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Abstract In this paper, we propose a novel multi-objective ant colony optimizer
(called iMOACOR) for continuous search spaces, which is based on ACOR and
the R2 performance indicator. iMOACOR is the first multi-objective ant colony
optimizer (MOACO) specifically designed to tackle continuous many-objective op-
timization problems (i.e., multi-objective optimization problems having four or
more objectives). Our proposed iMOACOR is compared to three state-of-the-art
multi-objective evolutionary algorithms (NSGA-III, MOEA/D and SMS-EMOA)
and a MOACO algorithm called MOACOR using standard test problems and per-
formance indicators taken from the specialized literature. Our experimental re-
sults indicate that iMOACOR is very competitive with respect to NSGA-III and
MOEA/D and it is able to outperform SMS-EMOA and MOACOR in most of the
test problems adopted.

Keywords Ant Colony Optimization ·Many-Objective Optimization · Continuous
Optimization · Performance Assessment

1 Introduction

Many of the existing applications in engineering, science and industry require the
solution of problems involving several, normally conflicting, objective functions,
which must be simultaneously optimized. In such problems, due to the conflict
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among the objectives, an objective function cannot be improved without wors-
ening another one. These are the so-called multi-objective optimization problems
(MOPs). Unlike single-objective optimization problems in which we look for a sin-
gle solution, when solving a MOP, we aim to find a set of solutions which represents
the best possible trade-offs among all objectives. Such solutions constitute the so-
called “Pareto Optimal Set” and the image of this set is known as the “Pareto
Optimal Front”.

A number of mathematical programming techniques (Miettinen, 1999) have
been developed to solve MOPs. However, and in spite of their efficiency, mathemat-
ical programming techniques have several limitations (e.g., most of them generate
a single solution per run and many of them are very sensitive to the shape and
continuity of the Pareto front). These limitations have motivated the development
of alternative solution techniques, from which metaheuristics (particularly evolu-
tionary algorithms) have become the most popular choice (Coello Coello et al.,
2007).

Multi-Objective Evolutionary Algorithms (MOEAs) are population-based meta-
heuristics, inspired by the natural evolution of organisms, which have been found
to be a very good choice for solving highly complex MOPs (Coello Coello et al.,
2007). Currently, a wide variety of MOEAs are available in the specialized liter-
ature, such as the Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2000) or the Multi-Objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) (Zhang and Li, 2007), among many others.

For many years, MOEAs have adopted selection mechanisms based on Pareto
ranking, i.e. solutions are ranked based on Pareto optimality, such that nondom-
inated solutions are given a higher probability of being selected. However, in the
last few years, it has been shown that Pareto-based MOEAs do not perform prop-
erly when dealing with MOPs having four or more objectives, the so-called many-
objective optimization problems (Ishibuchi et al., 2008; Knowles and Corne, 2007).
Many-objective problems give rise to a number of challenging issues such as: (1)
deterioration of the search ability (dilution of the selection pressure) due to the
increase in the number of nondominated solutions, (2) exponential increase in the
number of solutions required for properly sampling the entire Pareto front, and (3)
difficulty of the visualization of solutions because they belong to high-dimensional
spaces. Overall, this has motivated an important amount of research related to the
development of new MOEAs.

Ant Colony Optimization (ACO) is inspired by colonies of real ants that deposit
a chemical substance, called pheromone, on the ground with the aim of tracing
paths to a source of food. Initially, ACO was designed for solving combinatorial
optimization problems. Over the years, ACO has been extended to solve continu-
ous optimization problems. However, according to Leguizamón and Coello Coello
(2011) the extension of ACO-based algorithms for solving continuous MOPs has
been scarcely explored and the development of multi-objective ant colony opti-
mizers (MOACOs) for continuous domains has remained practically unexplored
unlike MOACOs for combinatorial MOPs which have been extensively studied
(Angus and Woodward, 2009; Lopez-Ibanez and Stützle, 2012a,b). In this pa-
per, we present an extended version of the preliminary work reported in Falcón-
Cardona and Coello (2016), in which the so-called indicator-based Multi-Objective
Ant Colony Optimization Algorithm for Continuous Search Spaces (iMOACOR)
was introduced. To the best of the authors’ knowledge, this is the only MOACO
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algorithm that has been explicitly designed to solve many-objective continuous
optimization problems and which has a competitive performance with respect to
state-of-the-art MOEAs.

The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization and ant colony optimiza-
tion. Section 3 presents a general overview of ACOR (an ant colony optimizer for
continuous search spaces). Section 4 describes in detail our proposed approach.
Section 5 outlines the experimental setup adopted to validate our algorithm, and
Section 6 presents our results. Finally, Section 7 concludes and provides some
possible paths for future research in the area.

2 Background

In this section, we first introduce some mathematical concepts about multi-objective
optimization. Then, we briefly review the principles of the ACO metaheuristic. Fi-
nally, we provide a short introduction to some MOACO algorithms that have been
proposed for continuous domains.

2.1 Multi-Objective Optimization

We are interested in solving problems of the type1:

minimize F(x) := [f1(x), f2(x), . . . , fm(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , k (2)

hj(x) = 0 j = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn 7→ IR,
i = 1, ...,m are the objective functions and gi, hj : IRn 7→ IR, i = 1, ..., k, j = 1, ..., p
are the constraint functions of the problem. These are the so-called multi-objective
optimization problems (MOPs).

To describe the concept of optimality in which we are interested, we will in-
troduce next a few definitions.

Definition 1. Given two vectors u,v ∈ IRn, we say that u ≤ v if ui ≤ vi for
i = 1, . . . , n.

Definition 2. Given two vectors u,v ∈ IRn, we say that u dominates v (de-
noted by u ≺ v) if ui ≤ vi for i = 1, . . . , n and there exists at least an index j such
that uj < vj .

This definition indicates that the vector u dominates v if the former is as good
as the latter in every element and it is better in at least one of them. Evidently,

1 Without loss of generality, we will assume only minimization problems.
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this same definition can be also used with sets.

Definition 3. We say that a vector of decision variables x∗ ∈ F (F is the
feasible region) is Pareto optimum (or Pareto optimal) if there does not exist
another x ∈ F such that F(x) ≺ F(x∗).

Thus, a solution is Pareto optimal if it cannot be dominated (see Definition 2)
by any other feasible solution.

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x∗ ∈ F | x is Pareto optimum or Pareto optimal}

The elements of the Pareto Optimal Set represent the best possible trade-offs
among the objectives. Such solutions cannot be improved in one objective without
being worsened in another one.
The vectors x∗ corresponding to the solutions included in the Pareto optimal set
are called nondominated.

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {F(x∗) ∈ IRm | x∗ ∈ P∗}

The Pareto Front is the image of the Pareto Optimal Set. In other words, the
Pareto front denotes the objective function values of the solutions contained in the
Pareto Optimal Set.

We thus wish to determine the Pareto optimal set from the set F of all decision
variable vectors that satisfy (2) and (3).

Two special vectors bound the Pareto optimal front of a MOP:

Definition 6. The Ideal Objective Vector (z∗ ∈ Rm) contains the minimum of
each of the objective functions, considered separately. Each ith-component of the
ideal vector is defined as z∗i = minx fi(x).

Definition 7. The Nadir Objective Vector (znad ∈ Rm) is constructed using the
worst values of PF∗. Each ith-component is defined as znadi = maxx∈P∗ fi(x).

To illustrate these two concepts, let’s imagine a problem with two objectives.
In this case, the Pareto front is a curve. If this curve is placed inside a rectangular
box, the lower lefthand corner of the box is the ideal objective vector, and upper
righthand corner of the box is the nadir objective vector.

Definition 8. A (unary) performance indicator is a function I : Z ⊂ Rm 7→ R
that assigns each approximation set Z a real number.

When defining a performance indicator, we want to be able to compare the out-
come of two or more multi-objective optimization algorithms using a single numer-
ical value. Thus, a performance indicator takes the outcome of a multi-objective
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optimizer (i.e., an approximation of the Pareto front) and produces a single real
number that indicates how “good” this approximation is. The term unary is asso-
ciated to performance indicators that take as their input to the outcome of a single
multi-objective optimizer. There are also binary performance indicators that take
as their input the outcome of two multi-objective optimizers, but such indicators
won’t be discussed in this paper.

Definition 9. An indicator I is said to be strictly monotonic if and only if
whenever a Pareto set approximation entirely dominates another one, then the
indicator value of the dominant set will also be better. Considering maximization
of I, this can be formally expressed as:

∀A,B ∈ Z : A ≺ B ⇒ I(A) > I(B).

Definition 10. An indicator I is said to be weakly monotonic if and only if for
any Pareto set approximation that is compared to another Pareto set approxima-
tion, it holds that being at least as good in terms of the dominance relation implies
being at least as good in terms of the indicator values. Considering maximization
of I, this can be formally expressed as:

∀A,B ∈ Z : A � B ⇒ I(A) ≥ I(B).

These two definitions are important, because they will tell us if the outcome
of a certain unary performance indicator is reliable or not. A unary performance
indicator is expected to be at least weakly monotonic in order to be reliable.

2.2 Ant Colony Optimization

Ant Colony Optimization (ACO), which was originally proposed by Dorigo (1992),
is a metaheuristic inspired by the foraging behavior of real ants (Bonabeau et al.,
1999; Dorigo and Stützle, 2004). ACO-based algorithms are stochastic-search pro-
cedures. In every ACO algorithm, the pheromone model is the central component
(Dorigo and Blum, 2005). It is a probabilistic representation of the search space
that is exploited by the ants to create new solutions. Algorithm 1 outlines the
general framework of an ACO-based algorithm. First, the pheromone model is
randomly initialized. At each cycle t, M ants incrementally build solutions for the
problem P via the pheromone model. Then, some of the newly created solutions
are chosen with the aim of updating the pheromone model. Optionally, central-
ized operations, called Daemon actions, that cannot be individually executed by
ants (e.g., local-search methods or the recollection of global heuristic information),
are performed before a new cycle begins. These operations are repeated while a
termination condition is not fulfilled.

Primarily, the utilization of ACO-based algorithms has been oriented to the so-
lution of combinatorial optimization problems, being the traveling salesman prob-
lem (TSP) the most representative of them (Applegate et al., 2007). The Ant Sys-
tem (AS), proposed by Dorigo et al. (1996), was the first ACO-based algorithm
used to solve the TSP. Due to its promising results, different AS variants were later
proposed, from which the most relevant are: Ant Colony System (ACS) (Dorigo
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and Gambardella, 1997) and MAX -MIN Ant System (MMAS) (Stützle and
Hoos, 2000). Also, in recent years, the ACO metaheuristic has been extended in
order to tackle continuous optimization problems. Bilchev and Parmee (1995) pro-
posed the first ant-related algorithm for continuous optimization, however, it does
not follow the pheromone model. Leguizamón and Coello Coello (2011) mention
that there are several algorithms based on the behavior of real ants for continuous
optimization (Dréo and Siarry, 2004; Chen et al., 2003; Kong and Tian, 2006),
however, one of the most representative approaches using a pheromone model is
the Ant Colony Optimizer for continuous domains (ACOR) presented by Socha
and Dorigo (2008) . A detailed description of ACOR will be provided in Section 3.

