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Abstract
The most relevant property that a quality indicator (QI) is expected to have is Pareto
compliance, which means that every time an approximation set strictly dominates an-
other in a Pareto sense, the indicator must reflect this. The hypervolume indicator
and its variants are the only unary QIs known to be Pareto-compliant but there are
many commonly used weakly Pareto-compliant indicators such as R2, IGD+ and ϵ+.
Currently, an open research area is related to finding new Pareto-compliant indicators
whose preferences are different to those of the hypervolume indicator. In this paper,
we propose a theoretical basis to combine existing weakly Pareto-compliant indicators
with at least one being Pareto-compliant, such that the resulting combined indicator is
Pareto-compliant as well. Most importantly, we show that the combination of Pareto-
compliant QIs with weakly Pareto-compliant indicators leads to indicators that inherit
properties of the weakly compliant indicators in terms of optimal point distributions.
The consequences of these new combined indicators are threefold: 1) to increase the
variety of available Pareto-compliant QIs by correcting weakly Pareto-compliant indi-
cators, 2) to introduce a general framework for the combination of QIs, and 3) to gen-
erate new selection mechanisms for multi-objective evolutionary algorithms where it
is possible to achieve/adjust desired distributions on the Pareto front.

Keywords
Performance indicators, Pareto compliance, Multi-Objective Optimization Indicator-
based Selection

1 Introduction

The quality assessment of Pareto front approximations1 (also known as approxima-
tion sets) has been a critical factor to compare multi-objective evolutionary algorithms
(MOEAs) (Coello Coello et al., 2007). When assessing an approximation set, three qual-
ity aspects have been commonly considered: convergence towards the Pareto front,
spread, and diversity of solutions (Zitzler et al., 2000). The first evaluation method
consisted in qualitative comparisons by plotting the approximation sets (Horn et al.,
1994). However, a visual comparison is insufficient when the number of objective func-
tions, MOEAs and the cardinality of the approximation sets increases. To overcome

1A Pareto front approximation is a finite set of objective vectors that aims to represent a Pareto front.
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Table 1: Relations on approximation sets based on Pareto dominance relations (Zitzler
et al., 2003; Guerreiro and Fonseca, 2020).

Relation Description Name

A ⪯ B For every element b⃗ ∈ B, there is at least an ele-
ment a⃗ ∈ A such that a⃗ ⪯ b⃗.

Weak dominance

A� B A ⪯ B and B ̸⪯ A. Strict dominance

A ≺ B A ≠ ∅ and for every element b⃗ ∈ B, there is at
least an element a⃗ ∈ A such that a⃗ ≺ b⃗.

Strict elementwise
dominance

A ≺≺ B A ≠ ∅ and for every element b⃗ ∈ B, there is at
least an element a⃗ ∈ A such that a⃗ ≺≺ b⃗.

Strong dominance

this issue, researchers extended the Pareto dominance relation and its variants (which
give a general notion of optimality) to be applied on approximation sets. In this regard,
given two objective vectors u⃗, v⃗ ∈ Rm, u⃗ Pareto dominates v⃗ (denoted as u⃗ ≺ v⃗) if and
only if ui ≤ vi for all i = 1, 2, . . . ,m and there exists at least an index j ∈ {1, 2, . . . ,m}
such that uj < vj . In case that ui ≤ vi for all i, it is said that u⃗ weakly Pareto domi-
nates v⃗ (denoted as u⃗ ⪯ v⃗). If ui < vi for all i, u⃗ strongly Pareto dominates v⃗ (denoted
as u⃗ ≺≺ v⃗). The extended Pareto dominance relations are shown in Table 1. An im-
portant drawback of these set-based binary relations is their impossibility to take into
account the spread and diversity of solutions. To alleviate the issues of the two pre-
vious comparison methods, quality indicators (QIs) were proposed as a quantitative
methodology focused on measuring the three main quality aspects previously indi-
cated (Veldhuizen, 1999; Zitzler et al., 2003; Jiang et al., 2014; Liefooghe and Derbel,
2016; Li and Yao, 2019).

Quality indicators are set functions that assign a real value to one or more approx-
imation sets simultaneously, according to specific preference information (Zitzler et al.,
2003; Li and Yao, 2019). Mathematically, an l-ary QI is a function I : A1 × · · · ×Al → R,
where each Aj ⊂ Rm, j = 1, . . . , l is a non-empty approximation set. Due to its math-
ematical definition, they impose a total order on the set Ψ of all approximation sets
related to a multi-objective optimization problem. Hence, this property makes QIs a re-
markable option to compare the performance of MOEAs. In the specialized literature,
there are several QIs that aim to assess convergence, spread and uniformity of approx-
imation sets (Li and Yao, 2019). QIs focused on measuring convergence have a note-
worthy relevance since they have been used to assess the performance of MOEAs and
also to design their selection mechanisms (Falcón-Cardona and Coello Coello, 2020).
Regarding the assessment of MOEAs, Pareto compliance is a critical property of conver-
gence QIs2 that allows them to reflect the order imposed by the �-relation (see Table 1).
It is worth noting that throughout the years, the term Pareto compliance has been com-
monly used. However, Hansen and Jaszkiewicz (1998) firstly named this property as
compatibility with an outperformance relation; Zitzler et al. (2003) denoted these indica-
tors as �-complete; and, finally, Zitzler et al. (2008a) refined the term as strict monotonic-
ity. In the following, we define the Pareto compliance and the weak Pareto compliance
properties, assuming, without loss of generality, that a lower indicator value implies a
better quality.

2From this point onwards, convergence QIs will be denoted just as QIs.
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Property 1 (Pareto compliance). Given two approximation sets A and B, a unary indicator
I is �-compliant (Pareto-compliant) if A� B ⇒ I(A) < I(B).
Property 2 (Weak Pareto compliance). Given two approximation sets A and B, a unary
indicator I is weakly �-compliant (weakly Pareto-compliant) if A� B ⇒ I(A) ≤ I(B).
Pareto compliance implies that every time an approximation set A strictly dominates
another set B, the indicator I will reflect this situation by assigning a lower indicator
value to A. In contrast, weak Pareto compliance indicates that A and B at least have the
same quality. If the QI does not reflect the order imposed by the extended dominance
relations, then it is denoted as a non Pareto-compliant indicator. The importance of
Pareto-compliant indicators when assessing MOEAs lies in their impossibility of con-
tradicting the structure of order imposed by the �-relation (Zitzler et al., 2003). Hence,
when comparing MOEAs, Pareto compliance avoids the generation of misleading con-
clusions regarding the use of Pareto dominance.

Among the plethora of convergence QIs currently available, the hypervolume in-
dicator (HV) is the only unary QI that is Pareto-compliant (Zitzler, 1999; Zitzler et al.,
2003, 2008a). The HV measures the extent of the volume dominated by an approxima-
tion set and bounded by a user-supplied reference point that should be dominated by
all points in the Pareto front approximation. For non-linear Pareto front shapes, the
set of size µ that approximates the solution to the HV-based subset selection problem
presents a non-uniform distribution of objective vectors (Shang et al., 2020a). The con-
sequences of these non-uniform optimal µ-distributions are twofold: (1) HV penalizes
uniform Pareto front approximations in comparison to certain non-uniform approxi-
mation sets, and (2) MOEAs that use HV-based selection mechanisms, produce non-
uniform approximation sets. To improve the uniformity of the optimal µ-distributions
of HV, the weighted HV (Zitzler et al., 2007), logarithmic HV (Friedrich et al., 2011),
free HV (Emmerich et al., 2014), and the transformation-based HV (Shang et al., 2020b),
which are all variants of HV, have been proposed. Moreover, these variants preserve the
Pareto compliance property of HV. Additionally, some other QIs have been proposed,
having different preferences to those of the HV but being weakly Pareto-compliant or
non Pareto-compliant. For instance, the most noteworthy weakly Pareto-compliant
QIs are R2 (Brockhoff et al., 2012), the Inverted Generational Distance plus (IGD+)
(Ishibuchi et al., 2015), and the unary additive ϵ indicator (ϵ+) (Zitzler et al., 2003) while
IGD (Coello Coello and Cruz Cortés, 2005) and Generational Distance (Veldhuizen,
1999) are non Pareto-compliant indicators.

