
HCS: A New Local Search Strategy for Memetic

Multi-Objective Evolutionary Algorithms

Adriana Lara1, Gustavo Sanchez2,
Carlos A. Coello Coello1⋆, and Oliver Schütze1

1 CINVESTAV-IPN, Computer Science Department, Mexico City, Mexico
{alara,ccoello,schuetze}@cs.cinvestav.mx,
2 Simon Bolivar University, Caracas, Venezuela

gsanchez@usb.ve

Abstract. In this paper we propose and investigate a new local search
strategy for multi-objective memetic algorithms. More precisely, we sug-
gest a novel iterative search procedure, the HCS (Hill Climber with
Sidestep), which is designed for the treatment of multi-objective opti-
mization problems, and show further on two possible ways to integrate
the HCS into a given evolutionary strategy leading to new memetic (or
hybrid) algorithms. The pecularity of the HCS is that it is intended to
be capable both of moving toward and along the (local) Pareto set de-
pending on the distance of the current iterate toward this set. The local
search procedure utilizes the geometry of the directional cones of such
optimization problems and works with or without gradient information.
Finally, we present some numerical results on some well-known bench-
mark problems indicating the strength of the local search strategy as a
standalone algorithm as well as its benefit when used within a MOEA.
For the latter we use the state of the art algorithms NSGA-II and SPEA2
as base MOEAs.

Key words: multi-objective optimization, heuristic search, memetic algorithm,
hill climber, Pareto set

1 Introduction

In a variety of applications in industry and finance one is faced with the problem
that several objectives have to be optimized concurrently leading to a multi-
objective optimization problem (MOP). As a general example, two common goals
in product design are certainly to maximize the quality of the product and to
minimize its cost. Since these two goals are typically contradicting, it comes as
no surprise that the solution set—the so-called Pareto set—of an MOP does in
general not consist of one single solution but rather of an entire set of solutions
(see Section 2 for a more detailed discussion).

⋆ The third author is also affiliated to the UMI-LAFMIA 3175 CNRS

2

For the computation of the Pareto set of a given MOP there exist several
classes of algorithms. There exist, for instance, a variety of mathematical pro-
gramming techniques such as scalarization methods (see e.g., [40, 17, 11] and
references therein) or multi-objective continuation methods [24] which are in
general very efficient in finding single solutions—the most prominent example
is probably Newton’s method which is used within continuation methods and
which has local quadratic convergence [42]—or even entire sets of solutions but
which may have trouble in finding the entire (global) Pareto set in certain cases.
In contrast, there are global methods including multi-objective evolutionary al-
gorithms (MOEAs) [12, 10] or subdivision techniques [55, 15] which accomplish
the ‘global task’ exceedingly but offer in turn (much) slower convergence rates
compared to the algorithms mentioned above.
Another class of algorithms are the memetic (or hybrid) algorithms, i.e., al-
gorithms which hybridize MOEAs with local search strategies (see Section 2.2
for an overview of existing methods). This is done in order to obtain an algo-
rithm which offers on one side the globality and robustness of the evolutionary
approach, but on the other side also an improved overall performance by the
inclusion of well directed local search.
The scope of this paper is to contribute to the last category of algorithms. To
be more precise, we propose a new point-wise local search prodecure, the Hill
Climber with Sidestep (HCS), which is capable of moving both toward (using
hill climber techniques) and along (sidestep) the Pareto set according to the dis-
tance of the current iterate to this set. In particular the automatic switch of the
movement represents a novelty which makes the operator universally applicable
within any given MOEA. We present the HCS as local search procedure and
demonstrate on two examples that it can be beneficial to integrate the HCS into
a MOEA. According to the classification made in [58] the resulting algorithms
NSGA-II-HCS and SPEA2-HCS, which are based on NSGA-II and SPEA2, are
exploitation-embedded hybrid methods.

