh rank.

• fKNIGHT MOBILITY is the number of knight’s moves of the virtual playerA.

• fBISHOP MOBILITY is the number of bishops’ moves of the virtual playerA.

• fROOK MOBILITY is the number of rooks’ moves of the virtual playerA.

• fQUEEN MOBILITY is the number of queens’ moves of the virtual playerA.

• fKING MOBILITY is the number of king’s moves of the virtual playerA.

• fKING ATTACKING MATERIAl is the sum of the material value of the pieces
that are attacking the opposite king. We mean those pieces whose movements
act on its opposite king???s square or on its opposite king???s adjacent squares.

• fKING DEFENDING MATERIAl is the sum of the material value of the pieces
that are defending its king. We mean those pieces whose movements act on its
opposite king???s square or on its opposite king???s adjacent squares.

• fKING CASTLING is a binary value. It is true if the king is castled; otherwise,
it is false.

• fKING PAWNS is the number of pawns located on its king???s adjacent squares.

• fBISHOP AHEAD is the number of pawns which are in front of its bishop and
obstructing its movement.

• fBISHOP PAWNS MOBILITY is the number of movements of the pawns which
obstruct the movement of the bishop.

• fBISHOP PAIR is a binary value. It is true if the playerA has the bishop pair;
otherwise, it is false.

The main aim of the work reported here is to show that the weights of the evalua-
tion function from eq. (1) can be tuned using evolutionary programming [13]. In our
approach, the training of the virtual players is conducted using a database of games
from chess grandmaster games. Additionally, our work proposes the use of a historic
mechanism which allows good virtual players to survive throughout the evolutionary
process.

4. Our Proposed Approach

As indicated before, our proposed approach is based on an evolutionary algorithm
(evolutionary programming [13]) which has a selection mechanism based on super-
vised learning through a database of chess grandmaster games. The selection mecha-
nism allows that the virtual players which find the largest number of movements pro-
posed by chess grandmaster pass to the next generation. Also, our evolutionary algo-
rithm has a historic mechanism that allows to recover good virtual players which have
temporarily left the evolutionary process.
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The evolutionary algorithm is shown in Algorithm 1. Line1 initializes the weights
of N virtual players with random values within their corresponding boundaries. Line2
sets the generations counter equal to zero. In lines3 to 15 we carry out the tuning of the
weights for theN virtual players duringGmax generations. In line4, a virtual player’s
score is incremented in one for each movement of thep positions on the database for
which the virtual player did the same action as the human chess master. Line5 applies
the selection mechanism so that only the bestN/2 virtual players pass to the following
generation. Line6 updates the historical mechanism of virtual players in a waythat
maintains in an array the best virtual players who have left the evolutionary process. In
lines7 to 13 we obtain the second half of virtual players needed. If100 ∗ rand(0, 1) <
Pr (wherePr is a control parameter defined by the user), we obtain the virtual player
i from the historical mechanism, and if not, we mutate the virtual playeri − N/2 to
obtain the virtual playeri. Finally, line14 increases the generation counter in1.

The procedure for computing the score of each virtual playeris described in Algo-
rithm 2. In lines1 to 3, we establish the score counter to zero for each virtual player.
Line4 choosesp training positions from databaseS. Line5 chooses chess grandmaster
movements for positionp. Line 6 sets the positionp (this allows to each virtual player
to calculate its next movement). Finally, each virtual player calculates its next moven,
and if this movement matches movementm, this virtual player increases its score by1.

Algorithm 1 EvolutionaryAlgorithm()
1: intializePopulation();
2: g = 0;
3: while g++< Gmax do
4: scoreCalculation();
5: selection();
6: updateHistoricalMechanism();
7: for i = N/2→ N − 1 do
8: if 100 ∗ rand(0, 1) < Pr then
9: VP[i] ← historicalMechanism();

10: else
11: VP[i] ← mutate(VP[i-N/2]);
12: end if
13: end for
14: g++;
15: end while
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Algorithm 2 scoreCalculation()
1: for i = 0→ N − 1 do
2: score[i] = 0;
3: end for
4: for each positionp in databaseS do
5: m = grandmasterMovement(p);
6: setPosition(d);
7: for each virtual playeri do
8: n = nextMovement(i);
9: if m == n then

10: score[i]++;
11: end if
12: end for
13: end for

4.1. Initialization

The population of our evolutionary algorithm was initialized with 20 virtual pla-
yers (10 parents and10 offspring in subsequent generations). The weight values for
these virtual players were randomly generated with a uniform distribution within their
allowable bounds. The allowable bounds for each weight is shown in Table 1.

4.2. Mutation

If the condition100 ∗ rand(0, 1) < Pr is true (in Algorithm 1), one offspring is
taken from the historical mechanism; otherwise, it is mutated from its corresponding
parent (the parenti−N/2 is mutated to generate the offspringi, for i = N/2, . . . , N−
1).

