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Abstract: Most current approaches in the evolutionary multiobjective optimization literature 
concentrate on adapting an evolutionary algorithm to generate an approximation of the 
Pareto frontier. However, finding this set does not solve the problem. The decision-maker 
still has to choose the best compromise solution out of that set. Here, we introduce a new 
characterization of the best compromise solution of a multiobjective optimization problem. 
By using a relational system of preferences based on a multicriteria decision aid way of 
thinking, and an outranked-based dominance generalization, we derive some necessary and 
sufficient conditions which describe satisfactory approximations to the best compromise. 
Such conditions define a lexicographic minimum of a bi-objective optimization problem, 
which is a map of the original one. The NOSGA-II method is a NSGA-II inspired efficient 
way of solving the resulting mapped problem. 
Keywords: Evolutionary Algorithms; multiobjective optimization; multicriteria decision; 
preference modeling. 
 

1. Introduction  
 
In real-world optimization problems, the decision-maker (DM) is usually concerned with 
several criteria which determine the quality of solutions. Therefore, many optimization 
problems need to be represented from a multiple objective perspective. 
As a consequence of the conflicting nature of the criteria, it is not possible to obtain a single 
optimum, and, consequently, the ideal solution of a multiobjective problem (MOP) cannot 
be reached. Unlike single-objective optimization, the best solution of a MOP is not well-
defined (i.e., it is not defined from a purely mathematical point of view). To solve a MOP 
means to find the best compromise solution according to the DM´s particular system of 
preferences (value system). Since all the compromise solutions are mathematically 
equivalent, the DM should provide some additional information for choosing the most 
preferred one (cf. [15]). Such information can be provided before or after the optimization 
method generates compromise solutions, or the process can be interactive, performing a 
progressive articulation of the DM´s preferences [15]. 
Multi-Objective Evolutionary Algorithms (MOEAs) are particularly attractive to solve 
MOPs because they deal simultaneously with a set of possible solutions (the MOEA’s 
population) which allows them to obtain an approximation of the Pareto frontier in a single 
algorithm’s run. Thus, by using MOEAs the DM and/or the decision analyst does not need 
to perform a set of separate single-objective optimizations (as normally required when 
using operations research methods) in order to generate compromise solutions. 
Additionally, MOEAs are more robust regarding the shape or continuity of the Pareto front, 
whereas these two issues are a real concern for operations research optimization methods 
(cf. [3]). Several types of MOEAs currently exist, ranging from those that adopt different 
variations of Pareto-based selection (see for example [29,30]) to the use of scalar 
subproblems which are simultaneously optimized (see for example [31]), with several 



intermediate proposals that introduce clever modifications to well-known MOEAs that are 
aimed to improve their performance  (see for example [32,33,34,35,36]). However, 
according to [5, 7, 10], one aspect that is often disregarded in the MOEAs’ literature is the 
fact that the solution of a problem involves not only the search, but also the decision 
making process. Most current approaches in the evolutionary multiobjective optimization 
literature concentrate on adapting an evolutionary algorithm to generate an approximation 
of the Pareto optimal set (cf.[4]). Nevertheless, finding this set does not completely solve 
the problem. The DM still has to choose the best compromise solution out of that set ([5, 
29] . This is not a difficult task when dealing with problems having 2 or 3 objectives. 
However, as the number of criteria increases, three important difficulties arise: 
 

a) The algorithm’s capacity to find this Pareto frontier quickly degrades (e.g. [28]); 
b) It becomes harder, or even impossible for the DM to establish valid judgments in 

order to compare solutions with several conflicting criteria; 
c) The cardinal of a representative portion of the known Pareto frontier may be too 

large; the approaches from the field of multicriteria decision analysis do not perform 
well on such large decision problems, making difficult to obtain a unique solution.   
 

To overcome the above criticisms, in [10] we proposed the use of a priori articulation of 
preferences by creating a fuzzy outranking relation, followed by a generating process of a 
subset of the Pareto frontier. Using such a fuzzy outranking relation, a strict (crisp) 
preference relation is established on any population. In the NOSGA method (cf. [10]), that 
preference relation is used instead of dominance when performing the evolutionary search. 
In some 0-1 knapsack examples with 4-9 objectives, we obtained a privileged zone of the 
Pareto frontier, composed of relatively few, concentrated, and satisfactory solutions (cf. 
10]). However, a typical DM is only able to process from five to nine pieces of knowledge 
at a time (cf. [18]), being thus unable to identify the best compromise solution when he/she 
needs to compare what still seems a relatively small subset of compromise solutions in 
problems having more than 5-9 objectives. In such cases, the progressive (interactive) and 
the a posteriori articulation of DM’s preferences can be very hard to use due to these 
human cognitive limitations. Improving the prior articulation of preferences becomes 
necessary in order to approach the best compromise among the objectives. The MOEA’s 
selective pressure towards the best compromise solution should be increased. But this is not 
possible without a good mathematical model of the concept of a MOP’s best compromise. 
Some recent proposals have been performed in order to incorporate DM’s preferences in 
multiobjective optimization (cf. [10, 26]).  In this work, our previous proposal ([10]) is 
enhanced. The model of DM’s preferences is better than before, and a good theoretical 
characterization of the best compromise solution is achieved. Using this characterization, 
we improve convergence to a privileged zone on the Pareto frontier. This makes easier the 
solution of problems with many objectives. 
The remainder of this paper is structured as follows:  An appropriate concept of “best 
compromise solution” for a vector optimization problem is discussed in Section 2. A model 
of a relational system of preferences based on fuzzy outranking relations is presented in 
Section 3. Section 4 contains a bi-objective characterization of best compromise solutions. 
Supported by this background, our algorithmic proposal (NOSGA-II) is presented in Section 



5, and it is illustrated by an example in Section 6. Finally, we present some concluding 
remarks. 