Algorithm 1 General ACO metaheuristic
1: t← 0
2: InitializePheromones()
3: while termination condition not satisfied do
4: AntBasedSolutionConstruction()
5: PheromoneUpdate()
6: DaemonActions() {Optional}
7: t← t+ 1
8: end while

2.3 MOACO algorithms for continuous domains

The use of MOACOs in continuous optimization has been scarcely explored
(Angus and Woodward, 2009; Leguizamón and Coello Coello, 2011). We are only
aware of two approaches of this sort: the Population-based ACO Algorithm for
Multi-Objective Function Optimization (PACO-MOFO) (Angus, 2007b) and the
Multi-Objective Ant Colony Optimizer (MOACOR) proposed by
Garcia-Najera and Bullinaria (2007).

PACO-MOFO is based on ACOR and the Crowding Population-based ACO
(CPACO) (Angus, 2007a). The pheromone model is similar to that of ACOR.
PACO-MOFO applies a replacement operator based on the crowding distance in
order to maintain diversity in the population and fitness sharing in furtherance of
a uniform sampling of the objective space.

Garcia-Najera and Bullinaria (2007) proposed an extension of ACOR with the
aim of solving multi-objective optimization problems. Since the solution of a MOP
is a set of mutually nondominated points instead of a global optimum, the funda-
mental question underlying MOACOR is to determine which solutions should be
stored in the pheromone archive. In ACOR, after each iteration, the best newly cre-
ated solutions, according to their objective function values, are kept in the archive.
However, the authors decided to use the concept of dominance depth (Deb et al.,
2000) in order to preserve at each iteration those solutions closer to the Pareto
Front. Moreover, as the pheromone archive has a constant size, if the number of
solutions exceeds such size, a density mechanism based on crowding distance is ac-
tivated. This mechanism calculates the crowding distance per solution, and those
with a higher value are removed to keep the archive size below some maximal
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Fig. 1 Pheromone archive kept by ACOR. The solutions are sorted according to their quality.
Each weight value wk is proportional to the solution’s quality. Gj represents a Gaussian-kernel
PDF that is constructed using only the jth coordinates of all N solutions from the archive
(Socha and Dorigo, 2008).

size. MOACOR employs the same ACOR mechanisms in order to generate new
solutions.

3 ACOR

ACOR implements a direct extension of the ACO metaheuristic without any con-
ceptual change in its general framework (Socha and Dorigo, 2008). The fundamen-
tal idea underlying ACOR is the use of a pheromone model based on probability

density functions (PDFs) instead of discrete probability distributions. In ACOR, the
pheromone model is represented using an archive T that stores the N best so-
lutions that have been obtained so far. For each solution sk to an n-dimensional
problem, ACOR stores in T the values of its n decision variables (the jth variable of
the kth solution is denoted by sjk), the objective function value f(sk) and a weight
value wk, as it is shown in Figure 1. The solutions are sorted by their quality, i.e.,
for a minimization problem: f(s1) ≤ f(s2) ≤ · · · ≤ f(sN ).

Based on the solutions stored in T , n Gaussian-kernel PDFs, one per dimension
of the problem, are dynamically generated. Socha and Dorigo (2008) decided to use
Gaussian-kernel PDFs in order to be able to describe disjoint areas of the search
space that are promising for each dimension of the problem. The Gaussian-kernel
PDF Gj , for the jth dimension of the problem, is defined as follows:

Gj(x) =
N∑

k=1

wkg
j
k(x) =

N∑
k=1

wk
1

σjk
√

2π
· e
−

(x−µj
k
)2

2∗σj
k
2

(4)

where j = 1, . . . , n and N is the total number of solutions stored in T . Each Gj

depends on three parameter vectors: w is the vector of weights associated with
the individual Gaussian functions, µj is the vector of means, and σj is the vector
of standard deviations. Only the jth decision variables of all solutions are used to
calculate the values of µj and σj .
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Each wk ∈ w is a value of a Gaussian function according to the following
formula:

wk =
1

qN
√

2π
· e−

(rank(sk)−1)2

2q2N2 , (5)

where rank(·) returns the solution’s rank in T and q (> 0) is a parameter that
controls the diversification process of the search. In fact, as q tends to zero, the best
ranked solutions are preferred; otherwise, the weight values tend to be uniformly
distributed.

The vectors µj and σj are calculated as follows. First, the elements of µj

correspond to the jth decision variables of all solutions:

µj = {µj1, . . . , µ
j
N} = {sj1, . . . , s

j
N}. (6)

Then, each σjk ∈ σj is defined by:

σjk = ξ

N∑
r=1

|sjr − sjk|
N − 1

, (7)

where ξ > 0 is a parameter of the algorithm that controls the convergence rate by
simulating the pheromone evaporation. The higher the value of ξ, the lower the
convergence rate.

ACOR is based on the framework of Algorithm 1. At the beginning, N random
solutions are generated using a uniform distribution in order to initialize T . At
each iteration, the weight vector w is calculated using eq. (5) and then every ant
i = 1, . . . ,M performs n construction steps in order to generate a new solution.
Before performing the n construction steps, each ant i randomly chooses an index
r ∈ {1, . . . , N} with probability pr = wr/

∑N
l=1 wl in order to use it through the

sampling process. At construction step j, ant i samples the rth Gaussian-kernel
gjr(x) = gjr(x;µjr, σ

j
r) of Gj(x) using, for example, the Box-Müller method (Box and

Müller, 1958), in order to assign a value to the jth decision variable. It is worth
mentioning that Gj(x), Eq. (4), is not completely computed, that is, all elements
of the vectors µj and σj are not calculated; instead, only µjr and σjr need to be
known in order to characterize the Gaussian-kernel being sampled. Once all ants
have created their solutions, the pheromone update process is executed. From the
set of newly created solutions, we select those that improve the solutions stored
in T with the aim of replacing them. It must be emphasized that the number of
solutions stored remains constant. At the end of the search process, the best-ranked
solution in T corresponds to the algorithm’s outcome.

Optionally, ACOR is able to exploit correlation information between different
decision variables. At each step of the construction process, each ant chooses a
direction susr where su is randomly chosen and it is reasonably far away from the
solution sr chosen earlier as the mean of the Gaussian-Kernel. Based on all these
directions, a new orthogonal basis for the ant’s coordinate system is computed
using the Gram-Schmidt process (Anton, 2010). Then, all current coordinates of
all solutions in the archive are rotated and recalculated according to this new
orthogonal basis.
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4 Our proposed approach

In this section, we describe our proposed approach called indicator-based Many-

Objective Ant Colony Optimizer for Continuous Search Spaces (iMOACOR) that was
originally introduced in (Falcón-Cardona and Coello, 2016). First, it is discussed
why we chose ACOR (Socha and Dorigo, 2008) as our search engine. Next, we
outline its selection scheme based on the R2 indicator, which allows iMOACOR to
solve many-objective problems. Then, we describe a statistical mechanism whose
purpose is the approximation of the ideal and nadir vectors. Finally, we introduce
iMOACOR, including a brief analysis of its computational complexity.

4.1 Search engine: ACOR

iMOACOR is a many-objective optimizer based on the ACO metaheuristic. This
decision is based on the remarkable success of ACO in combinatorial single- and
multi-objective optimization problems (Angus and Woodward, 2009; Lopez-Ibanez
and Stützle, 2012a,b) and on the promising results shown in continuous single-
objective optimization problems (Leguizamón and Coello Coello, 2011). A remark-
able version of ACO for continuous problems is ACOR. According to Socha and
Dorigo (2008), ACOR has shown favorable results compared to genetic algorithms,
probability-learning methods and other ant-related approaches. It has also been
used as the search engine of the only two MOACO algorithms for continuous
domains that we are aware of. This is the main motivation to propose a multi-
objective optimizer using ACOR as its search engine.

In order to use ACOR as iMOACOR’ seach engine, we only have to do a sim-
ple modification. Initially, ACOR sorts the solutions in the pheromone archive T
according to their objective function value, obtaining in the first rank the best-
so-far solution. In case of MOPs, there is no straightforward way to determine
the quality of the objective function and to impose a total order due to the ex-
istence of several nondominated solutions. In consequence, we propose to use an
indicator-based ranking algorithm (described in the next section) with the aim of
establishing different quality levels among solutions produced by ants, in a similar
way to the nondominated levels generated by the nondominated sorting procedure
proposed by Deb et al. (2000). In this case, Lr is the rth level where r = 1, . . . ,K
and K is the total number of levels. Having the solutions ranked, they are stored
in T together with their assigned rank and objective vector F. Now, those solu-
tions in L1 (the ones closer to the true Pareto front) are the set of best-so-far
vectors. Once T contains the solutions, the mechanisms to generate new solutions,
as defined in ACOR, can be applied.

4.2 R2-ranking algorithm

The hypervolume (HV) (Zitzler, 1999; Brockhoff et al., 2008) and the R2 indica-
tor (Brockhoff et al., 2012) are two recommended unary performance indicators
which simultaneously evaluate all desired aspects of a Pareto Front approximation
(Coello Coello et al., 2007). However, the R2 indicator requires less computational
effort and it produces a more uniform distribution than HV (Brockhoff et al., 2012;
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Hernández Gómez and Coello Coello, 2013). Given a Pareto Front approximation
A, the unary version of the R2 indicator is defined as follows:

R2(A,U) =
1

|U |
∑
u∈U

min
a∈A
{u(a)}, (8)

where U is a set of utility functions u : Rm 7→ R that are a model of the decision
maker’s preference that maps each objective vector into a scalar value.

Motivated by the nice properties of the R2 indicator and the poor performance
of algorithms based on Pareto ranking (Ishibuchi et al., 2008), several selection
schemes based on this indicator have been developed (Phan and Suzuki, 2013;
Hernández Gómez and Coello Coello, 2013; Brockhoff et al., 2015). Hernández
Gómez and Coello Coello (2013) proposed the R2-ranking algorithm that has
been implemented in MOMBI (Hernández Gómez and Coello Coello, 2013) and
MOMBI-II (Hernández Gómez and Coello Coello, 2015) showing very competitive
results in many-objective problems. The results obtained by MOMBI and MOMBI-
II and the bad performance of the nondominated sorting procedure in MOACOR
have encouraged us to use the R2 indicator in the selection scheme.

The R2-ranking algorithm, whose main purpose is the creation of a nondomi-
nated sorting scheme as the one of NSGA-II (Deb et al., 2000), works as follows.
It groups solutions which optimize a set of utility functions, and places them on
top, such that they get the first rank. Then, such points are removed and a second
rank is assigned in the same way and so on until there are no more points left
to be ranked. One of the advantages of this scheme is its good performance on
many-objective problems due to a higher selection pressure.

