
A Comprehensive Survey ofEvolutionary-Based MultiobjectiveOptimization TechniquesCarlos A. Coello Coello?Laboratorio Nacional de Informatica AvanzadaR�ebsamen 80, AP 696, Xalapa, Veracruz 91090, M�exicoccoello@xalapa.lania.mxAbstract. This paper presents a critical review of the most impor-tant evolutionary-based multiobjective optimization techniques devel-oped over the years, emphasizing the importance of analyzing their Op-erations Research roots as a way to motivate the development of new ap-proaches that exploit the search capabilities of evolutionary algorithms.Each technique is brie
y described mentioning its advantages and disad-vantages, their degree of applicability and some of their known applica-tions. Finally, the future trends in this discipline and some of the openareas of research are also addressed.Keywords: multiobjective optimization,multicriteria optimization, vec-tor optimization, genetic algorithms, evolutionary algorithms, arti�cialintelligence.1 IntroductionSince the pioneer work of Rosenberg in the late 60s regarding the possibilityof using genetic-based search to deal with multiple objectives, this new area ofresearch (now called evolutionary multiobjective optimization) has grown con-siderably as indicates the notable increment (mainly in the last 15 years) oftechnical papers in peer-reviewed journals, special sessions in international con-ferences and interest groups in the Internet1.Multiobjective optimization is with no doubt a very important research topicboth for scientists and engineers, not only because of the multiobjective nature ofmost real-world problems, but also because there are still many open questions inthis area. In fact, there is not even a universally accepted de�nition of \optimum"as in single-objective optimization, which makes it di�cult to even compareresults of one method to another, because normally the decision about what the\best" answer is corresponds to the so-called (human) decision maker.? Most of this work was performed while the author was a�liated to the PlymouthEngineering Centre, in the United Kingdom.1 The author maintains a list on Evolutionary Multiobjective Optimization at:http://www.lania.mx/~ccoello/EMOO/EMOObib.html



Evolutionary algorithms seem particularly desirable to solve multiobjectiveoptimization problems because they deal simultaneously with a set of possiblesolutions (the so-called population) which allows to �nd an entire set of Paretooptimal solutions in a single run of the algorithm, instead of having to performa series of separate runs as in the case of the traditional mathematical program-ming techniques. Additionally, evolutionary algorithms are less succeptible tothe shape or continuity of the Pareto front, whereas these two issues are a realconcern for mathematical programming techniques.Surprisingly, despite the considerable volume of research in evolutionary mul-tiobjective optimization in the last 15 years, there have been only two surveysof this area published in the technical literature2: Tamaki et al. [91], which isa very short and quick review of some of the main approaches, and Fonsecaand Fleming [18, 21] which is a remarkable account of the issues that makethis problem interesting from the evolutionary computing perspective. In bothcases, however, little detail was provided on how each method worked, just a fewapplications of each technique were mentioned and their corresponding Opera-tions Research roots were only scarcely mentioned. Furthermore, several otherapproaches have arisen since the publication of these 2 papers, and the intentionof the present work is to provide researchers and students interested in this topicwith an updated survey that can be used (to a certain extent) as a self-containeddocument for anyone interested in this area who has a previous (at least basic)knowledge of genetic algorithms in general. Those who may need additional in-formation about genetic algorithms should refer to Goldberg [27], Holland [35],Michalewicz [54], and Mitchell [56] for more information.2 Statement of the ProblemMultiobjective optimization (also called multicriteria optimization, multiperfor-mance or vector optimization) can be de�ned as the problem of �nding [65]:a vector of decision variables which satis�es constraints and optimizes avector function whose elements represent the objective functions. Thesefunctions form a mathematical description of performance criteria whichare usually in con
ict with each other. Hence, the term \optimize"means�nding such a solution which would give the values of all the objectivefunctions acceptable to the designer.Formally, we can state it as follows:Find the vector �x� = [x�1; x�2; : : : ; x�n]T which will satisfy the m inequalityconstraints: gi(�x) � 0 i = 1; 2; : : : ;m (1)2 Right after the submission of this paper, David A. Van Veldhuizen and Gary B.Lamont made available a technical report [99] that contains another remarkablesurvey of the area that complements the material contained in this paper.



the p equality constraintshi(�x) = 0 i = 1; 2; : : : ; p (2)and optimizes the vector function�f(�x) = [f1(�x); f2(�x); : : : ; fk(�x)]T (3)where �x = [x1; x2; : : : ; xn]T is the vector of decision variables.In other words, we wish to determine from among the set F of all num-bers which satisfy (1) and (2) the particular set x�1; x�2; : : : ; x�k which yields theoptimum values of all the objective functions.2.1 Pareto OptimumThe concept of Pareto optimum was formulated by Vilfredo Pareto in the XIXcentury [66], and constitutes by itself the origin of research in multiobjectiveoptimization. We say that a point �x� 2 F is Pareto optimal if for every �x 2 Feither, ^i 2 I (fi(�x) = fi(�x�)) (4)or, there is at least one i 2 I such thatfi(�x) > fi(�x�) (5)In words, this de�nition says that �x� is Pareto optimal if there exists no fea-sible vector �x which would decrease some criterion without causing a simultane-ous increase in at least one other criterion. Unfortunately, the Pareto optimumalmost always gives not a single solution, but rather a set of solutions callednon-inferior or non-dominated solutions.2.2 Pareto FrontThe minima in the Pareto sense are going to be in the boundary of the designregion, or in the locus of the tangent points of the objective functions. In Fig. 1, abold line is used to mark this boundary for a biobjective problem. The region ofpoints de�ned by this bold line is called the Pareto Front. In general, it is not easyto �nd an analytical expression of the line or surface that contains these points,and the normal procedure is to compute the points Fk and their correspondingf(Fk). When we have a su�cient amount of these, we may proceed to take the�nal decision.
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f 1Fig. 1. An example of a problem with two objective functions. The Pareto front ismarked with a bold line.3 Approaches That Use Aggregating FunctionsThe notion of genetic search in a multicriteria problem dates back to the late60s, in which Rosenberg's [80] study contained a suggestion that would have ledto multicriteria optimization if he had carried it out as presented. His suggestionwas to use multiple properties (nearness to some speci�ed chemical composition)in his simulation of the genetics and chemistry of a population of single-celledorganisms. Since his actual implementation contained only one single property,the multiobjective approach could not be shown in his work, but it neverthe-less showed the possibility of using an evolutionary-based technique to handlemultiple objective functions.Knowing that a genetic algorithm needs scalar �tness information to work, itis almost natural to propose a combination of all the objectives into a single oneusing either an addition, multiplication or any other combination of arithmeticaloperations that we could devise. There are, however, obvious problems with thisapproach. The �rst is that we have to provide some accurate scalar informationon the range of the objectives, to avoid having one of them to dominate theothers. This implies that we should know, to a certain extent, the behavior ofeach of the objective functions, which is normally (at least in most real-worldapplications) a very expensive process (computationally speaking) that we cannot a�ord in most cases. Obviously, if this combination of objectives is possible(and it is possible in some applications), this is not only the simplest approach,but also is one of the most e�cient procedures, because no further interaction



with the decision maker is required, and if the GA succeeds at optimizing theresulting �tness function, then the results will be at least sub-optimum in mostcases.The approach of combining objectives into a single function is normally de-nominated aggregating functions, and it has been attempted several times in theliterature with relative success in problems in which the behavior of the objec-tive functions is more or less well-known. This section includes the most popularaggregating approaches.3.1 Weighted Sum ApproachThis method consists of adding all the objective functions together using di�erentweighting coe�cients for each one of them. This means that our multiobjectiveoptimization problem is transformed into a scalar optimization problem of theform: min kXi=1 wifi(�x) (6)where wi � 0 are the weighting coe�cients representing the relative impor-tance of the objectives. It is usually assumed thatkXi=1 wi = 1 (7)Since the results of solving an optimization model using (6) can vary signi�-cantly as the weighting coe�cients change, and since very little is usually knownabout how to choose these coe�cients, a necessary approach is to solve the sameproblem for many di�erent values of wi. But in this case, the designer is still, ofcourse, confronted with the decision of having to choose the most appropriatesolution based on his/her intuition.Note that the weighting coe�cients do not re
ect proportionally the relativeimportance of the objectives, but are only factors which, when varied, locatepoints in the Pareto set. For the numerical methods that can be used to seekthe minimum of (6), this location depends not only on the wi values, but alsoon the units in which the functions are expressed.If we want wi to re
ect closely the importance of the objectives, all func-tions should be expressed in units of approximately the same numerical values.Additionally, we can also transform (6) to the form:min kXi=1 wifi(�x)ci (8)where ci are constant multipliers that will scale properly the objectives.The best results are usually obtained if ci = 1=f0i . In this case, the vec-tor function is normalized to the form �f(�x) = [ �f1(�x); �f2(�x); : : : ; �fk(�x)]T , where�fi(�x) = fi(�x)=f0i .