 
 

2. The best compromise solution: What does it mean, exactly? 
 
Let us consider a MOP of the form 
 
Maximize F= (f1(z), f2(z),… fn (z))                                                   (1) 
  z∈ RF 

in which z denotes a vector of decision variables and RF is determined by a set of 
constraints. 
The action of maximizing in (1) is ill-defined. From a normative point of view, assuming 
the existence of a value function U (f1(z), f2(z),… fn (z)) which agrees with the DM’s system 
of preferences, the “best” solution of (1) should be obtained by maximizing U on RF (cf. 
[20, 26]). Unfortunately, the practical value of this statement is strongly limited for several 
reasons. The existence of such value functions is not guaranteed for real DMs (see [23, 24]) 
for a discussion of the practical limitations of decision actors). Moreover, even if the DM 
approached an ideal normative behavior, it would be extremely difficult, if not impossible, 
to specify his/her value function.  
Other authors elude a formal definition. According to Ozyczka ([22]), solving (1) is to find 
a feasible solution which gives the values of all the objective functions acceptable to the 
DM. Thus, the best compromise solution is seen under an acceptability criterion, although 
an idea based on some kind of  optimality should be more appropriate. In [16] Hwang and 
Masud define the best  solution as a good compromise which is accepted by the DM as the 
final solution. According to this definition, the concept of best compromise is relative to the 
set of solutions which is generated by the algorithm and depends on the effort dedicated by 
the DM to compare compromise solutions. Coello et al. ([4]) state the need of selecting a 
compromise solution  satisfying the objectives as “best” possible.  Hakanan et al. ([15]) 
identify the best compromise as the compromise solution which is the most preferred one.  
Such statements are acceptable from an intuitive point of view, but a mathematical 
formalization is needed in order to make them useful by an evolutionary search. 
In the following, we attempt to give a formal characterization of a best compromise 
solution to (1). 
Let us denote by O the image of RF in the objective space mapped by the vector function F. 
An element x ∈ O is a vector (x1, … xn ), where xi is the i-th objective function value. 
First of all, we define the concept of compromise solution: Let w be a Pareto solution for 
Problem (1); we say that w is a compromise solution if wi reaches a minimum acceptable 
value for i=1,…n. Below, we introduce an operational approach of best compromise.  
Let us suppose that the DM is comparing a representative set of compromise solutions 
suggested by some method for solving Problem (1). Let’s also assume that x*  is a good 
compromise solution being considered by the DM. If the DM cannot identify other 
compromise solution which he/she judges to be (at least) slightly more satisfactory than x* , 
then this may be chosen as the final solution for Problem (1). 
 



Definition 1:  A compromise solution x*  is a best compromise solution in C⊆ O iff there is 
no y∈ C such that the DM considers that “ y is at least as good as x* ” and simultaneously 
he/she rejects (or doubts about) the statement “ x*  is at least as good as y”. 
 
The above characterization matches with the normative definition based on a value 
function. If U is a value function for the DM and U(x* ) = max (U (x)), there is no y such 
that U(y) > U(x* ) . 
 
Let the predicate S(x,y) be “the DM considers that option x is at least as good as y” defined 
on O×O. The logic negation of S(x,y) (denoted by . not S(x,y)) corresponds to the statement 
“the DM disagrees (or partially disagrees) with x is at least as good as y” . A conjunction 
S(x,y) ∧ . not S(y,x) is related to certain asymmetric preference favoring option x over y. 
Besides, . not S(x,y) ∧ . not S(y,x) corresponds to a descriptive situation in which a real DM 
or decision actor cannot (or does not want to) make  a decision when he/she is comparing 
(x,y).These hesitations may come from any of the following reasons: 

-  the DM is a vaguely defined entity, or even a well-defined entity with poorly 
defined preference rules (cf. [24]); 

- the existence in the DM’s mind (if the DM is a real person) of certain “zones” of 
uncertainty, imprecise beliefs, conflicts and competing aspirations ([24]); 

- the existence of imprecise attribute values. 
 
In [23] Roy described situations concerning this non-ideal behavior from real decision 
actors by using a relational system of preferences composed of several binary relations. The 
definitions from [23] are given below: 
 

1. Indifference: It corresponds to the existence of clear and positive reasons that 
justifies equivalence between the two actions. Notation: xIy. 

2. Strict preference: It corresponds to the existence of clear and positive reasons that 
justify significant preference in favor of one (identified) of the two actions. The 
statement x is strictly preferred to y is denoted by xPy. P is asymmetric and non 
reflexive. 

3. Weak preference: It corresponds to the existence of clear and positive reasons in 
favor of x over y, but that are not sufficient to justify strict preference. 
Indifference and strict preference cannot be distinguished appropriately. This is 
denoted by x Qy. Q is asymmetric and non reflexive. 

4. Incomparability : None of the preceding situations predominates. That is, absence 
of clear and positive reasons that justify any of the above relations. Notation: 
xRy. R is symmetric. 

5. Outranking : It corresponds to the existence of clear and positive reasons that 
justify the statement “x is at least as good as y”, but with no significant division 
being established among the situations of  strict preference, weak preference and 
indifference. Notation: xSy. 

6. K-preference: It corresponds to the existence of clear and positive reasons that 
justify strict preference in favor of one (identified) of the two objects or 
incomparability between the two objects, but with no significant division 



established between the situations of strict preference and incomparability. 
Notation: xKy. K is asymmetric. 

7. Nonpreference: It corresponds to situations in which indifference and 
incomparability are both possible, without being able to differentiate between 
them. This is denoted by x∼y. ∼ is symmetric. 
 

Let us introduce an asymmetric preference relation AP = P ∪ Q ∪ K. Combining AP with 
Definition 1 we can suggest another characterization of  the final solution for Problem (1). 
 
Definition 2: (second characterization of a best compromise): Let C be a subset of O. 
Suppose that for each (x,y) ∈ C×C one and only one of the following statements is true: 
i) xAPy 
ii)  yAPx 
iii)  xIy 
iv) xRy 
v) x∼y 
 x* is a best compromise solution in C iff there is no y ∈C such that yAP x* . 
 
Note that several best compromises may exist on C. Besides, a best compromise may not 
exist on C. That possibility arises when each pair (x,y) ∈C×C belongs to some cycle of  AP. 
When the set C is the whole objective space O, the above characterization may be used to 
approach a suitable most satisfactory solution for Problem (1). This should be one of the 
best compromise solutions in O. In practical situations, the DM always expresses his/her 
preferences on a proper subset of O. So, in fact it is not possible to guarantee  that the final 
solution obtained on C is the real best solution. A best compromise obtained on C ⊂ O is an 
approximation to the best solution of (1). Nevertheless, when C is representative of the 
satisfactory zone of the Pareto frontier, a best compromise defined on C may be sufficiently 
close to the best solution of (1). 
 