Concerning the choice of the utility function u in Eq. (8), we use the achieve-
ment scalarizing function (ASF) (Miettinen, 1999). The use of ASF is based on an
experiment made by Hernández Gómez and Coello Coello (2015) who discovered
that it has a better performance on many-objective problems than the Weighted
Tchebycheff and the Penalty-based Boundary Intersection (PBI) methods. The
ASF is defined as follows:

uasf (v | r,λ) = max
i∈{1,...,m}

1

λi
|vi − ri| (9)

where r is a reference vector and λ is a convex weight vector, both of dimension
m. In order to define the set of utility functions, it is necessary to create a set of
convex weight vectors Λ = {λi | i = 1, . . . , N}. Λ is computed using the Simplex-
Lattice Design (SLD) (Scheffe, 1958, 1963) that creates a simplex-lattice {m,h},
where m is the number of objectives and h is a proportional parameter. This
structure consists of all possible combinations of proportions of each objective
function. Hence, each coefficient of the weight vector takes h + 1 evenly spaced
values between 0 and 1, that is:

λij = ε,
1

h
,

2

h
, . . . , 1 (10)

where ε is a value close to zero (usually 10−4) employed with the aim of avoiding
cancellation in the calculations. The cardinality of Λ is represented by a combina-
torial number N = Ch+m−1

m−1 . We use the algorithm of Scott D. Chasalow (1995)
for the calculation of the SLD.
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In Algorithm 2, we show the ranking algorithm proposed by
Hernández Gómez and Coello Coello (2013). For this algorithm, we assume that
each solution p in population P has the following structure:

– p.F: objective vector
– p.α: current utility value for the weight vector λ
– p.u∗: best utility value obtained
– p.rank: solution’s rank assigned by the algorithm

Algorithm 2 R2-ranking (Hernández Gómez and Coello Coello, 2015)

Require: Population P , set of weight vectors Λ
Ensure: Ranking of the population
1: p.rank ← p.α←∞ ∀p ∈ P
2: for all u ∈ U do
3: for all p ∈ P do
4: p.α← uasf (p.F | z∗,λ)
5: end for
6: Sort P with regard to the values α and L2-norm in increasing order
7: rank ← 1
8: for all p ∈ P do
9: if rank < p.rank then

10: p.rank = rank
11: p.u∗ = p.α
12: end if
13: rank ← rank + 1
14: end for
15: end for

According to its authors, the computational complexity of the R2-ranking al-
gorithm is O(|Λ||P |(log |P |+m)).

4.3 Update of reference points

In Section 2, we introduced two important reference vectors: the ideal vector z∗ and
the nadir vector znad. The former preserves the minimum value per objective; the
latter is composed by the maximum objective values, obtained from the solutions in
the Pareto optimal front. These vectors are specially relevant in the normalization
process of the objectives.

The R2-ranking algorithm requires the objective vectors to be normalized in
order to produce the ranking. This normalization is done using the following for-
mula:

f ′j(x) =
fj(x)− z∗j
znadj − z∗j

, ∀j ∈ {1, . . . ,m}. (11)

Hernández Gómez and Coello Coello (2015) found some problems using this
approach, e.g., the ideal vector of the feasible region was never retained, and the
nadir vector was always an outlier in multifrontal MOPs, among others. For this
reason, they proposed a mechanism that generates statistical approximations zmin

and zmax of the ideal and nadir vectors, respectively. The idea is to monitor the
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nadir point of the current population at each iteration, determining how close are
the solutions from the true Pareto front. A high variance means that solutions are
far away, which strongly biases the location of the point.

In Algorithm 3, we show the pseudo-code of this mechanism. This algorithm
requires a data structure called RECORD that stores the nadir vector of a few
generations. Based on these registers, it calculates a variance vector v where each
vj ∈ v represents the variance for the jth dimension of the stored nadir vectors. The

mechanism needs the parameter α that determines the variance threshold for znad

and a parameter ε which is the tolerance threshold. Hernández Gómez and Coello
Coello (2015) recommend using: α = 0.5, ε = 0.001 and to store the nadir vectors
of 5 generations. The underlying idea of this mechanism is to examine the variance
vector v. If the maximum variance of all objectives is high, then zmax is updated
using the maximum objective of the nadir vector (lines 5 and 6). Otherwise, from
lines 8 to 18, each component of zmax is examined and we have three cases: (1)
if |zmax

i − zmin
i | < ε, then zmax

i is updated using the maximum objective value of
zmax and it is marked, (2) if znadi < zmax

i , then zmax
i is expanded and marked, (3)

if the variance is zero and zmax
i has not been recently marked, zmax

i is set as an
average of its previous value and the maximum value stored for it in RECORD. In
all cases, the mark lasts the same number of generations that RECORD is kept.
The computational complexity of this algorithm is O(|P |m).

Algorithm 3 Update Reference Points (Hernández Gómez and Coello Coello,
2015)

Require: zmin, zmax, population P , number of objectives m
Ensure: zmin, zmax

1: Update z∗ and znad using definitions 7 and 8
2: zmin

i ← min zmin
i , z∗i ∀i ∈ {1, . . . ,m}

3: Add znad to RECORD
4: Obtain variance vector v ∈ Rm for znad from RECORD
5: if maxj∈{1,...,m} vj > α then

6: zmax
i ← maxj∈{1,...,m} z

nad
j ∀i ∈ {1, . . . ,m}

7: else
8: for all i ∈ {1, . . . ,m} do
9: if |zmax

i − zmin
i | < ε then

10: zmax
i ← maxj∈{1,...,m} z

max
j

11: Mark zmax
i

12: else if znad
i > zmax

i then

13: zmax
i ← 2znad

i − zmax
i

14: Mark zmax
i

15: else if vi = 0 ∧ zmax
i has not been recently marked then

16: Get the maximum value a for znad
i from RECORD

17: zmax
i ← (zmax

i + a)/2
18: Mark zmax

i
19: end if
20: end for
21: end if
22: return {zmin, zmax}



iMOACOR 13

4.4 iMOACOR

In the previous sections, we described the basic mechanisms that are used in the
construction of iMOACOR (see Algorithm 4). This proposal is an extension of the
ACO metaheuristic for the solution of continuous MOPs that uses ACOR as its
search engine without the variable correlation mechanism. The two main aspects of
iMOACOR are the following. Firstly, it uses a slightly different pheromone archive,
which stores the best solutions according to the R2-ranking algorithm. Secondly,
the pheromone update process promotes a competition between the newly created
solutions and the current solutions stored in the archive.

Each ant a ∈ A and pheromone p ∈ T , where A denotes the set of ants and T
the pheromone archive, have the following field structure:

– x: decision variables vector,
– F: objective vector,
– Fnorm: normalized objective vector,
– α: current utility value, and
– u∗: best utility value.

iMOACOR requires six parameters: Gmax, q, ξ, α, ε and h. Gmax is the maximum
number of generations. The parameters q and ξ are employed by the ACOR-based
search engine (see Section 3). The update of the reference vectors requires the
parameters α and ε, which are the variance threshold and the tolerance threshold,
respectively. Finally, h is the proportional parameter utilized for the construction of
the simplex-lattice on the SLD in order to create the set of N convex weight vectors.
N is equally used as the number of ants and the cardinality of the pheromone
archive T . This decision is based on the µ-optimal distributions of the R2 indicator
that claims that if we have µ solutions and N weight vectors with µ ≥ N , the µ−N
solutions will not contribute to the R2 indicator value (Brockhoff et al., 2012).

Next, we describe iMOACOR in Algorithm 4. In line 1, the set of N weight
vectors is computed using the SLD method. In lines 2 to 4, the pheromone archive
T is initialized using a uniform distribution and, immediately, z∗ and znad are
computed with the aim of normalizing T . The RECORD instance is created and
initialized in lines 5 and 6. In line 7, the solutions in T are ranked using the
R2-ranking algorithm in furtherance of determining their quality. From lines 9
to 21, the main loop of iMOACOR is executed until the maximum number of
iterations is exceeded. In lines 10 to 12, each ant generates a new solution using
the standard mechanisms of ACOR. The statistical approximations of the ideal
and nadir vectors are calculated in line 13 using Algorithm 3. The pheromone
update process is described from lines 14 to 19. Let Ψ = A

⋃
T . Then, in line 15,

the objective vectors of all solutions in Ψ are normalized with the aim of being
ranked by the R2-ranking algorithm. Ψ is later sorted with regard to the fields:
(1) rank, (2) u∗, and (3) the L2-norm, in increasing order. The sorting will ensure
to have at the top those solutions closer to the Pareto optimal set. In line 18, all
solutions of T are removed and the first N of Ψ are copied into the archive. As
we explained above, the pheromone process promotes a competition between the
newly created pheromones and the older ones with the purpose of preserving those
solutions that maximize the R2 indicator value. At the end of the search process,
the content of T is returned as the Pareto front approximation.
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Algorithm 4 iMOACOR main loop
Require: h, q, ξ, α, ε, Gmax

Ensure: Pareto Front approximation
1: Generate a set Λ of weight vectors using the SLD method
2: Randomly initialize pheromones in T
3: Initialize z∗ and znad using solutions in T
4: Normalize(T , z∗, znad)
5: Create instance R of RECORD
6: Add znad to R
7: T ← R2-ranking(T , Λ)
8: t← 0
9: while t < Gmax do

10: for all a ∈ A do
11: Generate solution for a based on T
12: end for
13: {z∗, znad} ← UpdateRefPoints(z∗, znad,A,m) {Algorithm 3}
14: Ψ ← A∪ T
15: Normalize(Ψ, z∗, znad)
16: Ψ ← R2ranking(Ψ,Λ)
17: Sort Ψ , in increasing order, with regards to: (1) rank, (2) u∗, y (3) L2-norm
18: T ← ∅
19: Copy into T the first N elements of Ψ
20: t← t+ 1
21: end while
22: return T

The computational complexity of iMOACOR is analyzed next. The generation
of new solutions takes O(N2n). Updating the reference vectors requires O(Nm).
Both the union of A and T and the objective vector normalization are performed in
O(Nm). The R2-ranking algorithm has complexity O(N2(logN+m)) (as N = |P |).
Removing solutions from T is performed in O(1). Copying the best N solutions
of Ψ into T is done in O(N(n + m)). Finally, as we execute one more time the
R2-ranking algorithm, this requires O(N2(logN +m)) meanwhile its sorting takes
O(N logN). Therefore, the overall complexity of iMOACOR at each iteration is
O(N2(logN +m+ n)) and the storage requires O(N(m+ n)).

5 Experimental Setup

In this section, we describe the experimental setup used for the performance as-
sessment of our proposed iMOACOR

2. We compared our proposal with respect to
three state-of-the-art MOEAs and one MOACO algorithm for continuous domains.
The first is the Multi-Objective Evolutionay Algorithm based on Decomposition
(MOEA/D)3 (Zhang and Li, 2007) which decomposes the MOP using a set of
weight vectors to generate a set of subproblems which are simultaneously opti-
mized. The second approach is the Nondominated Sorting Genetic Algorithm III
(NSGA-III)4, proposed by Deb and Jain (2014), that is capable to scale its per-

2 The source code and the complete study of iMOACOR are available at:
http://computacion.cs.cinvestav.mx/~jfalcon/iMOACOR/imoacor.html.

3 We used the implementation from 2007 for continuous search spaces:
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm

4 We used the implementation available at:
http://web.ntnu.edu.tw/~tcchiang/publicstions/nsga3cpp/nsga3cpp.htm

http://computacion.cs.cinvestav.mx/~jfalcon/iMOACOR/imoacor.html
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://web.ntnu.edu.tw/~tcchiang/publicstions/nsga3cpp/nsga3cpp.htm
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Table 1 Common parameters used for the algorithms adopted in our comparative study. m is
the dimension of the objective space; SBX crossover needs Pc and Nc while polynomial-based
mutation requires Pm and Nm; h is the proportional parameter for the generation of the set
of weight vectors and Gmax is related to the maximum number of generations. FE indicates
the total number of function evaluations executed (FE = Pop. size×Gmax).

m Pc Nc Pm Nm h Pop. size Gmax FE
3

1.0

20

1/n 20

14 120 416 49,920
5

30
5 126 396 49,896

7 3 84 595 49,980
10 3 220 227 49,940

formance to high dimensionality due to the utilization of a set of evenly spread
reference points across objective space. In third instance, we adopted the S Met-
ric Selection-Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA)
(Beume et al., 2007) which is a hypervolume-based MOEA. Since SMS-EMOA re-
quires a considerably large computational time in high-dimensional problems, we
decided to use the hypervolume estimation algorithm introduced by the algorithm
HypE (Bader and Zitzler, 2011) in order to reduce the computational cost of SMS-
EMOA. Finally, the selected MOACO algorithm is MOACOR

5 (Garcia-Najera and
Bullinaria, 2007), which is described in Section 2.3.