Due to the imperative need to propose new Pareto-compliant QIs whose prefer-
ences are significantly different to those of the HV, we propose in this paper a method-
ology to generate new Pareto-compliant QIs. It is worth noting that in this paper
we provide both a theoretical and an experimental extension of the work introduced
by Falcón-Cardona et al. (2019). Under this methodology, we combine one or more
weakly Pareto-compliant indicators with at least one Pareto-compliant QI, using an
order-preserving combination function. Under these conditions, we demonstrate that
the combined indicators preserve the Pareto compliance property. Additionally, we
show through preference analysis and the approximate optimal µ-distributions, that
our framework allows to create Pareto-compliant QIs with different preferences to
those of the HV in two ways: 1) by exploiting the conflict that sometimes exists between
the preferences of indicators, such that the combined indicator shows intermediate
preferences, and 2) by keeping the original preferences of the weakly Pareto-compliant
QIs but using a correcting factor derived from the Pareto-compliant QI being used.
Overall, the contributions of this paper are the following:
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1. We provide guidelines for the construction of new Pareto-compliant QIs whose
preferences are essentially different from those of the HV.

2. Our proposed framework allows correcting weakly Pareto-compliant QIs, such as
R2, IGD+, and ϵ+, so that they can become Pareto-compliant.

3. We provide an empirical study of the optimal µ-distribution of solutions generated
by a steady-state MOEA based on some (selected) new Pareto-compliant QIs.

The remainder of the paper is organized as follows. Section 2 defines the quality
indicators that we use throughout the paper. The previous related work is described in
Section 3. Our mathematical framework for the construction of new Pareto-compliant
QIs is introduced in Section 4. The experimental results using the combined indicators
is presented in Section 5. Finally, the main conclusions and future work are described
in Section 6.

2 Background

In this paper, we consider, without loss of generality, multi-objective optimization prob-
lems (MOPs) for minimization which are defined as follows (Coello Coello et al., 2007):

min
x⃗∈Ω

{
f(x⃗) = (f1(x⃗), f2(x⃗), . . . , fm(x⃗))T

}
,

where x⃗ = (x1, . . . , xn)
T ∈ Ω is a vector of n decision variables, and Ω ⊆ Rn is the de-

cision space. f(x⃗) is a vector of m ≥ 2 objective functions fi : Ω → R,∀i ∈ {1, 2, . . . ,m}
where some or all of them are mutually in conflict. Since there is no single decision
vector x⃗ whose objective vector f(x⃗) minimizes all objective functions simultaneously,
the goal is to find the so-called Pareto optimal solutions whose images in the objective
function space represent the best possible trade-offs among the objective functions. A
decision vector x⃗ ∈ Ω is Pareto optimal if there is no other y⃗ ∈ Ω such that f(x⃗) ≺ f(y⃗).
The set of all Pareto optimal solutions P ∗ is called Pareto set and its image, given by
PF ∗ = f(P ∗), is known as the Pareto front.

In the following, we provide the mathematical definitions of HV, R2, IGD+, and
ϵ+, which are extensively used throughout the paper. In all cases, let A denote an
approximation set and Z be a reference set.

Definition 1 (Hypervolume indicator). Let Λ denote the Lebesgue measure in Rm, the hy-
pervolume indicator (HV) is defined as follows:

HV(A, z⃗ref ) = Λ

(⋃
a⃗∈A

{x⃗ | a⃗ ≺ x⃗ ≺ z⃗ref}
)
,

where z⃗ref ∈ Rm is a reference point which should be dominated by all points in A.

HV measures the extent of volume jointly dominated by the points in A and
bounded by z⃗ref . Currently, HV and the closely related logarithmic HV (Friedrich
et al., 2011), the weighted HV (Auger et al., 2009), the free HV (Emmerich et al., 2014),
and the transformation-based HV (Shang et al., 2020b) are the only Pareto-compliant
QIs known so far. The two main drawbacks of the HV are the following. First, under
NP ̸= P, its computational cost increases super-polynomially with the number of objec-
tive functions (Bringmann and Friedrich, 2009, 2010). The other issue is related to z⃗ref ,
since the preferences of HV strongly depend on it (Auger et al., 2009; Ishibuchi et al.,
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2017a). In other words, the specification of the reference is dependent on the Pareto
front shape. It has been shown that the distribution of points is often concentrated on
the boundary and in knee point regions.

Definition 2 (Unary R2 indicator). The unary R2 indicator is defined as follows:

R2(A,W ) =
1

|W |
∑
w⃗∈W

min
a⃗∈A

{uw⃗(a)},

where W is a set of m-dimensional weight vectors and uw⃗ : Rm → R is a utility function,
parameterized by w⃗ ∈ W , that assigns a real value to each solution vector.

The R2 indicator is a convergence-diversity QI that measures the average min-
imum utility values of the approximation set with respect to a set of weight vec-
tors (Hansen and Jaszkiewicz, 1998; Brockhoff et al., 2012). Its computational cost is
in Θ(m|W | · |A|). Unlike the hypervolume indicator, the time complexity of R2 grows
linearly with the number of objectives. Its time complexity is, however, proportional
to the number of weight vectors,3 which has to grow exponentially in size, if the num-
ber of objectives increases and the same resolution of sampling is desired. A major
conceptual difference with respect to the hypervolume indicator is that the R2 indica-
tor does not require an anti-optimal reference point. Instead, it works with an ideal
or utopian reference point. In many applications involving, for instance, error or cost
minimization, there is a natural choice for an ideal point, but it is difficult to define an
anti-optimal reference point. So, in such cases, the R2 indicator could be a better choice
than the hypervolume.

A problem, however, arises due to the fact that the R2 indicator is not Pareto-
compliant, and it is only weakly Pareto-compliant (Hansen and Jaszkiewicz, 1998;
Brockhoff et al., 2012). This makes it possible that a set might have equal R2 indicator
values than another set, although it is dominated in the set order, or that sets degen-
erate if this indicator is used as a guide in a Pareto optimization process. One might
argue that these are rare cases, as they always involve shared coordinate values among
points, and in most cases, the R2 indicator works well when comparing sets. In fact, in
continuous unconstrained optimization, such cases might occur with low probability,
but they are relatively likely to occur in continuous optimization and in cases in which
box constraints are introduced.

Definition 3 (Inverted Generational Distance plus). The IGD+, for minimization, is de-
fined as follows:

IGD+(A,Z) =
1

|Z|
∑
z⃗∈Z

min
a⃗∈A

d+(⃗a, z⃗),

where d+(⃗a, z⃗) =
√∑m

k=1 (max{ak − zk, 0})2.

Ishibuchi et al. (2015) proposed IGD+ as an improvement of the IGD indica-
tor (Coello Coello and Cruz Cortés, 2005). Both QIs measure convergence and diversity
of solutions simultaneously. However, IGD+ is weakly Pareto-compliant while IGD is
not Pareto-compliant (Bezerra et al., 2017). IGD+ measures the average distance from
the reference set to the dominated space of the approximation set. Its computational

3The Simplex-Lattice-Design method is usually employed to construct the set of weight vectors (Das and
Dennis, 1998). Using this method, the number of weight vectors is the following combinatorial number:
N = CH+m−1

m−1 , where H ∈ N is a user-supplied parameter that determines the number of divisions of the
space, and m is the number of objectives.
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Figure 1: Let A = {(0.125, 0.875), (0.375, 0.625), (0.575, 0.6), (0.625, 0.375),
(0.875, 0.125)}, B = {(0.125, 1), (0.375, 0.75), (0.5, 0.625), (0.75, 0.375), (1, 0.125)}, and
Z = {(0, 1), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25), (1, 0)}. Even though A � B, IGD prefers
B and IGD+ assigns the same quality to both sets, HV prefers A since it is Pareto-
compliant.

cost is Θ(m|Z| · |A|). A critical aspect is how to specify the reference set when no infor-
mation is available about PF ∗ (Ishibuchi et al., 2014).

Definition 4 (Unary ϵ+ indicator). Mathematically, it is defined as follows:

ϵ+(A,Z) = max
z⃗∈Z

min
a⃗∈A

max
1≤i≤m

{zi − ai}.

