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Abstract

One aspect that is often disregarded in the curreséarch on evolutionary multiobjective
optimization is the fact that the solution of a timldjective optimization problem involves not only
the search itself, but also a decision making mecélost current approaches concentrate on
adapting an evolutionary algorithm to generateRheeto frontier. In this work, we present a new
idea to incorporate preferences into a Multi-ObyectEvolutionary Algorithm (MOEA). We
introduce a binary fuzzy preference relation thairesses the degree of truth of the predicates “

at least as good a8. On this basis, a strict preference relation watimeasonably high degree of
credibility can be established on any population. alternativex is not strictly outranked if and
only if there does not exist an alternativevhich is strictly preferred ta. It is easy to prove that
the best solution is not strictly outranked. Fofidating our proposed approach, we used the
Nondominated Sorting Genetic Algorithm Il (NSGA;IBut replacing Pareto dominance by the
above non-outranked concept. So, we search fandhestrictly outranked frontier that is a subset
of the Pareto frontier. In several instances ofiree+objective knapsack problem our proposal
clearly outperforms the standard NSGA-II, achievimgn-outranked solutions which are in an
obviously privileged zone of the Pareto frontier.

Key Words. multicriteria optimization; evolutionary algorithm$uzzy preferences; outranking
relations.

1. Introduction

In real-world optimization problems, the decisioakar OM) is usually concerned with several
criteria which determine the quality of solutio3ften, constraints in mathematical programming
problems are not actually mandatory; instead, sestrictions are expressing an important desire, a
significant DM aspiration level about certain system propertielser@fore, most optimization
problems can be represented from a multiple objegierspective.

As a consequence of the conflicting nature of theen, it is not possible to obtain a single
optimum, and, consequently, the ideal solution afaltiobjective problem (MOP) cannot be
reached. Hence, to solve a MOP means to find teedoenpromise solution according to s!'s
particular system of preferences (value systems #asy to prove that the best compromise is a
non-dominated solution (i.e., a member of the Pamgitimal set). Most operations research
methods for MOPs can be classified into the follaywategories [1]:

1. Techniques which perform anpriori articulation of theDM’s preferences;

2. Interactive methods, which perform a progressiview@ation of theDM’ preferences;

3. Generating techniques, which performaposterioriarticulation of theDM’s preferences
(search before making decisions).

Since David Schaffer's seminal work (cf.[2]), Mullibjective Evolutionary Algorithms (MOEAS)
have become a very popular search engine for gplamltiobjective programming problems.
MOEAs are very attractive to solve MOPs becausg tieal simultaneously with a set of possible



solutions (the MOEA's population) which allows theém obtain an approximation of the Pareto
frontier in a single algorithm’s run. Thus, by upiMOEAs theDM and/or the decision analyst does
not need to perform a set of separate single-abgaptimizations as normally required when
using operations research methods. Additionally,BA® are more robust regarding the shape or
continuity of the Pareto front, whereas these tssnés are a real concern for classical optimization
methods (cf.[3]). However, one aspect that is otesmegarded in the MOEAs literature is the fact
that the solution of a problem involves not onlg tearch process, but also (and normally, more
important) the decision making process. Most curagproaches in the evolutionary multiobjective
optimization literature concentrate on adapting ewolutionary algorithm to generate an
approximation of the Pareto optimal set. Nevertgléinding this set does not solve the problem.
The DM still has to choose the best compromise solutidrobthat set. This is not a very difficult
task when dealing with problems having 2 or 3 diojes. However, as the number of criteria
increases, two important difficulties arise:

a) The algorithm’s capacity to find this Pareto frentquickly degrades;
b) It becomes harder, or even impossible for Bid to establish valid judgments in order to
compare solutions with several conflicting criteria

Here, we propose a combined approach, with anaai @uticulation of preferences followed by a
generating process of a specific (i.e., desiralzie)e of the Pareto frontier. Using a fuzzy
outranking relation, a strict preference relationthe sense of [4] can be established in any
population. Our proposal is based on finding a sub$ the Pareto frontier composed of solutions
for which no other solutions exist which are pregdrto the first ones. This non-outranked concept
will be used instead of dominance when performivgevolutionary search.

The remainder of this paper is organized as follods outranking model of multicriteria
preferences is outlined in Section 2, and on thisidthe proposed dominance generalization is
detailed in Section 3. Our algorithmic proposatiscussed in Section 4 and illustrated by some
computer experiments in Section 5. Finally, we dbaief concluding remarks in Section 6.