Next, we describe the parameters adopted to compare the performance on 3,
5, 7 and 10 objectives of MOEA/D, NSGA-III, SMS-EMOA(HypE), MOACOR
and iMOACOR. Then, we introduce the performance assessment measures used to
validate our results and, finally, we describe the test problems adopted.

5.1 Parameters settings

MOEA/D, NSGA-III and SMS-EMOA are based on genetic algorithms and all of
them adopt the same variation operators: simulated binary crossover (SBX) and
polynomial-based mutation (Deb and Agrawal, 1995). This variation operators
depend on four parameters: crossover rate (Pc), crossover distribution index (Nc),
mutation rate (Pm) and mutation distribution index (Nm). In Table 1 we show the
adopted values of these parameters for different dimensions of the objective space.
We must emphasize that the adopted values are based on the recommendations of
Deb et al. (2000) and Deb and Jain (2014) which coincide with those used in the
original papers of each algorithm. For MOEA/D the neighborhood size T was set
to 20 as proposed by Zhang and Li (2007). Concerning SMS-EMOA, we decided
to use 10,000 samples for HyPE’s hypervolume estimation algorithm.

As MOACOR and iMOACOR are based on ACOR (see Section 3), they need
the parameters q and ξ that control the diversification process and the speed
of convergence, respectively. For all problems, regardless of their dimensionality,
these parameters have been set as follows: q = 0.1 and ξ = 0.5. This decision was
based on the results obtained by ACOR on an empirical performance study that
we conducted. As suggested by Hernández Gómez and Coello Coello (2015), the
parameters α and ε, which are required to update the reference points in Algorithm
3, were set to 0.5 and 0.001, respectively.

5 The source code was provided by its author, Abel Garćıa-Nájera.
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Table 2 Properties of the test problems.

Problem Separability Frontality Geometry
DTLZ1 separable multifrontal linear
DTLZ2 separable unifrontal concave
DTLZ3 separable multifrontal concave
DTLZ4 separable unifrontal concave
DTLZ5 unknown unifrontal degenerated
DTLZ6 unknown unifrontal degenerated

DTLZ7
not applicable

separable
f1:m−1 unimodal
fm multimodal

disconected
mixed

WFG1 separable unifrontal convex, mixed

WFG2 non-separable
f1:m−1 unimodal
fm multimodal

convex
disconected

WFG3 non-separable unifrontal linear, degenerated
WFG4 separable multifrontal concave
WFG5 separable deceptive concave
WFG6 non-separable unifrontal concave
WFG7 separable unifrontal concave
WFG8 non-separable unifrontal concave
WFG9 non-separable multifrontal, deceptive concave

The population size and the maximum number of generations (Gmax) adopted
in the experiments reported next are shown in Table 1. In case of MOACOR
and iMOACOR, the population size is equal to the pheromone archive size. Since
MOEA/D, NSGA-III and iMOACOR use a set of weight vectors (created by the
SLD method), they need the parameter h whose value changes depending on the
dimensionality of the objective space. The total number of function evaluations
(FEs) is calculated as follows: FE = Population size × Gmax. For all algorithms
in all problems, the total number of FEs was set in such a way that it does not
exceed 50,000, as shown in Table 1.

5.2 Test problems

For comparison purposes, we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ)
(Deb et al., 2002) and the Walking-Fish-Group (WFG) (Huband et al., 2005,
2006) test suites. Table 2 summarizes the main features of these test problems
(Huband et al., 2006). All minimization problems adopted are scalable with re-
spect to the number of objectives and have a variety of features (e.g., linearity, con-
vexity, concavity, multifrontality, bias, separability, etc.) which are summarized by
Huband et al. (2006).

The standard methodology to construct the test instances is the following
(Coello Coello et al., 2007). For the DTLZ test suite, the total number of decision
variables is given by n = m + k − 1, where m is the number of objectives. k has
been set to 5 for DTLZ1, 10 for DTLZ2-6 and 20 for DTLZ7. In case of the WFG
test suite, Table 3 shows the number of decision variables and position-related
parameters employed, as suggested by Huband et al. (2005, 2006).
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Table 3 Adopted configuration of position-related parameters and decision variables for the
WFG test problems.

Parameters
Objective space dimension
3D 5D 7D 10D

Position-related 4 8 12 18
Decision variables 24 47 70 105

5.3 Performance assessment

For comparing results, we selected three state-of-the-art performance indicators.
The first is the hypervolume (or S metric) (HV) (Zitzler, 1999; Brockhoff et al.,
2008) that is the only unary indicator known to be strictly monotonic with respect
to Pareto dominance (Zitzler et al., 2003). HV determines the volume dominated
by an approximation to the Pareto optimal front (PFknown), bounded by some
reference point. Since this reference point affects the calculated hypervolume value,
we provide the values that we adopted for each test problem in Table 4. It is worth
noting that maximizing HV guarantees converging to the true Pareto optimal
front of the problem being solved (Zitzler et al., 2003; Knowles and Corne, 2002).
Mathematically, the hypervolume can be described using the next formula:

HV (A) =
{⋃

volume(v) | v ∈ A
}
. (12)

In order to calculate the hypervolume in all the considered dimensions, we
employed the algorithm proposed by While et al. (2012).

Our second choice is the Spacing indicator (S) (Coello Coello et al., 2007) which
measures the variance of the distance between neighboring vectors in PFknown. S
is defined by Eqs. (13) and (14) as follows:

S :=

√√√√ 1

|PFknown| − 1

|PFknown|∑
i=1

(d̄− di)2 (13)

and

di = min
j

(
m∑

k=1

∣∣∣f ik(x)− fjk(x)
∣∣∣) (14)

where di, i, j = 1, . . . , N , d̄ is the average of all di’s, N is the cardinality of PFknown

and m is the dimension of the objective space. When S = 0, all points are evenly
spaced. S does not require the true Pareto optimal front to be known, although,
it is assumed that the algorithm has converged before applying this indicator.

Finally, the third selected indicator is the modified Inverted Generational Dis-
tance (IGD+) (Ishibuchi et al., 2014, 2015). IGD+ solves some difficulties related
to the reference sets in high dimensionality, of the Inverted Generational Dis-
tance indicator (IGD) (Coello Coello et al., 2007; Coello Coello and Cruz Cortés,
2005). The main idea of IGD+ is to consider the dominance relation between a
solution and a reference point when the distance is calculated. Due to this fact,
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Table 4 Reference points used in the calculation of the hypervolume indicator.

Test problem Reference point
DTLZ1 (1, 1, 1, . . . )

DTLZ2, DTLZ4 (2, 2, 2, . . . )
DTLZ3 (7, 7, 7, . . . )
DTLZ5 (4, 4, 4, . . . )
DTLZ6 (11, 11, 11, . . . )
DTLZ7 (1, 1, 1, . . . , 21)
WFG1-9 (3, 5, 7, . . . , 2m+ 1)

IGD+ is weakly Pareto compliant. For a minimization problem, IGD+ is defined
by Eqs. (15) and (16):

IGD+(A) :=
1

|Z|

|Z|∑
j=1

min
ai∈A

dIGD+(ai, zj) (15)

and

dIGD+ =

√√√√ m∑
k=1

(max{ak − zk, 0})
2 (16)

where A is a Pareto front approximation and the reference set is denoted by Z.
For a specific problem, we calculate Z by joining the Pareto front approximations
(keeping only nondominated solutions) of the algorithms and then applying k-
means clustering (Jain et al., 1999) in order to reduce the number of solutions.
When IGD+ is closer to zero, A is closer to Z. In consequence, IGD+ simultane-
ously evaluates convergence and spread of an approximation set.

6 Discussion of results

This section aims to present and discuss the statistical results of iMOACOR com-
pared to MOACOR, MOEA/D, NSGA-III and SMS-EMOA, using the DTLZ and
WFG test suites. We performed 30 independent runs of each of the 5 metaheuristics
compared on all test instances adopted. For our statistical assessment of results,
we adopted the Wilcoxon rank sum test (one-tailed), with a significance level of
5%. A comparison of the results of the five algorithms in terms of HV, IGD+ and
S values are presented in Tables 5, 6 and 7. In these tables, for each m-objective
test instance, the two best values are shown in gray scale, where the darker tone
corresponds to the best value. Furthermore, the symbol # is placed when a result
is statistically different from iMOACOR’s result based on the one-tailed Wilcoxon
test.

All experiments reported here were performed on a PC having an Intel(R)
Xeon(R) running at 3.00 GHz and with 64 GBytes in RAM. All metaheuristics
adopted in our comparative study were implemented in C/C++ under Linux (Fe-
dora 15), using real-numbers encoding.
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Table 5 Statistical results (mean and standard deviation) of the HV values obtained by
iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-EMOA on the DTLZ and WFG test
suites. The two best values are shown in gray scale, where the darker tone corresponds to the
best value. The symbol # is placed when a result is statistically different from iMOACOR’s
result based on a one-tailed Wilcoxon test with a significance level of 5%. N/A (not applicable)
means that the experiment was not executed. A zero HV value implies that the algorithm was
unable to converge to the true Pareto front.