3. A model of the relational system of preferences based on fuzzy outranking 
relations. 
 

The model of DM’s preferences may be enhanced by considering S(x,y) as a fuzzy 
predicate. Fuzzy binary preference relations are a good compromise between value  
functions and crisp preference relations; fuzzy relations are numerical, such as value 
functions, but their power of expressivity is higher since they can easily  model  
incomparability and non-transitivity (cf. [13]). 
In the following, we consider that there is a method  for assigning a degree of truth σ(x,y) 
in [0, 1] to the predicate S(x,y). Outranking methods such as ELECTRE-III (cf. [24, 25]) 
and PROMETHEE (cf. [2]) may be used.  Once σ(x,y) has been calculated, it can be useful 
for modelling the crisp preference relations defined in Section 2. Let us consider λ> 0.5 a 
threshold of acceptable credibility for the S predicate. Let’s consider also an asymmetry 
parameter β and a symmetry parameter ε  (0<ε<β<λ). A strict preference relation xP(λ,β)y 
can be justified if at least one of the following conditions is held: 
 

i. x dominates y 



ii.  σ(x,y) ≥ λ ∧ σ(y,x) < 0.5 
iii.  σ(x,y) ≥ λ ∧ (0.5 ≤ σ (y,x) < λ) ∧ (σ(x,y) - σ(y,x))≥β 

 
An indifference relation xI(λ,ε)y can be justified if I1 and I2 are both satisfied: 
I1. σ(x,y) ≥ λ ∧ σ(y,x) ≥λ 
I2. σ(x,y) - σ(y,x) ≤ ε 
 
A weak preference relation xQ(λ,β,ε)y is a consequence of the conjunction of three 
propositions: 
 

A.  σ(x,y) ≥λ ∧ σ(x,y) >  σ(y,x)  
B.   x . not P(λ,β)y 
C.  x . not I(λ,ε)y 

 
A K- preference relation xK(λ,β)y is modeled by the conjunction of the following three 
propositions: 
  
A1. 0.5 ≤ σ (x,y) < λ 
B1. σ (y,x) < 0.5 
C1. (σ(x,y) - σ(y,x)) >β/2 
where Condition C1 has been included in order to reflect certain asymmetry which justifies 
a sort of preference favoring x. This agrees with  Point 6 of Section 2. 
  
 The incomparability relation xRy is defined by σ(x,y) <0.5 ∧ σ(y,x) <0.5. 
 
Definition 3: Let P denote a specific settlement of parameters λ, β, ε (λ>0.5 >β >ε >0). We 

say that P is preferentially consistent iff  P(λ,β), I(λ,ε), Q(λ,β,ε), K(λ,β) agree satisfactorily 
with P, I Q, K in the sense of Points 1, 2, 3, 6 of the previous section. 
 
In the following, we suppose that P is preferentially consistent (Assumption 1). Based on 
this, we shall reduce Problem 1 to a biobjective optimization problem, regardless of how 
many objectives compose the original formulation in (1). 
 

4. A biobjective characterization of a best compromise solution 
 
The next three definitions have been adapted from [10]: 
 
Definition 4: Let C be a subset of O. If there does not exist y∈ C such that yP(λ,β)x, we 
say that x is a P –non strictly outranked solution in C. 
 
Definition 5:  P(λ,β) is said to be free of inconsistencies iff there are no cycles of that 
relation in O. 
 
Definition 6: P(λ,β) is said to be minimally free of inconsistencies on O iff there does exist 
at least one P-non-strictly outranked solution in O. 



 
Definition 7: Let C be a subset of O. For each x in C, let us define the set of P-strictly 
outranking solutions (SC)x = {y ∈C such that yP(λ,β)x}. card (SC)x is its cardinal, an integer 
function depending on x. Obviously, if  x is a P-non-strictly outranked solution in O then 
card (SO)x = 0. 
 
The following result has been adapted from [10]: 
 
Proposition 1: The set of P-non strictly outranked solutions in O is a subset of the Pareto 
frontier. 
 
The proof is very simple. If the set of P-non-outranked solutions in O is empty, it is a 
proper subset of the Pareto frontier. Otherwise, we should prove that  

a  is a P-non strictly outranked solution in O ⇒ a  is a Pareto  solution. 
Suppose that a is dominated by b∈ O. By definition of P(λ,β) we have bP(λ,β)a. Hence, b 
P-strictly outranks a in contradiction with the hypothesis.  
 
The reciprocal of the above proposition is false. a may be a Pareto solution while being  P-
strictly outranked by b, simultaneously. It suffices to find b such that bP(λ,β)a by satisfying 
Point ii  or iii  in the above definition of  P(λ,β) (Section 3). In such cases the set of P-non 
strictly outranked solutions is a proper subset of the Pareto frontier. 
 
Definition 8:  The set NS = {x ∈O such that card (SO)x = 0}will be called the P-non strictly 
outranked frontier of Problem 1. 
 
Note that according to Def. 6, if P(λ,β) is minimally free of inconsistencies the set NS is not 
empty. This is empty only if every pair (x,y) ∈ O×O is in some cycle of P(λ,β). 
The following proposition is trivial: 
 
Proposition 2: Under Assumption 1, a best compromise solution for Problem 1 is some x*  
∈ NS . 
 
Proof:  
Suppose that x* is a best compromise and x* ∉ NS. Then there is y ∈ O such that yP(λ,β)x* . 
Since P is preferentially consistent, y is strictly preferred to x* .  This is a contradiction with 
our characterization of a best compromise given by Definition 2.  
 
Definition 9: Let C be a subset of O. For each x in C, let us define the set of P-weakly 
outranking solutions (WC)x = {y ∈C such that yQ(λ,β,ε)x or yK(λ,β)x }. card (WC)x is its 
cardinal, an integer function depending on x.  
 
Definition 10: Let C be a subset of O. x ∈ C is a P-non weakly outranked solution in C iff 
card (SC)x = card (WC)x = 0. 
 



Definition 11: Let AP(λ,β,ε) be equal to  P(λ,β)∪ Q(λ,β,ε)∪ K(λ,β). AP(λ,β,ε)  is said to be 
minimally free of inconsistencies on a set C ⊆O iff there does exist at least one P-non 
weakly outranked solution in C. 
 
Proposition 3: Under Assumption 1, x* is a best compromise solution for Problem 1 iff x*  
is an ideal (0,0)-solution of the problem 
 
Minimize (card(SO)x, card (WO)x )                                                                                     (2) 
x∈ O 
 
Proof: 
 Since x* is a best compromise solution for Problem 1, there is no y∈O such that 
yAP(λ,β,ε)x* . Hence, card(SO)x* = card (WO)x* =0. 
 
On the other hand  
card(SO)x* =0 ⇒ there is no y∈O such that yP(λ,β)x* . 
card(WO)x* =0 ⇒ there is no y∈O such that yQ(λ,β,ε)x* . 
card(WO)x* =0 ⇒ there is no y∈O such that yK(λ,β)x* . 
 
Under  Assumption 1 and according to Definition 2, x* is a best compromise solution for 
Problem 1. 
 
Remarks I: 

1. Although its proof was trivial, Proposition 3 is an interesting result. Accepting 
Assumption 1, Problem 1 is transformed into a biobjective problem, regardless of 
the dimension of the original objective space. If a best compromise solution exists 
(in the sense of Definition 2) it should be the ideal solution for Problem 2. Besides, 
each point x*∈ O with card(SO)x* = card (WO)x* =0 might be chosen as the final 
solution for Problem 1. 