The values that were mutated are shown in Table 1.
In our implementation, we adopted Michalewicz’s non-uniform mutation opera-

tor [20]. The expression to obtain the mutated weightV
′

k from the previous weightVk

is the following:

V
′

k =

{

Vk + ∆(t, UB − Vk) if R=TRUE
Vk −∆(t, Vk − LB) if R=FALSE

(2)

where[LB, UB] is the range of the weightVk, andR = flip(0.5) (the function
flip(p) returns TRUE with a probabilityp). Michalewicz suggests using:

∆(t, y) = y ∗ (1 − r(1−t/T )b

) (3)

wherer is a random real number in the range (0, 1), T is the maximum number of
generations andb is a user-defined parameter. In our case,b = 5, which is the value
recommended by Michalewicz [20].

It should be noted that no crossover operator is employed in our case, since we
adopted evolutionary programming (this paradigm models the evolutionary process at
the species level and, therefore, it does not incorporate any crossover operator).
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5. Experimental Results

Our experiments were carried out on a personal computer witha 64-bits architec-
ture, with3 GBytes in RAM, having two cores running at 2.8 GHz. The programs were
compiled usingg++ in the OpenSuse 11.4 operating system. For our virtual players
we used the opening bookOlympiad.abkincluded with the graphical user interface
Arena.1

For the training of our experiments we used a database of4000 games from grand-
masters in chess having a rating above2600 Elo. These experiments uses the chess
engine described in Section 3.

5.1. Experiment A

In this case, we tuned the first24 weights shown in Table 1. We carried out31 runs
usingPr = 5, 10, . . . , 35, 40 and found thatPr = 10, 15, 20 produced the highest
number of positions properly solved. We carried out the following experiments:

1. 31 runs withPr = 0 and24 weights (without the historical mechanism). These
runs are shown in Table 2.

2. 31 runs withPr = 10 and24 weights. These runs are shown in Table 3.
3. 31 runs withPr = 15 and24 weights. These runs are shown in Table 4.
4. 31 runs withPr = 20 and24 weights. These runs are shown in Table 5.

The description of these tables is the following. In the firstfour rows we describe
the number of training generations (200), the population size (20), the number of trai-
ning positions (4000), and the value ofPr employed. Next, the first and second column
describe the percentage of positions solved by the best virtual player at generation0
and generation200, respectively. The third and fourth column describe the average
positions solved by all virtual players at generation0 and generation200, respectively.
The fifth column describes the execution time for each run. Text in black represents
the run corresponding to the median of the fourth column (with the legend median).
Finally, the penultimate row describes the standard deviation of the fourth column, and
the last row describes the average execution time for all runs. In these tables we can see
that the positions solved for the median run at generation200 were33.50%, 46.30%,
42.29% and40.69% for Pr = 0, Pr = 10, Pr = 15, Pr = 20, respectively. In
Table 2 and Table 3, the weights obtained at generation200 for the best virtual player
was calledV P 24

200,0 andV P 24
200,10, respectively.

In Figure 1 we can see the percentage of positions solved for the best virtual player
and the average positions solved by all virtual players for the median run in Table 2.
At generation0, the average positions solved by all virtual players was18.07%, and
21.01% for the best virtual player. At generation200, the average positions solved by
all virtual players was33.50%, and33.53% for the best virtual player. Note that this
value is competitive with that reported in [8] after the supervised evolution with32%
of positions solved.

1http://www.playwitharena.com/
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Figure 1: Evolutionary process without the historical mechanism forPr = 0 with 24 weights. The plot
shows the percentage of positions solved for the median run in Table 2 during200 generations. We consid-
ered a total of4000 positions.

In Figure 2 we can see the percentage of positions solved for the best virtual player
and the average positions solved by all virtual players for the median run in Table 3.
At generation0, the average positions solved by all virtual players was22.39%, and
26.49% for the best virtual player. At generation200, the average positions solved
by all virtual players was46.30%, and46.35% for the best virtual player. Since we
adopted Michalewicz’s non-uniform mutation operator [20], the percentage of posi-
tions solved was equal for the average of all virtual playersand the best virtual player
at the end of the evolutionary process (generation200).

In order to show the scalability of our method, we proceeded to repeat the previous
experiments with the33 weights shown in Table 1. It is worth mentioning that pre-
viously, in the paper [27], also we tuned successfully the weights of the material values
and the mobility factor of the pieces.

Again, we carried out31 runs usingPr = 5, 10, . . . , 35, 40 and found thatPr =
10, 15, 20 produced the highest number of positions properly solved. We carried out
the following experiments:

1. 31 runs withPr = 0 and33 weights (without the historical mechanism). These
runs are shown in Table 6.

2. 31 runs withPr = 10 and33 weights. These runs are shown in Table 7.
3. 31 runs withPr = 15 and33 weights. These runs are shown in Table 8.
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Figure 2: Evolutionary process forPr = 10 with 24 weights. The plot shows the percentage of positions
solved for the median run in Table 3 during200 generations. We considered a total of4000 positions.

4. 31 runs withPr = 20 and33 weights. These runs are shown in Table 9.

The description of these tables is the same as we described above. In these tables
we can see that the positions solved for the median run at generation200 were40.81%,
53.10%, 50.12% and55.16% for Pr = 0, Pr = 10, Pr = 15, Pr = 20, respectively.
In Table 6 and Table 7, the weights obtained at generation200 for the best virtual player
was calledV P 33

200,0 andV P 33
200,10, respectively.