Problem m iMOACOR MOACOR MOEA/D NSGA-III SMS-EMOA

DTLZ1

3 0.000000e+00(0.000e+00) 0.000000e+00(0.000e+00) 9.740945e-01(2.619e-04) 9.741172e-01(3.045e-04) 6.766570e-01(1.240e-02)
5 0.000000e+00(0.000e+00) N/A 9.985205e-01(6.682e-05) 1.017165e+00(9.991e-02) 4.138286e+00(1.554e+01)
7 0.000000e+00(0.000e+00) N/A 9.996951e-01(7.351e-05) 1.967483e+00(3.623e+00) 8.228500e-01(7.216e-02)
10 0.000000e+00(0.000e+00) N/A 9.850897e-01(4.702e-03) 9.997797e-01(4.081e-04) N/A

DTLZ2

3 7.420231e+00(2.561e-04) 7.393920e+00(5.114e-03)# 7.421715e+00(1.371e-04) 7.421572e+00(6.064e-04) 4.111960e+00(9.221e-02)#
5 3.165018e+01(2.529e-03) N/A 3.166768e+01(3.208e-04) 3.166519e+01(8.761e-04) 2.143628e+01(7.673e-01)#
7 1.277012e+02(7.756e-03) N/A 1.277477e+02(1.907e-03) 1.277489e+02(1.372e-03) 8.263293e+01(4.223e+00)#
10 1.023614e+03(9.715e-02) N/A 1.023857e+03(1.823e-02) 1.023849e+03(1.252e-02) N/A

DTLZ3

3 0.000000e+00(0.000e+00) 0.000000e+00(0.000e+00) 3.420659e+02(1.134e+00) 3.417475e+02(1.559e+00) 1.420606e+04(4.967e+04)
5 0.000000e+00(0.000e+00) N/A 1.718503e+04(4.197e+03) 2.990271e+04(5.922e+04) 5.327954e+05(3.461e+05)
7 0.000000e+00(0.000e+00) N/A 7.426452e+05(5.279e+04) 7.172101e+06(3.423e+07) 1.907858e+06(3.530e+06)
10 0.000000e+00(0.000e+00) N/A 2.563130e+08(1.884e+07) 2.599402e+09(6.664e+09) N/A

DTLZ4

3 7.419261e+00(9.233e-04) 7.397218e+00(4.404e-03)# 7.421635e+00(1.148e-04) 7.218780e+00(4.062e-01) 4.478782e+00(3.855e-01)#
5 3.163519e+01(3.624e-03) N/A 3.166851e+01(1.701e-04) 3.162929e+01(1.453e-01) 2.323799e+01(2.179e+00)#
7 1.277266e+02(7.245e-03) N/A 1.277444e+02(2.351e-03) 1.277541e+02(4.924e-04) 9.249773e+01(3.292e+00)#
10 1.023870e+03(4.029e-03) N/A 1.023912e+03(2.478e-03) 1.023902e+03(3.014e-03) N/A

DTLZ5

3 5.983806e+01(7.194e-03) 5.986894e+01(1.342e-03) 5.973486e+01(1.291e-03)# 5.982962e+01(8.365e-03)# 5.027973e+01(5.019e-01)#
5 9.372627e+02(9.321e-01) N/A 9.465698e+02(4.026e-01) 9.447159e+02(6.332e+00) 7.232389e+02(5.931e+00)#
7 1.444221e+04(1.115e+02) N/A 1.492758e+04(1.705e+01) 1.486426e+04(9.418e+01) 1.080888e+04(1.253e+02)#
10 9.357044e+05(6.615e+03) N/A 9.477366e+05(6.757e+02) 9.411728e+05(8.763e+03) N/A

DTLZ6

3 1.315942e+03(1.175e+00) 1.318611e+03(1.107e+00) 1.316428e+03(8.424e-01) 1.316830e+03(4.802e-01) 1.186353e+03(1.891e+01)#
5 1.563606e+05(1.388e+03) N/A 1.584583e+05(8.812e+02) 1.542282e+05(4.384e+02)# 1.417357e+05(7.095e+02)#
7 1.801024e+07(2.869e+05) N/A 1.919747e+07(3.721e+04) 1.849564e+07(7.311e+04) 1.672813e+07(1.029e+05)#
10 2.416417e+10(3.315e+08) N/A 2.529085e+10(2.087e+08) 2.322341e+10(2.063e+08)# N/A

DTLZ7

3 1.624747e+01(3.431e-02) 1.633222e+01(1.027e-02) 1.620770e+01(1.240e-01)# 1.631926e+01(1.253e-02) 8.253488e+00(3.300e+00)#
5 1.256712e+01(8.935e-02) N/A 5.594105e+00(1.696e+00)# 1.283906e+01(3.913e-02) 2.089669e+00(3.188e+00)#
7 8.283139e+00(2.093e-01) N/A 1.367398e-01(2.729e-01)# 8.446224e+00(3.724e-01) 9.710104e-03(2.028e-02)#
10 2.152074e+00(6.544e-01) N/A 2.947743e-03(7.802e-03)# 1.534016e+00(4.499e-01)# N/A

WFG1

3 4.425029e+01(5.984e-01) 4.482325e+01(2.679e-01) 4.862674e+01(3.106e+00) 4.353844e+01(2.491e+00)# 4.561803e+01(1.162e+00)
5 3.937020e+03(1.049e+02) N/A 3.884123e+03(1.727e+02)# 3.246474e+03(7.198e+01)# 3.688324e+03(5.756e+01)#
7 6.762082e+05(3.201e+04) N/A 6.618675e+05(1.448e+04)# 5.478707e+05(1.352e+04)# 5.913484e+05(1.588e+04)#
10 3.961333e+09(2.039e+07) N/A 3.802791e+09(5.153e+07)# 3.273061e+09(5.361e+07)# N/A

WFG2

3 9.706166e+01(5.756e-01) 9.980343e+01(2.557e-01) 8.220310e+01(6.485e+00)# 9.556901e+01(6.631e+00) 7.472122e+01(4.189e+00)#
5 9.736942e+03(9.487e+01) N/A 7.225543e+03(5.552e+02)# 9.245978e+03(8.013e+02) 8.281549e+03(1.282e+02)#
7 1.701444e+06(2.296e+04) N/A 1.227180e+06(6.399e+04)# 1.672969e+06(1.575e+05) 1.527222e+06(6.119e+04)#
10 9.437415e+09(1.712e+08) N/A 8.086769e+09(3.775e+08)# 1.117947e+10(8.590e+08) N/A

WFG3

3 7.243938e+01(2.404e-01) 7.084552e+01(4.362e-01)# 6.879431e+01(2.038e+00)# 7.405609e+01(4.437e-01) 4.710888e+01(8.093e-01)#
5 5.400104e+03(2.486e+02) N/A 5.236481e+03(1.518e+02)# 6.410663e+03(6.333e+01) 3.196907e+03(1.283e+02)#
7 7.904484e+05(2.199e+04) N/A 7.264922e+05(5.165e+04)# 5.312858e+05(2.120e+05)# 4.979576e+05(2.701e+04)#
10 4.742821e+09(7.999e+07) N/A 2.394173e+09(1.504e+08)# 5.662479e+09(3.371e+08) N/A

WFG4

3 7.068614e+01(3.010e-01) 6.887500e+01(4.965e-01)# 7.267887e+01(5.718e-01) 7.501456e+01(2.272e-01) 3.822859e+01(1.458e+00)#
5 7.617384e+03(1.162e+02) N/A 7.466392e+03(2.892e+02) 8.063859e+03(8.255e+01) 3.544988e+03(7.739e+01)#
7 1.244395e+06(4.907e+04) N/A 1.019393e+06(1.131e+05)# 1.583968e+06(2.412e+04) 6.203148e+05(1.688e+04)#
10 7.170558e+09(2.850e+08) N/A 6.385061e+09(7.696e+08)# 8.950776e+09(2.529e+08) N/A

WFG5

3 6.834469e+01(8.124e-01) 6.346205e+01(1.672e+00)# 7.065721e+01(2.755e-01) 7.197491e+01(4.053e-01) 3.537145e+01(1.463e+00)#
5 4.835114e+03(1.938e+02) N/A 7.629797e+03(1.728e+02) 8.011001e+03(6.378e+01) 3.485080e+03(1.106e+02)#
7 6.887508e+05(4.105e+04) N/A 1.159399e+06(1.543e+05) 1.588530e+06(2.191e+04) 6.047207e+05(2.297e+04)#
10 4.317068e+09(1.650e+08) N/A 6.192197e+09(7.343e+08) 8.883282e+09(1.562e+08) N/A

WFG6

3 7.424075e+01(4.159e-01) 7.257026e+01(7.573e-01)# 7.065243e+01(7.719e-01)# 7.242177e+01(5.130e-01)# 3.732450e+01(2.274e+00)#
5 6.768850e+03(3.912e+02) N/A 6.431094e+03(9.169e+02) 8.230034e+03(6.976e+01) 3.568933e+03(2.393e+02)#
7 8.324711e+05(5.551e+04) N/A 8.176655e+05(9.898e+03) 1.693310e+06(1.419e+04) 6.188628e+05(1.439e+04)#
10 4.790208e+09(2.524e+08) N/A 5.170353e+09(1.858e+08) 8.885712e+09(2.249e+08) N/A

WFG7

3 7.531982e+01(2.689e-01) 7.394943e+01(4.090e-01)# 7.254121e+01(1.567e+00)# 7.615301e+01(1.096e-01) 3.670642e+01(1.643e+00)#
5 7.261774e+03(2.611e+02) N/A 6.982161e+03(4.230e+02)# 8.313109e+03(1.061e+02) 3.463331e+03(7.242e+01)#
7 1.094708e+06(5.602e+04) N/A 8.603106e+05(1.645e+04)# 1.664359e+06(2.987e+04) 6.225210e+05(6.574e+03)#
10 6.963838e+09(2.330e+08) N/A 5.243514e+09(2.561e+08)# 9.386685e+09(1.513e+08) N/A

WFG8

3 6.535407e+01(5.311e-01) 6.298557e+01(6.187e-01)# 6.717480e+01(6.432e-01) 6.862097e+01(3.072e-01) 3.428887e+01(1.102e+00)#
5 5.109791e+03(2.478e+02) N/A 6.203692e+03(5.497e+02) 7.603183e+03(7.756e+01) 2.934883e+03(1.141e+02)#
7 7.712374e+05(6.224e+04) N/A 4.876062e+05(1.312e+05)# 1.476134e+06(2.868e+04) 4.547833e+05(4.406e+04)#
10 5.339008e+09(3.843e+08) N/A 2.549207e+09(8.836e+08)# 8.394377e+09(1.694e+08) N/A

WFG9

3 6.597174e+01(1.815e-01) 6.554430e+01(4.531e-01)# 6.533818e+01(1.699e+00) 7.002323e+01(1.791e+00) 3.708994e+01(2.585e+00)#
5 5.768426e+03(3.253e+02) N/A 6.362462e+03(9.840e+02) 7.476119e+03(2.474e+02) 3.629624e+03(2.498e+02)#
7 7.309045e+05(1.035e+05) N/A 8.943812e+05(2.363e+05) 1.352921e+06(5.646e+04) 6.987414e+05(1.173e+05)#
10 4.188941e+09(3.585e+08) N/A 3.122641e+09(1.626e+09)# 7.329193e+09(3.111e+08) N/A

6.1 Performance comparisons on the DTLZ test suite

DTLZ1 and DTLZ3 are two multifrontal problems (as shown in Table 2) which
introduce (11k − 1) and (3k − 1) local Pareto fronts, respectively. Due to the
multifrontality of these two problems, iMOACOR got stuck in a local Pareto front
in both of them. This behavior is also detected in MOACOR. This issue arises as a
natural consequence of the use of ACOR as the search engine of both optimizers.
Unfortunately, ACOR presents some difficulties when dealing with multimodal
problems (Leguizamón and Coello, 2010). This lack of convergence to the true
Pareto front is reported in Tables 5 with a zero hypervolume value, and in Tables
6 and 7 with an ∞ value.
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Table 6 Statistical results (mean and standard deviation) of the IGD+ values obtained by
iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-EMOA on the DTLZ and WFG test
suites. The two best values are shown in gray scale, where the darker tone corresponds to the
best value. The symbol # is placed when a result is statistically different from iMOACOR’s
result based on a one-tailed Wilcoxon test with a significance level of 5%. N/A (not applicable)
means that the experiment was not executed. An∞ value implies that the algorithm was unable
to converge to the true Pareto front.