The remainder of this paper is organized as follows: In Section 2, we state
some theoretical background and give an overview on existing memetic MOEAs
(MEMOEAs). In Section 3, we introduce the underlying ideas of the HCS and
propose two realizations, a gradient free version and one version which exploits
gradient information, both presented as standalone algorithms. In Section 4 we
address the integration of the HCS into a MOEA and propose two possible
memetic strategies where NSGA-II and SPEA2 are used as base MOEAs. In
Section 5, we show some numerical results on both the HCS as a standalone
algorithm as well as on the memetic strategies. Finally, some conclusions are
drawn in Section 6.

3

2 Background

Here we briefly describe the background required for this paper: we introduce
to the notion of multi-objective optimization and give an overview on existing
memetic strategies for the numerical treatment of such problems.

2.1 Multi-objective Optimization (MOO)

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently leading to multi-objective
optimization problems (MOPs). In the following we consider continuous MOPs
which are of the following form:

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ Rn is the domain and the function F is defined as the vector of the
objective functions

F : Q → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Q → R is continuous. In this work we will mainly consider
the unconstrained case (i.e., Q = Rn) but will give some possible modifications
of the algorithms in case Q is defined by inequality constraints such as box
constraints.
Central for the treatment of MOPs is the concept of the optimality of a point
x ∈ Q which is not analogue to the scalar objective case (k = 1). In the multi-
objective case (k > 1) the concept of dominance is used which dates back over
a century and was proposed first by Pareto [44].

Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to
(MOP) if F (x) ≤p F (y) and F (x) 6= F (y), else y is called non-dominated
by x.

(c) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q
which dominates x.

In case all the objectives fi, i = 1, . . . , k, of the MOP are differentiable the fol-
lowing theorem of Kuhn and Tucker [38] states a necessary condition for Pareto
optimality for unconstrained MOPs. For a more general formulation of the the-
orem we refer e.g. to [40].

Theorem 1. Let x∗ be a Pareto point of (MOP), then there exists a vector

α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k
∑

i=1

αi∇fi(x
∗) = 0. (1)

4

The theorem claims that the vector of zeros can be written as a convex
combination of the gradients of the objectives at every Pareto point. Obviously,
(1) is not a sufficient condition for Pareto optimality. On the other hand, points
satisfying (1) are certainly ‘Pareto candidates’.

Definition 2. A point x ∈ Rn is called a Karush–Kuhn–Tucker point3 (KKT–

point) if there exist scalars α1, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1 and that
Equation (1) is satisfied.

The set of all (globally) Pareto optimal solutions is called the Pareto set,
denoted by PQ. It has been shown that this set typically—i.e., under mild reg-
ularity assumptions—forms a (k − 1)-dimensional object [24]. The image of the
Pareto set, F (PQ), is called the Pareto front. Since we are involving local search
strategies in our work we have to take also locally optimal points into consider-
ation. In the following, let P be the set of local Pareto points. In case the MOP
is differentiable, P can be considered as the set of KKT–points.

Theorem 2 ([49]). Let (MOP) be given and q : Rn → Rn be defined by

q(x) =
k

∑

i=1

α̂i∇fi(x), (2)

where α̂ is a solution of

min
α∈Rk

{

‖

k
∑

i=1

αi∇fi(x)‖2
2; αi ≥ 0, i = 1, . . . , k,

k
∑

i=1

αi = 1

}

. (3)

Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x.

The theorem states that for every point x ∈ Q which is not a KKT–point a
descent direction (i.e., a direction where all objectives’ values can be improved)
can be found by solving the quadratic optimization problem (3). In case q(x) = 0
the point x is a KKT–point. Thus, a test for optimality has to be performed
automatically when computing the descent direction for a given point x ∈ Q.