In Figure 3 we can see the percentage of positions solved for the best virtual player
and the average positions solved by all virtual players for the median run in Table 6.
At generation0, the average positions solved by all virtual players was25.42%, and
30.51% for the best virtual player. At generation200, the average positions solved by
all virtual players was40.81%, and40.85% for the best virtual player.

In Figure 4 we can see the percentage of positions solved for the best virtual player
and the average positions solved by all virtual players for the median run in Table 7.
At generation0, the average positions solved by all virtual players was22.46%, and
25.38% for the best virtual player. At generation200, the average positions solved
by all virtual players was53.10%, and53.08% for the best virtual player. Since we
adopted Michalewicz’s non-uniform mutation operator [20], the percentage of posi-
tions solved was equal for the average of all virtual playersand the best virtual player
at the end of the evolutionary process (generation200).
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Figure 3: Evolutionary process without the historical mechanism forPr = 0 with 33 weights. The plot
shows the percentage of positions solved for the median run in Table 6 during200 generations. We consid-
ered a total of4000 positions.

At the end of the evolutionary process (generation200), the percentage of positions
solved when using the historical mechanism was larger (53.10%) than those achieved
by the version of our algorithm that does not use the historical mechanism (33.50%).
Also, the number of positions solved with the historical mechanism is larger than the
value reported in [8].

In Table 1, we show the tuning weights for the virtual playerV P 33
200,10. In this table

we can see that the material values of the pieces are similar to the “theoretical” values
known from chess theory [22].

In the experiments of this section, we used a search depth of one plie for our chess
engine.

5.2. Experiment B
In this experiment we carried out31 runs with the33 weights shown in Table 1 for

1000, 2000 and3000 positions from chess grandmaster games. The Table 10 shown
in the first, second and third column, respectively, the training case, the median of the
average positions solved by all virtual players and the standard deviation for the31 runs
at generation200 with Pr = 10. The corresponding values for the training case4000
were taken from the previous experiment. In this table we found that among smaller it
is the size of the training case, minor will be the standard diversion and the of average
positions solved by all virtual players.
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Figure 4: Evolutionary process forPr = 10 with 33 weights. The plot shows the percentage of positions
solved for the median run in Table 7 during200 generations. We considered a total of4000 positions.

In the experiments of this section, we used a search depth of one plie for our chess
engine.

5.3. Experiment C

In order to shown that the evolutionary process of our methodproduces virtual pla-
yers with a higher rating, we carried out200 games betweenV P 24

200,10 versusV P 24
200,0,

V P 24
200,10 versusV P 24

0,0 and V P 24
200,0 versusV P 24

0,0 (each virtual player played100
games with white pieces and100 with black pieces). The virtual playerV P 24

200,10

losses, draws, and wins0, 97, and103 games, respectively, versus the virtual player
V P 24

200,0. The virtual playerV P 24
200,10 losses, draws, and wins0, 5, and195 games,

respectively, versus the virtual playerV P 24
0,0. Finally, the virtual playerV P 24

200,0 losses,
draws, and wins0, 14, and186 games, respectively, versus the virtual playerV P 24

0,0.
Based on these played games, we used the Bayeselo tool2 to estimate the ratings

of players using a minorization-maximization algorithm [17]. The obtained ratings
are shown in Table 11. In this table, we can see that the ratingfor the virtual player
V P 24

200,10 was2341, the rating for the virtual playerV P 24
200,0 was2186, and the rating

for the virtual playerV P 24
0,0 was1685, representing an increase of656 rating points

2http://remi.coulom.free.fr/Bayesian-Elo/
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between the evolved virtual player with the historical mechanism, and the virtual player
without evolution.

We can have an idea of ??????the playing strength of our virtual players using the
classification of the United States Chess Federation (see appendix A). From Table 15,
we can see that the strength of the virtual playerV P 24

200,10 (2341 rating points) is at
the level of an master in chess, the strength of the virtual playerV P 24

200,0 (2186 rating
points) is at the level of an expert in chess, and the strengthof the virtual playerV P 24

0,0

(1685 rating points) is at the level of a class B player.
Also, we carried out200 games betweenV P 33

200,10 versusV P 33
200,0, V P 33

200,10 versus
V P 33

0,0 andV P 33
200,0 versusV P 33

0,0 (again each virtual player played100 games with
white pieces and100 with black pieces). The virtual playerV P 33

200,10 losses, draws,
and wins0, 96, and104 games, respectively, versus the virtual playerV P 33

200,0. The
virtual playerV P 33

200,10 losses, draws, and wins0, 1, and199 games, respectively,
versus the virtual playerV P 33

0,0. Finally, the virtual playerV P 33
200,0 losses, draws, and

wins0, 2, and198 games, respectively, versus the virtual playerV P 33
0,0. Again, we used

the Bayeselo tool to estimate the ratings of players using a minorization-maximization
algorithm [17]. The obtained ratings are shown in Table 12. In this table, we can see
that the rating for the virtual playerV P 33

200,10 was2402, the rating for the virtual player
V P 33

200,0 was2245, and the rating for the virtual playerV P 33
0,0 was1509, representing

an increase of893 rating points between the evolved virtual player with the historical
mechanism, and the virtual player without evolution.