Applications{ Syswerda and Palmucci [90] used weights in their �tness function to addor subtract values during the schedule evaluation of a resource scheduler,depending on the existence or absence of penalties (constraints violated).{ Jakob et al. [41] used a weighted sum of the several objectives involved in atask planning problem : to move the tool center point of an industrial robotto a given location as precisely and quickly as possible, avoiding certainobstacles and aiming to produce a path as smooth and short as possible.{ Jones et al. [42] used weights for their genetic operators in order to re
ecttheir e�ectiveness when a GA was applied to generate hyperstructures froma set of chemical structures.{ Wilson & Macleod [103] used this approach as one of the methods incorpo-rated into a GA to design multiplierless IIR �lters in which the two con
ict-ing objectives were to minimize the response error and the implementationcost of the �lter.{ Liu et al. [51] used this technique to optimize the layout and actuator place-ment of a 45-bar plane truss in which the objectives were to minimize thelinear regulator quadratic control cost, the robustness and the modal con-trollability of the controlled system subject to total weight, asymptoticalstability and eigenvalues constraints.{ Yang and Gen [104] used a weighted sum approach to solve a bicriterialinear transportation problem. More recently, Gen et al. [25, 26] extendedthis approach to allow more than two objectives, and added fuzzy logic tohandle the uncertainty involved in the decision making process. A weightedsum is still used in this approach, but it is combined with a fuzzy rankingtechnique that helps to identify Pareto solutions, since the coe�cients ofthe objectives are represented with fuzzy numbers re
ecting the existinguncertainty regarding their relative importance.Strengths and WeaknessesThis method was the �rst technique developed for the generation of non-inferiorsolutions for multiobjective optimization. This is an obvious consequence of thefact that it was implied by Kuhn and Tucker in their seminal work on numericaloptimization [45]. The main strength of this method is its e�ciency (compu-tationally speaking), and can be applied to generate a strongly non-dominatedsolution that can be used as an initial solution for other techniques. Its mainweakness is the di�culty to determine the appropriate weights when we do nothave enough information about the problem. In this case, any optimal point ob-tained will be a function of the coe�cients used to combine the objectives. Mostresearchers prefer to use a simple linear combination of the objectives and thengenerate the trade-o� surface3 by varying the weights. This approach is very3 The term \trade-o�" in this context refers to the fact that we are trading a value ofone objective function for a value of another function or functions.



simple and easy to implement, but it has the disadvantage of missing concaveportions of the trade-o� curve (in other words, the approach does not gen-erate proper Pareto optimal solutions in the presence of non-convexsearch spaces) [77], which is a serious drawback in most real-world applications.3.2 Goal ProgrammingCharnes and Cooper [5] and Ijiri [39] are credited with the development of thegoal programming method for a linear model, and have played a key role inapplying it to industrial problems. In this method, the decision maker has toassign targets or goals that he/she wishes to achieve for each objective. Thesevalues are incorporated into the problem as additional constraints. The objectivefunction will then try to minimize the absolute deviations from the targets tothe objectives. The simplest form of this method may be formulated as follows[16]: min kXi=1 jfi(�x)� Tij ; subject to �x 2 F (9)where Ti denotes the target or goal set by the decision maker for the ithobjective function fi(�x), and F represents the feasible region. The criterion,then, is to minimize the sum of the absolute values of the di�erences betweentarget values and actually achieved values. A more general formulation of thegoal programming objective function is a weighted sum of the pth power ofthe deviation jfi(�x) � Tij [32]. Such a formulation has been called generalizedgoal programming [37, 38]. This technique has also been called \target vectoroptimization" by other authors [12].Applications{ Wienke et al. [102] used this approach in combination with a genetic algo-rithm to optimize simultaneously the intensities of six atomic emission linesof trace elements in alumina powder as a function of spectroscopic excitationconditions.{ Eric Sandgren [82] also used goal programming coupled with a genetic algo-rithm to optimize plane trusses and the design of a planar mechanism.Strengths and WeaknessesThis technique will yield a dominated solution if the goal point is chosen inthe feasible domain [16]. Its main strength is its e�ciency (computationallyspeaking) in case we know the desired goals that we wish to achieve, and if theyare in the feasible region. However, its main weakness is that the decisionmaker isgiven the task of devising the appropriate weights or priorities for the objectivesthat will eliminate the non-commensurable characteristics of the problem, whichin most cases is di�cult unless there is prior knowledge about the shape of the



search space. Also, if the feasible region is di�cult to approach, this method couldbecome very ine�cient. Nevertheless, this technique may be useful in cases inwhich a linear or piecewise-linear approximation of the objective functions canbe made, because of the availability of excellent computer programs for that, andthe possibility of eliminating dominated goal points easily. On the other hand,in non-linear cases, other approaches may be more e�cient.3.3 Goal AttainmentIn this approach, a vector of weights w1; w2; : : : ; wk relating the relative under- orover-attainment of the desired goals must be elicited from the decision maker inaddition to the goal vector b1; b2; : : : ; bk for the objective functions f1; f2; : : : ; fk.To �nd the best-compromise solution x�, we solve the following problem:Minimize � (10)subject to: gj(�x) � 0; j = 1; 2; : : : ;mbi + � � wi � fi(�x); i = 1; 2; : : : ; k (11)where � is a scalar variable unrestricted in sign and the weightsw1; w2; : : : ; wkare normalized so that kXi=1 jwij = 1 (12)If some wi = 0 (i = 1; 2; : : : ; k), it means that the maximum limit of objec-tives fi(�x) is bi.It can be easily shown [6] that the set of non-dominated solutions for aproblem can be generated by varying the weights, with wi � 0 (i = 1; 2; : : : ; k)even for nonconvex problems.It should be pointed out that the optimum value of � will inform the decisionmaker of whether the goals are attainable or not. A negative value of � impliesthat the goal of the decision maker is attainable and an improved solution willbe obtained. Otherwise, if � > 0, then the decision maker goal is unattainable.Applications{ Wilson & MacLeod [103] used this approach as another of the methodsincorporated into their GA to design multiplierless IIR �lters.