2.2 Memetic Strategies in MOO

Hybridization of MOEAs with local search algorithms has been investigated for
more than twelve years, starting shortly after the first MOEAs were proposed [36,
10]. One of the first MEMOEAs for models on discrete domains was presented
in [29, 30] as a ‘Multi-Objective Genetic Local Search’ (MOGLS) approach. The
authors proposed to use the local search method after classical variation opera-
tors are applied. A randomly drawn scalarizing function is used to assign fitness
for parent selection.

3 Named after the works of Karush [33] and Kuhn & Tucker [38].

5

Jaszkiewicz [32] proposed an algorithm called the Pareto Memetic Algorithm
(PMA). This algorithm uses an unbounded ‘current set’ of solutions (CS) and
from this selects a small ‘temporary population’ (TP) that comprises the best
solutions with respect to a scalarizing function. Then TP is used to generate
offspring by crossover. Jaszkiewicz suggests that scalarizing functions are par-
ticularly better at encouraging diversity than dominance ranking methods used
in most MOEAs.

Another important MEMOEA, called M-PAES, was proposed in [35]. Un-
like Ishibuchi’s and Jaszkiewicz’s approaches, M-PAES does not use scalarizing
functions, but employs instead a Pareto ranking based selection coupled with
a grid-type partition of the objective space. Two archives are used: one that
maintains the global non-dominated solutions and the other that is used as the
comparison set for the local search phase.

In [41], the authors proposed a local search process with a generalized replace-
ment rule. Ordinary two-replacement rules based on the dominance relation are
usually employed in a local search for multiobjective optimization. One is to
replace a current solution with a solution which dominates it. The other is to
replace the solution with a solution which is not dominated by it. The movable
area with the first rule is very small when the number of objectives is large. On
the other hand, it is too huge to move efficiently with the latter. The authors
generalize these extreme rules by counting the number of improved objectives
for a given candidate.

Caponio and Neri [8] proposed the Cross Dominant Multi-Objective Memetic
Algorithm (CDMOMA), which consists of the NSGA-II combined with two local
search engines: a multi-objective implementation of the Rosenbrock algorithm
[47], which performs very small movements, and the Pareto Domination Multi-
Objective Simulated Annealing (PDMOSA) approach proposed in [61], which
performs a more global exploration. The main idea of this approach is to use
the mutual dominance between non-dominated solutions belonging to consecu-
tive generations (this is called cross-dominance by the authors) as a parameter
that indicates the degree of improvement achieved. Such value is applied with
certain probability (based on a generalized Wigner semicircle distribution) to
decide which of the two local search engines to apply. CDMOMA was found to
have a similar or better performance than both NSGA-II and SPEA2 in several
benchmark problems and in a real-world electrical engineering problem.

Soliman et al. [60] proposed a memetic version of a co-evolutionary multi-
objective differential evolution (CMODE-MEM) approach, which evolves both a
population of solutions and promising search directions. The fitness of a search
direction is based on its capability to improve solutions. Local search is ap-
plied to a portion of the population after each generation. The performance
of CMODE-MEM was assessed using several benchmark problems, and results
were compared with respect to NSGA-II, NSDE [27, 28] and CMODE (without
local search). The results indicated that the two versions of CMODE (with and
without local search) were the best overall performers.

6

In [62, 64, 65, 63], methods are presented which are hybrids of evolutionary
search algorithms and multi-agent strategies where the task of the agents is to
perform the local search.

The continuous case—i.e., continuous objectives defined on a continuous
domain—was explicitly first explored in [19], where a neighborhood search was
applied to NSGA-II [13]. In their initial work, the authors applied the local search
only after NSGA-II had ended. To do this, the authors applied a local search us-
ing a weighted sum of objectives. The weights were computed for each solution
based on its location in the Pareto front such that the direction of improve-
ment is roughly in the direction perpendicular to the Pareto front. Later works
compare this approach with the same local search method being applied after
every generation. Evidently, they found that the added computational workload
impacted efficiency.