Also, we carried out an additional experiment between the virtual players and
Chessmaster2400, which is a version of the popular chess programChessmaster(grand-
master edition) which plays at2400 rating points. Specifically, we carried out200
games among Chessmaster2400 and each of the virtual playersV P 33

200,10, V P 24
200,10,

V P 33
200,0, andV P 24

200,0 (the number of games with white pieces and black pieces was
the same for the virtual players and the programChessmaster; for example,Chessmas-
ter played400 games with white pieces and400 with black pieces). The results are
shown in Figure 5. In this figure, we can see that Chessmaster2400’s losses, draws, and
wins were14, 169, and17, respectively, versus the virtual playerV P 33

200,10 (denoted
as H1 in this Figure). Also, Chessmaster2400’s losses, draws, and wins were10, 137,
and53, respectively, versus the virtual playerV P 24

200,10 (denoted as H2 in this Figure),
respectively, and so on.

Based on these played games, we used again the Bayeselo tool to estimate the rat-
ings of the virtual players and Chessmaster2400. The obtained ratings are shown in
Table 13. In this table we can see that the rating for the virtual playersV P 33

200,10,
V P 24

200,10, V P 33
200,0, andV P 24

200,0 were2397, 2344, 2249, and2194 rating points, re-
spectively.

In the experiments of this section, we used a search depth of six plies for our chess
engine, and in the opening phase we used the databaseOlympiad.abkincluded with the
graphical user interfaceArena3.

3http://www.playwitharena.com/
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Figure 5: Histogram of losses, draws and wins for Chessmaster2400 againstV P
33

200,10
(H1), V P

24

200,10

(H2), V P 33

200,0
(H3), andV P 24

200,0
(H4).

5.4. Experiment D

This experiment is divided in two stages. The first one was made in the section 5.1,
and consisted of adjusting the weights of the20 virtual players through chess grand-
master games (this is known as supervised learning). In the second stage, we apply
an evolutionary algorithm (also based on evolutionary programming [13]) to perform
a tournament between virtual players (this is known as unsupervised learning or co-
evolution).

Specifically, we carried out a tournament amongn = 20 virtual players. Initially,
the weights for thisn virtual players were taken from the median run in Table 7. After-
wards, each virtual player is allowed to playn/2 games with randomly chosen oppo-
nents. The side (either black or white) is chosen at random. Games are executed until
one of the virtual player receives checkmate or a draw condition arises. Depending on
the outcome of the game, a virtual player obtains one point, half a point or zero points
for a win, draw or loss, respectively. Draw conditions are given by the rule of50 moves
(after a pawn’s move there are50 moves to give a checkmate to the opponent), by the
third repetition of the same position and by the lack of victory conditions (e.g., a king
and a bishop versus a king).

After finishing the tournament, the selection mechanism chooses then/2 virtual
players having the highest number of points, and subsequently these virtual players
are mutated to generate the remainingn/2 virtual players. Finally, the evolutionary
algorithm continues running for50 generations.

As we saw in the section 5.1, the best virtual player obtainedin the first stage was
calledV P 33

200,10, and the best virtual player obtained in the second stage we called
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V P 33
50 .
Finally, we carried out200 games betweenV P 33

200,10 versusV P 33
50 , (again each

virtual player played100 games with white pieces and100 with black pieces). The
virtual playerV P 33

200,10 losses, draws, and wins53, 122, and25 games, respectively,
versus the virtual playerV P 33

50 . Again, we used the Bayeselo tool to estimate the
ratings of the virtual players. The obtained ratings are shown in Table 14.

In this table, we can see that the rating for the virtual player V P 33
200,10 was2404, and

the rating for the virtual playerV P 33
50 was2442, representing an increase of38 rating

points between the virtual player obtained with supervisedlearning, and the virtual
player obtained with unsupervised learning.

In the experiments of this section, we used a search depth of six plies for our chess
engine, and in the opening phase we used the databaseOlympiad.abk.

5.5. Validation

With the completion of the supervised learning, we used an additional 4000 posi-
tions for testing. Specifically, we let the virtual playerV P 33

200,0 perform a 1-ply search
on each of these positions, and the percentage of correctly solved positions was39.7%.
Also, we allow the virtual playerV P 33

200,10 perform a 1-ply search on each of these
positions, and the percentage of correctly solved positions was52.1%. This indicates
that the first4000 positions used for training cover most of the types of positions that
can arise.

6. Conclusions and Future Work

Most of the works that make use of evolutionary algorithms totune the weights of a
chess engine adopt co-evolution. In these methods, the virtual players hold tournaments
among them, and the virtual players which obtain a larger number of victories acquire
the right to pass to the next generation.