Strengths and WeaknessesAs Wilson and MacLoud [103] indicate, goal attainment has several weaknesses,from which probably the main one is the misleading selection pressure that it cangenerate in some cases. For example, if we have two candidate solutions whichare the same in one objective function value but di�erent in the other, they willstill have the same goal-attainment value for their two objectives, which meansthat for the GA none of them will be better than the other. Its main advantageis the simplicity of its implementation and its computational e�ciency.3.4 The "-Constraint MethodThis method is based on minimization of one (the most preferred or primary)objective function, and considering the other objectives as constraints bound bysome allowable levels "i. Hence, a single objective minimization is carried out forthe most relevant objective function f1 subject to additional constraints on theother objective functions. The levels "i are then altered to generate the entirePareto optima set. The method may be formulated as follows:(1) Find the minimum of the rth objective function, i.e., �nd �x� such thatfr(�x�) = minx 2 F fr(�x) (13)subject to additional constraints of the formfi(�x) � "i for i = 1; 2; : : : ; k and i 6= r (14)where "i are assumed values of the objective functions which we wish not toexceed.(2) Repeat (1) for di�erent values of "i. The information derived from a wellchosen set of "i can be useful in making the decision. The search is stopped whenthe decision maker �nds a satisfactory solution.It may be necessary to repeat the above procedure for di�erent indices r.To get adequate "i values, single-objective optimizations are normally carriedout for each objective function in turn by using mathematical programmingtechniques (or independent GAs). For each objective function fi (i = 1; 2; : : : ; k),there is an optimal design vector �x�i for which fi(�x�i ) is a minimum. Let fi(�x�i )be the lower bound on "i, i.e."i � fi(�x�i ) i = 1; 2; : : : ; r � 1; r + 1; : : : ; k (15)and fi(�x�r) be the upper bound on "i, i.e."i � fi(�x�r) i = 1; 2; : : : ; r � 1; r + 1; : : : ; k (16)When the bounds "i are too low, there is no solution and at least one of thesebounds must be relaxed.This approach was suggested by Ritzel and Wayland [77] as a simple andna��ve way of solving multiobjective optimization problems using a GA. The idea



was to code the GA in such a way that all the objectives, except for one, werekept constant (constrained to a single value), and the remaining objective wouldthen become the �tness function for the GA. Thus, through a process of runningthe GA numerous times with di�erent values of the constrained objectives, atrade-o� surface can be developed.Applications{ Quagliarella and Vicini [71] suggested the use of this technique coupled witha hybrid GA (a genetic algorithm that used gradient based optimizationtechniques to speed up the search in order to reduce the computational costrequired in a real-world application) to solve multiobjective optimizationproblems.{ Ranjithan et al. [72] used this approach to solve groundwater pollution con-tainment problems.{ Loughlin and Ranjithan [52] used a variation of this technique in whichthey incorporated target satisfaction levels (similar to those used in GoalProgramming), and combined it with a neighboorhood selection procedureaccording to which only individuals within a certain radius were allowed tomate (individuals in the population were indexed and placed in a matrixformat). Additional genetic operators such as elitism and dynamic scalingof the target satisfaction levels were also implemented. Loughlin and Ran-jithan applied this technique to a real-world air quality management problemwith two con
icting objectives: minimize the cost of controlling air pollutantemissions and maximize the amount of emissions reduction (this is a combi-natorial problem that is suitable for integer programming techniques).Strengths and WeaknessesThe most obvious weakness of this approach is that it is time-consuming, andthe coding of the objective functions may be di�cult or even impossible forcertain problems, particularly if there are too many objectives. Furthermore,this method tends to �nd weakly non-dominated solutions, which may not beappropriate in some applications (e.g., structural optimization). Nevertheless,the relative simplicity of the technique (its main strength) has made it popularamong some GA practitioners.4 Other Approaches Not Based on The Notion of ParetoOptimumTo overcome the di�culties involved in the aggregating approaches, much workhas been devoted to the development of alternative techniques based on popula-tion policies or special handling of the objectives [70]. Some of the most popularapproaches that fall into this category will be examined in this section.
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individuals with what Scha�er calls \middling" performance4 in all dimensions,which could be very useful for compromise solutions, but that will not surviveunder this selection scheme, since they are not in the extreme for any dimensionof performance (i.e., they do not produce the best value for any objective func-tion, but only moderately good values for all of them). Speciation is undesirablebecause it is opposed to our goal of �nding a compromise solution. Scha�er sug-gested some heuristics to deal with this problem. For example, to use a heuristicselection preference approach for non-dominated individuals in each generation,to protect our \middling" chromosomes.Also, crossbreeding among the \species"could be encouraged by adding some mate selection heuristics instead of usingthe random mate selection of the traditional GA.Applications{ Ritzel and Wayland [77] used a variation of VEGA in which they incorpo-rated a parameter to control the selection ratio. In the case of the ground-water pollution containment problem that Ritzel and Wayland solved, therewere only two objectives, and the selection ratio was de�ned as the ratio ofthe fraction of strings selected on the basis of the �rst objective (reliability)to the fraction selected via the second objective (cost).{ Surry et al. [89] proposed an interesting application of VEGA to model con-straints in a single-objective optimization problem to avoid the need of apenalty function. Surry et al., however, modi�ed the standard procedure ofVEGA and introduced a form of ranking based on the number of constraintsviolated by a certain solution, and they reported that their approach workedwell in the optimization of gas supply networks, since the tendency of VEGAto favor certain solutions can actually be an advantage when handling con-straints, because in that case we want to favor precisely any solution thatdoes not violate any constraint over those which do.{ Cvetkovi�c et al. [13] proposed several approaches to overcome VEGA's prob-lems. For example, to wait for a certain amount of generations before shuf-
ing together the population, or avoid shu�ing the individuals, and insteadcopy or migrate a certain amount of individuals from one sub-population toanother. They used these and other traditional multiobjective optimizationapproaches for preliminary airframe design.{ Tamaki et al. [92, 91] developed a technique in which at each generation,non-dominated individuals in the current population are kept for the follow-ing generation. This approach is really a mixture of Pareto selection (see nextsection) and VEGA, because if the number of non-dominated individuals isless that the population size, the remainder of the population in the follow-ing generation is �lled applying VEGA to the dominated individuals. Onthe other hand, if the number of the non-dominated individuals exceeds thepopulation size, individuals in the following generation are selected among4 By \middling", Scha�er meant an individual with acceptable performance, perhapsabove average, but not outstanding for any of the objective functions.



the non-dominated individuals using VEGA. In a later version of this algo-rithm, called Pareto Reservation strategy, Tamaki et al. [91] used also �tnesssharing among the non-dominated individuals to maintain diversity in thepopulation.Strengths and WeaknessesAlthough Scha�er reported some success, and the main strength of this approachis its simplicity, Richardson et al. [76] noted that the shu�ing and merging of allthe sub-populations corresponds to averaging the �tness components associatedwith each of the objectives. Since Scha�er used proportional �tness assignment[27], these �tness components were in turn proportional to the objectives them-selves [18]. Therefore, the resulting expected �tness corresponded to a linearcombination of the objectives where the weights depended on the distribution ofthe population at each generation as shown by Richardson et al. [76]. The mainconsequence of this is that when we have a concave trade-o� surface certainpoints in concave regions will not be found through this optimization proce-dure in which we are using just a linear combination of the objectives, and it hasbeen proved that this is true regardless of the set of weights used [76]. Therefore,the main weakness of this technique is its inability to produce Pareto-optimalsolutions in the presence of non-convex search spaces.4.2 Lexicographic OrderingIn this method, the objectives are ranked in order of importance by the designer.The optimum solution �x� is then obtained by minimizing the objective functions,starting with the most important one and proceeding according to the assignedorder of importance of the objectives.Let the subscripts of the objectives indicate not only the objective functionnumber, but also the priority of the objective. Thus, f1(�x) and fk(�x) denotethe most and least important objective functions, respectively. Then the �rstproblem is formulated as Minimize f1(�x) (17)subject to gj(�x) � 0; j = 1; 2; : : : ;m (18)and its solution �x�1 and f�1 = (�x�1) is obtained. Then the second problem isformulated as Minimize f2(�x) (19)subject to