In [25] a gradient based local algorithm (Sequential Quadratic Programming
(SQP)), was used in combination with NSGA-II and SPEA [72] to solve the
ZDT benchmark suite [70]. The authors stated that if there are no local Pareto
fronts, the hybrid MOEA has faster convergence toward the true Pareto front
than the original one, either in terms of the objective function evaluations or in
terms of the CPU time consumed (since a gradient based algorithm is utilized,
the sole usage of the number of function calls as a basis for a comparison can be
misleading). Furthermore, they found that the hybridization technique does not
decrease the solution diversity.

In [1] three different local search techniques were hybridized with MOGA:
simulated annealing, hill climbing and tabu search. The three hybrid algorithms
were applied to ZDT problems and compared to the standard MOGA considering
the same number of function evaluations. An adaptive mechanism was proposed
to determine the size of the neighborhood for each individual. The authors claim
that the ‘MOGA - Hill climbing’ was outperforming the standalone MOGA
and the MOGA hybridized with the other local search techniques. They noted
also that the process of fine-tuning the non-dominated individuals resulted in
unwanted genetic drift and premature convergence: none of the hybrids were
dedicated for distribution enhancement.

In [46], the authors proposed a hybrid technique that combines the robustness
of MOGA-II [45] with the accuracy and speed of NBI-NLPQLP, an accurate and
fast converging algorithm based on a classical gradient method. The methodology
consists of starting with a preliminary robust MOGA-II run, then isolating each
single portion of the Pareto curve as an independent problem, each of which is
treated with an independent accurate NBI-NLPQLP run.

In [68] the proposed local search process employs quadratic approximations
for all objective functions. The samples gathered by the algorithm along the
evolutionary process are used to fit these quadratic approximations around the
point selected for local search. After that, a locally improved solution is estimated
from the quadratic associated problem. The hybridization of the procedure is
demonstrated with SPEA 2 [71].

7

A succesful hybrid approach was proposed in [26]. The authors proposed the
algorithm MO-CMA-ES, a multi-objective CMA-ES [21], which combines the
strategy parameter adaptation of evolutionary strategies with a multi-objective
selection based on non-dominated sorting. The MO-CMA-ES is independent of
the chosen coordinate system and its behavior does not change if the search space
is translated, rotated, and/or rescaled. The authors claim that MO-CMA-ES
significantly outperforms NSGA-II on all but one of the considered test problems:
the NSGA-II is faster only on the ZDT4 problem where the optima form a regular
axis-parallel grid, because NSGA-II heavily exploits this kind of separability.

In [67], a novel evolutionary algorithm (EA) for constrained optimization
problems is presented: the so-called hybrid constrained optimization EA (HCOEA).
The algorithm combines multi-objective optimization with global and local search
processes. In performing the global search, a niching genetic algorithm based on
tournament selection is used. Meanwhile, the best infeasible individual replace-
ment scheme is used as a local search operator for the purpose of guiding the
population toward the feasible region of the search space. During the evolu-
tionary process, the global search model effectively promotes high population
diversity, and the local search model remarkably accelerates the convergence
speed. HCOEA was tested on 13 benchmark functions, and the experimental
results suggest that it is more robust and efficient than other state-of-the-art
algorithms in terms of the selected performance metrics.

The use of gradient based hill climbing methods within NSGA-II has been
proposed and studied in [57]. By this, the authors were able to accelerate the
convergence of NSGA-II.

Finally, in [55, 52, 22, 53], hybrids can be found were heuristic methods are
coupled with multi-objective continuation methods.

Concluding, it can be said that so far many authors have reported succesfull
hybridizations of local search techniques with genetic algorithms. However, to
the best of the authors knowledge, there exist basically three crucial questions
which remain open in the design of (single- or multi-objective) memetic strategies
(e.g., [23, 59, 37, 31, 39, 4]): Where shall a local search process be hybridized with
a genetic algorithm? Which individuals should be fine-tuned and how much?
And when shall the local refinement be applied?
In the following, we give a particular—but not all-embracing—response to these
last questions.