2. An Outranking Model of Preferences

Let G bethe set of objective functions of a multicriteriptinization problem an@ its objective
space. An elememntd O is a vectorX,, ... X, ), wherex; is thei-th objective value. Let us suppose
that for each criterion there is a relational system of preferendgd;) (preference, indifference)
which is complete on the domain of tath criterion G;). That is,l(x;, y; ) O G; x G; one and only
one of the following statements is true:

% Py

Y P (1)
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Formulation (1) allows indifference thresholds irder to model some kind of imprecise one-
dimensional preferences. It should be noticed ttatelational system of preferences given by (1)
is more general than the usual formulations whimtiseder only true criteria (that is, 7 y; implies
non-indifference). Without loss of generality, retfollowing we suppose thatP;y; = X > .

Let us establish the following central premise: Bach X,y) 0 OxO , the DM and the decision
analyst (working together) are able to create aylymedicate modeling the degree of truth of the
statementX is at least as good grom the DM’s point of view”.



Amongst different ways to create that predicate,shall describe below an outranking approach
based on ELECTRE methods:

A propositionxSy (“x outranksy”) (“x seems at least as good 3 holds if and only if the
coalition of criteria in agreement with this profim is strong enough and there is no important
coalition discordant with it (cf.[5]). It can be gressed by the following logical equivalence
(cf.[6]):

xSy = C(xy) UOD(x.y) 2
where:

C(x,y) is the predicate about the strength of the corasure coalition;

D(x,y) is the predicate about the strength of the ddaoce coalition;

OandUOare logical connectives for conjunction and neggtrespectively.

Let c(x,y) andd(x,y) denote the degree of truth of the predic&ésy) andD(x,y). From (2), the
degree of truth 0xSy can be calculated as in the ELECTRE-III method:

alx,y) = c(x.y). N(d(x,y)) (©)

whereN(d(x,y)) denotes the degree of truth of the non-discardamedicate.
As in the earlier versions of the ELECTRE methads shall take

)= 2w (4)
jOCy

whereCy = {j UG such thakPyy; Oxl;y; }; w's denote “weights”W1 + wo + ... + w, = 1) and// is
the symbol for disjunction.

Let Dxy= {j UG such thatyPx; } be the discordance coalition witkSy. The intensity of
discordance is measured in comparison with a \retsholdy;, which is the maximum difference
yi-X; compatible with o(x,y)>0. Following Mousseau and Dias ([7]), we shall usere a
simplification of the original formulation of thestordance indices in the ELECTRE-III method
which is given by:

Xd)) = min /1 —d(xy) / (5)
L/ Dyy
1 iff Dj 2V,
dxy) =< G-w/(vi-w) iff y< <y (6)
0 ifﬂ]j U

wherel]; = y-X, andy; is a discordance threshold (see Figure 1).

In practical situations the decision-maker suppmbiig a potential decision-analyst should assess
the set of model’s parameters which are needed/dluade o. This is not an easy task, since
decision-makers usually have difficulties in spgicij outranking parameters and require an intense
support by a decision analyst. To facilitate thisgess, the paiDM-decision analyst can use the
preference disaggregation-analysiD@) paradigm (cf.[8]), which has received an increasing
interest from the multicriteria decision supporigounity. PDA infers the model's parameters
from holistic judgments provided by tHeM. Those judgments may be obtained from different



sources (past decisions, decisions made for aelihget of fictitious objects (actions), or decision
taken for a subset of the objects under considerdtir which theDM can easily make a judgment
[9]). In the framework of outranking methoB®A has been recently approached b§-13.

dxy) a4

Yi

v

X+ Xty
Figure 1 Partial discordance relatig(x,y)
3. An Outranking-Based Dominance Generalization

The A-cut a(x,y) >A defines a crisp outranking relatio®y. Credible outranking statements are
obtained withA= 0.75 (strong outranking), and even with=0.67 (weak outranking) (cf. [13]y
(x,y) >= 0.5 is identified as a doubtful outranking, aod(x,y) < 0.5 means a definitive no
outranking.

According to Roy (cf.[4]):

xSy OYSX = a(x,y) >A O ay,x) <A = a presumed preference favorixg

Following [14], we assume the existence of a thosB>0 such that ifo(x,y) >A and alsao (y,x) <
(a(x,y)-B), then there is an asymmetric preference relatamoring x what will be denoted by
xP@A,B)y . It can be agreethat for some values of andf, the conditions defining R(3) are good
arguments for justifying a strict preference relatin the sense proposed by Roy ([#4may be a
function of (o(x,y), a(y,x)). In the following we consider that®) has been defined d.