gj(�x) � 0; j = 1; 2; : : : ;m (20)f1(�x) = f�1 (21)and the solution of this problem is obtained as x�2 and f�2 = f2(x�2). This pro-cedure is repeated until all k objectives have been considered. The ith problemis given by Minimize fi(�x) (22)subject to gj(�x) � 0; j = 1; 2; : : : ;m (23)fl(�x) = f�l ; l = 1; 2; : : : ; i � 1 (24)The solution obtained at the end, i.e., x�k is taken as the desired solution x�of the problem.Applications{ Fourman [24] suggested a selection scheme based on lexicographic ordering.In a �rst version of his algorithm, objectives were assigned di�erent prioritiesby the user and each pair of individuals were compared according to theobjective with the highest priority. If this resulted in a tie, the objective withthe second highest priority was used, and so on. In another version of thisalgorithm (that apparently worked quite well), an objective was randomlyselected at each run. Fourman used this approach to design compact symboliclayouts [24].{ Kursawe [47] formulated a multiobjective version of evolution strategies [84](ESs) based on lexicographic ordering. Selection consisted of as many stepsas objective functions had the problem. At each step, one of these objectiveswas selected randomly according to a probability vector, and used to deletea fraction of the current population. After selection, the survivors becamethe parents of the next generation. The map of the trade-o� surface wasproduced from the points evaluated during the run. Since the environmentwas allowed to change over time, diploid individuals were necessary to keeprecessive information stored.Strengths and WeaknessesSelecting randomly an objective is equivalent to a weighted combination of ob-jectives, in which each weight is de�ned in terms of the probability that eachobjective has of being selected. However, the use of tournament selection withthis approach makes an important di�erence with respect to other approaches



such as VEGA, because the pairwise comparisons of tournament selection willmake scaling information neggligible [18, 21]. This means, that this approachmay be able to see as convex a concave trade-o� surface, although that reallydepends on the distribution of the population and on the problem itself. Its mainweakness is that this approach will tend to favor more certain objectives whenmany are present in the problem, because of the randomness involved in the pro-cess, and this will have the undesirable consequence of making the populationto converge to a particular part of the Pareto front rather than to delineate itcompletely [12]. However, its simplicity (its main strength) makes it competitivewith a weighted sum of objectives and VEGA.4.3 Use of Game Theory
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Fig. 3. Example of cooperative and non-cooperative game solutions.We can analyze this technique with reference to a simple optimization prob-lem with two objectives and two design variables whose graphical representationis shown in Fig. 3. Let f1(x1; x2) and f2(x1; x2) represent two scalar objectives



and x1 and x2 two scalar design variables. It is assumed that one player isassociated with each objective. The �rst player wants to select a design vari-able x1 which will minimize his objective function f1, and similarly the secondplayer seeks a variable x2 which will minimize his objective function f2. If f1and f2 are continuous, then the contours of constant values of f1 and f2 appearas shown in Fig. 3. The dotted lines passing through O1 and O2 represent theloci of rational (minimizing) choices for the �rst and second player for a �xedvalue of x2 and x1, respectively. The intersection of these two lines, if it exists,is a candidate for the two objective minimization problem, assuming that theplayers do not cooperate with each other (non-cooperative game). In Fig. 3, thepoint N(x�1; x�2) represents such intersection point. This point, known as a Nashequilibrium solution, represents a stable equilibrium condition in the sense thatno player can deviate unilaterally from this point for further improvement ofhis/her own criterion [57].This point has the characteristic thatf1(x�1; x�2) � f1(x1; x�2) (25)and f2(x�1; x�2) � f2(x�1; x2) (26)where x1 may be to the left or right of x�1 in (25) and x2 may lie above orbelow x�2 in (26).Applications{ P�eriaux et al. [68] proposed a GA-based approach that uses the conceptof Nash equilibrium to solve a biobjective optimization problem (the op-timal distribution of active control elements which minimizes the backsca-tering of aerodynamic re
ectors). The main idea of this work was to use 2non-cooperative players represented by 2 independent sub-populations in agenetic algorithm, and then make them to interact in the following way:If f1 and f2 are the 2 objectives to be optimized, let P1 and P2 representthe 2 non-cooperative players. We start at generation zero with P1 tryingto optimize f1 while f2 remains �xed and P2 trying to optimize f2 while f1remains �xed. After one generation is over (i.e., when all the individuals inboth populations have been evaluated and the genetic operators have beenapplied independently to each of those populations), we send (or migrate) thebest individual from population 1 to population 2 and the best individualfrom population 2 to population 1. This process is repeated for as manygenerations as needed, until the Nash equilibrium is reached.Strenghts and WeaknessesThe main strength of this approach is that it seems to be very e�cient (computa-tionally speaking), but in the state presented in the work by P�eriaux et al. [68] is



not possible to generate more than one non-dominated solution which, hopefullywill be the best overall solution to the problem5. However, it is indeed possibleto extend this approach to k players (where k is the number of objectives of aproblem), and to have several Nash equilibrium points, with which the Paretofront can actually be found, although a cooperative game may be preferred inthat case over a non-cooperative approach [75, 74].4.4 Using Gender to Identify ObjectivesRobin Allenson [2] used a population-based approach modelled after VEGA inwhich gender was used to distinguish between the two objective functions of aproblem consisting of the planning of a route composed of a number of straightpipeline segments. With this approach, only male-female mating was allowed,and such gender was randomly assigned at birth. In the initial population, Al-lenson made sure that there was an equal number of males and females, but suchbalance was not kept after applying the genetic operators. At each generation,the worst individual (chosen according to one of the two genders) was eliminatedand replaced by another (randomly picked) individual of the same gender. Allen-son used evolution strategies to implement some form of sexual attractors thatwould modify the way in which mating was performed. The idea was to modelthe sexual attraction that some individuals have over others in nature, whichdetermines a not so random mating.Lis and Eiben [50] also incorporated gender in their GA, but in a more generalsense. In this case, the number of genders (or sexes), was not limited to two, butit could be as many as objectives we had. Another distinction of this approachis that the crossover operator was modifed as to allow panmictic reproduction,in which several parents generate a single child (instead of having two parentsgenerate two children as in the traditional genetic algorithm). The idea was toselect one parent from each sex to contribute to the generation of a child. Thischild will have the sex of the parent that contributed with the largest amountof genes (if there is a tie, then the sex is randomly chosen from the parents thatcontributed the same amount of genes). If no crossover takes place, then one ofthe individuals in the old generation is copied exactly the same (including itssex) to the following generation. In this approach, individuals are evaluated usingdi�erent �tness functions (according to their corresponding sex). The mutationoperator is only slightly restricted to avoid changes in the sex of an individual. Asgenerations progress, a list of non-dominated individuals is updated, removingfrom it any individual that is no longer non-dominated after the list is modi�ed.At the end, this list will contain the Pareto optimal solutions.Applications{ Lis and Eiben [50] tested successfully their approach with the two multi-objective optimization problems provided in the paper by Srinivas and Deb5 P�eriaux et al. did not succeed at that in the example presented in their paper.



[86], but no further applications of this technique seem to be available at themoment.Strengths and WeaknessesThe use of genders is really another way of de�ning separate subpopulationsfor each objective. The di�erence of this approach with VEGA [83] lies on thefact that Lis and Eiben used panmictic crossover, which imposes certain mat-ing restrictions, avoiding the random crossing among di�erent subpopulationsperformed by Scha�er. However, the main weakness of this approach is that aswe increase the number of objectives (or genders), we will have many subpop-ulations and panmictic crossover will become more ine�cient (computationallyspeaking), because we will need to use more parents to generate a child. Ad-ditionally, the population size will have to be large enough as we increase thenumber of objectives, to keep a reasonably diverse spread of genders across theentire population.4.5 Weighted Min-max ApproachThe idea of stating the min-max optimum and applying it to multiobjectiveoptimization problems, was taken from game theory, which deals with solvingcon
icting situations. The min-max approach to a linear model was proposed byJutler [43] and Solich [85], and was further developed by Osyczka [59, 60, 64],Rao [73] and Tseng and Lu [95].The min-max optimum compares relative deviations from the separately at-tainable minima. Consider the ith objective function for which the relative de-viation can be calculated fromz0i(�x) = jfi(�x)� f0i jjf0i j (27)or from z00i (�x) = jfi(�x)� f0i )jjfi(�x)j (28)It should be clear that for (27) and (28) we have to assume that for everyi 2 I and for every �x 2 F , fi(�x) 6= 0.If all the objective functions are going to be minimized, then equation (27)de�nes function relative increments, whereas if all of them are going to be max-imized, it de�nes relative decrements. Equation (28) works conversely.Let �z(�x) = [z1(�x); : : : ; zi(�x); : : : ; zk(�x)]T be a vector of the relative incrementswhich are de�ned in Rk. The components of the vector z(�x) will be evaluatedfrom the formula 8i2I(zi(�x)) = max fz0i(�x); z00i (�x)g (29)