3 HCS: The Hill Climber with Sidestep

In the following, we propose a novel iterative local search procedure, the HCS,
which is designed to be uses within a memetic strategy. For sake of a better
understanding, we present here the method as standalone algorithm. The inte-
gration of the HCS into MOEAs and the resulting modifications will be addressed
in the next section.

8

Before we can come to the design of such a strategy, we have to ask ourselves
what are the requirements for an iterative search procedure Φ : Rn → Rn with

xl+1 = Φ(xl), (4)

where x0 ∈ Rn is a given initial solution and {xi}i∈N0
is the resulting sequence

of iterates. Note that we are dealing with a point-wise iteration—i.e., input and
output of Φ are a single points of the domain—, and not with a population based
strategy. We are of the opinion that such a ‘wish list’ on Φ for the treatment of
MOPs includes the following tasks:

(a) Φ should generate an improvement of the current iterate xl if this one is not
already ‘close’ to the P , i.e., a point xl+1 with xl+1 ≺ xl.

(b) In case the current iterate xl is already ‘close’ to P , a search along P would
be desired.

(c) The switch between the situations described in (a) and (b) should be done
automatically according to the position of the current iterate xl.

(d) The process should work with or without gradient information (whether or
not provided by the model).

(e) The process should be capable of handling constraints of the MOP.

In (a) the ‘classical’ task of a hill climber as known for single-objective opti-
mization problems [16, 34, 43, 48, 18, 39] is described. Item (b) contains a pecu-
larity of multi-objective optimization, namely that there is—using the climbing
metaphor—no single mountain top but rather an entire ridge of mountain tops
which forms P (respectively a set of ridges in case P is diconnected). The gener-
ation of such a point xl+1 can be regarded as a ‘sidestep’ relative to the current
iterate xl in the upward movement of the hill climber. Important for the effi-
ciency of Φ within a memetic strategy is item (c), i.e., the capability to decide
if case (a) or (b) is more appropriate.
In the following we describe two variants of such a function Φ which aims to
fulfill the above wish list: one version of the HCS which is gradient free, and
another version which involves gradient information.

3.1 HCS without Using Gradient Information

First, we describe the HCS algorithm for the case in which no gradient infor-
mation is available, since that seems to be more relevant for common real-world
engineering problems which is the main area of application for MOEAs. We
concentrate here on the unconstrained case and possible modifications of the al-
gorithm for the treatment of MOPs with inequality constraints are given below.

The method we describe here is based on the geometry of multi-objective
optimization which has been studied in [7]. This work gives a good insight into
the structure of such problems by analyzing the geometry of the directional
cones of candidate solutions at different stages of the optimization process: when
a point x0 is ‘far away’ from any local Pareto optimal solution, the gradients’

9

objectives are typically aligned and the descent cone is almost equal to the half-
spaces associated with each objective. Therefore, for a randomly chosen search
direction ν, there is a nearly 50 % chance that this direction is a descent direction
at x0 (i.e., there exits an h0 ∈ R+ such that F (x0 + h0ν) <p F (x0)). If on the
other side a point x0 is ‘close’ to the Pareto set, the individual gradients are
almost contradictory (compare also to the famous theorem of Kuhn and Tucker
[38] which holds for points on P), and thus, the size of the descent cone is
extremely narrow, resulting in a small probability for a randomly chosen vector
to be a descent direction. The two scenarios are depicted in Figure 1 for the bi-
objective case. Hereby, {−,−} and {+, +} denote the descent and ascent cone,
respectively. The symbol {−, +} indicates that in this direction an improvement
according to f1 can be achieved while the values of f2 will increase. To be more
precise, if all objectives are differentiable, then the following equivalence holds
for a search direction ν at a point x0:

ν ∈ {−, +} ⇐⇒ 〈∇f1(x0), ν〉 < 0 and 〈∇f2(x0), ν〉 > 0, (5)

where 〈·, ·〉 denotes the standard scalar product. Analogous statements hold for
{+,−}.