The unary ϵ+-indicator gives the minimum distance by which a Pareto front ap-
proximation needs to or can be translated in all dimensions at once in objective space
such that a reference set is weakly dominated. In consequence, this QI exclusively mea-
sures convergence to PF ∗ and it is weakly Pareto-compliant. A remarkable aspect is
that ϵ+ does not require any parameters but, as in the case of IGD+, a reference set has
to be supplied. Additionally, ϵ+ is not very sensitive to local changes in the solutions
in A (Bringmann et al., 2011).

Recently, the combination of the high interest in solving MOPs with more than
three objective functions and the expensive calculation of the HV have promoted the
utilization of weakly and non Pareto-compliant QIs in spite of their clear drawbacks
when comparing MOEAs (Deb and Jain, 2014; Yuan et al., 2016; Tian et al., 2018; Li
et al., 2018). In the following, we analyze, using two examples, why weakly and non
Pareto-compliant QIs are not good enough for comparing MOEAs (Zitzler et al. (2008a)
also discussed these issues). First, Figure 1 shows two approximation sets A and B,
where A � B, for which the HV, IGD+, and IGD4 values are calculated. It is worth

4Given an approximation set A and a reference set Z , the IGD indicator is defined as follows:
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noting that a lower value of IGD+ and IGD means higher quality in constrast to the
HV which aims to maximize the dominated volume. Due to its Pareto compliance,
the HV effectively shows that A strictly dominates B since HV(A, z⃗ref ) = 0.781875
and HV(B, z⃗ref ) = 0.671250. On the other hand, IGD+ cannot reflect that A � B since
the same IGD+ value (0.125) is assigned to both approximation sets. In contrast, IGD
determines that B is better because IGD(B,Z) = 0.125 and IGD(A,Z) = 0.167705, even
though it is strictly dominated by A. Regarding the second example, let’s consider a QI
which we will call “Zero indicator”. It is defined as Z : Ψ → R with Z ≡ 0. Clearly,
for every A,B ∈ Ψ such that A � B, it implies Z(A) = Z(B), i.e., Z is weakly Pareto-
compliant. Although indicators such as R2, IGD+ and ϵ+ are more complex than Z in a
mathematical sense, all of them are only weakly Pareto-compliant as the Zero indicator.
Based on the discussed examples, we can see that is not enough to construct weakly
and non Pareto-compliant QIs, since they can lead to misleading conclusions when
comparing approximation sets (Zitzler et al., 2008a). Consequently, this is a motivation
to construct new Pareto-compliant QIs.

3 Previous Related Work

In this section, we briefly describe the previous work done in the direction of the em-
ployment of multiple QIs. Additionally, we first provide a discussion on the use of
different terms to denote the Pareto compliance property.

3.1 Pareto Compliance

Pareto compliance (defined in Property 1) is a characteristic of convergence QIs which
allows them to reflect the order structure imposed by the �-relation defined in Table 1.
Over the years, this property has been named in different ways, namely, compatibility,
completeness, and strict monotonicity. The origins of this property dates back to the work
of Hansen and Jaszkiewicz (1998). In that paper, the authors defined the general notion
of an outperformance relation5 R as a set-based binary order relation to compare approx-
imation sets. Based on the general outperformance relation, Hansen and Jaszkiewicz
defined the term compatibility, which is currently known as Pareto compliance, as fol-
lows:

Definition 5. Compatibility with an outperformance relation (Hansen and Jaszkiewicz, 1998)
A comparison method R is compatible with an outperformance relation R if for each pair of
approximation sets A and B, such that ARB, R will evaluate A as being better than B.

Definition 6. Weak compatibility with an outperformance relation (Hansen and Jaszkiewicz,
1998) A comparison method R is weakly compatible with an outperformance relation R if for
each pair of approximation sets A and B, such that ARB, R will evaluate A as being not worse
than B.

The comparison method R in the above definitions can be replaced by a quality in-
dicator. Hence, assuming that a lower indicator value implies better quality, then
ARB ⇒ I(A) < I(B) and ARB ⇒ I(A) ≤ I(B) imply that I is compatible and weakly
compatible, respectively. In case that R is replaced by �, we obtain Properties 1 and 2.

IGD(A,Z) = 1
|Z|

(∑
z⃗∈Z mina⃗∈A d(a⃗, z⃗)p

)1/p, where d is the Euclidean distance and p > 0 is a user-
supplied parameter, usually set to 2.

5Based on the general outperformance relation, Hansen and Jaszkiewicz defined four relations where
three of them were based on Pareto dominance and the remanining one was focused on utility functions (Mi-
ettinen, 1999; Pescador-Rojas et al., 2017).
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Following the definitions of Hansen and Jaszkiewicz, Zitzler et al. (2003) denoted
the compatibility as completeness with respect to an arbitrary binary relation R. How-
ever, the main diference was the consideration of an indicator vector I⃗ = (I1, . . . , Ik)
instead of a single QI. Moreover, the comparison method R was redefined as a function
CI⃗,E : A × B → {true, false}, where E : Rk × Rk → {true, false} is an interpreta-
tion function. This newly defined comparison method aims to determine by a Boolean
value if A is better than B. The comparison method CI⃗,E = E(I⃗(A), I⃗(B)) is denoted
as R-complete if either for any A,B ∈ Ψ, it holds ARB ⇒ CI⃗,E(A,B). This definition
extended the compatibility of Hansen and Jaszkiewicz to consider multiple QIs when
comparing approximation sets. We can easily derive the compatibility definition from
the completeness one.

Finally, Zitzler et al. (2008a) employed the term strict monotonicity to denote a QI for
which the following holds: ∀A,B ∈ Ψ : A ≺ B ⇒ I(A) < I(B), where ≺ corresponds
to the strict elementwise dominance in Table 1. According to Zitzler et al. (2003), A ≺
B ⇒ A � B, thus, for these subset of approximation sets for which ≺ holds, we can
employ the �-relation as it is stated in the compatibility and completeness definitions.

3.2 Combination of Multiple Indicators

Even though quality indicators have been widely employed by the evolutionary multi-
objective optimization community, the exploration of quantitative methods using mul-
tiple QIs has been scarce. In this section, we discuss some previous works in which the
combination of multiple indicators was discussed. Particulaly, we focus on the works of
Zitzler et al. (2003), Knowles et al. (2006), Zitzler et al. (2008a), and Zitzler et al. (2010).

When assessing MOEAs, it is a common strategy to employ several QIs to charac-
terize different quality aspects of approximation sets. In this regard, Zitzler et al. (2003)
proposed to analyze such combinations or, more formally, quality indicator vectors
I⃗ = (I1, . . . , Ik) to better interpret the results, based on multiple quality aspects, when
comparing two approximation sets. To this aim, the authors proposed to use compar-
ison methods based on interpretation functions E (defined in the previous section) to
analyze the indicator vectors. Depending on the several possibilities to define E, dif-
ferent claims could be produced when comparing two approximation sets. However,
no theoretical properties about I⃗ or the interpretations functions were provided.

Knowles et al. (2006) briefly explained that the combination of indicators, ideally
using Pareto-compliant ones, could lead to powerful interpretations in constrast to em-
ploying a single QI. However, no mathematical definition was provided to support this
claim. In a subsequent work, Zitzler et al. (2008a) explained that the combination of in-
dicators could allow to overcome the difficult situation of finding an ideal indicator,
i.e., a QI being Pareto-compliant, scaling invariant, and cheap to compute. To this aim,
one has to look for a way to combine the resulting indicator values. Hence, they were
the first to suggest the use of a sequence of indicators to evaluate approximation sets.

Zitzler et al. (2010) mathematically defined a multi-indicator preference relation
RS that sequentially applies preference relations based on a single quality indicator.
RS utilizes a sequence S = (⪯I1 ,⪯I2 , . . . ,⪯Ik), where each ⪯Ij is a preference relation
based on the indicator Ij that compares the indicator values of two given approxi-
mation sets. The backbone of this proposal is to create a chain of refinements of in-
dicator preferences to compare two given approximation sets and, in this way, break
ties (i.e., when a QI cannot decide which approximation is better). Based on this idea,
the authors proposed an algorithm for the evaluation of A and B similar to the non-
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dominated sorting algorithm (Deb et al., 2002). First, an index j is set to 1 to use ⪯I1 ,
i.e., the value Ij=1 is calculated for both A and B. If Ij(A) = Ij(B), then j is increased
to point to the next indicator-based preference relation in the sequence if it exists. In
case that ⪯Ij claims an approximation set with better quality, the decision is returned.
In consequence, the use of these indicator-based preference relations could increase the
sensitivity of an order relation by solving cases of incomparability. Furthermore, Zit-
zler et al. proposed that the first 1 ≤ t < k indicators are weakly Pareto-compliant and
the remaining ones are Pareto-compliant. This way, the Pareto-compliant QIs could be
employed to refine the preferences of the weakly Pareto-compliant indicators.