Now we de�ne the min-max optimum as follows [64]:A point �x� 2 F is min-max optimal, if for every �x 2 F the following recur-rence formula is satis�ed:Step 1: v1(�x�) = minx 2 F maxi 2 I fzi(�x)g (30)and then Ii = fi1g, where i1 is the index for which the value of zi(�x) ismaximal.If there is a set of solutions x1 � F which satis�es Step 1, thenStep 2: v2(�x�) = minx 2 x1 maxi 2 I; i 62 I1 fzi(�x)g (31)and then I2 = fi1; i2g, where i2 is the index for which the value of zi(x) inthis step is maximal.If there is a set of solutions xr�1 � F which satis�es step r � 1 thenStep r: vr(�x�) = minx 2 xr�1 maxi 2 I; i 62 Ir�1 fzi(�x)g (32)and then Ir = fIr�1; irg, where ir is the index for which the value of zi(�x)in the rth step is maximal.If there is a set of solutions xk�1 � F which satis�es Step k � 1, thenStep k: vk(�x�) = min�x 2 xk�1 zi(�x) maxi 2 I; i 62 Ik�1 for i 2 I and i 62 Ik�1 (33)where v1(�x�); : : : ; vk(�x) is the set of optimal values of fractional deviationsordered non-increasingly.This optimum can be described in words as follows. Knowing the extremesof the objective functions which can be obtained by solving the optimizationproblems for each criterion separately, the desirable solution is the one whichgives the smallest values of the relative increments of all the objective functions.The point �x� 2 F which satis�es the equations of Steps 1 and 2 may becalled the best compromise solution considering all the criteria simultaneouslyand on equal terms of importance.Applications{ Hajela and Lin [33] included the weights of each objective in the chromosome,and promoted their diversity in the population through �tness sharing. Theirgoal was to be able to simultaneously generate a family of Pareto optimaldesigns corresponding to di�erent weighting coe�cients in a single run of theGA. Besides using sharing, Hajela and Lin used a vector evaluated approach



based on VEGA to achieve their goal. They proposed the use of a utilityfunction of the form: �U = lXi=1Wi FiF �i (34)where F �i are the scaling parameters for the objective criterion, l is thenumber of objective functions, and Wi are the weighting factors for eachobjective function Fi.Hajela's approach also uses a sharing function of the form:�(dij) = (1� � dij�sh�� ; dij < �share0; otherwise (35)with � = 1, and �share chosen between 0.01 and 0.1. The �tness of a designi is then modi�ed as: fsi = fiPMj=1 �(dij) (36)where M is the number of designs located in the vicinity of the i-th design.Under Hajela's representation, weight combinations are incorporated intothe chromosomic string, and a single number represents not the weight itself,but a combination of weights. For example, the number 4 (assuming integerrepresentation) could represent the vectorXw = (0:4; 0:6) for a problemwithtwo objective functions. Then, sharing is done on the weights.Finally, a mating restriction mechanism was imposed, to avoid memberswithin a radius �mat to cross. The value of �mat = 0:15 was suggested byHajela and Lin in their paper [33].Hajela and Lin [33] used their approach to optimize a 10-bar plane trussin which weight and displacement were to be minimized, and a wing-boxstructure in which they wanted to minimize its weight while maximizing itsnatural frequency.Strengths and WeaknessesThe main weakness of this approach is that it can create a very high selectionpressure if certain combinations of weights are produced at early stages of thesearch [12]. The use of sharing will avoid to a certain extent to have a prematureconvergence, but the use of a sharing factor (which is not easy to determine)increases the number of parameters required by the GA, and is therefore sub-ject to further experimenting. Its main weakness is its simplicity and e�ciency,because it does not require to check for non-dominance.



4.6 Two Variations of the Weighted Min-Max StrategyCoello [12, 11] proposed two variations of the weighted min-max strategy usedby Hajela and Lin. In his �rst approach, the decision maker has to provide aprede�ned set of weights that will be used to spawn several small subpopulationsthat will evolve separately (and concurrently), trying to converge to a singlepoint of the Pareto front each. Mating restrictions were imposed to guaranteefeasibility of all the solutions, and constraints were handled by not allowingthe generation of any infeasible solutions through the evolution process (deathpenalty). This approach also requires the knowledge of the ideal vector, or someestimate of it that lies in the feasible region.In a second approach, Coello [12] proposed the use of a local ideal vectorthat was computed at each generation, and the selection process was modi�edas to allow the incorporation of min-max dominance. That means that a certainindividual would be considered the winner of a tournament if its maximum de-viation from the ideal vector was the smallest from the set under competition.Also, mating restrictions were imposed to keep only feasible solutions at all gen-erations. Finally, sharing had to be used to overcome the high selection pressureintroduced by the use of min-max tournament selection.Applications{ Coello and Christiansen applied these two approaches to the optimizationof I-beams [8] and manufacturing problems [9], and to the design of a robotarm [10].Strengths and WeaknessesThe main strength of this technique is its e�ciency and relative simplicity. Theuse of weights is its main weakness because it is not always easy to �nd an ap-propriate set that can delineate correctly the part of the Pareto region that wewish to �nd. However, Coello [12] showed through several engineering design ex-amples that it was actually possible to �nd a good approximation of the Paretofront with a relatively small amount of weights chosen systematically (using adeterministic technique). The use of mating restrictions and feasibility checksduring the entire evolution process may be seen as an important weakness, sinceit has been shown that such constraint-handling approach will not work in con-cave search surfaces. However, this was an attempt to incorporate the handlingof constraints into the search process in another way di�erent from the tradi-tional penalty approach, and it does not preclude the algorithm from handlingconstraints in a di�erent manner.The second approach, in which weights are not used, is much more e�cientand produces good Pareto fronts [12]. However, its main weakness is its depen-dence on the value of �share, but the idea of using a utility function that isdynamically modi�ed, as in this case, has also been exploited more recently byother researchers [96, 4, 30].



4.7 Use of the Contact Theorem to Detect Pareto OptimalSolutionsOsyczka and Kundu [62] proposed the use of an algorithm based on the contacttheorem (one of the main theorems in multiobjective optimization [49]) to de-termine relative distances of a solution vector with respect to the Pareto set. Inthis paper [62], the contact theorem was used to determine the �tness of eachindividual in the population.This approach is in a way, very similar to the Min-Max approach previouslydescribed, only that in this case no weights are required for each objective, nora sharing function is needed to keep diversity in the population6.Applications{ Although the GA-based technique presented by Osyczka and Kundu [62]has not been applied to real-world problems (they used only two simplebiobjective optimization functions in their paper), Osyczka's algorithm fordetecting Pareto optimality has been applied before to several problems,mainly in machine design [63, 59, 60, 61, 64].Strengths and WeaknessesThe main strengths of this approach are its e�ciency and relative simplicity.Additionally, it does not require an explicit sharing function. However, its mainweakness is that it is highly sensitive to the values of the penalty factor usedto incorporate the constraints into each objective function, and its performancerelies heavily on the so-called starting distance, which is some sort of scalingfactor used to compare relative quality among the di�erent solutions. If anyof these 2 values is not chosen properly, too much selection pressure may begenerated, or the GA may often jump back and forth between the feasible andinfeasible regions at any given generation, producing too many dominated pointsin the process, and consequently losing portions of the Pareto front.4.8 A Non-Generational Genetic AlgorithmValenzuela-Rend�on& Uresti-Charre [96] proposed a GA that uses non-generationalselection and in which the �tness of an individual is calculated incrementally.The idea comes from Learning Classi�er Systems (LCS) [27], in which it hasbeen shown that a simple replacement of the worst individual in the populationfollowed by an update of �tnesses of the rest of the population works better thana traditional (generational) GA. In the context of multiobjective optimization,what Valenzuela-Rend�on and Uresti-Charre did was to transform the problemwith N objectives into another one with only two objectives : the minimiza-tion of domination count (weighted average of the number of individuals that6 The algorithm used by Osyczka to identify Pareto optimal solutions and the contacttheorem are described in detail in his book [64].