(a) (b)

Fig. 1. The descent cone (shaded) for an MOP with 2 parameters and 2 objectives
during initial (a) and final (b) stages of convergence. The descent cone shrinks to zero
during the final stages of convergence. The figure is taken from [4].

The gradient free HCS is constructed on the basis of these observations.
Given a point x0 ∈ Q, the next iterate x1 is selected as follows: a further point
x̃1 is chosen randomly from a neighborhood of x0, say x̃1 ∈ B(x0, r) with

B(x0, r) := {x ∈ Rn : x0,i − ri ≤ xi ≤ x0,i + ri ∀i = 1, .., n}, (6)

10

where r ∈ Rn
+ is a given (problem dependent) radius. If x̃1 ≺ x0, then ν := x̃1−x0

is a descent direction4 at x0, and along it a ‘better’ candidate can be searched,
for example via line search methods (see below for one possible realization). If
x0 ≺ x̃1 the same procedure can be applied to the opposite direction (i.e., along
ν := x0 − x̃1) and starting with x̃1. If x0 is ‘far away’ from any local solution,
the chance is, by the above discussion, quite high that domination occurs, either
x̃1 ≺ x0 or x0 ≺ x̃1. If x0 and x̃1 are mutually non-dominating, the process will
be repeated with further candidates x̃2, x̃3, . . . ∈ B(x0, r). If only mutually non-
dominated solutions (x̃i, x0) are found within Nnd steps, this indicates, using
the above observation, that the point x0 is already near to the (local) Pareto
set, and hence it is desirable to search along this set. This is because even if a
descent direction would be available further improvements would very likely be
negligible, and, hence, it is advisable to seek for further regions of the Pareto
set. To perform such a sidestep it would be desirable to use the accumulated
information obtained by the unsuccessful trials. Fundamental for the algorithm
we present here is the fact that the ‘unsuccessful’ search directions νi,1 := x̃i−x0

and νi,2 := x0−x̃i = −νi,1 are located in the diversity cones. Further, there exists
the following relation of νi,1 and νi,2: if νi,1 is, for example, in the cone {+,−},
then νi,2 is the opposite cone {−, +} which is a direct consequence of (5). This
holds for bi-objective MOPs, the general k-objective case is analogue.

Based on these observations we propose the following search directions. First
we address the bi-objective case. If, for example, a search along {−, +} after Nnd

unsuccessful trials is sought, we propose to use the following one which uses the
previous information:

νacc =
1

Nnd

Nnd
∑

i=1

si

x̃i − x0

‖x̃i − x0‖
, (7)

where

si =

{

1 if f1(x̃i) < f1(x0)
-1 else

(8)

By construction, νacc is in {−, +}, and by the averaging of the search direc-
tions we aim to obtain a direction which is ‘perpendicular’ to the (small) descent
cone. Note that in this case νacc is indeed a ‘sidestep’ to the upward movement
of the hill climbing process as desired, but this search direction does not nec-
cessarily have to point along the Pareto set (see next subsection for a better
guided search). A similar strategy for the search can be done for a general num-
ber k of objectives, however, leading to a larger variety for the search direction.
For instance, for k = 3, there are six diversity cones which can be grouped by
reflection as follows:

4 In the sense that there exists a t̄ ∈ R+ such that fi(x0 + t̄ν) < fi(x0), i = 1, . . . , k,
but not in the ‘classical’ sense, i.e., in case fi is differentiable ∇fi(x0)

T ν < 0 is not
guaranteed.

11

{+,−,−} and {−, +, +} ,

{+,−, +} and {−, +,−} ,

{+, +,−} and {−, +, +} .