Problem m iMOACOR MOACOR MOEA/D NSGA-III SMS-EMOA

DTLZ1

3 ∞ ∞ 1.352432e-02(7.357e-04) 1.354202e-02(9.167e-04) 1.044670e-01(2.295e-03)
5 ∞ N/A 1.770441e-02(1.492e-03) 2.092960e-02(8.441e-03) 8.781075e-02(2.831e-02)
7 ∞ N/A 4.057104e-02(1.569e-03) 5.422202e-02(4.656e-02) 1.100855e-01(4.155e-03)
10 ∞ N/A 9.850897e-01(4.702e-03) 5.412175e-02(4.205e-02) N/A

DTLZ2

3 2.073739e-02(1.372e-04) 2.857186e-02(1.446e-03)# 1.352432e-02(7.357e-04) 1.354202e-02(9.167e-04) 1.044670e-01(2.295e-03)
5 9.001354e-02(5.425e-03) N/A 6.668343e-02(8.980e-05) 6.850192e-02(7.848e-04) 3.404108e-01(6.097e-03)#
7 1.386139e-01(9.467e-03) N/A 8.300738e-02(2.521e-05) 8.636540e-02(1.142e-03) 5.246910e-01(7.837e-03)#
10 1.601365e-01(7.690e-03) N/A 3.045827e-02(9.151e-04) 4.832999e-02(3.458e-03) N/A

DTLZ3

3 ∞ ∞ 8.482280e-02(1.843e-01) 1.769805e-01(3.064e-01) 4.360171e-01(5.285e-01)
5 ∞ N/A 3.623186e-01(9.500e-01) 7.170602e-01(8.917e-01) 3.887638e+00(2.129e+00)
7 ∞ N/A 5.469882e-01(2.872e-01) 1.518148e+00(1.529e+00) 1.213168e+00(9.903e-01)
10 ∞ N/A 4.583286e-01(2.665e-01) 1.334163e+00(8.890e-01) N/A

DTLZ4

3 3.193750e-02(5.791e-04) 3.724734e-02(1.161e-03)# 2.996432e-02(7.542e-06) 6.666353e-02(7.313e-02) 2.445605e-01(6.890e-02)
5 9.464995e-02(3.952e-03) N/A 5.104591e-02(4.149e-05) 5.894254e-02(2.509e-02) 3.921806e-01(3.884e-02)#
7 1.480956e-01(1.241e-02) N/A 7.252125e-02(1.831e-05) 7.330909e-02(4.118e-04) 5.534455e-01(1.991e-02)#
10 1.024742e-01(3.222e-03) N/A 3.666230e-02(1.242e-03) 5.058520e-02(3.238e-03) N/A

DTLZ5

3 2.129263e-03(3.711e-04) 1.225832e-03(2.675e-04) 4.703606e-03(1.009e-05)# 1.694491e-03(4.522e-04) 1.629077e-03(4.585e-04)
5 1.056244e-01(6.993e-03) N/A 6.643330e-02(1.089e-03) 9.998197e-02(2.243e-02) 9.516339e-02(2.970e-03)
7 1.487053e-01(1.088e-02) N/A 1.120602e-01(2.013e-03) 2.126830e-01(3.582e-02)# 1.581263e-01(7.660e-03)#
10 1.357425e-01(1.717e-02) N/A 1.496687e-01(1.917e-03)# 1.814031e-01(2.168e-02)#

DTLZ6

3 1.111736e-01(4.320e-02) 2.407273e-02(5.620e-02) 1.256803e-01(3.448e-02) 1.257182e-01(2.720e-02) 2.437784e-01(4.500e-02)#
5 2.026485e-01(1.348e-01) N/A 2.446304e-01(7.294e-03) 1.284266e+00(9.024e-02)# 3.054495e-01(1.515e-02)#
7 1.102604e+00(3.119e-01) N/A 2.096216e-01(2.663e-02) 1.819214e+00(1.212e-01)# 2.890078e-01(2.385e-02)
10 9.391129e-01(2.690e-01) N/A 4.568281e-01(2.082e-01) 2.374775e+00(1.287e-01)# N/A

DTLZ7

3 8.585564e-02(3.574e-02) 3.434431e-02(3.130e-03) 9.662943e-02(1.501e-01) 3.709021e-02(2.104e-03) 1.937586e-01(5.030e-02)#
5 1.152563e+00(3.334e-01) N/A 2.219557e-01(3.948e-01) 8.262998e-01(3.633e-01) 7.051361e-01(3.533e-01)
7 1.899385e+00(2.490e-01) N/A 1.280057e+00(1.990e-01) 1.893459e+00(1.170e+00) 1.180358e+00(5.177e-02)
10 1.587637e+00(1.843e-01) N/A 3.060151e+00(6.544e-01) 4.572206e+00(6.019e-01) N/A

WFG1

3 1.430117e+00(9.456e-03) 1.447081e+00(1.012e-02)# 1.294346e+00(4.620e-02) 1.363994e+00(2.860e-02) 1.326351e+00(3.493e-02)
5 6.179398e-01(2.081e-02) N/A 1.155149e-01(2.703e-02) 3.577268e-01(2.199e-02) 2.341036e-01(2.241e-02)
7 1.028239e+00(1.473e-01) N/A 1.115985e-01(2.944e-02) 3.822505e-01(2.072e-02) 4.146121e-01(4.105e-02)
10 1.038277e+00(1.221e-01) N/A 6.107899e-02(1.435e-02) 3.946059e-01(1.701e-02)

WFG2

3 1.114796e-01(1.584e-02) 7.510881e-02(1.379e-02) 2.507221e-01(6.124e-02)# 4.831741e-02(7.710e-03) 6.071864e-01(1.551e-01)#
5 2.753754e-01(2.809e-02) N/A 1.217884e+00(4.161e-01)# 5.133961e-01(4.987e-01) 7.239465e-01(4.892e-01)#
7 8.755361e-01(1.499e-01) N/A 1.680729e+00(4.983e-01)# 7.917200e-01(5.896e-01) 9.216179e-01(5.588e-01)
10 9.497545e-01(7.075e-02) N/A 2.368147e+00(3.475e-01)# 8.249208e-01(9.370e-01)

WFG3

3 1.485811e-01(9.103e-03) 2.411323e-01(2.320e-02)# 1.888430e-01(4.826e-02)# 7.228996e-02(1.314e-02) 6.850529e-01(1.817772e-02)#
5 6.671848e-01(8.818e-02) N/A 2.547736e-01(1.713e-02) 6.035394e-01(5.807e-02) 6.095891e-01(1.412e-02)
7 9.882048e-01(8.973e-02) N/A 6.327384e-01(2.945e-02) 7.781914e+00(2.409e+00)# 9.318176e-01(5.209e-02)
10 2.039118e+00(9.069e-02) N/A 1.311043e+00(2.552e-02) 3.069705e+00(7.192e-01)# N/A

WFG4

3 2.048992e-01(5.533e-03) 2.450116e-01(1.176e-02)# 1.977936e-01(1.199e-02) 1.315811e-01(4.272e-03) 1.184868e+00(6.830e-03)#
5 3.923978e-01(2.091e-02) N/A 3.511958e-01(3.000e-02) 2.703007e-01(1.533e-02) 9.282835e-01(2.034e-02)#
7 1.065930e+00(2.533e-01) N/A 7.705341e-01(3.280e-02) 3.730912e-01(6.329e-02) 1.224622e+00(2.313e-02)#
10 2.815883e+00(2.478e-01) N/A 1.240225e+00(2.006e-02) 9.860570e-01(1.236e-01) N/A

WFG5

3 1.963753e-01(1.223e-02) 2.926745e-01(3.711e-02)# 2.057112e-01(6.869e-03)# 1.725189e-01(2.703e-03) 8.767424e-01(3.600e-02)#
5 1.197580e+00(9.484e-02) N/A 2.585594e-01(8.855e-03) 2.193627e-01(1.334e-02) 7.810527e-01(2.091e-02)
7 2.450597e+00(2.191e-01) N/A 5.237272e-01(6.163e-02) 2.674830e-01(2.846e-02) 1.090338e+00(3.707e-02)
10 3.836405e+00(2.880e-01) N/A 8.299703e-01(1.921e-02) 6.795388e-01(4.928e-02) N/A

WFG6

3 1.104239e-01(5.556e-03) 1.428572e-01(1.477e-02)# 2.002454e-01(2.172e-02)# 1.399133e-01(9.798e-03)# 1.080563e+00(1.993e-02)#
5 5.469506e-01(9.212e-02) N/A 3.980014e-01(8.110e-02) 2.223761e-01(1.321e-02) 8.117315e-01(4.400e-02)#
7 1.343287e+00(1.042e-01) N/A 6.406209e-01(5.949e-03) 2.173142e-01(1.622e-02) 1.013691e+00(1.940e-02)
10 2.174708e+00(1.602e-01) N/A 1.153931e+00(1.470e-02) 5.371587e-01(5.946e-02) N/A

WFG7

3 1.062657e-01(3.269e-03) 1.452924e-01(1.385e-02)# 1.596908e-01(1.044e-02)# 9.364718e-02(2.070e-03) 5.564280e-01(2.119e-02)#
5 4.764515e-01(5.880e-02) N/A 3.607015e-01(3.271e-02) 2.436847e-01(2.408e-02) 8.468314e-01(1.661e-02)#
7 1.029619e+00(4.873e-02) N/A 7.712396e-01(7.232e-03) 2.739815e-01(3.385e-02) 1.223627e+00(1.849e-02)#
10 1.555666e+00(1.116e-01) N/A 1.120330e+00(1.898e-02) 5.434857e-01(5.101e-02) N/A

WFG8

3 2.363381e-01(9.816e-03) 2.904208e-01(1.485e-02)# 2.122931e-01(1.056e-02) 1.729058e-01(6.910e-03) 9.814335e-01(1.599e-02)#
5 7.648970e-01(5.604e-02) N/A 4.274071e-01(1.142e-01) 2.406510e-01(1.567e-02) 7.894058e-01(2.615e-02)#
7 1.392503e+00(1.029e-01) N/A 1.243237e+00(1.979e-01) 3.524058e-01(2.377e-01) 1.294171e+00(8.067e-02)
10 2.049588e+00(1.115e-01) N/A 1.670862e+00(1.425e-01) 5.230700e-01(8.613e-02) N/A

WFG9

3 1.841420e-01(1.479e-03) 2.001286e-01(8.352e-03)# 2.358542e-01(4.167e-02)# 1.309404e-01(3.243e-02) 1.021225e+00(1.309e-01)#
5 8.974369e-01(1.704e-01) N/A 4.452596e-01(2.242e-01) 2.607509e-01(5.326e-02 7.080046e-01(3.199e-02)
7 2.301408e+00(3.109e-01) N/A 9.136098e-01(3.396e-01) 4.106712e-01(1.066e-01) 9.305680e-01(8.084e-02)
10 3.543821e+00(2.839e-01) N/A 1.517764e+00(4.994e-01 6.791161e-01(6.389e-02) N/A

DTLZ2 is a unifrontal and separable problem with a concave Pareto front,
where the objective functions of a Pareto optimal solution x∗ needs to satisfy:∑m

i=1 f
2
i (x∗). As can be observed in Figure 2, iMOACOR shows promising perfor-

mance in terms of convergence and distribution for the 3-objective DTLZ2. The
R2-ranking algorithm is responsible of the obtained distribution, which is similar
to that of NSGA-III and MOEA/D, because it tries to get the optimal solution for
each subproblem defined by a weight vector. The HV values in Table 5 indicate
that the performance of iMOACOR, for all dimensions, is very similar to that of
MOEA/D and NSGA-III and it outperforms MOACOR and SMS-EMOA in all
cases. These results are also supported by IGD+’s statistical results. Concerning
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Fig. 2 Pareto fronts produced by iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-
EMOA on DTLZ2 with 3 objectives. All fronts correspond to the execution in the median of
the HV.

the S indicator, iMOACOR obtains the worst value as shown in Table 6. Regard-
ing this fact, we must emphasize that the S indicator measures the variance of the
distance between neighboring vectors, thus, it is evident that Pareto front approx-
imations where the solutions are closer, will produce a better S value. In Figure
2, we can observe that SMS-EMOA’s Pareto front only covers a small objective
region and its vectors are very close from each other. Consequently, SMS-EMOA
gets the best S value but offering a bad coverage. Similarly, MOACOR is also
benefited by the S indicator due to its bad distribution as seen in Figure 2.