have dominated this individual so far) and the minimization of the moving nichecount (weighted average of the number of individuals that lie close accordingto a certain sharing function). Then, this biobjective optimization problem istransformed into a single objective optimization problem by taking a linear com-bination of these 2 objectives.Applications{ Valenzuela-Rend�on and Uresti-Charre [96] obtained better results than NPGA[36] (see below) in 3 biobjective optimization problems, both in terms of thenumber of points in the Pareto front at the �nal iteration, and in terms ofthe total number of function evaluations. However, no further comparisonswith other methods or in problems with more objectives was provided.Strengths and WeaknessesThis approach is really a more elaborate version of the weighted ranking tech-niques used by Bentley and Wake�eld [4] (particularly the technique that theycalled weighted average ranking|WAR). The main strength of this approachis that it seems to provide good distributions in an e�cient manner using well-known techniques taken from LCS. However, its main weakness is that it doesnot seem feasible to incorporate in this approach preferences of the objectivesde�ned by the decision maker, which may be a drawback in real-world appli-cations. Also, it does not seem clear how to de�ne the additional parametersrequired by this algorithm, which apparently require an empirical �ne tuning asthe other normal parameters of the GA (e.g., crossover and mutation rates).4.9 Use of Randomly Generated Weights and ElitismIshibuchi and Murata [40] proposed an algorithm similar to Hajela's weightedmin-max technique, but the weights were generated in a slightly di�erent way inthis case, and the set of non-dominated solutions produced at each generationwas kept separately from the current population.Applications{ Ishibuchi and Murata [40] used this technique to solve biobjective optimiza-tion 
owshop scheduling problems in which the makespan and maximumtardiness were to be minimized.Strengths and WeaknessesThis approach is very similar to the technique called Sum of Weighted Rations(SWR) by Bentley and Wake�eld [4] and to the attribute value functions usedby Greenwood et al. [30]. Bentley and Wake�eld [4] claim that this approach



maintains enough diversity as to keep a wide spread of solutions through manygenerations. However, Coello [12] has shown (using a similar approach), thatsuch spread may not be kept in problems in which there is an objective in theideal vector that can be easily achieved by a wide set of solutions. In such case,it is necessary to use sharing techniques or a local search technique (as proposedby Ishibuchi and Murata [40]) to keep diversity, which constitutes the mainweakness of this approach.Bentley and Wake�eld [4] showed also another variation of this algorithmcalled Sum of Weighted Global Ratios (SWGR) which visibly reduces the spreadof solutions produced (i.e., the size of the Pareto set) by using the globally bestand worst values instead of the current ones. The idea is nevertheless interestingand its main strength is that the implementation of this algorithm seems to benot only easy, but also quite e�cient with respect to most of the Pareto-basedapproaches described next.5 Pareto-Based ApproachesThe idea of using Pareto-based �tness assignment was �rst proposed by Goldberg[27] to solve the problems of Scha�er's approach. He suggested the use of non-dominated ranking and selection to move a population toward the Pareto front ina multiobjective optimization problem. The basic idea is to �nd the set of stringsin the population that are Pareto non-dominated by the rest of the population.These strings are then assigned the highest rank and eliminated from furthercontention. Another set of Pareto nondominated strings are determined fromthe remaining population and are assigned the next highest rank. This processcontinues until the population is suitably ranked. Goldberg also suggested theuse of some kind of niching technique to keep the GA from converging to a singlepoint on the front. A niching mechanism such as sharing [29] would allow theGA to maintain individuals all along the non-dominated frontier.Applications{ Hilliard et al. [34] used a Pareto optimality ranking method to handle theobjectives of minimizing cost and minimizing delay in a scheduling prob-lem. They tentatively concluded that the Pareto optimality ranking methodoutperformed the VEGA method.{ The Pareto method was found to be superior to a VEGA by Liepins et al.[48] when applied to a variety of set covering problems.{ Ritzel et al. [77] also used non-dominated ranking and selection combinedwith deterministic crowding [53] as the niching mechanism. They appliedthe GA to a groundwater pollution containment problem in which cost andreliability were the objectives. Though the actual Pareto front was unknown,Ritzel et al. used the best trade-o� surface found by a domain-speci�c al-gorithm, called MICCP (Mixed Integer Chance Constrained Programming),to compare the performance of the GA. They found that selection according



to Pareto non-domination was superior to both VEGA and non-dominationwith deterministic crowding, at least for �nding points near or on the frontfound by MICCP.{ Stanley andMudge [88] implementedGoldberg's Pareto ranking technique tosolve a microprocessor design problem in which the constraints were handledas additional objectives.Strengths and WeaknessesThe main weakness of Pareto ranking in general is that there is no e�cient algo-rithm to check for non-dominance in a set of feasible solutions [12]. Traditionalalgorithms have serious degradation in performance as we increase the size ofthe population and the number of objectives. Also, the use of sharing requiresto estimate the value of �share, which is not easy, and the performance of themethod relies a lot on such value. However, Pareto ranking is the most appropri-ate way to generate an entire Pareto front in a single run of the GA and its mainstrength is that the approach is less succeptible to the shape or continuity of thePareto front, whereas these two issues are a serious concern for mathematicalprogramming techniques.5.1 Multiple Objective Genetic AlgorithmFonseca and Fleming [17] have proposed a scheme in which the rank of a certainindividual corresponds to the number of chromosomes in the current populationby which it is dominated. Consider, for example, an individual xi at generationt, which is dominated by p(t)i individuals in the current generation. Its currentposition in the individuals' rank can be given by [17]:rank(xi; t) = 1 + p(t)i (37)All non-dominated individuals are assigned rank 1, while dominated ones arepenalized according to the population density of the corresponding region of thetrade-o� surface.Fitness assignment is performed in the following way [17]:1. Sort population according to rank.2. Assign �tness to individuals by interpolating from the best (rank 1) to theworst (rank n � N) in the way proposed by Goldberg [27], according tosome function, usually linear, but not necessarily.3. Average the �tnesses of individuals with the same rank, so that all of themwill be sampled at the same rate. This procedure keeps the global population�tness constant while maintaining appropriate selective pressure, as de�nedby the function used.As Goldberg and Deb [28] point out, this type of blocked �tness assignmentis likely to produce a large selection pressure that might produce premature con-vergence. To avoid that, Fonseca and Fleming used a niche-formation method



to distribute the population over the Pareto-optimal region, but instead of per-forming sharing on the parameter values, they have used sharing on the objectivefunction values [87].Applications{ Chen Tan and Li [93] reported success in the use of MOGA for the multi-objective optimization of ULTIC controllers that satisfy a number of timedomain and frequency domain speci�cations. Also, Chipper�eld and Fleming[7] reported success in using MOGA for the design of a multivariable controlsystem for a gas turbine engine.{ Obayashi [58] used Pareto ranking with phenotypic sharing and best-N se-lection (the best N individuals are selected for the next generation amongN parents and N children) for the aerodynamic design of compressor bladeshapes.{ Rodr��guez V�azquez et al. [78] extended MOGA to use it in genetic pro-gramming, introducing the so-called MOGP (Multiple Objective GeneticProgramming). Genetic programming [44] replaces the traditional linearchromosomic representation by a hierarchical tree representation that, byde�nition, is more powerful, but also requires larger population sizes andspecialized operators. MOGP was used for the identi�cation of non-linearmodel structures, as an alternative that the authors reported to work better(in terms of representation power) than the use of the conventional linearrepresentation of MOGA that they had attempted before [22].{ Aherne et al. [1] used MOGA to optimize the selection of parameters for anobject recognition scheme called the Pairwise Geometric Histogramparadigm.{ Todd and Sen [94] used a variant of MOGA for the preplanning of con-tainership layouts (a large scale combinatorial problem). In Todd and Sen'sapproach, a population of non-dominated individuals is kept and updatedat each generation, removing individuals that become dominated and du-plicates. The traditional genetic operators and sharing are applied only tothis population. Niche sizes are computed automatically for each criterionby substracting the maximum value for that criterion from the minimumand dividing it by the population size. Crossover was restricted so that onlyindividuals that were very similar could mate, and because of the permu-tations encoded, a repair algorithm had to be used afterwards. Finally, aheuristic mutation that basically de�ned rules to exchange bit positions hadto be used to avoid premature convergence of the population.Strenghts and WeaknessesIt has been cited in the literature [87, 14] that the main weakness of MOGA isthat it performs sharing on the objective value space, which implies that twodi�erent vectors with the same objective function values can not exist simul-taneously in the population under this scheme. This is apparently undesirable,because these are precisely the kind of solutions that the user normally wants.