Amongst different ways of defining a reasonabl&spreference relation we suggest the following:

xP@Q,B)y if one of the following propositions is held:
i. x dominatey
ii. o(x,y)>0.6700dy,x) <0.5
iii. ax,y)>0.670(0.5< g(y,x) <0.67)T (a(x,y) - a(y,x))>d

Jis a strictly outranking parameter whose valuehhdepend on the number of criteria (cf. ([15]).
By consistency of ii and iiig should be greater than (0.67 — 0.5) = 0.17.

Definition 1. x strictly outranksy iff xPQ,B)y.



Definition 2: LetA be a subset d. If there does not exigt] A such thayPQ,B3)x, we say thax is
a non-strictly outranked solution &

Theorem 1: The set of non-outranked solution® ia a subset of the Pareto frontier.
Proof:
If the set of non-outranked solutions @is empty, it is a proper subset of the Paretotieon
Otherwise, we should prove that

a is a non-strictly outranked solution@=> a is a Pareto solution.
The proof is very simple. Suppose tlaais dominated byl O. By definition of P},) we have
bP(Q,B)a. Henceb strictly outranksa in contradiction with the hypothesis.

The reciprocal of Theorem 1 is falgemay be a Pareto solution while being strictly anked by
b simultaneously. It suffices to find such thatoP(\,3)a by satisfying ii or iii. In such cases,
according to Theorem 1, the set of non-outrankédtisos is a proper subset of the Pareto frontier.

Definition 3: PQ,p) is said to be free of inconsistencies iff there r@o cycles of that relation (.

Definition 4: PQ,B) is said to be minimally free of inconsistenci#ghere does exist at least one
non-strictly outranked solution i@.

Definition 5: For an element [0 O, the strictly outranking set is defined as=§y 0O such that

yP(A\,B)x}. The cardinal of this set is denoteddard (Sy). This is an integer function depending on
X.

Definition 6: The weakness afin a setA is W = card{y A such thato (y,x) > a(x,y) 0 o (y,X) >
0.5.

Definition 7: The strength of in a setA is S = card {y UA such thato (x,y) > a(y,x) O o (y,x) >
0.5.

It can be proved that the best alternatives int atsauld be found among those in wheard (S) is
minimal (cf. [14]). Suppose that R(3) is minimally free of inconsistencies Hence, thestb
compromise solution of the multiobjective optiminatproblem should be a non-strictly outranked
solution in O. When every solution is strictly outranked by amotlone, the best compromise
should be found among the setxafiith minimum cardinal of &

4. Adapting the NSGA-11 to Work with Non-strictly Outranked Classes

We shall extend the Non-dominated Sorting Genetgodthm Il (cf. [17]) working with non-
strictly outranked individuals instead of non-doated ones. The “filtering” process is similar, but
extracting non-strictly outranked individuals whifdrm classes with the same value of cargl)(S
The first front may have card(p# 0 when PX,) is not minimally free of inconsistencies.

Unlike typical MOEAs, we are not interested in obtag a uniform distribution of solutions
representing the Pareto frontier. Therefore, imstefathe NSGA-II's crowding distance (or another
density estimator), we propose to use the abov&kmess measure. That is, when two individual
with equal card($) are compared (in binary tournaments or decidihg will be included into the



new generation), the least weak will be preferfBus adapted algorithm will be called the Non-
Outranked-Sorting Genetic Algorithm (NOSGA), whaseudocode is shown below:

PROCEDURE NOSGA (K, Number_of Generations)
Initialize Population P
Generate random population with size K
Evaluate objective values
Evaluatecon P<P
For eachx O P, calculate card (8 calculate the weaknessin P
Generate fronts of equal values of cargl) (S
Assign to these fronts a rank (level) based on &y
Generate Child Population Q with size K
Perform Binary Tournament Selection
Perform Recombination and mutation
FOR | = 1 to Number_of_Generations DO
Assign P’=FJ] Q
Evaluateron PP’
FOR each parent and child in P’ DO
Calculate cardd)Scalculate its weakness in P’
Assign rank (level) based on carg) (S
Loop (inside) by adding solutionghe
next generation until K individuddave been found
End FOR
Replace P by the K individuals found
Generate Child Population Q with size K
Perform Binary Tournament Selattio
Perform Recombination and mutation
End FOR
End PROCEDURE

This pseudocode was adapted from the NSGA-II praaedshown ifl6, 17. As in the NSGA-II
method, the rank assigned to each individual idithess criterion. The main differences arehg t
use ofgin NOSGA, ii) the sorting based on Pareto domieaiscreplaced by a sorting based on
strict outranking; and iii) the use of weaknessaad of a density estimator.