It is worth noting at this point what is the main focus of these multi-indicator-based
preference relations. Zitzler et al. (2008b, 2010) employed these preference relations to
construct the Set Preference Algorithm for Multi-Objective Optimization (SPAM) that
uses populations as individuals instead of single decision vectors. The reason to use
populations as individuals is related to the utilization of the indicator-based preference
relations that require a population (a set of objective vectors) as an input parameter.
Internally, SPAM manages three populations: the main population P , the randomly
mutated population P ′, and the heuristically mutated population P ′′. P is compared
with P ′ and P ′′, using the indicator-based preference relations, to determine the one
that possibly replaces P . In case of using HV in the sequence of indicators, the high
computational cost of HV-based MOEAs such as the S-Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA) (Beume et al., 2007) is avoided because it is
necessary to calculate only two HV values at each generation if necessary, i.e., when
HV needs to refine the preferences. However, SPAM needs more function evaluations
than a usual MOEA due to the utilization of three populations.

From the above discussion, it is clear that the indicator-based preference relations
show remarkable advantages to derive set-based MOEAs such as SPAM. Furthermore,
another utilization of these binary relations could be the comparison of the Pareto front
approximations generated by different MOEAs. This is possible since the indicator-
based preference relations are basically a lexicographic order based on a sequence S =
(⪯I1 ,⪯I2 , . . . ,⪯Ik). Thus, they impose a preorder6 on the set of all approximation sets.
In spite of the possibility of using the indicator-based preference relations to compare
MOEAs, there are some issues that should be pointed out. The preference relation on
its own, only determines what is the relationship between two given approximation
sets but it does not numerically indicate the difference in quality between them. Even
though if we inspect the indicator values produced by the preference relation, there is
a possibility that some of the comparisons do not employ the same ⪯Ij∈ S. Hence, we
would have performance evaluations in a different scale of measure.

In the next section, we present a generalization of the multi-indicator-based prefer-
ence relations proposed by Zitzler et al. (2010). Our proposal is a framework to combine
multiple QIs in order to define new unary indicators. The resulting combined unary
indicator merges the preferences of all the baseline QIs, defining new preferences and
a common numerical field of comparisons to determine the difference in quality be-
tween Pareto front approximations. Another important aspect is that the user can spec-
ify the relative importance of all the baseline QIs in the combination. Furthermore,
this framework allows the construction of new Pareto-compliant indicators by combin-
ing as many weakly Pareto-compliant indicators as needed, but including at least one
Pareto-compliant QI to retain the Pareto compliance property. Due to the use of at least

6As long as we are concerned on how approximation sets are ordered, the indicator-based preference
relations are not anti-symmestric since different approximation sets may have equal indicator values.
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Objective space Quality space Real numbers space

Figure 2: The objective space contains the approximation sets X ,Y, and Z that are
mapped to the quality space using an indicator vector. The points I⃗(X ), I⃗(Y) and I⃗(Z)
in quality space are then transformed each to a single real value by the combination
function C : R2 → R to generate the real values I(X ), I(Y), and I(Z).

one Pareto-compliant QI, we refine the preferences of the weakly Pareto-compliant in-
dicators in a similar way as the one proposed by Zitzler et al..

4 New Pareto-compliant Indicators

In this section, we propose a systematic framework for combining QIs, following the
basic idea introduced by Falcón-Cardona et al. (2019). Additionally, we provide the
mathematical argumentation to ensure that when combining QIs with specific proper-
ties, the resulting combined indicator will be Pareto-compliant. This leads not only to
new types of indicators but also proves to be a way to create new Pareto-compliant in-
dicators with very different properties than those of the HV in terms of the distribution
of points that they favor, and in terms of the parameters provided by the user. In the
following, we present the mathematical framework for the combination of QIs. Let A
be an approximation set in Ψ.

Definition 7 (Combination function). A combination function C : Rk → R assigns a real
value to a vector I⃗(A) = (I1(A), I2(A), . . . , Ik(A)), where each Ij(A) is the value of the jth

unary indicator.

Definition 8 (Combined Indicator). Given an indicator vector I⃗(A) =
(I1(A), I2(A), . . . , Ik(A)) and a combination function C, a combined indicator I(A) is
defined as follows: I(A) = C(I⃗(A)).

Regarding Definition 8, a combined indicator I is a QI as well (since I : Ψ → R)
but it requires the combination function C to transform an indicator vector I⃗(A) to a
real value. Figure 2 shows how to map Pareto front approximations (in objective space)
to the quality space Q ⊆ Rk, where each axis corresponds to a specific indicator. Then,
the indicator vectors in Q are assigned a real value, using the combination function
C. Based on the above definitions, nothing can be said about the properties of I at
this point. Hence, for getting more important theoretical results, we should say some-
thing about the properties of each Ij , j = 1, . . . , k and the combination function C. We
are interested in analyzing the Pareto compliance of I. Based on Properties 1 and 2,
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we construct a special vector of indicators that is necessary for the refinement of the
combined indicator model.

Definition 9 (Compliant Indicator Vector). I⃗(A) = (I1(A), I2(A), . . . , Ik(A)) ∈ Q is
called a compliant indicator vector (CIV) if ∀j = 1, . . . , k, Ij is weakly Pareto-compliant and
there exists at least one index t ∈ {1, . . . , k} such that It is Pareto-compliant. Q ⊆ Rk is
denoted as the quality space.

For the following Theorem, let us assume, without loss of generality, that the unary
indicators I1, . . . , Ik are to be minimized.

Theorem 1 (Construction of Pareto-compliant combined indicators). Let I1, . . . , Ik be
unary indicators that form a compliant indicator vector I⃗ . A combined indicator I, based on the
combination function C(I⃗), is �-compliant (Pareto-compliant) if C has the order-preserving
property:

∀u⃗, v⃗ ∈ Q, u⃗ ≺ v⃗ ⇒ C(u⃗) < C(v⃗).

Proof. Consider two approximation sets A and B such that A � B and let I⃗ be a CIV.
Then, A � B ⇒ I⃗(A) ≺ I⃗(B) because the Pareto-compliant indicators get better and
the weakly Pareto-compliant ones get better or stay equal. Moreover, by definition
I⃗(A) ≺ I⃗(B) ⇒ C(I⃗(A)) < C(I⃗(B)). Hence, by transitivity of ⇒ and considering
that I(A) = C(I⃗(A)) and I(B) = C(I⃗(B)), it holds A � B ⇒ I(A) < I(B), i.e., I is
Pareto-compliant.

Theorem 1 provides a sufficient condition for constructing Pareto-compliant com-
bined indicators on the basis of compliant indicator vectors. In other words, a com-
bined indicator preserves the Pareto compliance property because of the use of order-
preserving combination functions.

Remark 1. The condition of Theorem 1 is suffcient but not necessary. For instance, given
I⃗(A) = (I1(A), I2(A), . . . , Ik(A)) where I1 is Pareto-compliant and the Ij , j = 2, . . . , k are
not Pareto-compliant, the “combined” indicator I(A) = C(I⃗(A)) = I1(A) is also Pareto-
compliant. Hence, there is a large number of possibilities to construct combined and compliant
indicators.

There exist many combination functions that have the property of Theorem 1. In
this paper, we focus on order-preserving utility functions u : Rk → R (Miettinen, 1999;
Pescador-Rojas et al., 2017). A utility function (UF) is a model of the decision maker
preferences that assigns to each k-dimensional vector a utility value. Thus, a combi-
nation function C can be defined in terms of these functions. Generally, UFs employ
a convex weight vector w⃗ ∈ [0, 1]k such that

∑k
i=1 wi = 1, wi ≥ 0. However, for the

combination of QIs, we need wi > 0 for all i = 1, . . . , k such that all QIs contribute to
the combined indicator value. Based on the above, we denote uw⃗(I⃗(A)) as a Pareto-
compliant utility indicator (PCUI) if u is order preserving and I⃗ is a CIV.