DTLZ4 tests the optimizers’ ability to maintain a good distribution of solu-
tions because it introduces a strong search bias. From the IGD+ values in Table
6, iMOACOR presents a good distribution for 3 dimensions and, in the many-
objective cases, it is outperformed by MOEA/D and NSGA-III. For the hyper-
volume, iMOACOR gets the second best result for the 3- and 5-objective case,
while MOEA/D is the best optimizer for this test instance. iMOACOR is only
outperformed by MOEA/D and NSGA-III. In all cases, iMOACOR outperforms
SMS-EMOA.

DTLZ5 results of a modification to DTLZ2 in order to generate a unifrontal
and degenerated hypersurface. Based on Figure 3 and the IGD+ values of Table 6,
it can be claimed that iMOACOR produces a good distribution of solutions. For 3-
dimensional instances, MOACOR produces a distribution of solutions that is better
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Fig. 3 Pareto fronts produced by iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-
EMOA on DTLZ5 with 3 objectives. All fronts correspond to the execution in the median of
the HV.

only than that generated by iMOACOR. However, our proposal obtaines the best
S value in such 3-objectives instances. iMOACOR obtains the second best value in
7 dimensions and the best one for 10 dimensions regarding IGD+, which supports
our previous claim about its capability to generate good distributions of solutions.
Regarding the hypervolume, our algorithm only obtains the second best value for
the 3-dimensional case while in the rest of the problems, it is outperformed by
MOEA/D and NSGA-III.

DTLZ6 is a more complex version of DTLZ5, which results in a unifrontal, de-
generated and biased problem. According to the IGD+ results, iMOACOR presents
a good distribution and convergence for all dimensions, being only outperformed
by MOEA/D in 7 and 10 dimensions and by MOACOR in the 3-dimensional
case. Regarding IGD+, iMOACOR statistically outperforms NSGA-III and SMS-
EMOA. In terms of the hypervolume, our algorithm only obtains the second best
value for 7 and 10 objectives. MOEA/D obtained the best results for the many-
objective case while MOACOR obtained the best results in low dimensionality.
Finally, iMOACOR had a better S value than MOEA/D and it is competitive with
respect to NSGA-III.

DTLZ7 has a set of 2m−1 disconnected Pareto-optimal regions which tests the
algorithms’ capacity to maintain different subpopulations. The performance of
iMOACOR in terms of convergence is very competitive, obtaining the third place
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Fig. 4 Parallel coordinates of nondominated fronts produced by iMOACOR, MOEA/D and
NSGA-III on the 10-objective DTLZ7. All fronts correspond to the execution in the median
of the HV.

in 3 dimensions, the second place in 5 and 7 dimensions and the best value for the
10-objective instance of DTLZ7. It is worth noting that the difference in the 10-
objective case is very significant with respect to the other algorithms. This result
can be explained using the parallel coordinates plot6 depicted in Figure 4. From the
plot, we can observe that iMOACOR’s approximation has better spread of solutions
than MOEA/D and NSGA-III because it covers a wide range of objective function
values. Due to its better coverage, it can dominate a larger region of objective
function space, which is reflected by the better HV value.

Summarizing, the performance of iMOACOR is regular in this benchmark. First
of all, iMOACOR is unable to converge when dealing with highly multifrontal prob-
lems such as DTLZ1 and DTLZ3. iMOACOR’ spread of solutions is quite similar
to that of NSGA-III and MOEA/D due to the use of the R2-ranking algorithm.
iMOACOR is not severely affected by parametric bias as indicated by its results
in DTLZ4. The use of our proposal is recommended when dealing with MOPs
whose Pareto fronts are degenerated such as DTLZ5 and DTLZ6. Furthermore,
iMOACOR has shown its ability to maintain different subpopulations in order to
solve MOPs with disconnected Pareto fronts such as DTLZ7.

6.2 Performance comparisons on the WFG test suite

WFG1 tests the optimizer’s ability to tackle flat bias and mixed structure of the
Pareto front (including concave and convex). These characteristics make WFG1
a very difficult MOP. Based on the HV results in Table 5, iMOACOR is the best
optimizer in high-dimensionality. Figures 5 and 6 show the parallel coordinates
plots of WFG1 in 7 and 10 objectives, respectively. In both plots, we can observe
that iMOACOR produces a better spread of solutions and it covers more objective

6 According to Deb (2001), the parallel coordinates plot (also called value path plot), is a
graphical method to show the objective values of high-dimensional nondominated fronts. The
horizontal axis marks the identity of the objective function, and thus, must be ticked only at
integers starting from 1 to m and a bar is put in each tick. The vertical axis will mark the
objective function values. The plot provides the following information:

1. Qualitative assessment of the spread of the obtained solutions. An algorithm which spreads
its solutions over the entire objective value axis is considered to be good at finding diverse
solutions.

2. The extent to which the cross-lines ‘zig-zag’ shows the trade-off among the objective func-
tions captured by the obtained nondominated solutions. An algorithm having a large
change of slope between two objective function bars is considered to be good in terms
of finding good trade-off nondominated solutions.
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Table 7 Statistical results (mean and standard deviation) of the S values obtained by
iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-EMOA on the DTLZ and WFG test
suites. The two best values are shown in gray scale, where the darker tone corresponds to the
best value. The symbol # is placed when a result is statistically different from iMOACOR’s
result based on a one-tailed Wilcoxon test with a significance level of 5%. N/A (not applica-
ble) means that the experiment was not executed. An ∞ value implies that the algorithm was
unable to converge to the true Pareto front.

Problem iMOACOR MOACOR MOEA/D NSGA-III SMS-EMOA
DTLZ1 ∞ ∞ 5.665252e-04(2.658e-04) 9.639678e-03(1.597e-02) 4.668093e-03(3.088e-03)
DTLZ2 5.256836e-02(1.370e-03) 4.739753e-02(4.342e-03) 4.890725e-02(3.032e-05) 4.842788e-02(8.740e-04) 1.478099e-02(4.202e-03)
DTLZ3 ∞ ∞ 5.521024e-02(3.130e-02) 1.316527e-01(8.429e-02) 7.033163e+00(1.058e+01)
DTLZ4 6.107899e-02(3.996e-03) 4.797831e-02(3.209e-03) 4.891094e-02(2.596e-05) 4.074251e-02(1.582e-02) 2.099415e-02(1.977e-02)
DTLZ5 4.268713e-03(3.265e-03) 7.027390e-03(5.236e-04)# 2.164089e-01(5.072e-03)# 1.239829e-02(1.881e-03)# 6.198692e-03(1.705e-03)#
DTLZ6 7.331618e-02(7.146e-03) 1.623979e-02(2.086e-02) 2.380922e-01(2.572e-03)# 6.772126e-02(4.153e-02) 1.313191e-02(3.313e-03)
DTLZ7 1.234456e-01(3.631e-02) 6.621065e-02(6.538e-03) 1.668798e-01(3.452e-02)# 6.030668e-02(4.979e-03) 4.503081e-02(1.319e-02)
WFG1 1.055275e-01(2.969e-02) 1.615551e-01(9.895e-03)# 8.217338e-02(1.171e-02) 6.741428e-02(1.741e-02) 4.239153e-02(9.209e-03)
WFG2 3.382511e-01(7.371e-02) 2.390982e-01(4.452e-02) 8.975647e-02(1.658e-02) 1.317904e-01(1.410e-02) 4.702230e-02(5.693e-02)
WFG3 1.323829e-01(1.711e-02) 1.172149e-01(1.024e-02) 1.940602e-01(2.327e-02)# 9.726909e-02(9.199e-03) 3.303524e-02(1.201e-02)
WFG4 3.039401e-01(1.250e-02) 1.971638e-01(1.690e-02) 2.330489e-01(2.605e-03) 1.884123e-01(4.541e-03) 5.557515e-02(6.816e-03)
WFG5 3.104586e-01(1.350e-02) 1.784433e-01(1.516e-02) 2.295599e-01(1.726e-03) 1.907428e-01(8.703e-03) 6.326510e-02(3.617e-02)
WFG6 3.103782e-01(9.858e-03) 1.892799e-01(1.339e-02) 2.355838e-01(5.291e-03) 1.875025e-01(4.058e-03) 6.161465e-02(1.452e-02)
WFG7 3.146193e-01(9.699e-03) 1.939828e-01(1.636e-02) 2.360618e-01(3.696e-03) 1.867679e-01(2.335e-03) 5.220852e-02(1.183e-02)
WFG8 3.055681e-01(7.712e-03) 1.843525e-01(1.700e-02) 2.654930e-01(5.887e-03) 2.031002e-01(1.030e-02) 6.640425e-02(1.162e-02)
WFG9 3.240877e-01(7.407e-03) 1.746757e-01(1.131e-02) 2.401901e-01(4.054e-03) 1.849227e-01(7.993e-03) 8.047164e-02(9.723e-02)
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Fig. 5 Parallel coordinates of nondominated fronts produced by iMOACOR, MOEA/D,
NSGA-III and SMS-EMOA on the 7-objective WFG1. All fronts correspond to the execu-
tion in the median of the HV.
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Fig. 6 Parallel coordinates of nondominated fronts produced by iMOACOR, MOEA/D,
NSGA-III and SMS-EMOA on the 10-objective WFG1. All fronts correspond to the execution
in the median of the HV.

values unlike the other algorithms that produce solutions whose objective values
are within a very small range. Additionally, we can observe that the cross-lines have
a large change of slope which reflects better trade-offs among solutions. Regarding
low dimensionality, iMOACOR is outperformed by MOEA/D. Regarding IGD+,
Table 6 shows that MOEA/D presents the best results in all cases.

WFG2 is a separable and multifrontal MOP whose Pareto front is disconnected
which implies that it intends to test the optimizer’s ability to maintain subpopu-
lations. iMOACOR is very competitive in this problem as it obtained the best HV
value in 5 and 7 objectives and the second best HV value for 3 and 10 objectives.
Figure 7 reveals that in the 3-objective case, iMOACOR generates more solutions
around the knee of the Pareto front. Considering Figure 8, which shows the paral-
lel coordinates plot of the 7-objective WFG2, it is possible to see that iMOACOR
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Fig. 7 Pareto fronts produced by iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-
EMOA on WFG2 with 3 objectives. All fronts correspond to the execution in the median of
the HV.
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Fig. 8 Parallel coordinates of nondominated fronts produced by iMOACOR, MOEA/D,
NSGA-III and SMS-EMOA on the 7-objective WFG2. All fronts correspond to the execu-
tion in the median of the HV.

generates a better spread of solutions compared to the other algorithms, especially
to NSGA-III. Regarding the IGD+ values in Table 6, iMOACOR had a competitive
performance with respect to NSGA-III. For this indicator, our algorithm obtained
the best value in the 5-objective case and the second place in 7 and 10 objectives.
In low dimensionality, the S indicator penalizes iMOACOR because of the outliers
that can be seen in Figure 7. Despite the multifrontality of this MOP, iMOACOR
had a very good performance in contrast to its performance in DTLZ1 and DTLZ3,
which are both multifrontal MOPs.