Our proposed approach uses supervised learning to perform the tuning of weights
of a chess engine through a database of chess grandmaster games. The idea of the
selection mechanism of our evolutionary algorithm is to favor virtual players that are
able to “visualize” (or match) more movements from those registered in a database of
chess grandmaster games. With our proposal, and after 200 generations, our virtual
players can solve40.81% of the positions of chess grandmaster games. Additionally,
our evolutionary algorithm employs a historical mechanismthat allows it to solve the
53.10% of the positions of chess grandmaster games. Note that this value is higher
than the value of 32.4% reported in the work of David-Tabibi et al. [8], who also used
supervised learning with a database of chess grandmaster games, unsupervised learned
(through co-evolution) and a genetic algorithm. It is noteworthy that our work uses
evolutionary programming, and David-Tabibi’s work uses a genetic algorithm. We
believe that the number of positions solved by our method is satisfactory considering
that this was achieved adopting only a depth of1 ply in the search tree.

In the games held between our virtual players andChessmaster(playing at a rating
of 2400) we found that the best evolved virtual player without the historical mechanism
played at2249 rating points, and the best evolved virtual player with the historical
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mechanism played at2397 rating points. Thus, we conclude that the rating of our
chess engine is competitive with that of the version ofChessmasteradopted in our
study.

Aditionally, we used unsupervised learning (through a tournament among virtual
players) to improve the rating obtained with supervised learning. In this case we ob-
tained an improved of38 rating points (from2404 to 2442 rating points).

We note that the standard deviation increases as we increasethe size of the test
cases. Also, our results indicate that the values of the chess pieces obtained by our
proposed approach closely match the known values from chesstheory.

As part of our future work, and with the idea of creating a chess program that is
able to play better, we plan to add and tune more weights in ourevaluation function.
We also intend to add extensions to our program (e.g., passedpawn extensions, mate-
threat, among others), and we plan to use bitbases or tablebases in the final phase of
the game, aiming to increase the rating of our chess engine.
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Appendix A

The ELO rating system is a method that calculates the relative strength of players
in games with two opponents, and was created by the mathematician Arpad Elo. In
Table 15 we show the classification of the USCF (United StatesChess Federation).
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Table 1: Ranges of the weights adopted in our approach and final weights for the virtual playerV P
33

200,10
.

Number Weight Wlow Whigh Weights forV P 33
200,10

1 PAWN VALUE 100 100 100.0

2 KNIGHT VALUE 200 400 295.2

3 BISHOP VALUE 200 400 315.4

4 ROOK VALUE 400 600 489.7

5 QUEEN VALUE 800 1000 921.3

6 PAWN DOUBLED PENALTY VALUE −50 50 −14.3

7 PAWN ISOLATED PENALTY VALUE −50 50 −23.2

8 PAWN BACKWARD PENALTY VALUE −50 50 −19.5

9 PAWN PASSED −50 100 34.3

10 PAWN CENTRAL −50 100 19.7

11 KNIGHT SUPPORTED −50 100 16.2

12 KNIGHT OPERATIONSBASE −50 100 15.3

13 KNIGHT PERIPHERY0 −50 50 −10.3

14 KNIGHT PERIPHERY1 −50 50 14.1

15 KNIGHT PERIPHERY2 −50 50 19.7

16 KNIGHT PERIPHERY3 −50 50 26.4

17 ROOK OPEN COLUMN −50 50 22.1

18 ROOK SEMIOPENCOLUMN BEHIND −50 50 −5.7

19 ROOK CLOSEDCOLUMN −50 50 −11.3

20 ROOK SEVEN RANK −50 50 49.6

21 KNIGHT MOBILITY 0 100 27.8

22 BISHOP MOBILITY 0 100 34.1

23 ROOK MOBILITY 0 100 37.2

24 QUEEN MOBILITY 0 100 12.3

25 KING MOBILITY 0 100 5.1

26 ROOK SEMIOPENCOLUMN AHEAD −50 50 9.3

27 KING ATTACKING MATERIAl −100 0 −67.8

28 KING DEFENDING MATERIAl 0 100 52.3

29 KING CASTLING 0 100 51.2

30 KING PAWNS 0 100 49.3

31 BISHOP AHEAD −100 0 39.6

32 BISHOP PAWNS MOBILITY 0 100 21.3

33 BISHOP PAIR 0 100 27.0
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Table 2:31 runs withPr = 0 for 24 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 0

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

21.8 32.54 18.7 32.54 56:54
21.8 32.65 18.7 32.65 56:50
21.8 32.69 18.7 32.69 56:53
21.8 32.71 18.7 32.71 56:57
21.8 32.79 18.7 32.79 56:54
21.8 32.81 18.7 32.81 56:52
21.8 32.81 18.7 32.81 57: 6
21.8 32.94 18.7 32.94 57: 7
21.8 32.97 18.7 32.97 56:57
21.8 33.10 18.7 33.10 57: 0
21.8 33.15 18.7 33.15 57: 4
21.8 33.20 18.7 33.20 56:54
21.8 33.24 18.7 33.24 56:55
21.8 33.29 18.7 33.29 56:55
21.8 33.47 18.7 33.47 57: 1
21.85 33.61 18.70 33.61 56:50 (median)
21.8 33.62 18.7 33.62 57: 2
21.8 33.63 18.7 33.63 56:50
21.8 33.64 18.7 33.64 57: 3
21.8 33.76 18.7 33.76 56:56
21.8 33.85 18.7 33.85 57: 1
21.8 33.87 18.7 33.87 56:52
21.8 33.95 18.7 33.95 56:50
21.8 33.99 18.7 33.99 57: 7
21.8 34.24 18.7 34.24 56:53
21.8 34.31 18.7 34.31 57: 5
21.8 34.36 18.7 34.36 56:58
21.8 34.46 18.7 34.46 56:56
21.8 34.50 18.7 34.50 57: 2
21.8 34.59 18.7 34.59 57: 7
21.8 34.60 18.7 34.60 57: 3