5 Experimental Results

Throughout this section, we analyze six newly created PCUIs, emphasizing the distri-
bution of points in different Pareto fronts that they prefer. To define the PCUIs, we
focused our attention on two well-known utility functions that are order-preserving,
namely, the weighted sum function (WS) and a slightly modified augmented Tcheby-
cheff function (ATCH) (Pescador-Rojas et al., 2017). Let I⃗ ∈ Rk be an indicator vector
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and w⃗ ∈ (0, 1)k be a convex weight vector. In the following we define WS and ATCH
as WSw⃗(I⃗) =

∑k
i=1 wiIi and ATCHw⃗(I⃗) = maxi=1,...,k {wiIi} + α

∑k
i=1 Ii, respectively.

Regarding ATCH, we modified its original definition by not considering the absolute
value of the term wixi such that the function is order-preserving in the whole Rk and
α > 0 is a user-supplied parameter. Since a PCUI requires all its baseline QIs to be min-
imized, we exclusively consider −HV in their definition. The proposed PCUIs, defined
in the following, correspond to Pareto-compliant versions of the indicators R2, IGD+,
and ϵ+:

• WSw⃗(−HV,R2) and ATCHw⃗(−HV,R2);

• WSw⃗(−HV, IGD+) and ATCHw⃗(−HV, IGD+);

• WSw⃗(−HV, ϵ+) and ATCHw⃗(−HV, ϵ+).

In the following sections, we are interested in understanding the properties of
the adopted PCUIs as performance assessment functions to compare MOEAs’ perfor-
mance. To this aim, we proposed two main experiments. The first experiment aims
to compare how the PCUIs and their baseline QIs rank several state-of-the-art MOEAs
that produce Pareto front approximations with different specific distributions of ob-
jective vectors (we employed the Lamé and Mirror superspheres problems proposed
by Emmerich and Deutz (2007)). The comparison is based on measuring the correla-
tion of preferences between all the adopted PCUIs and QIs, following the methodol-
ogy of Liefooghe and Derbel (2016). On the other hand, the second experiment ana-
lyzes the approximate optimal µ-distributions related to PCUIs to reinforce the pref-
erence information. To obtain the approximate optimal µ-distributions, we set up
a steady-state MOEA similar to the S-Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA) (Beume et al., 2007), that uses the PCUIs as part of its den-
sity estimator. The proposed algorithm, denoted as PCUI-EMOA, is tested on MOPs
from the Deb-Thiele-Laumanns-Zitzler (DTLZ) (Deb et al., 2005), Walking-Fish-Group
(WFG) (Huband et al., 2006) test suites, and their minus versions, DTLZ−1 and WFG−1

(Ishibuchi et al., 2017b), respectively. It is worth noting that we turned off all the search
difficulties of these problems to avoid issues related to the PCUI-EMOA’s performance.

5.1 Weight vector effect

Before studying the properties of the newly created PCUIs, we need to punctualize the
relationship between the order-preserving functions and the PCUIs and we also need
to clarify what is the effect of the combination weight vector w⃗ that the PCUIs require.
First, PCUIs are invariant to the indicator scales because of the order-preserving com-
bination function u. Regardless of the order-preserving function being used, it ensures
that if x⃗ ≺ y⃗, then u(x⃗) < u(y⃗). However, if x⃗ and y⃗ are mutually non-dominated,
we cannot say what will be the relation between u(x⃗) and u(y⃗) unless we know the
definition of u. In consequence, each u expresses specific preferences when dealing
with non-dominated solutions and such preferences depend on the landscape of u (see
Figure 3). On the other hand, PCUIs require a weight vector w⃗ = (w1, . . . , wk) where
wi > 0 for all i = 1, . . . , k. Each wj assigns a relative importance to its associated indi-
cator Ij . Hence, this can control the impact of each indicator to the final preferences of
the PCUI. Figure 3 shows the landscape of the ATCH function for three different set-
tings of w⃗. This picture shows that depending on the setting of w⃗, the preferences of the
PCUIs may change, i.e., the total ordering induced by the order-preserving functions.
In specific cases where the preferences of the baseline QIs are in conflict, the weight
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Figure 3: Landscapes of ATCH function varying the weight vector w⃗ = (w1, w2).

vector could lead to exploit the trade-off between them. In other words, when all wi

are equal, the PCUI preferences are the intermediate point between the preferences of
its baseline QIs. For the other two cases in Figure 3, the preferences of the PCUI will be
biased to the indicator having the greatest wi. If we assume that a PCUI is integrated in
the selection mechanism of a MOEA, we could control the final distribution of points
by defining w⃗.

5.2 Analysis of preferences

In this experiment, we are interested in analyzing how similarly the six adopted PCUIs
and their baseline QIs rank different Pareto front approximations corresponding to
the Lamé and Mirror superspheres problems with unimodal difficulty (Emmerich and
Deutz, 2007). The correlation analysis is based on the methodology proposed by
Liefooghe and Derbel (2016) where the main focus is the comparison of rankings of
approximation sets obtained within each QI. The reason to use the Lamé superspheres
is their scalability in the objective space and the controlling of the Pareto front shapes.
Regarding the latter, a parameter γ controls the Pareto front geometry. For Lamé prob-
lems, γ ∈ (0, 1), γ = 1, and γ > 1 correspond to convex, linear, and concave Pareto
front geometries. In case of the Mirror problems, γ ∈ (0, 1) corresponds to a concave
geometry while γ > 1 is related to convex shapes. For both Lamé and Mirror problems,
we employed γ = 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 6.00 for 2, 3, and 4 objective functions.

Following the med-Q sampling methodology of Liefooghe and Derbel where a
black-box MOEA (they employed NSGA-II) produces Pareto front approximations, we
selected MOEAs that exhibit particular distribution characteristics to have a represen-
tative sample of the set Ψ. For each test instance, 30 independent executions were pro-
duced by each MOEA, where all the algorithms shared the same settings. For all the
objective functions, the size of all the produced approximation sets was 120. To avoid
performance issues of the selected MOEAs, all of them used Pareto optimal solutions as
their initial population.7 Hence, during the execution time, the MOEAs explore these

7To generate the initial populations, we executed the algorithms several times to gather in an archive the
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Figure 4: Heatmap Kendall rank correlation τ for each pair of quality indicators and
each Lamé problem on different dimensions of the objective space.

initial solutions to impose their own preferences. The adopted MOEAs are classified in
five classes as follows:

• Indicator-based MOEAs: SMS-EMOA (Beume et al., 2007), MOMBI2 (Hernández
Gómez and Coello Coello, 2015), IGD+-MaOEA (Falcón-Cardona and Coello
Coello, 2018) and ∆p-MaOEA8.

• Pareto-based MOEAs: NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler et al., 2001).

• Reference set-based MOEAs: NSGA-III (Deb and Jain, 2014).

• Decomposition-based MOEAs: MOEA/D (Zhang and Li, 2007).

• Image analysis-based MOEAs: MOVAP (Hernández Gómez et al., 2016).

best-found solutions. Then, each time an algorithm runs, it randomly selects a subset of the archive as its
initial population.

8We proposed this algorithm based on the framework of IGD+-MaOEA (Falcón-Cardona and Coello
Coello, 2018) but using the ∆p indicator as the density estimator.
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Regarding the assessment of the Pareto front approximations generated by the
adopted MOEAs, we used the following settings on the QIs and PCUIs. We set
z⃗ref = (1.12, . . . , 1.12) to calculate HV for all test instances. A set of convex weight vec-
tors (constructed by the Simplex-Lattice-Design method (Das and Dennis, 1998)) was
employed as the set W for R2. The reference sets for IGD+ and ϵ+ are constructed by
collecting all the Pareto front approximations and, then, obtaining a set of 120 nondom-
inated solutions using a subset selection based on the Riesz s-energy as proposed by
Falcón-Cardona et al. (2020). For all the six adopted PCUIs, the weight vector was set as
w⃗ = (0.0001, 0.9999), where 0.0001 is the weight associated with the HV and 0.9999 is re-
lated to the weakly Pareto-compliant QI. This setting was employed to mostly preserve
the preferences of the weakly Pareto-compliant QIs while producing Pareto-compliant
results due to the use of the HV as a correction factor.