However, nothing in the algorithm precludes it from performing sharing the pa-rameter value space, and apparently this choice has been taken in some of theapplications reported above.The main strenghts of MOGA is that is e�cient and relatively easy to imple-ment [12]. Its main weakness is that, as all the other Pareto ranking techniques,its performance is highly dependent on an appropriate selection of the shar-ing factor. However, it is important to add that Fonseca and Fleming [17] havedeveloped a good methodology to compute such value for their approach.5.2 Non-Dominated Sorting Genetic AlgorithmThe Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srini-vas and Deb [86], and is based on several layers of classi�cations of the indi-viduals. Before selection is performed, the population is ranked on the basisof nondomination: all nondominated individuals are classi�ed into one category(with a dummy �tness value, which is proportional to the population size, toprovide an equal reproductive potential for these individuals). To maintain thediversity of the population, these classi�ed individuals are shared with theirdummy �tness values. Then this group of classi�ed individuals is ignored andanother layer of nondominated individuals is considered. The process continuesuntil all individuals in the population are classi�ed. A stochastic remainder pro-portionate selection was used for this approach. Since individuals in the �rstfront have the maximum �tness value, they always get more copies than the restof the population. This allows to search for nondominated regions, and resultsin quick convergence of the population toward such regions. Sharing, by its part,helps to distribute it over this region. The e�ciency of NSGA lies in the wayin which multiple objectives are reduced to a dummy �tness function using anondominated sorting procedure. With this approach, any number of objectivescan be solved [87], and both maximimization and minimization problems can behandled.Applications{ P�eriaux et al. [68] used the NSGA to �nd an optimal distribution of activecontrol elements which minimizes the backscattering of aerodynamic re
ec-tors.{ Vedarajan et al. [97] used the NSGA for investment portfolio optimization,but interestingly they used binary tournament selection instead of stochas-tic remainder selection as suggested by Srinivas and Deb [86]. The authorsclaim that this approach worked well in their examples, although they donot provide any argument for their choice of selection strategy. Tournamentselection is expected to introduce a high selection pressure that may di-lute the e�ect of sharing. However, since Vedarajan et al. used fairly largepopulation sizes (above 1000 individuals), the counter-e�ect of tournamentselection may had been absorbed by the extra individuals in the population.{ Michielssen and Weile [55] used also the NSGA to design an electromagneticsystem.



Strengths and WeaknessesThe main strengths of this technique is that can handle any number of objectives,and that does sharing iin the parameter value space instead of the objective valuespace, which ensures a better distribution of individuals, and allows multipleequivalent solutions exist. Some researchers [12] have reported that its mainweakness is that it is more ine�cient (both computationally and in terms ofquality of the Pareto fronts produced) than MOGA, and more sentitive to thevalue of the sharing factor �share. Other authors [106, 105] report that the NSGAperformed quite well in terms of \coverage" of the Pareto front (i.e., it spreads ina more uniform way the population over the Pareto front) when applied to the0/1 knapsack problem, but in their experiments no comparisons with MOGAwere provided.5.3 Niched Pareto Genetic AlgorithmHorn and Nafpliotis [36] proposed a tournament selection scheme based onPareto dominance. Instead of limiting the comparison to two individuals, anumber of other individuals in the population was used to help determine dom-inance (typically around 10). When both competitors were either dominated ornon-dominated (i.e., there was a tie), the result of the tournament was decidedthrough �tness sharing [29]. Population sizes considerably larger than usual withother approaches were used so that the noise of the selection method could betolerated by the emerging niches in the population [18].Horn and Nafpliotis [36] arrived at a form of �tness sharing in the objectivedomain, and suggested the use of a metric combining both the objective and thedecision variable domains, leading to what they called nested sharing.Applications{ Belegundu et al. [3] used the NPGA for the design of laminated ceramiccomposites.{ Poloni and Pediroda [69] used it for the design of a multipoint airfoil that hasits minimum drag at two given lift values with a constraint in the maximumallowed pitching moment.{ A variation of the NPGA was proposed by Quagliarella and Vicini [71]. Theyintroduced the dominance criteria of the problem in the selection mechanism(as in the NPGA), but then selected the individuals to be reproduced to gen-erate the following population using a random walk operator. This obviouslyproduces a locally dominating individual rather than a globally dominatingone. Additionally, if more than one non dominated individual is found, thenthe �rst one encountered is selected (instead of doing sharing like in theNPGA). At the end of every new generation, the set of Pareto optimal so-lutions is updated and stored. They used this approach for airfoil design[71].



Strengths and WeaknessesSince this approach does not apply Pareto selection to the entire population,but only to a segment of it at each run, its main strenghts are that is very fastand that it produces good non-dominated fronts that can be kept for a largenumber of generations [12]. However, its main weakness is that besides requiringa sharing factor, this approach also requires a good choice of the size of thetournament to perform well, complicating its appropriate use in practice.6 Future Research PathsAlthough a lot of work has been done in this area, most of it has concentratedon application of conventional or ad-hoc techniques to certain di�cult problems.Therefore, there are several research issues that still remain to be solved, someof which will be brie
y described next:{ Since the size of the Pareto set is normally considerably large, and in theparticular case of using a genetic algorithm, depends on the size of the pop-ulation, it may be desirable in some cases to devise ways of reducing thenumber of elements in such set, in order to facilitate the analysis for thedecision maker. Kunha, Oliveira and Covas [46] proposed the incorporationof Roseman and Gero's algorithm [79] into the GA to cluster together pointsthat are within a certain distance (de�ned by the user) of each other in thePareto front.{ Probably one of the most di�cult problems in multiobjective optimizationis to determine how to measure the quality of a solution. So far, practicallyvisual inspection is the only technique used, unless there is some previousknowledge of the points which lie in the Pareto front (in which case thereis obviously no need for a multiobjective optimization technique). Fonsecaand Fleming [23] proposed the de�nition of certain (arbitrary) goals thatwe wish the GA to attain; then we can perform multiple runs and applystandard non-parametric statistical procedures to evaluate the quality of thesolutions (i.e., the non-dominated fronts) produced by the technique understudy, and/or compare it against other similar techniques. However, thesearbitrary goals are not easy to de�ne either.Other (similar) metrics have been proposed in the literature. For example,Van Veldhuizen and Lamont [98] proposed the so-called generational dis-tance, which is a measure of how close is our current Pareto front from thereal Pareto front (assuming we know where it lies). Zitzler and Thiele [105]proposed two measures: the �rst concerns the size of the objective valuespace which is covered by a set of nondominated solutions and the secondcompares directly two sets of nondominated solutions, using as a metric thefraction of the Pareto front covered by each of them. Finally, Srinivas andDeb [87] proposed the use of an statistical measure (the chi-square distri-bution) to estimate the spread of the population on the Pareto front withrespect to the sharing factor used.