WFG3 is separable and unifrontal but its main source of difficulty is that it
has a linear degenerated Pareto front. In terms of convergence using the HV indi-
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Fig. 9 Parallel coordinates of nondominated fronts produced by iMOACOR, MOEA/D,
NSGA-III and SMS-EMOA on the 7-objective WFG3. All fronts correspond to the execu-
tion in the median of the HV.

cator, iMOACOR had a competitive performance with respect to NSGA-III. Our
algorithm obtained the best HV value in 7 dimensions of the objective space, and
the second best value in the remaining considered dimensions. Figure 9 shows the
parallel coordinates of the 7-objective WFG3. From this figure, it is evident that
iMOACOR had a better spread of solutions than the other algorithms. However,
this is not reflected by the IGD+ values in Table 6, where MOEA/D outperforms
our proposed approach. Concerning the S values (Table 7), our results are com-
petitive with respect to MOEA/D and NSGA-III.

WFG4 is a highly multifrontal MOP with a concave Pareto front. The per-
formance of iMOACOR is competitive compared to NSGA-III’s performance in
high-dimensionality considering the hypervolume. In these cases, iMOACOR al-
ways gets the second best value. Unfortunately, the IGD+ and S results indicate
that the distribution of solutions of our approach is not very good because it
is outperformed by MOEA/D and NSGA-III. However, it is worth noting that
iMOACOR converges in all cases in spite of the multifrontality of this problem.

WFG5 is similar to WFG4 except for the introduction of deceptiveness. Table 5
shows that NSGA-III obtains the best HV values and MOEA/D the second best
values in all cases. iMOACOR is able to outperform only MOACOR and SMS-
EMOA in all dimensions of the objective space. These results are confirmed by
the IGD+ values in Table 6 except for the 3-objective case, in which iMOACOR
obtained the second best value. Discarding SMS-EMOA for the S indicator, our
algorithm gets the second place with respect to this performance measure.

WFG6 introduces a nonseparable and unifrontal MOP with a concave Pareto
front. Figure 9 shows the approximation fronts produced by all algorithms for the
3-objecive instance of WFG6 where it is evident that MOEA/D and NSGA-III
obtained the best distributions. iMOACOR produced a good distribution on the
knee of the front while the solutions towards the extremes of the front are not very
well positioned. This fact directly affects the S value of our algorithm although it
obtained the best IGD+ value for the 3-objective case. Regarding the hypervolume,
iMOACOR outperformed all the other algorithms in low-dimensionality and it
obtained the second best value in 5 and 7 objectives, outperforming MOEA/D
and SMS-EMOA.

WFG7 is a separable and unifrontal MOP, but with parameter dependency
whose Pareto front is concave. In terms of the hypervolume, iMOACOR obtained
the second best value in all cases, outperforming MOEA/D, MOACOR and SMS-
EMOA. The IGD+ values indicate that in low-dimensionality our algorithm ranks
second while in the remaining cases, iMOACOR is able to outperform only SMS-
EMOA.
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Fig. 10 Pareto fronts produced by iMOACOR, MOACOR, MOEA/D, NSGA-III and SMS-
EMOA on WFG6 with 3 objectives. All fronts correspond to the execution in the median of
the HV.

WFG8 presents a higher parameter dependency and it is also unifrontal. Con-
sidering the HV indicator (Table 5), iMOACOR is able to outperform only MOACOR
and SMS-EMOA in the 3- and 5-objective instances of WFG8. For 7 and 10 dimen-
sions of the objective space, iMOACOR ranked second, outperforming MOEA/D
and SMS-EMOA. NSGA-III showed the best results for this indicator in all cases.
Regarding the IGD+ values in Table 6, iMOACOR was always outperformed by
MOEA/D and NSGA-III. This means that the degree of convergence and spread
of them is better than the one of our algorithm. The S value supports this claim
for the 3-objective case.

WFG9 is a difficult problem because it presents nonseparability, multifrontal-
ity, deceptiveness and a parametric-bias. Despite these characteristics, iMOACOR
had a competitive performance in terms of HV. In fact, for the 3- and 10-objective
case, our approach obtained the second best value, outperforming MOACOR,
MOEA/D and SMS-EMOA for the former case and outperforming MOEA/D for
the latter case. Considering 5 and 7 dimensions of the objective space, iMOACOR
is able to outperform only to SMS-EMOA. The IGD+ statistical results indicate
a regular performance of our approach where in the low-dimensional case it gets
the second best value, just being outperformed by NSGA-III. In the rest of cases,
it is able to outperform only to SMS-EMOA. The S value shows that iMOACOR
outperforms both MOEA/D and NSGA-III.
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Table 8 Resulting combinations due to the different values for the parameters q and ξ.

Name q ξ
C1 0.0001 0.5
C2 0.0001 0.85
C3 0.1 0.5
C4 0.1 0.85
C5 0.25 0.5
C6 0.25 0.85
C7 1.0 0.5
C8 1.0 0.85

In summary, the performance of iMOACOR, considering all high-dimensional
cases, is very competitive in this benchmark. Our approach is widely recommended
to solve problems similar to WFG1 because in this test instance, it produced
the best convergence results in high-dimensionality because of its good spread of
solutions that no other algorithm could match. Furthermore, iMOACOR shows a
good performance on WFG2 and WFG3 where it always obtained the best or the
second best HV value. For the case of WFG4 and WFG6 to WFG9, our algorithm
had a competitive performance while in WFG5, it did not behave very well. In
conclusion, we recommend our algorithm in order to tackle MOPs with a strong
bias, regardless of separability and frontality and, especially, for problems with a
Pareto front having a mixed structure: disconnected and degenerated.

6.3 Parameter sensitivity analysis

Regarding the parameter sensitivity of iMOACOR, we conducted a single-tail anal-
ysis of variance (ANOVA) (Scheffe, 1999). There are two major parameters in
iMOACOR which are part of the search engine: q that controls the diversifica-
tion process and ξ that regulates the convergence rate. The main purpose of the
ANOVA is to determine the effect of these two parameters in terms of hypervol-
ume values. To study how iMOACOR is sensitive to these two parameters, we tried
to cover some special7 values for each parameter: q ∈ {0.0001, 0.1, 0.25, 1.0} and
ξ ∈ {0.5, 0.85}. Based on these values, we formed eight combinations as shown in
Table 8. We employed the 3-objective instances of DTLZ2, DTLZ7, WFG2 and
WFG6 in order to compare the performance of all 8 different parameter combina-
tions. Thirty independent runs were executed for each configuration on each test
instance.

Figure 4 shows the median HV values obtained by these 8 different configu-
rations on each selected test instance. In the light of these four plots, one can
observe that for DTLZ2, WFG2 and WFG6, the combinations C1, C3, C5 and
C7 produced the best results, while for DTLZ7, the combinations C2, C4, C6 and
C8 are preferred. In the former case, it is clear that the HV value is dependent
on ξ because in all odd combinations (which give the best results) ξ = 0.5. Fur-
thermore, we can claim that in all these problems, the value of q does not have
influence on the performance of iMOACOR. On the other hand, iMOACOR has
produced best results on DTLZ7 when ξ = 0.85, not affecting the value of q. Based

7 The election of these values is based on the analysis of diversification versus intensification
of the search, made by Socha and Dorigo (2008) for ACOR.
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Fig. 11 Median HV values found by iMOACOR with 8 different combinations of q and ξ on
DTLZ2, DTLZ7, WFG2 and WFG6 with three objectives. The combinations Ci are given in
Table 8.

on these results, we claim that iMOACOR is only sensitive to the parameter ξ that
controls the rate of convergence of the search engine. In Eq. 7, ξ has the abil-
ity to reduce or to increase the standard deviation value which directly affects
the exploitation capacity of the underlying search engine. For ACOR, Socha and
Dorigo (2008) proposed to set ξ = 0.85 in furtherance of a robust search for the
single-objective case. However, we have found that a lower value of ξ is better
for the multi-objective case. Additionally, we observed that our algorithm is not
sensitive to the parameter q. In spite of this, we have adopted q = 0.1 with the
aim of strengthening the diversification (or exploratory) capacity of iMOACOR.
In conclusion, the results obtained by the sensitivity analysis based on ANOVA
support the election of q = 0.1 and ξ = 0.5 for all the test instances for iMOACOR,
as illustrated in Section 5.1.

7 Conclusions and future work

In this paper, we have proposed a new ACO-based many-objective optimizer for
continuous search spaces, called iMOACOR. Our proposed approach uses ACOR
as its search engine and employs a ranking algorithm based on the R2 indicator in
order to define which solutions are better than others. This allows our approach
to tackle many-objective problems.

Our experimental results indicate that iMOACOR has a competitive perfor-
mance with respect to NSGA-III and MOEA/D and that it is able to outperform
SMS-EMOA (using HypE’s approximation scheme) and MOACOR in most of the
test problems adopted. Therefore, we consider that iMOACOR is a good starting
point for having a highly competitive many-objective optimizer based on ACO.
However, one aspect that must be emphasized is the difficulty that iMOACOR has
on multifrontal problems such as DTLZ1 and DTLZ3. Our proposed approach has
difficulties to maintain diversity in these problems and more work in this direction
is still required.

Additionally, iMOACOR presents problems to refine good solutions. For ex-
ample, in Figure 2, the Pareto front approximation produced by iMOACOR for
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DTLZ2 is similar in distribution and convergence to those generated by NSGA-III
and MOEA/D, however, it is outperformed by them according to HV, IGD+ and
S. The generating-solutions operators of iMOACOR, taken from ACOR, cannot
exploit good solutions quickly. The critical part of the mechanism is the standard
deviation (see Eq. (7)) associated with the normal distribution which is sampled
in order to generate a new solution. This standard deviation represents the aver-
age error, for a certain dimension, of all decision variables with respect to one of
them. This error is then weighted by ξ that controls the rate of convergence, i.e.,
the exploration range. On the basis of DTLZ2, we observed that at the end of the
search, ξ is too large. In other words, iMOACOR cannot explore areas nearby a
good solution. Consequently, iMOACOR’s exploitation ability is significantly di-
minished, which is reflected on the HV values. This exploitation issue is inherent
to ACOR. In fact, there have been a number of research efforts to extend ACOR
in order to improve its performance (Leguizamón and Coello, 2010; Liao et al.,
2011).

As part of our future work, we are interested in studying different mechanisms
that can enhance diversity, while maintaining the ACO metaphor.This can be done
using a different selection mechanism based on other indicator or a combination
of several of them, e.g., the ε-indicator, R2 and IGD+ because they are weakly
monotonic. Furthermore, an adaptive mechanism for the ξ parameter is also needed
in order to validate our hypothesis indicated above. Additionally, the pheromone
structure adopted in our proposed approach still has lots of room for improvement.
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Manuel Lopez-Ibanez and Thomas Stützle. An experimental analysis of design

choices of multi-objective ant colony optimization algorithms. Swarm Intelli-

gence, 6(3):207–232, September 2012b.
Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-

lisher, 1999.
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