We aim to correlate the rankings of MOEAs within each indicator, i.e., by how
much do the PCUIs and QIs rank the MOEAs (i.e., the characteristic Pareto front ap-
proximations) similarly. For each test instance and QI, the MOEAs are ranked by their
mean indicator value (as proposed by Liefooghe and Derbel (2016), using the med-Q
sampling). The ranks of MOEAs are then analyzed for correlation with the remaining
QIs using the Kendall’s τ correlation coefficient. It is worth emphasizing that Kendall’s
τ quantifies the difference between the proportion of concordant and discordant pairs
among all possible pairwise MOEAs. Since τ ∈ [−1, 1], where τ = −1 means perfect
disagreement and τ = 1 means perfect agreement of ranks, we decided to create in-
tervals of τ values in order to represent them using Heatmaps. Such intervals are the
following: [−1,−0.75), [−0.75,−0.5), [−0.5, 0.5], (0.5, 0.75], and (0.75, 1]. It is worth not-
ing that we consider τ ∈ [−0.5, 0.5] as a result of no correlation between two different
rankings. Figures 4 and 5 show the τ values based on the intervals, using heatmaps for
all the adopted Lamé and Mirror test instances, respectively.

5.2.1 Correlation between PCUIs and baseline QIs

Regarding the correlation analysis on Lamé problems in Fig. 4, we have the follow-
ing conclusions. For problems with γ = 0.75, 1.00, 1.50, the PCUIs are consistently
correlated with their baseline QIs (the correlation is stronger with the weakly Pareto-
compliant indicator), regardless of the dimension of the objective space. Regarding
γ = 1.00, the Kendall’s τ is in (0.75, 1.0] in almost all comparisons although for three-
and four-objective MOPs, the correlation with all of the QIs with HV gets weaker
(τ ∈ (0.5, 0.75]). This behavior can be explained from the studies where it is stated that
indicators such as HV, R2, IGD+, and ϵ+ have strongly correlated preferences for MOPs
with linear Pareto front shapes (Jiang et al., 2014; Liefooghe and Derbel, 2016; Falcón-
Cardona and Coello, 2019). For both highly convex and highly concave Pareto fronts,
the correlation is strongly positive with the weakly Pareto-compliant QI (i.e., R2, IGD+,
and ϵ+) and, overall, there is no significant correlation with HV (i.e., τ ∈ [−0.5, 0.5]).
For three- and four-objective MOPs, all the PCUIs present consistently a strong corre-
lation with their baseline weakly Pareto-compliant QIs. In contrast, they do not exhibit
a significant correlation with HV in most cases except for γ = 0.75, 1.00, 1.50. From
the results, we have a preference bias towards the weakly Pareto-compliant indicators.
This is an effect of giving more importance to these indicators, i.e., using w2 = 0.9999.
Hence, the preferences of the PCUIs are very similar to those of their baseline weakly
Pareto-compliant indicators. In other words, the PCUIs exhibit different preferences to
those of HV but they still are Pareto-compliant regardless of the Pareto front shape and
the dimensionality of the objective space.
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Figure 5: Heatmap Kendall rank correlation τ for each pair of quality indicators and
each Mirror problem on different dimensions of the objective space.

For the Mirror problems in Fig. 5, we have some similar results. However, in
these problems which represent inverted Pareto front shapes of the Lamé problems,
the PCUIs tend to be even more correlated to their baseline weakly Pareto-compliant
QIs. The only exception is the two-objective Mirror problem with γ = 1.00 where all the
PCUIs and QIs are positively correlated. This result is consistent with that of the two-
objective Lamé problem, using the same γ value due to the same Pareto front shape.
For all the other test instances, the preferences of the PCUIs are different to those of HV
because in almost all cases, the τ correlation value is in the interval [−0.5, 0.5]. A clear
example of the previous claim is the 4-objective Mirror problem with γ = 6.00 where no
PCUI is correlated with HV while they present a Kendall’s τ ∈ (0.75, 1.0] with respect
of their baseline weakly Pareto-compliant QIs.

In summary, there are two important points to emphasize. The use of a setting of
w⃗ that gives more importance to the weakly Pareto-compliant QI in the combination,
will promote that the PCUIs inherit its preferences, leaving HV just as a correction
factor to make the PCUI Pareto-compliant. This is a remarkable result since we can
create new Pareto-compliant QIs but having preferences mostly different to those of
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Figure 6: From left to right, it is shown the Quality Spaces: -HV vs R2 for Lamé γ = 0.25
2D, -HV vs R2 for Lamé γ = 0.50 4D, -HV vs IGD+ for Mirror γ = 2.00 3D, and -HV vs
ϵ+ for Mirror γ = 6.00 4D. All cases tend to show a Pareto front in Quality Space. We
use -HV to show the QIs in each plot for minimization.

HV. Hence, we can increase the number of Pareto-compliant indicators that researchers
can employ for different comparison situations (e.g., when comparing MOEAs that can
produce evenly distributed solutions). The second point relates to the design of new
selection mechanisms where the distribution of solutions can be adjusted depending
on the QIs to combine. In other words, PCUIs could be employed to manipulate the
distribution properties of MOEAs while maintaining the Pareto compliance property.

5.2.2 Correlation between PCUIs
We analyzed the correlation between the preferences of all PCUIs to ensure that the
combination does produce different indicators. Concerning both the Lamé and Mirror
problems, the correlation analysis indicates that the PCUIs based on the same weakly
Pareto-compliant QI are strongly correlated between them. In consequence, the use of
WS or ATCH is basically producing the same PCUI although they have different land-
scapes. In the next section, we analyze that in some cases, the preferences of indicators
are in conflict which promotes the formation of a Pareto front in the Quality space.
Hence, the PCUI could exploit this trade-off to show preferences similar to those of its
baseline QIs or biased to one of them.

Another remarkable conclusion is that the preferences of PCUIs based on a dif-
ferent weakly Pareto-compliant QI are, in general, independent. Hence, each class of
PCUIs are presenting distinct preferences. This is explained by the analysis of the corre-
lation between R2-IGD+, R2-ϵ+, and IGD+-ϵ+ that are mostly independent as shown in
Figures 4 and 5. Additionally, due to the use of w⃗ = (0.0001, 0.9999), each PCUI inher-
its the preferences of its weakly Pareto-compliant QI. Hence, the PCUI will behave in a
similar way to its weakly Pareto-compliant QI but maintaining the Pareto compliance
property.

5.2.3 Pareto fronts in Quality Space
In objective space, we find Pareto fronts that represent the solution to a MOP. These
Pareto fronts are formed due to the conflict among objective functions. In Quality Space
(see Fig. 2), it is also possible to find Pareto fronts when the preferences of an indicator
are in conflict with the preferences of other QI. Based on the correlation analysis pre-
viously explained, we found that when there is independence of preferences between
two QIs or when the preferences are negatively correlated (as in the case of -HV and
R2 for the Lamé problem with γ = 0.25 in 2D), a Pareto front in the Quality Space Q is
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formed. Fig. 6 shows four examples where it is possible to see the tendency to a Pareto
front in quality space. These plots present the indicator vectors associated with each
execution of the adopted MOEAs in the correlation study for a specific test instance.
Since we are minimizing HV, R2, IGD+, and ϵ+ to use the PCUIs, it is possible to see
that all plots introduce convex Pareto front shapes. Hence, this fact supports the ob-
servation that there is no critical difference when using WS or ATCH for constructing
PCUIs. The rest of the cases of independence on both heatmaps in Figures 4 and 5
present convex Pareto fronts. In case a PCUI is employed in the selection mechanism
of a MOEA, a compromise between the indicators will be found, resulting in new dis-
tributions on the Pareto fronts that represent the solution to a MOP. In conclusion, this
result supports the fact that PCUIs could be employed to better control the diversity of
a MOEA but maintaining the Pareto compliance.