Standard deviation of the fourth column:0.65
Average run time (min:sec): 56:58
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Table 3:31 runs withPr = 10 for 24 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 10

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

21.8 45.26 20.8 45.20 57: 9
18.2 45.29 16.9 45.23 57: 4
23.2 45.35 19.2 45.30 56:57
24.1 45.42 20.3 45.36 56:50
20.9 45.43 19.7 45.37 57: 2
27.0 45.43 24.3 45.38 57: 2
19.7 45.65 16.6 45.59 56:51
22.4 45.93 20.4 45.87 57: 6
25.5 45.94 21.8 45.89 56:53
28.6 46.07 24.2 46.01 56:54
20.9 46.07 18.5 46.02 57: 1
24.2 46.13 22.2 46.08 56:52
25.5 46.14 21.8 46.08 56:56
22.0 46.23 19.7 46.18 57: 4
19.3 46.32 17.6 46.27 56:50
26.49 46.35 22.39 46.30 56:51 (median)
27.6 46.37 24.2 46.31 57: 5
26.2 46.41 21.5 46.36 57: 0
26.5 46.44 21.7 46.38 56:53
28.6 46.45 20.8 46.39 57: 0
31.2 46.59 24.4 46.53 57: 2
23.8 46.60 21.1 46.55 56:50
20.9 46.72 19.6 46.67 57: 8
26.1 46.94 20.3 46.89 57: 9
25.7 46.97 21.7 46.92 56:54
24.9 47.05 21.9 46.99 56:51
23.4 47.16 22.0 47.11 57: 4
24.7 47.22 22.0 47.17 57: 6
20.4 47.24 18.7 47.19 57: 6
22.3 47.38 18.9 47.33 57: 7
26.5 47.45 24.1 47.40 56:51

Standard deviation of the fourth column:0.66
Average run time (min:sec): 56:59
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Table 4:31 runs withPr = 15 for 24 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 15

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

16.8 41.19 14.9 41.21 57: 4
16.0 41.30 15.3 41.32 57: 3
21.0 41.30 17.2 41.32 56:54
17.6 41.31 16.0 41.32 56:50
18.5 41.34 16.4 41.36 57: 9
18.5 41.35 16.6 41.36 57: 9
18.5 41.40 17.4 41.41 57: 8
19.3 41.42 14.9 41.44 56:55
19.3 41.45 16.6 41.46 56:51
20.2 41.63 17.2 41.65 56:52
18.5 41.66 13.9 41.68 56:52
20.2 41.87 17.2 41.89 56:58
16.8 41.93 14.9 41.94 57: 8
18.5 41.94 16.4 41.96 56:53
19.3 41.96 16.2 41.98 57: 3
21.01 42.27 18.07 42.29 56:54 (median)
23.5 42.29 19.1 42.31 56:52
22.7 42.32 19.7 42.34 57: 8
15.1 42.35 13.9 42.37 57: 6
20.2 42.39 18.3 42.41 57: 3
16.8 42.50 15.3 42.52 57: 6
21.0 42.76 17.6 42.77 56:58
22.7 42.89 17.0 42.90 56:52
24.4 43.00 21.0 43.02 57: 1
19.3 43.18 17.9 43.19 57: 2
19.3 43.20 17.0 43.22 56:50
19.3 43.27 16.6 43.29 56:53
17.6 43.29 16.4 43.31 57: 9
27.7 43.30 19.3 43.31 56:50
21.8 43.34 18.3 43.36 56:54
17.6 43.35 16.2 43.37 56:58

Standard deviation of the fourth column:0.76
Average run time (min:sec): 56:59
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Table 5:31 runs withPr = 20 for 24 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 20

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

22.3 39.59 18.4 39.62 57: 4
23.1 39.66 20.2 39.68 56:59
23.1 39.87 20.7 39.89 57: 9
19.8 39.91 18.4 39.94 56:54
21.5 40.06 20.2 40.08 57: 1
23.1 40.08 21.5 40.11 57: 8
21.5 40.10 18.8 40.12 57: 6
21.5 40.22 19.6 40.25 57: 8
19.8 40.24 18.4 40.26 56:55
22.3 40.27 20.7 40.30 56:57
24.0 40.30 19.4 40.33 57: 4
22.3 40.45 19.8 40.47 56:55
20.7 40.51 18.4 40.54 56:51
18.2 40.58 16.7 40.60 57: 3
22.3 40.63 20.5 40.66 57: 2
23.97 40.66 21.07 40.69 56:59 (median)
24.8 40.73 22.5 40.76 57: 9
24.8 40.80 20.9 40.82 56:52
23.1 40.81 19.4 40.83 56:59
27.3 40.99 20.9 41.01 57: 6
21.5 41.08 19.2 41.11 57: 8
24.0 41.32 19.0 41.34 56:50
24.8 41.47 21.9 41.49 57: 9
19.8 41.48 18.4 41.50 56:56
27.3 41.54 20.7 41.57 57: 7
24.0 41.65 21.3 41.67 56:52
20.7 41.67 19.2 41.69 56:51
19.8 41.68 19.2 41.71 57: 2
23.1 41.70 20.7 41.73 57: 2
21.5 41.72 20.7 41.74 57: 7
22.3 41.73 19.6 41.75 57: 8