All these metrics are interesting proposals but there are almost no compar-ative studies of techniques that substantiate their suitability in general testproblems, which implies that more work in this area is required.{ In some cases it may be necessary to be able to assign more importance tocertain objective or objectives. Interestingly, in such cases, an aggregatingapproach allows us to change the importance of the objectives very easily,as opposed to any ranking technique (i.e., Pareto-based approaches) whichnormally do not provide the means to do it directly. Fonseca and Fleming[17] proposed the use of a utility function combined with MOGA [18, 21] toproduce a method for the progressive articulation of preferences. The ideathat they proposed was to have a feedback loop between the decision makerand the GA, so that certain solutions (from the Pareto set) are given morepreference than others. Ideally, such process could be done automaticallyby replacing the decision maker with an expert system [17]. The problemwith Fonseca's approach is that it requires previous knowledge of the rangesof each objective function, which could be excessively expensive or evenimpossible to obtain in some cases.Bentley and Wake�eld [4] proposed the use of weights to estimate the im-portance of solutions that are already identi�ed as Pareto optimal, in anattempt to overcome the problems with Fonseca's approach. Also, in a moreelaborate approach, Greenwood et al. [30] proposed a compromise betweenthe aggregated approach (i.e., the use of weights) and ranking techniques inwhich the level of preference may be de�ned. Greenwood et al. [30] used anapproach called speci�ed multi-attribute value theory (ISMAUT) [101] which,combined with a GA, allows the de�nition of preferences by the GA itself,rather than asking the intervention of the decision maker. However, the de-cision maker still gets to decide what particular area of the trade-o� surfacewants to explore, so that the GA constrains the search to that speci�c area.Additionally, Greenwood et al. [30] de�ned a certain metrics that allows usto obtain a single value (or utility function) that will guide the search to theparticular Pareto region that is of interest to the decision maker.Finally, Voget and Kolonko [100] proposed the use of a fuzzy controller thatregulates the selection pressure automatically by using a set of prede�nedgoals that de�ne the `desirable' behavior of the population. An interestingaspect of this work is that they actually combine Pareto ranking with VEGAduring the same run of the GA, to allow the desired reduction of deviationsfrom the goals speci�ed by the authors [100].These 3 proposals are quite interesting, but still more work needs to be donein this area, preferrently with real-world problems (Fonseca's approach wasan appropriate choice for the optimization of a gas turbine engine [17], andGreenwood et al. [30] showed that their approach performed well in twohardware/software codesign problems), so that more general guidelines canbe derived from the di�erent approaches proposed.{ Directly related to the problem of measuring the quality of the solutionsfound with a multiobjective optimization technique lies the need to have aset of benchmark problems that can be used to test existing and new ap-



proaches. This set should include both constrained and unconstrained prob-lems7, examples with few objectives (2 or 3) suitable for graphical inspection,problems with few and several variables, and problems in which is possibleto achieve the ideal vector (these could be used to tune up any techniqueto be tried). In this direction, Deb [14] has recently proposed ways to cre-ate controllable test problems for evolutionary multiobjective optimizationtechniques using single-objective optimization problems as a basis. This isan interesting proposal that could allow to transform deceptive and mas-sively multimodal problems into very di�cult multiobjective optimizationproblems. However, in his technical report, Deb [14] only de�nes test prob-lems with 2 objective functions and the scalability of these test functionsto more objectives is not straightforward. Van Veldhuizen and Lamont [99]have also proposed some guidelines to design a test function suite for evolu-tionary multiobjective optimization techniques, and have included in theirreport some sample test problems.Using benchmark problems such as those proposed by Deb [14] and VanVeldhuizen & Lamont [99], it should be possible to perform detailed studiesof performance of di�erent GAs (assuming certain quality measures).Coello [12] and Zitzler & Thiele [106, 105] have conducted comparative stud-ies of this type using engineering design problems and the 0/1 knapsackproblem respectively, but it is necessary to have a database of test prob-lems (as suggested by Van Veldhuizen and Lamont [99]) and to de�ne bettermetrics to evaluate the performance of each technique. It is particularly im-portant to introduce in this database problems that have constraints, sincethis aspect has been overlooked by most researchers in the last few years.This will improve our understanding of the strengths and weaknesses of eachtechnique and should lead us to the development of new and more powerfulapproaches.{ As Deb indicates [14], it would be very useful to understand the dynamicsof the population of a GA over di�erent generations when applied to multi-objective optimization problems. If we knew how is the population behavingand what issues are making it di�cult to keep nondominated solutions, wecould devise techniques in which the progress towards the global Pareto frontcould be considerably faster than with the current approaches.{ It is also important to de�ne stopping criteria for a GA-based multiobjec-tive optimization technique, because it is not obvious to know when thepopulation has reached a point from which no further improvement can bereached (i.e., how do we know that the global Pareto front has been found?).Currently, the main approaches used to stop this kind of GA haven been toeither use a �xed number of generations, or to monitor the population atcertain intervals and interpret visually the results to determine when to haltthe evolution process.7 Most current papers that introduce new GA-based multiobjective optimization tech-niques, use 2 or 3 simple unconstrained biobjective functions, particularly those usedoriginally by Scha�er [83].



{ The use of sharing in these techniques introduces another problem, becausethe value of �share becomes another parameter with which the user has toexperiment until a reasonable setting is found. Even when important workhas been done in this area (see for example Deb and Goldberg [15] andFonseca & Fleming [17]), most of that research is focused on single-objectiveoptimization, or multimodal optimization.{ Some researchers have also found alternative applications of multiobjectiveoptimization techniques that are quite interesting. The most remarkable isperhaps the attempt to use ranking techniques or similar approaches to han-dle constraints in a single objective optimization problem, as to avoid theuse of penalty functions. Surry et al. [89] proposed the COMOGA (Con-strained Optimization by Multi-Objective Genetic Algorithms) approach,which treats each constraint as a separate objective and therefore transformsa constrained single objective optimization problem into an unconstrainedmultiobjective optimization problem, which is solved using Fonseca's MOGA[17]. This approach was used by Surry et al. to optimize gas supply networks[89]. Fonseca and Fleming [19] also proposed to handle constraints as objec-tives, and applied their approach to the design of a gas turbine [20]. Parmeeand Purchase [67] implemented a version of VEGA [83] to handle constraintsrelating to a gas turbine design problem as objectives to allow the GA tolocate a feasible region within the highly constrained search space of this ap-plication. Having identi�ed a feasible point region, specialized operators wereintroduced to create a variable-size hypercube around each feasible point inan attempt to de�ne the feasible region [67]. Finally, Stanley and Mudge[88] used also Pareto ranking to handle constraints treated as objectives ina combinatorial optimization problem (microprocessor design).With no doubt, the number of applications of evolutionary multiobjectiveoptimization techniques to real-world problems will increase over the years,and a probable trend in research could be to reformulate many problems thatare currently considered as if they only had one objective. This will constitutea more realistic approach to the solution of problems that frequently arisein areas such as engineering, because they are normally reduced to a singleobjective and the remaining objectives are treated as constraints instead ofhandling all (con
icting) objectives simultaneously.{ Finally, a very important topic that has been only scarcely addressed byresearchers in multiobjective optimization is the development of a theorythat can explain issues such as the e�ect of the parameters used (i.e., pop-ulation size, crossover and mutation rates, niche sizes, and elitism) and theway in which the selection technique adopted a�ects the performance of analgorithm. In this direction, G�unter Rudolph [81] has recently showed thattheoretical results of convergence derived from single-objective evolutionaryoptimization cannot be used in the presence of multiple objectives. In hisstudy, Rudolph proposes a methodology to prove convergence to the Paretofront, but only shows results for a speci�c problem, indicating in the processthe main di�culties that theoreticians have to face to derive a more generalproof.



7 ConclusionsThis paper has attempted to provide a comprehensive review of the most pop-ular evolutionary-based approaches to multiobjective optimization, giving alsosome insights of their Operations Research roots, their advantages and disadvan-tages, and their possible range of applicability. Additionally, some representativereal-world applications of each approach (when found) have also been included,together with a very rich bibliography that should be enough to guide a new-comer into this important and growing area of research.In the �nal section of the paper, the most promising areas of future research(according to the author's opinion) were brie
y described, and some of the workalready done around them has also been brie
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