NOSGA'’s selective pressure dependsarvalues on the current population. Note that when no
veto condition is heldg(x,y) is determined by the strength of the concordaxoadition; its value is
obtained from a “weighted-proportion”, in which thetal amount of criteria is not relevant.
Therefore,o is weakly influenced by the dimension of the ohjextspace, which could be an
important advantage in problems with more thanva déjective functions. Since in NOSGA the
information about objective space is aggregatethénfuzzy outranking relation, such a relative
independence should make NOSGA very robust witha@sto an increasing number of objective
functions.

5. Some Computer Experiments

In order to validate the proposal presented in plaiger, we have performed two tests, both using
nine-objective knapsack problems. The first ona montrolled experiment in which both the true



Pareto frontier and the true non-strictly outranketlare known. The second one is a more realistic
problem in which the best sets are unknown.

Let us consider a decision making situation in White DM is choosing among L different social
policies (projects) each with a direct social impddis is measured by using a nine-component
vector (N, Nz.... Ng. Ny = ng the number of people belonging to the
k-th social category which receive tlwth level benefit from that policy or project. lhase
examples k= 1, 2, 3 correspond to (Extreme Pov@&obyerty, Middle), and j = 1, 2, 3 to (High
Impact, Middle Impact, Low Impact).iNN,, N3 correspond to extreme poverty people,; Ns, No
concern middle class.

Let us denote by N the value of Nassociated to theth project. Let C be a portfolio (a subset of
the L projects which receives financial support)evalue of Nfor the whole portfolio is N(C) =
z Nt + ... + 2 Ni" where z= 1 if thej-th project is supported angl=z 0, otherwise. The aim of
this decision problem is to choose the “best” midf satisfying some budget constraints. More
formally:
Maximize (N(C), Nx(C),.... Ny(C)) (7)
CORe

where R is a feasible region determined by budget comdai

We use binary encoding; a ‘1’ in the individyah allele means that thheth project belongs to this
particular portfolio. Other parameters of the evioliary search are: crossover probability = 1;
mutation probability = 0.02; population size = 100.

Preference model parameters:

A) The weights; they express the importance ofdifierent objectives. In these experiments, the
weights were assessed by a decision-maker followleginterpretation of weights as “votes”,
which is typical of ELECTRE methods (¢fL3]). The assessed values were: (23, 14, 11, 14,11, 7
9,7, 4).

B) Indifference thresholds; usually, those thredb@re used to model some sources of imprecision
or uncertainty; here, they were calculated as asarezof the error evaluating each objective.

C) Veto thresholds; they are settled as 0.5*(MaxMin f; ) as in some applications of ELECTRE
methods (cf[13, 1§); operations Max and Min act on a population.

D) The strict outranking paramei@mwas settled as 0.2.

5.1 The Control Test

The information about 20 candidate projects is shawTable 1. The different values are given in
thousands. Budget constraints are imposed by thssobf project (educational, health, etc.),
geographic region and to the whole portfolio. Tomlt available budget was set as Total _budget=
500 million dollars. The constraints by class aegion are given by:

0.3 Total_budget Budget_Class % 0.4 Total _budget

0.25 Total_budgek Budget Class 2 0.35 Total _budget

0.2 Total_budget Budget_Class 8 0.3 Total _budget (8)

0.4 Total_budgek Budget_Region ¥ 0.6 Total_budget



0.4 Total_budgek Budget_Region Z 0.6 Total_budget

Table 1: Applicant projects

Project N N> N3 N Ns Ne N; Ng Ny Supportneeded Class Region
1 0 0 45 0 15 0 0 18 0 50,000 3 1
2 0 25 0 15 0 0 54 0 0 49,500 1 1
3 0 35 0 0 15 0 0 48 0 49,000 2 1
4 25 0 0 75 0 0 0 0 54 48,500 2 1
5 0 25 0 75 0 0 0 0 48 48,000 2 2
6 45 0 0 45 0 0 0 18 0 47,500 3 2
7 0 0 35 0 4.5 0 0 0 48 47,000 2 2
8 5 0 0 0 4.5 0 54 0 0 46,500 1 2
9 15 0 0 45 0 0 12 0 0 46,000 3 1
10 0 0 5 0 135 0 36 0 0 45,500 3 2
11 0 0 15 15 0 0 30 0 0 45,000 1 2
12 0 0 3 15 0 0 0 36 0 44,500 3 2
13 0 0 15 0 3 0 24 0 0 44,000 3 1
14 40 0 0 0 15 0 0 24 43,500 3 1
15 0 0 20 0 0 3 0 12 43,000 1 2
16 0 40 0 0 15 0 42 0 42,500 2 2
17 45 0 0 0 4.5 0 48 0 0 42,000 2 1
18 0 30 0 0 45 0 0 24 41,500 3 2
19 10 0 0 0 3 60 0 41,000 2 1
20 0 10 0 15 0 30 0 40,500 1 2

In this problem the set of feasible portfolios weshaustively explored by performing an
enumerative search. This set contains 1,635 nonrdded solutions and only six non-strictly
outranked ones. These are shown in Table 2.

Table 2: Non strictly outranked portfolios

Portfolio N, N, N3 N4 N5 Ns N- Ng No
145 110 60 495 555 276 126 24
140 110 80 495 51 222 126 36
170 75 60 57 40.5 276 78 78
140 75 80 615 345 234 78 66
165 75 80 57 36 222 78 90
185 75 15 615 255 288 60 78

o|la|lh|lw|N|F
w 9 o w o w

A single run of the standard NSGA-II (Populatiorzesi= 100, mutation probability = 0.02,
crossover probability = 1) found 93 non-dominatealutons. All are strictly outranked.
Additionally, a single run of the NOSGA found iretfirst front the six solutions is pointed-out in



Table 2. This experiment was replicated in sevenatlom instances with similar results, which are
pointed-out in Table 3.

Table 3: Results of a control experiment (nine cliyes)

Enumerative Search NSGA I NOSGA
Instance
NO ND NO ND NO ND
1 6 1635 3 93 6 6
1 2038 1 99 1 6
3 4 1145 0 91 4 4

In Table 3, “NO” and “ND” are associated to norietty outranked and non-dominated solutions,
respectively. Column NO (ND) below NSGA-II contaitf®e number of individuals which are
actually non-strictly outranked (non-dominatedusioins, and which were found in the first rank of
such algorithm. Besides, column NO (ND) below N@S&ntains the number of non-strictly
outranked (non-dominated) solutions which were tbun the first rank of our algorithmic
proposal. By comparing the different columns of [€aB, it should be noticed that the NSGA-II
approaches the true Pareto front, but fails inifigdmost of the non-strictly outranked solutions.
NOSGA finds the true non-strictly outranked set.

A similar control problem was performed to testithiduence of the number of objectives. We used
the same information about projects shown in Tadbeit considering only four objective functions
(objectives 4, 6, 7, 9 in Problem 7). The critermeights were updated by using the normalization
condition. The budget constraints were imposed raghe above example. Some results are
presented in Table 4.

Table 4: Results of a control experiment (four objees)

Enumerative Search NSGA Il NOSGA
Instance
NO ND NO ND NO ND
1 10 276 0 65 7
3 136 3 97
3 12 65 7 53 8 8

The NSGA-II shows good results in Instances 2 antduB is always outperformed by NOSGA.
Comparing Tables 3 and 4, it seems that the NSGAsults are degraded with nine objectives.
Contrarily, NOSGA performs even better in the mooenplex problem.

5.2 A morerealistic example

Secondly, we solved again Problem 7, but now widB &pplicant projects characterized by the
same nine-objectives set as in the previous exanipla similar way, the feasible region was

determined by the total budget and requirementslags of project and geographic region. The
total budget was set as 2.5 billion dollars, aral dther constraints were imposed as in (8). The
(known) non-outranked front of one random instantehis problem is shown in Table 5. The



objective values are given in thousands. Weakrsts=ngth and net flow score were calculated on
the final parent-offspring population after 500 getions. Weakness and strength are given by
Definitions 6-7. The outranking net flow score veadculated as ifil9].