Standard deviation of the fourth column:0.68
Average run time (min:sec): 57: 1
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Table 6:31 runs withPr = 0 for 33 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 0

Positions solved by the best VP (%) Average positions solved by all VPs (%) Time (min:sec)
Generation0 Generation200 Generation0 Generation200

25.4 39.82 24.2 39.78 63: 0
25.4 39.84 23.3 39.81 63: 1
30.5 39.87 24.6 39.83 63: 7
30.5 39.95 23.3 39.92 62:51
27.1 40.04 22.5 40.00 63: 2
27.1 40.04 24.2 40.01 62:54
28.8 40.06 22.0 40.03 62:57
30.5 40.16 24.2 40.12 62:57
28.8 40.30 21.6 40.26 63: 6
25.4 40.33 22.5 40.29 62:55
22.0 40.40 21.2 40.36 62:51
28.8 40.44 24.2 40.40 62:55
23.7 40.44 19.9 40.40 63: 6
28.8 40.59 25.0 40.56 63: 6
25.4 40.70 23.7 40.67 62:52
30.51 40.85 25.42 40.81 63: 3 (median 27)
25.4 40.86 22.5 40.83 63: 0
27.1 40.91 23.7 40.87 63: 1
32.2 41.12 27.1 41.09 63: 7
27.1 41.14 24.2 41.11 63: 7
28.8 41.24 26.7 41.21 62:50
22.0 41.40 19.9 41.37 62:57
28.8 41.46 25.4 41.43 62:55
27.1 41.49 22.9 41.46 63: 0
25.4 41.57 21.6 41.54 63: 1
25.4 41.73 20.3 41.70 63: 5
23.7 41.75 21.2 41.72 62:55
32.2 41.75 25.8 41.72 63: 2
28.8 41.76 25.0 41.72 62:53
25.4 41.81 22.9 41.77 62:51
23.7 41.81 22.0 41.78 63: 6

Standard deviation of the fourth column:0.69
Average run time (min:sec): 62:59

26



Table 7:31 runs withPr = 10 for 33 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 10

Positions solved by the best VP (%) Average positions solved by all VPs (%) Time (min:sec)
Generation0 Generation200 Generation0 Generation200

25.5 52.10 22.6 52.12 63: 5
25.3 52.13 22.4 52.15 63: 9
25.6 52.14 22.7 52.16 62:58
24.6 52.17 21.8 52.19 62:50
25.1 52.20 22.2 52.22 63: 5
24.9 52.23 22.0 52.25 62:53
24.8 52.29 21.9 52.31 63: 2
25.3 52.37 22.4 52.39 62:52
24.4 52.43 21.6 52.45 62:54
25.1 52.78 22.3 52.80 62:55
25.2 52.78 22.3 52.80 62:58
25.3 52.79 22.4 52.81 63: 5
25.1 52.87 22.2 52.89 62:52
24.5 52.89 21.6 52.91 63: 0
25.2 53.07 22.3 53.08 62:57
25.38 53.08 22.46 53.10 63: 9 (median 3)
25.2 53.08 22.3 53.10 63: 4
25.4 53.10 22.5 53.12 62:58
24.9 53.28 22.0 53.30 63: 4
24.5 53.31 21.7 53.33 62:54
25.3 53.45 22.4 53.47 62:54
25.4 53.48 22.5 53.50 62:58
25.0 53.53 22.2 53.55 62:57
25.2 53.54 22.3 53.56 63: 4
25.5 53.56 22.6 53.58 62:53
25.1 53.64 22.2 53.66 62:52
24.8 53.76 21.9 53.78 62:56
25.1 53.94 22.2 53.96 63: 6
25.1 53.94 22.2 53.96 63: 6
25.1 53.96 22.2 53.98 63: 7
24.8 54.17 22.0 54.19 62:50

Standard deviation of the fourth column:0.64
Average run time (min:sec): 62:59

27



Table 8:31 runs withPr = 15 for 33 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 15