5.3 Analysis of optimal µ-distributions

Algorithm 1 PCUI-EMOA general framework
Require: PCUI uw⃗(I⃗), where I⃗(I1, I2, . . . , Ik).
Ensure: Approximation to the Pareto front
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: q ← V ariation(P )
4: Q← P ∪ {q}
5: {R1, . . . , Rt} ← NondominatedSorting(Q)
6: if |Rt| > 1 then
7: p⃗worst = arg maxp⃗∈Rt

{uw⃗(I⃗(Rt))− uw⃗(I⃗(Rt \ {p}))}
8: else
9: Let p⃗worst be the sole solution in Rt

10: end if
11: P ← Q \ {p⃗worst}
12: end while
13: return P

In this section, we investigate the optimal µ-distributions of the selected PCUIs.
To this aim, we considered the framework of SMS-EMOA that uses a density estimator
(DE) based on HV but, in our case, a PCUI is employed in the DE. Algorithm 1 presents
the general framework of our proposed PCUI-EMOA whose main loop is in lines 2 to
12. At each generation, a new solution is created using genetic operators and, then, this
newly created solution is added to the population P to create the temporary population
Q. Then, in line 5, a set of ranks R1, . . . , Rt are created using the nondominated sorting
algorithm (Deb et al., 2002), where Rt has the worst solutions according to the Pareto
dominance relation. If Rt has more than one solution, the individual contributions to
the PCUI are computed to delete the worst-contributing solution in line 11. Finally, the
Pareto front approximation is returned when the stopping criterion is fulfilled.

We focused our attention on studying the approximate optimal µ-distributions
produced by PCUI-EMOA in comparison with those of four steady-state MOEAs based
on the indicators HV, R2, IGD+, and ϵ+, i.e., SMS-EMOA, R2-EMOA, IGD+-MaOEA,
and ϵ+-MaOEA. The latter is similar to IGD+-MaOEA. Regarding PCUI-EMOA, we
employed the six PCUIs of the previous section. Since all the adopted indicator-based
MOEAs (IB-MOEAs) share the same structure, the parameters settings are the follow-
ing. For all objective functions, the population size is 120. All MOEAs use simulated
binary crossover and polynomial-based mutation as their genetic operators (Deb et al.,
2002), where, for all cases, the crossover probability is set to 0.9, the mutation probabil-
ity is 1/n (n is the number of decision variables), and both the crossover and mutation
distribution indexes are set to 20. PCUI-EMOA employs the combination vector as
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w⃗ = (0.5, 0.5) to look for the knee point on the Pareto front in quality space, i.e., to gen-
erate distributions similar to both baseline QIs. We tested the adopted MOEAs on 14
MOPs from the benchmarks DTLZ, WFG, DTLZ−1, and WFG−1 for 2, 3 and 4 objective
functions. We employed the problems DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1, WFG2,
WFG3, and their minus versions. It is worth noting that we turned off all the difficulties
of these MOPs to avoid biasing the results such that we can observe the approximate
optimal µ-distributions of the selected MOEAs. We adopted these MOPs since they
possess Pareto fronts with different geometries, namely, linear, concave, convex, de-
generate, mixed, disconnected, correlated with the simplex shape and not correlated
with it (Ishibuchi et al., 2017b).

The study proposed here is focused on determining the similarity between the
approximate optimal µ-distributions produced by the six PCUI-EMOAs and those of
the selected IB-MOEAs. For each test instance, the MOEAs were executed N = 30
independent times. Thus, each one produced N approximation sets for each MOP.
We investigate the similarity between two sets of approximation sets produced by two
MOEAs, using a similarity measure based on the Hausdorff distance that we propose
in the following:

Definition 10 (One-sided Hausdorff-based similarity measure). Given two sets A =
{A1, . . . , AN} and B = {B1, . . . , BN}, each one consisting of N Pareto front approximations,
the one-sided Hausdorff-based similarity measure S is given as follows:

S(A,B) =
1

N

N∑
i=1

median(Ai,B),

where median(Ai,B) computes all the Hausdorff-Pompeiu distances from Ai to every element
in B and returns the median value. The median is used here to prevent outliers.

S(A,B) calculates the similarity of A to (most) elements in B. It is worth noting
that S is a similarity measure, not a metric (distance function), as it is not symmetrical.
It attains small values if every set in A is similar to at least half of the sets in B. It can,
however, be the case that B contains a number of sets that by no means resemble sets
in A. In that sense it is not symmetrical. To make it symmetrical, one would have to
compute also S(B,A) and take the maximum of these two values, as it is done in the
Hausdorff-Pompeiu Distance (on the level of points sets). In consequence, we propose
the two-sided Hausdorff-based similarity measure which is symmetric.

Definition 11 (Two-sided Hausdorff-based similarity measure). Given two sets A =
{A1, . . . , AN} and B = {B1, . . . , BN}, each one consisting of N Pareto front approximations,
the two-sided Hausdorff-based similarity measure H is given as follows:

H(A,B) = max(S(A,B), S(B,A))

In case that we are given three sets of approximation sets A,B, and C and we
would like to know if A is similar to B, to C, to both or to none of them, a classification
function is required. Such classifier is given as follows.

Definition 12 (Classifier). Given three sets of approximation sets A,B, and C and a threshold
ϵ > 0, the classifier function is given as follows:
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Cϵ(H(A,B),H(A,C)) =


−1, H(A,B) ≤ ϵ ∧H(A,C) > ϵ

0, H(A,B) ≤ ϵ ∧H(A,C) ≤ ϵ

1, H(A,B) > ϵ ∧H(A,C) > ϵ

2, H(A,C) ≤ ϵ ∧H(A,B) > ϵ

where -1 means that A is exclusively similar to B; 0 means that A is similar to both B and C; 1
means that A is not similar to B nor C; and, 2 means that A is exclusively similar to C.

Based on the classification function, we analyzed the similarities between the ap-
proximation sets produced by the PCUI-EMOAs and their corresponding IB-MOEAs
that use the baseline indicators for the construction of the PCUI. Table 2 shows the re-
sults for all the considered test instances using ϵ =

√
m/10. Since all PCUI-EMOAs

use w⃗ = (0.5, 0.5) as the combination weight vector for the order-preserving utility
functions, our hypothesis is that the Pareto front approximations should be similar to
both IB-MOEAs that employ the baseline indicators. This hypothesis is true for sev-
eral cases related to the DTLZ and DTLZ−1 problems. Nevertheless, for most of the
WFG and WFG−1 problems, the PCUI-EMOA tends to produce approximation sets
with particular distributions that are not similar to the baseline IB-MOEAs. This fact
could be explained by the independence of preferences between HV and the weakly
Pareto-compliant indicators on these MOPs. Considering the linear problems DTLZ1
and DTLZ1−1, it is clear that in most cases the PCUI-EMOAs produce approximation
sets similar to the IB-MOEAs using their baseline indicators. This result is explained by
the correlation analysis of Section 5.2 where in almost all cases HV, R2, IGD+, and ϵ+

are strongly correlated. The most important observation is related to the PCUI-EMOAs
based on WSw⃗(−HV,R2) and ATCHw⃗(−HV,R2). On the one hand, SMS-EMOA pro-
duces uniformly distributed solutions in convex and linear Pareto fronts and there is
a bias towards the knee and boundaries of concave Pareto fronts. Additionally, SMS-
EMOA presents good results in degenerate problems such as DTLZ5 and WFG3. On
the other hand, R2-EMOA (Brockhoff et al., 2015) does not produce uniformly dis-
tributed solutions in convex Pareto fronts, but it does in linear and concave ones. Re-
garding degenerate MOPs, R2-EMOA does not produce good results since its weight
vectors do not completely intersect the Pareto front shape. Hence, SMS-EMOA and
R2-EMOA have specific strengths and weaknesses depending on the MOP being tack-
led. We refer to strengths and weaknesses of an IB-MOEA (and, more specifically, to the
underlying QI) as its capacity to generate (or failure to generate) Pareto front approx-
imations with good diversity. For instance, SMS-EMOA does not produce a uniform
distribution in DTLZ2 (which has a concave Pareto front) because of the inner prefer-
ences of the HV while R2-EMOA can produce uniformly distributed solutions in this
problem.