2. Under Assumption 1, there is a best compromise for Problem 1 iff AP(λ,β,ε) is  
minimally free of inconsistencies on O. 

3. Suppose that (0,0) is not a solution for Problem 2. This implies an incorrect 
assessment of AP(λ,β,ε). The DM has two choices: i) To select the “best” non-
dominated solution for Problem 2 as the final solution for his/her original problem, 
or ii) To modify the parameter settlement of AP(λ,β,ε). 

4. Any multiobjective evolutionary algorithm may be used to solve Problem 2. 
 
Def. 10 may be used for distinguishing a best compromise in NS. Let us fix our attention on 
this set. Let us define the set of P-non weakly outranked solutions in NS, that is NW= {y ∈ 
NS such that card (WNS)y = 0}. 
 
Proposition 4: Under Assumption 1, a best compromise solution of (1) is some x*  ∈ NW.  
 
Proof:  
Suppose that x* is a best compromise: Hence NS and NW are not empty (Remark 2). 



 x*∈ NS from Proposition 2 and suppose also that x* ∉ NW . Then, there is y ∈ NS such that 
yAP(λ,β,ε)x* . This is a contradiction with the characterization of a best compromise given 
by Def. 2.  
 
Proposition 5: Under Assumption 1, if x* is a best compromise solution for Problem 1, x*  
is an ideal  (0,0)-solution for the problem: 
 
  
Minimize (card(SO)x, card (WNS)x)                                                                                   (3) 
x∈ O 
 
Proof:  
Since x* is a best compromise solution for Problem 1, from Proposition 3 card(SO)x* = card 
(WO)x* =0. Obviously, if C⊂ O then  card (WC)x ≤ card (WO)x. Hence, card (WNS)x*=0. 
 
As a consequence from Proposition 5, a best compromise solution can be found through a 
lexicographic search, with preemptive priority favoring card(So)x. It is consistent with the 
fact that P(λ,β) models the asymmetric preference information better than Q(λ,β,ε) or 
K(λ,β). This becomes more important when Assumption 1 is in question. In practical 
situations the DM may not be confident with the fuzzy outranking model given by σ(x,y) or 
with a specific settlement of the model’s parameters, including (λ,β,ε). Changes in these 
parameters may modify the DM’s belief about the adequacy of Assumption 1. On this 
background, it is convenient to introduce the following definition: 
 
Definition 12: x* is a P-best compromise solution in C⊆ O iff there is no y∈C such that 
yAP(λ,β,ε)x* . 
 
Remarks II: 

1. Propositions 2-5 remain valid when the notion of P-best compromise is used instead 
of the previous concept given by Definition 2. 

2. (0,0)-ideal solutions for Problems 2-3 are P-best compromise ones. They may 
approximate best compromise solutions for Problem 1 as much as AP(λ,β,ε) is close 
to the actual asymmetric DM’s preference. 

3. In practical situations the decision maker supported by a potential decision analyst 
should assess the set of model´s parameters included in AP(λ,β,ε)  and σ. This is not 
an easy task, since decision-makers usually have difficulties in specifying 
outranking parameters and require an intense support by a decision analyst. To 
facilitate this process, the pair DM-decision analyst can use the preference 
disaggregation-analysis (PDA) paradigm (cf. [17]), which has received an 
increasing interest from the multicriteria decision support community. PDA infers 
the model’s parameters from holistic judgments provided by the DM. Those 
judgments may be obtained from different sources (past decisions, decisions made 
for a limited set of fictitious objects (actions), or decisions taken for a subset of the 
objects under consideration for which the DM can easily make a judgment (cf. [8]). 



In the framework of outranking methods PDA has been recently approached by [9, 
11]. 

4. The non-existence of a P-best compromise when using AP(λ,β,ε) does not imply the 
non existence of a best compromise solution according to Definition 2. A best 
compromise may exist under other asymmetric preference relations. Hence, the 
algorithmic search should be able to generate solutions even if AP(λ,β,ε) is not 
minimally free of inconsistencies. 
 

Proposition 6: Suppose that the set of P-best compromise solutions for Problem 1 is not 
empty. Under Assumption 1, x*  should be chosen as the best solution for Problem 1 only if 
it is a P-best compromise solution. 
 
This proposition can be justified as follows: If x*  is not a P-best compromise solution, then 
there is a y such that yAPx* . Under Assumption 1, the DM should feel certain preference 
favoring y, thus questioning x* as the best solution. 
 
Remarks III : 

1. In practical situations, the value of the information contained in AP(λ,β,ε) is a 
central issue. The DM should be confident with respect to P(λ,β). This means that a 
strictly outranked solution should not be the final solution for Problem 1. Such 
remark allows “filtering” the MOP’s Pareto frontier, thus obtaining a privileged 
portion of the nondominated set. However, a normative use of Q(λ,β,ε)and K(λ,β) is 
more questionable due to i) the cognitive limitations of real decision-makers, and ii) 
some model imprecisions. Hence, if x’∈ NS, then yAP(λ,β,ε)x’  may not be a 
sufficiently strong argument to discard x’ . More information could be needed to 
perform a reliable comparison.  

2. AP(λ,β,ε) is created by comparing pairs of actions with respect to the set of criterion 
functions. Therefore σ(x,y) only contains information about the vectors F(x) and 
F(y). If card (NW) > 1, then there is no reason based on AP(λ,β,ε) which allows us to 
distinguish the best final solution. The DM confidence on the P-best compromises 
may be enhanced by using additional information contained in the fuzzy outranking 
relation, namely some quality measure obtained from a comparison of each 
particular solution with the remaining ones which are potential candidates to be the 
final solution. 

3. When card (NW)= 0 being card (NS)≠0, there is not a P-best compromise solution 
for Problem 1. The information contained in K∪Q is not consistent. The DM should 
use the above discussed additional information in order to select the final solution 
from NS. 

 
Here, we suggest to use the outranking net flow score. This is a very popular measure to 
rank a set of alternatives on which a fuzzy preference relation is defined (cf. [13]). If σ(x,y) 
is a fuzzy preference relation on a set A, the net flow score associated to a∈A is defined as  
Fn(a) =  Σ c∈A-{a} [σ(a,c) - σ(c,a)]. Note that Fn(a) > Fn(b)is an asymmetric and transitive 
binary relation on C, also indicating some kind of preference on this set. So, the net flow 
score may be used to select the most satisfactory solution when the DM is not sufficiently 



confident on AP(λ,β,ε). Guimaraes, Massebeuf et al. and Fernandez et al. ([12, 14, 19]) 
have used the net flow score in the context of multiobjective evolutionary algorithms. 
 