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

18.0 49.15 16.0 49.07 62:58
22.0 49.16 18.0 49.08 63: 0
26.0 49.32 24.0 49.24 62:53
24.0 49.36 15.0 49.28 63: 0
23.0 49.38 0.0 49.30 62: 56
22.0 49.40 14.5 49.32 63: 1
18.0 49.56 17.0 49.48 63: 2
22.0 49.56 0.0 49.48 63: 10
30.0 49.68 23.5 49.60 62:54
26.0 49.69 17.5 49.61 62:51
24.0 49.79 20.0 49.71 62:57
22.0 49.93 16.0 49.85 63: 8
20.0 50.03 14.0 49.95 62:55
20.0 50.08 16.0 50.00 62:50
18.0 50.11 14.5 50.03 63: 6
26.00 50.20 21.00 50.12 63: 3 (median)
24.0 50.25 17.5 50.17 62:54
24.0 50.37 19.5 50.29 62:55
18.0 50.43 14.0 50.35 63: 8
20.0 50.44 16.5 50.36 63: 7
22.0 50.56 18.0 50.48 63: 0
28.0 50.62 19.5 50.54 63: 9
24.0 50.64 18.0 50.56 62:54
22.0 50.64 19.0 50.56 62:57
18.0 50.78 15.5 50.70 62:54
22.0 50.80 19.5 50.72 63: 2
20.0 50.85 18.0 50.77 63: 0
22.0 50.91 16.0 50.83 63: 5
24.0 50.92 19.0 50.84 62:57
26.0 51.24 17.0 51.16 62:56
28.0 51.26 19.0 51.18 62:58

Standard deviation of the fourth column:0.63
Average run time (min:sec): 63:05
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Table 9:31 runs withPr = 20 for 33 weights.

Number of generations (Gmax): 200
Population size: 20
Number of training positions: 4000
Pr: 20

Positions solved by the best VP (%) Average positions solved by all VPs (%)Time (min:sec)
Generation0 Generation200 Generation0 Generation200

25.4 46.58 22.0 46.51 67:47
0.0 46.60 0.0 46.54 68:26
27.1 46.74 21.2 46.67 63:59
22.0 46.87 20.8 46.80 71:28
28.8 46.88 22.5 46.82 65:17
0.0 46.90 0.0 46.84 64:09
27.1 46.95 24.2 46.88 65:28
22.0 46.97 20.3 46.90 57:13
27.1 46.97 22.5 46.90 62:29
25.4 47.02 18.6 46.95 68: 5
20.3 47.04 19.1 46.97 67:36
23.7 47.12 22.0 47.05 63:29
23.7 47.39 21.2 47.32 59:15
27.1 47.44 24.2 47.37 67:35
23.7 47.45 22.5 47.39 68: 0
22.03 47.63 19.92 47.56 55:16 (median)
25.4 47.77 22.5 47.70 58:14
25.4 47.91 22.5 47.85 60:42
23.7 47.94 23.3 47.87 64:11
22.0 48.01 18.2 47.94 59:12
25.4 48.01 23.3 47.94 60:10
27.1 48.02 22.9 47.96 59:58
22.0 48.14 17.4 48.07 59: 8
25.4 48.19 23.3 48.13 62:48
23.7 48.21 21.6 48.15 58:44
27.1 48.27 22.0 48.20 60:20
23.7 48.28 19.5 48.21 59:41
22.0 48.46 19.9 48.39 60:59
25.4 48.55 19.9 48.48 58:43
27.1 48.59 22.5 48.52 58:40
23.7 48.61 21.2 48.54 58:49

Standard deviation of the fourth column:0.65
Average run time (min:sec): 62:58
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Table 10: It shows the median of the average positions solvedby all virtual players and the standard deviation
for 31 runs at generation200 andPr = 10 with different training case.

Training case Average positions solved Standard Deviation Average evaluation
by all virtual players time

1000 50.87% 0.44 14 : 37

2000 51.07% 0.47 31 : 12

3000 52.02% 0.51 45 : 37

4000 53.10% 0.56 62 : 59

Table 11: Ratings forV P
24

200,10
, V P

24

200,0
andV P

24

0,0
.

Rank Name Elo + - Games Score Oppo. Draws
(%) (%)

1 V P 24
200,10 2341 26 25 400 87% 1936 26%

2 V P 24
200,0 2186 24 24 400 60% 2014 28%

3 V P 24
0,0 1685 43 53 400 2% 2264 5%

Table 12: Ratings forV P
33

200,10
, V P

33

200,0
andV P

33

0,0
.

Rank Name Elo + - Games Score Oppo. Draws
(%) (%)

1 V P 33
200,10 2402 27 26 400 88% 1877 24%

2 V P 33
200,0 2245 26 27 400 62% 1955 25%

3 V P 33
0,0 1509 78 121 400 0% 2324 1%

Table 13: Ratings for Chessmaster2400 and the virtual players in generation200.

Rank Name Elo + - Games Score Oppo. Draws
(%) (%)

1 Chessmaster2400 2401 16 15 800 67% 2296 60%

2 V P 33
200,10 2397 27 27 200 49% 2401 85%

3 V P 24
200,10 2344 29 29 200 39% 2401 69%

4 V P 33
200,0 2249 31 32 200 25% 2401 50%

5 V P 24
200,0 2194 34 36 200 19% 2401 38%
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Table 14: Ratings forV P 33

200,10
andV P 33

50
.

Rank Name Elo + - Games Score Oppo. Draws
(%) (%)

1 V P 33
50 2442 19 18 200 57% 2404 61%

2 V P 33
200,10 2404 18 19 200 43% 2442 61%

Table 15: ELO rating system

Interval Level
2400 and above Senior Master
2200− 2399 Master
2000− 2199 Expert
1800− 1999 Class A
1600− 1799 Class B
1400− 1599 Class C
1200− 1399 Class D
1000− 1199 Class E
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