Table 5: Some results in a real size problem

Portfolio N; N> N3 Ny Ns Ns N~ Ng Ng W S NFS
1 550 950 550 825 1020 660 942 840 564 42 108 16.72

2 555 880 580 975 1035 630 888 798 648 45 105 9.25
3 550 930 550 885 1020 645 936 846 564 45 103 12.14
4 550 1015 490 855 1005 690 882 876 558 59 91 485
5 550 935 545 825 975 720 930 858 564 61 89 6.09
6 550 960 530 1080 900 630 888 768 642 65 85 7.42
7 550 1030 490 855 990 690 870 912 558 69 81 -2.29

Ideal 560 1,230 700 1,350 1,410 840 1,008 1,200 834

Nadir 55 370 80 375 375 120 216 276 162

W.- Weakness ;S Strength; NFS.- Net Flow Score

The best solutions seem to be 1, 2 and 3. It isookvthat those solutions are concentrated in a
relatively small region of the objective functiopagse. This experiment was replicated in other four
random instances, with similar results. Coded irRB® C++ 3.0, the average run time was 2.5
minutes on a laptop computer with a 1.67 GHz preze GB RAM and a 120GB hard disk. By
using the standard NSGA-II, an approximation to Bereto front was obtained for the same
instances. In fact, the ideal and nadir points abl& 3 were found by the NSGA-II. In the
following, NOx and NI} will denote the known non-strictly outranked amah-dominated sets,
respectively, for the k-th instance. Let U be NO NDy . Let NQ, and NIy be the non-strictly
outranked set and the non-dominated set in U, otisply. A comparison between N@nd N

was performed in such five random instances wighrésults shown in Tables 6, 7 and 8:

Table 6: Mean Values in U

Set Weakness  Strength Nesztclglrzw
NO, 3.7 713 39.4
ND; 20.9 18.8 -2.8
NO, 2.0 91.2 55.9
ND, 34.4 37.3 -2.8
NO; 3.8 93.6 56.9
ND; 36.7 36.1 -4.6
NO, 3.9 86.4 58.7
ND, 32.6 30.8 -5.3
NOs 2.0 88 65.7

NDs 34.0 34.4 -3.3




After calculatingo(x,y) on U, a ranking of this set considering weaknsgsngth and net flow was
performed. In every test instance the solutionsrmghg to NQ are the best in U. As shown in
Table 6, the mean value of weakness, strengthnantlow scores taken on N@re clearly better

than the corresponding mean values orx ND

Table 7: Robustness of NO

Instanci | Card(NGC,) | Card(NCy) | Card(NQ n NOy) | Card(NGQ n NDy)
1 7 7 7 7
2 5 6 5 5
3 8 8 8 8
4 9 9 9 9
5 5 5 5 5

From Table 7, it should be noticed that

1. Eachx [0 NO is not dominated in U;

2. Eachx O NOk remains as non-strictly outranked in U;

3. Only one non-strictly outranked solution is aditly ND, (in the second instance).

Table 8: Robustness of ND

Instancel Card(NDy) | Card(NQ) | Card(NDx n NOy) | Card(NDx n NDy)
1 100 7 0 65
2 100 6 1 89
3 100 8 0 84
4 100 9 0 80
5 10C 5 0 82

Additional remarks:

4. In four instances, ng O NDy is member of NQ ; we can conclude that the NSGA-II does
not find the non-strictly outranked set. So, itnist possible to guarantee that the best
compromise solution is obtained by this algorithm.

5. 11-35% of the solutions belonging to Nare actually dominated by some element of NO

From the above remarks, it can be concluded thetefding o(x,y) as a good model of the
outranking statement degree of truth), N©®a preference privileged zone in the objectiwection
space. The best front found by NSGA-II (althoughyrba representative of the Pareto frontier)
may not contain the best compromise solutions.abt, funlike NOSGA, the best front found by
NSGA-II is not representative of the non-outranked

6. Conclusions

The proposed dominance generalization by using digree of credibility of an outranking
statement helps to find a subset of the Paretdimowhich contains the best compromise solution.

Our proposal (NOSGA) is basically a derivation frtme standard NSGA-II in which we replace
dominance by its outranking-based generalizationséveral instances of different examples,



NOSGA clearly outperforms the NSGA-II, achievingnrautranked solutions which are in an
obvious privileged zone of the Pareto frontier. §dolutions are few, concentrated, and very
satisfactory. A good compromise can be easily detieon the non-outranked front. Additionally,
as the overall multiobjective performance is aggted in o(x,y), NOSGA seems to be weakly
dependent on the number of objective functionss Téhiould be confirmed by more extensive
experimentation.
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