Definition 13: Let C be a subset of O and  Fn(a), the net flow score associated to a∈C .  For 
each x in C, let us define the set of net flow outranking solutions (FC)x = {y ∈C such that 
Fn(y) > Fn(x)}. card (FC)x is its cardinal, an integer function depending on x.  
 
Taking into account the net flow score information, we propose to select the best solution 
for Problem 1 from the nondominated set obtained from: 
 
Minimize (card(SO)x, card (WNS)x, card(FNS)x)                                                           (4) 
x∈ O 
 
Note that the preemptive priority favoring card(So) is kept by Problem 4. 
 
Generally, NS is not empty. P(λ,β) is not minimally free of inconsistencies on O (usually a 
very large set) only if each pair of O×O is on a cycle of that strict preference relation. This 
condition is very hard with high values of λ and β. Nevertheless, when NS is empty, the 
decision maker can set higher values for those parameters in order to break some cycles of 
P(λ,β), thus making this relation minimally free of inconsistencies. 
 
As a generalization of (4), this approach works even if the asymmetric preference relations 
do not hold the minima consistency property. We suggest to solve the problem: 
 
Minimize (card(So)x, card (WB)x, card(FB)x)                                                           (5) 
x∈ O 
 
with preemptive priority favoring card(So). B is the set {y∈O such that y = arg min 
card(So)x}. Since card(So)x is bounded B is always not empty. B=NS when P(λ,β) is 
minimally free of inconsistencies. When Q(λ,β,ε) ∪ K(λ,β) is also minimally free of 
inconsistencies on NS, a P-best compromise solution  may be obtained by solving (5) giving 
preemptive priority to card (WB)x. 
 

5. Adapting the NSGA-II to solve Problem 5: the extended NOSGA method 
 
For solving (4-5) we propose a method inspired on the NSGA-II (cf. [6]), but a) making 
selective pressure  toward the P-non-strictly outranked frontier, and b) looking for 
nondominated solutions obtained from minimizing (card (WB)x, card(FB)x). In fact, the 
antecedent of this method was called NOSGA by [10], acronym from Non-Outranked-Sorting 
Genetic Algorithm. Its main idea is similar to NSGA-II, but working with P-non strictly 
outranked individuals instead of nondominated ones. The “filtering” process is similar, but 
extracting P-non strictly outranked individuals which form classes with the same value of 
card (SO). Such process guarantees the lexicographic priority of the first objective in 
Problems 4-5. As in the NSGA-II, when in binary tournaments card (SO)x < card (SO)y  the 
first individual is chosen. Unlike typical MOEAs, we are not interested in obtaining a 



uniform distribution of solutions representing the Pareto frontier. Therefore, instead of the 
NSGA-II’s crowding distance (or another density estimator), for each x in the current 
population, we propose to use a merit measure defined as η = card (Wfront)x + card(Ffront)x 
(front is the set composed by x and the individuals with the same card (SO)x . That is, when 
two individual with equal card(SO) are compared (in binary tournaments or deciding who 
will be included into the new generation), the least η will be preferred. The goal is to 
increase the selective pressure towards most satisfactory solutions looking for P-non 
strictly outranked solutions with good values of card (WNS) and card(FNS). The pseudocode 
of this extended NOSGA method  is shown below: 
 
PROCEDURE NOSGA-II (L, Number_of_Generations) 
Initialize Population P 
Generate random population with size L 
Evaluate objective values 
Evaluate σ on P×P 
For each x ∈ P, calculate card (SO)x  
Generate fronts of equal values of card (SO ) 
Assign to these fronts a rank (level) based on card (SO ) 
 FOR each rank Ci  DO 
            for each x∈ Ci, calculate card (WCi)x, card(FCi)x, η 
 End FOR 
Generate Child Population Q with size L 
            Perform Binary Tournament Selection 
            Perform Recombination and mutation 
FOR I = 1 to Number_of_Generations  DO 
         Assign P’ = P ∪ Q 
         Evaluate σ on P’×P’ 
         FOR each parent and child in P’ DO 
               Calculate card (SO) 
               Assign rank (level) based on card (SO) 
               Calculate η 
               Loop (inside) by adding solutions to the 
               next generation until L individuals have been found 
        End FOR 
        Replace P by the L individuals found 
        Generate Child Population Q with size L 
                 Perform Binary Tournament Selection 
                 Perform Recombination and mutation 
End FOR 
End PROCEDURE 
 
In comparison with NOSGA the main differences are:  a) Finding the non strictly outranked 
frontier, NOSGA solves a single-criterion optimization problem;  b) NOSGA-II is based on 
an enhanced theoretical characterization of most satisfactory solutions for MOPs; c) the use 
of Q(λ,β,ε)and K(λ,β) in NOSGA-II;  d) as a consequence of points b) and c), NOSGA-II 
promises an increase of the selective pressure toward the best portion of the Pareto frontier. 



 
6. An illustrative example 

 
Let us consider a decision making situation in which the DM is choosing among L’  
different public policies (projects) each with a direct social impact. This is measured by 
using a nine-component vector (N1, N2,…. N9). Ni = nkj denotes the number of people 
belonging to the k-th social category which receive the j-th  benefit level from that policy or 
project. In this example k= 1, 2, 3 correspond to (Extreme Poverty, Poverty, Middle), and j 
= 1, 2, 3 to (High Impact, Middle Impact, Low Impact). N1, N2, N3 correspond to extreme 
poverty people; N7, N8, N9 concern middle class. For example, consider the vector (1000, 
0,0, 2000, 0,0,0, 1500, 0) associated to a particular project. This means that 1000 extreme-
poverty people and 2000 poor people receive high-impact benefits from the project; 
besides,  1500 middle-class people receive middle-impact benefits from the same project. 
Note that these quantities can be added when a set of projects is considered. In the 
following Ni

m denotes the value of Ni associated to the m-th project.  C’ denotes a portfolio 
(a subset of the L’  projects which receives financial support). The value of Ni for the whole 
portfolio is Ni (C’) = x1 Ni