Regarding DTLZ2 having three and four objective functions and concave Pareto
fronts, it is possible to see that the distribution of the PCUI-EMOAs based on
WSw⃗(−HV,R2) and ATCHw⃗(−HV,R2) are similar to the preferences of R2, i.e., R2-
EMOA. When we analyze the minus version DTLZ2−1 for the same objective funtions,
the distributions are similar to those of SMS-EMOA. This also happens for DTLZ5−1

3D which is inverted convex where the distributions are similar to those of SMS-EMOA
as well. Hence, we have empirical evidence on the compensation of weaknesses of
one indicator with the strengths of the other baseline indicator when employing PCUI-
EMOA. Figure 7 shows some examples of this remarkable compensation.
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Table 2: Distribution similarities between each PCUI-EMOA and the IB-MOEAs based
on the indicators HV, R2, IGD+ and ϵ+. For each test instance, it is shown if the distri-
bution of the PCUI-EMOA is similar to one or other baseline indicator, to both or none
of them.

MOP Dim.

W
S w⃗

(−
H

V
,

R
2)

A
T

C
H

w⃗
(−

H
V
,

R
2)

W
S w⃗

(−
H

V
,

IG
D

+
)

A
TC

H
w⃗
(−

H
V
,

IG
D

+
)

W
S w⃗

(−
H

V
,
ϵ+

)

A
T

C
H

w⃗
(−

H
V
,
ϵ+

)

DTLZ1
2 Both Both Both Both Both Both
3 Both Both Both Both Both Both
4 Both Both Both Both Both Both

DTLZ1−1
2 Both Both Both Both Both Both
3 Both Both Both Both Both Both
4 HV HV Both Both HV None

DTLZ2
2 Both Both Both Both Both Both
3 R2 R2 Both Both Both Both
4 R2 R2 None None None None

DTLZ2−1
2 HV HV Both Both Both Both
3 HV HV None None None None
4 None None None None None None

DTLZ5
2 Both Both Both Both Both Both
3 Both Both Both Both Both Both
4 HV HV IGD+ IGD+ ϵ+ ϵ+

DTLZ5−1
2 HV HV Both Both Both Both
3 HV HV IGD+ None None None
4 None None None None None None

DTLZ7
2 Both Both Both Both Both Both
3 None None IGD+ None None None
4 None None None None None None

DTLZ7−1
2 Both Both Both Both Both Both
3 R2 R2 Both Both Both Both
4 None None None ϵ+ ϵ+ None

WFG1
2 None None None None None None
3 None None None None None None
4 None None IGD+ IGD+ ϵ+ None

WFG1−1
2 R2 R2 None None None None
3 None None None None None None
4 None None None None None None

WFG2
2 None None None None None None
3 None None None None None None
4 None None None None None None

WFG2−1
2 None None None None None None
3 R2 R2 None None None None
4 None None None None None None

WFG3
2 None None None None None None
3 Both Both Both Both Both Both
4 None None IGD+ IGD+ ϵ+ ϵ+

WFG3−1
2 R2 R2 None None None None
3 Both Both Both Both Both Both
4 HV HV Both Both HV HV
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Figure 7: Pareto fronts that show the compensation of weaknesses of one indicator with
the strengths of other when coupled to PCUI-EMOA.

5.4 Computational Complexity

Theorem 1 proposes the combination of as many weakly Pareto-compliant QIs as
required with at least one Pareto-compliant indicator. Currently, the only Pareto-
compliant QI available is the hypervolume indicator whose computational cost in-
creases super-polynomially with the number of objective functions (Bringmann and
Friedrich, 2009, 2010). In terms of computational cost, it is clear that the runtime com-
plexity of HV dominates those of R2, IGD+ and ϵ+, which implies that a PCUI and, in
general, all the QIs constructed by Theorem 1 inherit the cost of HV. Hence, one may
argue that this a clear disadvantage of the proposed method. However, we need to
emphasize that even though we showed that a PCUI can be utilized to guide the evo-
lutionary process of a MOEA (in fact, we used PCUI-EMOA to study the approximate
optimal µ-distributions of PCUIs), the primary focus of PCUIs is to increase the number
of available Pareto-compliant indicators for performance assessment. In consequence,
when using a PCUI to compare MOEAs, one may use fast HV calculation methods
such as the Walking-Fish-Group (WFG) algorithm (While et al., 2012) that significantly
reduces the computational time to get exact HV values. Although following Theo-
rem 1 allows the construction of new Pareto-compliant QIs, this does not overcome the
runtime complexity of the HV, and it does not theoretically increase the overall com-
putational cost.9 Additionally, these combined indicators provide different preferences
to those of the HV and they are controlled by the user when setting the weight vec-
tor w⃗. Hence, we argue that we obtain more advantages than drawbacks by using our
proposed framework.

At this point, it is worth comparing the PCUIs and the multi-indicator-based pref-
erence relations proposed by Zitzler et al. (2010) in terms of computational cost. Due to
the sequential application of the indicator-based preference relations (⪯Ij ), it is likely
that a multi-indicator-based preference relation avoids the computational cost of cal-
culating HV whenever a cheaper QI could solve the comparison. In contrast, PCUIs

9Even in practice, the calculation of as many weakly Pareto-compliant QIs as required does not aggregate
a considerable overhead when computing a PCUI value.
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do always require the calculation of HV in furtherance of obtaining extra flexibility to
control how the preferences are combined. Moreover, from the discussion throughout
this paper, it is possible to visualize two distinct application paths. On the one hand,
PCUIs are useful for performance assessment of MOEAs, considering the Pareto com-
pliance property and offering different preferences to those of HV. On the other hand,
the multi-indicator-based preference relations are a promising direction to construct
set-based MOEAs as in the case of SPAM (Zitzler et al., 2010). In consequence, each
approach is specialized in different areas of evolutionary multi-objective optimization.
Nevertheless, it is worth noting that PCUIs and, in general, our proposed framework
for the combination of multiple QIs represent a generalization of the multi-indicator-
based preferences relations proposed by Zitzler et al. (2010).

6 Conclusions and Future Work

In this paper, we proposed to construct new Pareto-compliant indicators by combin-
ing existing QIs, under specific conditions. In order to ensure the Pareto compliance
property, it is mandatory to combine at least one Pareto-compliant indicator (such as
the hypervolume indicator) with as many weakly Pareto-compliant QIs as required, by
using an order-preserving function. Following this framework, we proposed six new
Pareto-compliant QIs based on the combination of HV with R2, IGD+, and ϵ+, using
the weighted sum and augmented Tchebycheff utility functions as order-preserving
combination functions. We studied the properties of these six PCUIs from a prefer-
ences and approximate optimal µ-distributions perspective. Our experimental results
showed that the proposed PCUIs do exhibit different preferences to those of the HV
which implies that they can be used as an alternative to the HV to assess performance of
MOEAs while ensuring the Pareto compliance property. These results were supported
by an analysis of approximate optimal µ-distributions. Furthermore, when using a
steady-state MOEA based on a PCUI, we observed that the non-uniform distributions
produced by one of the baseline QIs of the PCUI could be compensated by the uniform
distribution strengths of another baseline QI. It is worth emphasizing that the main
focus of PCUIs is the performance assessment of MOEAs. In this direction, we dis-
cussed that even though a PCUI requires the calculation of the HV, the main advantage
of PCUIs lies on their different preferences with respect to those of the HV. Addition-
ally, PCUIs have the same theoretical runtime complexity as the HV while allowing to
draw conclusions supported by the Pareto compliance property. As part of our future
work, we aim to provide a mechanism that adapts the combination vector depending
on the geometrical features of the MOP. Moreover, we aim to theoretically analyze the
properties of PCUIs in order to define in which cases they can be used to provide bet-
ter information. Finally, an analysis considering MOPs with more than four objective
functions is also a task that we would like to undertake as part of our future work.

Acknowledgements

The first author acknowledges support from CINVESTAV-IPN to pursue graduate
studies in computer science and the 2018 IEEE CIS Graduate Student Research Grant.
The third author gratefully acknowledges support from CONACyT grant no. 2016-
01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a SEP-Cinvestav grant
(proposal no. 4). He was also partially supported by the Basque Government through
the BERC 2018-2021 program by the Spanish Ministry of Science.

Evolutionary Computation Volume x, Number x 23



J. G. Falcón-Cardona, M. T. M. Emmerich and C. A. Coello Coello

References
Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009). Theory of the Hypervolume Indicator:

Optimal {µ}-Distributions and the Choice of the Reference Point. In FOGA ’09: Proceedings
of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, pages 87–102, Orlando,
Florida, USA. ACM.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based
on dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669.
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