1 + …. + xL Ni
L’ where xj = 1 if the j-th project is supported and xj 

= 0, otherwise. The set of applicant projects is composed of 100 proposals. The aim of this 
decision problem is to choose the “best” portfolio satisfying some budget constraints. 
Formally, the problem is: 
                                          Maximize (N1(C’), N2(C’),…. N9(C’))                                        (6) 
                                                   C’ ∈ RF 
where RF is a feasible region determined by budget constraints. 
Budget constraints are imposed by the class of project (educational, health, etc.), 
geographic region and to the whole portfolio. The total available budget was set as 
Total_budget= 2.5 billion dollars. The constraints by class and region are given by: 
0.3 Total_budget  ≤ Budget_Class 1 ≤ 0.4 Total_budget 
0.25 Total_budget  ≤ Budget_Class 2 ≤ 0.35 Total_budget 
0.2 Total_budget  ≤ Budget_Class 3 ≤ 0.3 Total_budget                                                  (7) 
0.4 Total_budget  ≤ Budget_Region 1 ≤ 0.6 Total_budget 
0.4 Total_budget  ≤ Budget_Region 2 ≤ 0.6 Total_budget 
 
The degree of truth σ(x,y) of the statement “x is at least as good as y” is calculated as in 
ELECTRE-III method, that is: 

                                  σ(x,y) =  c(x,y). N(d(x,y))                                                         (8) 
  
where: 
 c(x,y) denotes the degree of truth of the concordance predicate; 
N(d(x,y)) denotes the degree of truth of the non-discordance predicate. 
We shall take 

                                                 

                                                  c(x,y)=  ∑ wj                                                                                                    (9) 
                                                                  j∈Cx,y 

where Cx,y is the concordance coalition and w’s denote “weights” (w1 + w2 + ... + wn = 1).                 
 



Let Dx,y be the discordance coalition with xSy. The intensity of discordance is measured in 
comparison with a veto threshold vj, which is the maximum difference yj-xj compatible with 
σ(x,y)>0. As in [10] we shall use here: 
 

                                             N(d(x,y)) = min [1 – dj(x,y) ]                                           (10) 
j∈ Dx,y 

 
                                                           
                                                                      1    iff   ∇j ≥ vj   
                                           dj(x,y) =        (∇j - uj)/ (vj – uj)       iff  uj <  ∇j < vj                 (11)  
                                                                       0      iff  ∇j ≤ uj  
 
where ∇j = yj-xj   and uj is a discordance threshold (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Partial discordance relation dj(x,y) 

 
We use binary encoding; a ‘1’ in the individual j-th allele means that the j-th project 
belongs to this particular portfolio. Other parameters of the evolutionary search are: 
crossover probability = 1; mutation probability = 0.02; population size = 100. 
 
Preference model parameters: 
Taking into account the importance of each objective, the normalized weights were settled 
by the decision-maker as (0.23, 0.14, 0.11, 0.14, 0.11, 0.07, 0.09, 0.07, 0.04). The 
indifference thresholds were calculated as a measure of the error evaluating each objective, 
which was assessed as the 15% of its maximum value on the set of projects. The veto 
thresholds were settled as 0.5*(Max fi - Min fi) as in some applications of ELECTRE 
methods (cf. [21]); operations Max and Min act on a population. P(λ,β) and Q(λ,β,ε) were 
obtained by setting λ= 0.67, β= 0.2, ε=0.1. 
We experienced with five random instances.  Coded in Microsoft Visual C# 2005 
(framework 2.0), the average run time was 5.1 minutes on a laptop computer with 1.66 
GHz Intel® Core™ 2 Duo microprocessor, 2 GB RAM 667MHz DDR2, 120GB hard disk, 
and Windows® Vista Business. 

yj 

dj(x,y) 

xj + vj xj + uj 

1 



The (known) P –non outranked frontier of one random instance of this problem is shown in 
Table 1. The objective values are given in thousands. 
 

Table 1: Approximation to the P –non strictly outranked frontier 
Portfolio N1 N2 N3 N4 N5 N6 N7 N8 N9 Card(W) 

 
Fn 

1 820 620 675 1,095 1,005 810 1,086 660 630 0 1.81 
2 820 645 655 1,155 1,005 780 990 636 726 2 1.32 
3 820 685 610 1,095 1,005 780 1,050 636 672 7 0.99 
4 820 665 625 1,155 1,020 780 990 636 720 2 0.95 
5 820 690 610 1,155 960 780 1,026 642 720 4 0.91 
6 820 690 605 1,155 960 780 1,050 600 720 4 0.85 
7 820 620 655 1,155 1,035 750 1,014 636 714 2 0.47 
8 820 690 625 1,155 990 780 990 642 720 4 0.46 
9 820 695 590 1,155 1,035 735 984 636 720 3 0.16 
10 820 730 555 1,095 1,080 690 1,044 624 672 3 0.13 
11 820 630 655 1,155 1,020 750 1,014 636 714 0 0.05 
12 820 710 625 1,095 1,005 780 1,014 642 672 5 0.03 
13 820 615 675 1,095 960 840 1,086 660 582 0 0.00 
14 820 665 610 1,155 990 780 1,026 636 720 5 0.27 
15 820 675 635 1,155 975 780 990 636 726 4 0.49 

             
Ideal 820 740 830 1,260 1,095 1,065 1,104 696 870    
Nadir 300 335 420 570 570 510 540 264 438    

 

Card(W) and Fn are calculated on NS 

 
Portfolios 1, 11 and 13 hold the necessary conditions to be P-best compromise solutions on O. 
Portfolio 1 is the single nondominated solution for Problem 4.  If the DM were not 
confident with respect to Q∪K, he/she might consider also Solution 2. 
Those 15 solutions were compared with ten runs of NOSGA. In the following N1k denotes 
the set of non strictly outranked solutions obtained by NOSGA in its kth run. N2 is the set 
shown in Table 1. U will denote the union set of N1k and N2, and NOU the non-strictly 
outranked set in U. Some results are pointed-out in Tables 2-3. 
 
                      Table 2. Net flow score calculated on U (NOSGA versus NOSGA-II) 
 

Set Average Minimum Maximum 
N11 -2.9 -3.3 -2.3 

N2 0.5 -0.4 1.2 

N12 -2.1 -4.1 -0.5 

N2 0.8 -0.1 1.6 

N13 -2.2 -4.9 0.0 

N2 2.2 0.3 4.7 



Set Average Minimum Maximum 
N14 -3.7 -5.0 -0.9 

N2 2.0 0.1 3.0 

N15 -2.0 -4.5 0.0 

N2 2.0 -1.5 4.8 

N16 -3.4 -5.8 1.0 

N2 3.9 0.8 5.6 

N17 -2.4 -4.7 -0.5 

N2 1.2 0.0 2.1 

N18 -1.0 -2.9 1.4 

N2 0.5 -0.8 2.6 

N19 -2.7 -4.7 -0.6 

N2 0.5 -0.8 1.7 

N110 -2.6 -7.1 0.1 

N2 3.1 0.4 5.5 

 
                    Table 3. Robustness of N1k and N2  (NOSGA versus NOSGA-II) 
 

Run Card (N1k) Card (N1k ∩ NOU) Card (N2 ∩ NOU) 
1 3 0 15 
2 6 0 15 
3 15 0 15 
4 8 1 15 
5 15 3 15 
6 17 1 15 
7 8 2 15 
8 8 1 10 
9 3 0 15 
10 18 0 13 

 
The following remarks come from Tables 2-3: 
First: The net flow score of solutions by NOSGA is very low compared with those obtained by 
NOSGA-II. Eight times to ten the worst solution in N2 outperforms the best solution in N1k. 
Second: Only three solutions by NOSGA remain non-strictly outranked in U (third column of Table 
3, fifth run). In comparison, ten solutions coming from a single NOSGA-II run (Table 1) are non-
strictly outranked in that union set. 
An approximation to the Pareto front was obtained for the same five instances using the standard 
NSGA-II, which is still the benchmark in evolutionary multiobjective optimization (e.g. [1, 27, 28]).  
In the following, NOk and NDk will denote the best front obtained by NOSGA-II and NSGA-II, 
respectively, for the k-th instance. Let U be NOk ∪ NDk . Let NOU and NDU be the non-strictly 
outranked set and the nondominated set in U, respectively.  A comparison between NOk and NDk 
was performed in such five random instances with the results shown in Tables 4, 5 and 6: 
 

Table 4. Net flow score calculated on U (NOSGA-II versus NSGA-II) 

Set Average  Maximum value Minimum value 



Set Average  Maximum value Minimum value 

NO1 37.71 42.35 30.29 

ND1 -7.92 8.36 -34.49 

NO2 45.31 57.56 31.28 

ND2 -13.14 37.66 -52.46 

NO3 50.24 62.85 45.55 

ND3 -17.35 19.01 -65.85 

NO4 60.13 62.08 56.55 

ND4 -9.02 27.79 -41.00 

NO5 63.58 66.74 55.53 

ND5 -11.44 22.63 -45.53 

 
Table 5. Robustness of NOk (NOSGA-II versus NSGA-II) 

Instance Card(NOk) Card(NOU) Card(NOk ∩ NOU) Card(NOk ∩ NDU) 

1 21 25 21 21 

2 29 34 29 29 

3 32 32 32 32 

4 15 15 15 15 

5 18 18 18 18 

  

Table 6. Robustness of NDk  

Instance Card(NDk) Card(NOU) Card(NDk ∩ NOU) Card(NDk ∩ NDU) 

1 100 25 5 66 

2 100 34 5 88 

3 100 32 0 82 

4 100 15 0 77 

5 100 18 0 82 

 

From Tables 4-6, it should be noticed that 
1. The net flow score of solutions in NDk  is very low compared with those in NOk; 
2. Each x ∈ NOk is not dominated in U (fifth column of Table 5); 
3. Each x ∈ NOk remains as non-strictly outranked in U (fourth column of Table 5); 
4. Only a few non-strictly outranked solutions are added by NDk (in two instances, first two rows, 
fourth column of Table 6). However, those solutions are outperformed  by others belonging to NOk; 
5. In three instances, no x ∈ NDk is member of NOU; NSGA-II does not find the non-strictly 
outranked set; 
6. The differences between card(NDk) and card(NDk ∩ NDU) indicate that 12-34% of the solutions 
belonging to NDk are actually dominated by some element of  NOk. 
 



In Table 7, the first column shows the cardinal of the known P –best compromise solutions in NS. 
The cardinal of the known Pareto frontier of Problem 4 (denoted by PF4) is pointed out in the 
second column. 

Table 7. Privileged P –non outranked solutions 
Instance Card (NW) Card (PF4) Card (NW ∩PF4) 

1 2 2 1 
2 1 6 1 
3 0 4 0 
4 3 1 1 
5 0 3 0 

 
According to the  discussion in Section 4, under Assumption 1, the best solution should be an 
element of  NW ∩PF4.  Otherwise, the DM should consider the elements in PF4. These sets contain 
the non-strictly outranked solutions with highest net flow score and lowest “weakness”. In instances 
3 and 5 the solution with highest net flow score is not necessarily the best one. It depends on 1) the 
comparison of card(W) and Fn , and 2) how confident the DM is on Q and K. 
 

7. Conclusions 
 
A relational system of preferences coming from multicriteria decision aid, which includes 
strict preference, weak preference, K-preference, indifference and incomparability binary 
relations, is useful to characterize a best compromise solution of a multiobjective 
optimization problem. Such characterization seems to be the most interesting result of this 
paper. A fuzzy outranking relation can be used to build a model of the DM’s asymmetric 
preference relation, which is a central issue in approaching most satisfactory solutions. 
Under certain conditions of a decision maker’s consistency, a best compromise solution is 
obtained as the ideal solution of a bi-objective optimization problem, which is a map of the 
original problem. When the DM is confident on the asymmetric preference model, he/she 
should accept as satisfactory the ideal solution for that bi-objective problem. Otherwise, a 
best compromise solution may be obtained from a three-objective problem, in which net-
flow score information is incorporated for improving the asymmetric preference model. 
The above characterization is very useful in order to achieve selective pressure towards 
preferential privileged Pareto solutions of the original problem. Using it, the NOSGA-II 
algorithm, which is a derivation from the NSGA-II for solving the lexicographic mapped 
formulation, seems capable of obtaining very good approximations to the best compromise. 
NSGA-II and the original NOSGA method are clearly outperformed in several random 
instances of a real-size problem. 
It is also interesting that the equivalence between the original MOP and its mapped two or 
three-objective problem is valid independently of the original objective space dimension. 
This may be very important to solve MOPs with many objective functions. 
 
Acknowledgements 
 
We acknowledge support from CONACyT projects no. 57255 and 103570.  
We express our gratitude for the constructive comments from several anonymous 
reviewers. 
 
References 



1. Grosan, C., Abraham, A. (2010): “Approximating Pareto frontier using a hybrid line 
search approach”, Information Sciences 180 (14), pp. 2674-2695 

2. Brans, J.P., Mareschal, B. (2005): “PROMETHEE Methods”, in Figueira, Greco 
and Erghott (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, 
Springer Science + Bussiness Media, New York, pp. 163-190. 

3. Coello Coello, C. (1999): “A comprehensive survey of Evolutionary-Based 
Multiobjective Optimization techniques”, Knowledge and Information Systems. An 
International Journal 1 (3), pp. 269-308. 

4. Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B. (2002): Evolutionary 
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, 
New York-Boston-Dordrecht-London-Moscow. 

5. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A. (2007):  Evolutionary 
Algorithms for Solving Multi_Objective Problems. Second Edition, Springer, New 
York. 

6. Deb, K. (2001): Multi-Objective Optimization using Evolutionary Algorithms. John 
Wiley & Sons, Chichester-New York-Weinheim-Brisbane-Singapore-Toronto. 

7. Deb, K. (2007): “Current trends in Evolutionary Multi-objective Optimization”, 
International Journal for Simulation and Multidisciplinary Design Optimisation 1 
(1), pp. 1-8  

8. Doumpos, M., Zopounidis, C. (2002): Multicriteria decision aid classification 
methods. Kluwer Academic Publishers, Dordrecht-Boston- London. 

9. Doumpos, M., Marinakis, Y., Marimaki, M., Zopounidis, C. (2009): “An 
evolutionary approach to construction of outranking models for multicriteria 
classification: The case of ELECTRE TRI method”. European Journal of 
Operational Research 199 (2), pp. 496-505. 

10. Fernandez, E., Lopez, E., Bernal, S., Coello, C., Navarro, J. (2010): “Evolutionary 
multiobjective optimization using an outranking-based dominance generalization”,  
Computers & Operations Research 37 (2),  pp. 390-395. 

11. Fernandez, E., Navarro, J., Bernal, S. (2009a): “Multicriteria sorting using a valued 
indifference relation under  a preference disaggregation paradigm”. European 
Journal of Operational Research 198 (2), pp. 602-609. 

12. Fernandez, E., Felix, L.F., Mazcorro, G. (2009b): “Multiobjective optimization of an 
outranking model for public resources allocation on competing projects”,  International 
Journal of Operational Research 5 (2),  pp. 190-210. 

13. Fodor J., Roubens, M. (1994) : Fuzzy Preference Modeling and Multicriteria 
Decision Support. Kluwer, Dordrecht 

14. Guimaraes, A. (1995): “Generating alternatives routes using Genetic Algorithms and Multi-
Criteria analysis techniques”, in Wyatt, R. and Hossain, H. (eds.), Fourth International 
Conferences  in Urban planning and Urban Management, pp. 547-560, Melbourne. 

15. Hakanan, J., Miettinen, K., Sahlstedt, K. (2008): “Simulation-based interactive 
multiobjective optimization in wastewater”, International Conference on 
Engineering Optimization ENGOPT 2008, Rio de Janeiro, 
http://www.engopt.org/nukleo/pdfs/0205_engopt_paper_hakanen.pdf 

16. Hwang, C.-L., Masud, A.S.M. (1979): Multiple Objective Decision Making-
Methods and Applications. Lecture Notes in Economics and Mathematical Systems, 
vol. 164. Springer, Berlin.  



17. Jacquet-Lagreze, E., Siskos, Y. (2001): “Preference disaggregation: Twenty years of 
MCDA experience”, European Journal of Operational Research,  130 (1), pp. 233-
245 

18. Marakas, G.M. (1999): Decision Support Systems in the 21th Century. Prentice Hall, 
New Jersey. 

19. Massebeuf, S., Fonteix, C., Kiss, L.N., Marc, I., Pla, F., Zaras, K. (1999): 
“Multicriteria optimization and decision engineering of an extrusion process aided 
by a diploid genetic algorithm”, in 1999 Congress on Evolutionary Computation, 
pp. 14-21, Washington D.C. 

20. Miettinen, K.M. (1999): Nonlinear Multiobjective Optimization. Kluwer Academic 
Publishers, Boston-London-Dordrecht 

21. Opricovic, S., Tzeng, G. (2007): “Extended VIKOR method in comparison with 
outranking methods”. European Journal of Operational Research  178 (2), pp. 514-
529. 

22. Osyczka, A. (1985): Multicriteria optimization for engineering design. In Gero, J.S. 
(ed.)  Design Optimization, Academic Press, pp. 193-227. 

23. Roy, B. (1996):  Multicriteria Methodology for Decision Aiding. Kluwer, 
Dordrecht-Boston-London. 

24. Roy, B. (1990): “The Outranking Approach and the Foundations of ELECTRE 
methods”, In Bana e Costa, C.A., (ed.) Reading in Multiple Criteria Decision Aid,  
Springer-Verlag, Berlin ,  pp. 155-183. 

25. Roy, B., Slowinski, R. (2008): “Handling effects of reinforced preference and 
counter-veto in credibility of outranking”, European Journal of Operational 
Research 188 (1), pp. 185-190. 

26. Sanchis, J., Martinez, M, Blasco, X. (2008): “Integrated multiobjective optimization 
and a priori preferences using genetic algorithms”, Information Sciences 178 (4), 
pp. 931-951 

27. Singh, H.K., Ray, T., Smith, W. (2010): “Constrained Pareto simulated annealing 
for constrained multi-objective optimization”, Information Sciences 180 (13), pp. 
2499-2513 

28. Wang, Y., Yang, Y. (2009):  “Particle swarm optimization with preference order 
ranking for multi-objective optimization”, Information Sciences 179 (12), pp. 1944-
1959 

29. Zitzler, E., Thiele, L. (1999): “Multiobjective Evolutionary Algorithms: A 
comparative case study and the Strength Pareto Evolutionary Algorithm”, IEEE 
Transactions on Evolutionary Computation 3 (4), pp. 257-271.  

30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002): “A Fast and Elitist 
Multiobjective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary 
Computation, 6(2), pp. 182-197.  

31. Zhang, Q., Li, H. (2007): “MOEA/D: A Multiobjective Evolutionary Algorithm 
Based on Decomposition”, IEEE Transactions on Evolutionary Computation, 11(6), 
pp. 712-731. 

32. Jensen, M.K. (2003): “Reducing the Run-Time Complexity of Multiobjective EAs: 
The NSGA-II and Other Algorithms”, IEEE Transactions on Evolutionary 
Computation, 7(5), pp. 503-515. 

33. Shi, C., Yan, Z., Shi, Z., Zhang, L. (2010): “A fast multi-objective evolutionary 
algorithm based on a tree structure”, Applied Soft Computing, 10(2), pp. 468-480. 



34. Eskandari, H., Geiger, C.D. (2008): “A fast Pareto genetic algorithm approach for 
solving expensive multiobjective optimization problems”, Journal of Heuristics, 
14(3), pp. 203-241. 

35. Qu, B.Y., Suganthan, P.N. (2010): “Multi-objective evolutionary algorithm based 
on the summation of normalized objectives and diversified selection”, Information 
Sciences, 180(17), pp. 3170-3181. 

36. Qu, B.Y., Suganthan, P.N. (2010): “Multi-objective differential evolution with 
diversity enhancement”, Journal of Zhejiang University-Science C-Computers & 
Electronics, 11(7), pp. 538-543. 
 