(9)

That is, for k = 3 there are three different groups of cones in which search
directions can be divided (The sidesteps performed in Algorithm 6 of Section 4
are based on this idea). For a general k there are a total of 2k−1 − 1 different
groups making it less likely to find a perpendicular direction due to averaging
within Nnd trials and within one of these cones. Alternatively to (7) one can e.g.
use the accumulated information by taking the average search direction over all
search directions as follows:

νacc =
1

Nnd

Nnd
∑

i=1

x̃i − x0

‖x̃i − x0‖
, (10)

This direction has previously been proposed as a local guide for a multi-objective
particle swarm algorithm in [6]. Note that this is a heuristic that does not guar-
antee that νacc indeed points to a diversity cone. In fact, it can happen that
this vector points to the descent or ascent cone, though the probability for this
is low for points x0 ‘near’ to a local solution due to the narrowness of these
cones. However, in both cases Algorithm 1 acts like a classical hill climber—i.e.,
it searches for better points—which is still in the scope of the procedure (though
the improvements may not be significant due to the vicinity of the current iterate
to P).

A pseudocode of the HCS for the bi-objective case which uses the strategies
described above and the sidestep heuristic (7) is given in Algorithm 1. In the
following we provide details for possible realizations of the line search and the
handling of the constraints.

Sidestep direction The direction for the sidestep is determined by the value of
i0 (see line 5 and lines 15-20 of Algorithm 1). For simplicity, in Algorithm 1 the
value of i0 is chosen at random. In order to introduce an orientation to the search,
the following modifications can be done in the bi-objective case: in the beginning,
i0 is fixed to 1 for the following iteration steps. When the sidestep (line 23 of
Algorithm 1) has been performed Ns times during the run of an algorithm, this
indicates that the current iteration is already near to the (local) Pareto set, and
this vector is stored in xtemp. If in the following no improvements can be achieved
according to f1 within a given number Ni of sidesteps, the HCS ‘jumps’ back to
xtemp, and a similar process is started but aiming for improvements according to
f2. That is, i0 is set to −1 for the following steps. A possible stopping criterion,
hence, could be to stop the process when no improvements can be achieved
according to f2 within another Ni sidesteps along {+,−} (this has in fact been
chosen as the stopping criterion in Section 5.1).

12

Algorithm 1 HCS1 (without using gradient information for k = 2)

Require: starting point x0 ∈ Q, radius r ∈ Rn
+, number Nnd of trials, MOP with

k = 2
Ensure: sequence {xl}l∈N of candidate solutions
1: a := (0, . . . , 0) ∈ Rn

2: nondom := 0
3: x1

0 := x0

4: for l = 1, 2, . . . do

5: set x1
l := x1

l−1 and choose x2
l ∈ B(x1

l , r) at random
6: choose i0 ∈ {1, 2} at random
7: if x1

l ≺ x2
l then

8: νl := x1
l − x2

l

9: compute tl ∈ R+ and set x1
l := x2

l + tlνl.
10: nondom := 0, a := (0, . . . , 0)
11: else if x2

l ≺ x1
l then

12: proceed analogous to case ”x1
l ≺ x2

l ” with
13: νl := x2

l − x1
l and x1

l := x1
l + tlνl.

14: else

15: if fi0(x2
l) < fi0(x1

l) then

16: sl := 1
17: else

18: sl := −1
19: end if

20: a := a + sl

Nnd

x2

l −x1

l

‖x2

l
−x1

l
‖

21: nondom := nondom + 1
22: if nondom = Nnd then

23: compute t̃l ∈ R+ and set x1
l := x1

l + t̃la.
24: nondom := 0, a := (0, . . . , 0)
25: end if

26: end if

27: end for

13

Computation of tl The situation is that we are given two points, say x0, x1 ∈ Rn,
such that x1 ≺ x0. That is, there exists a subsequence {i1, . . . , il} ⊂ {1, . . . , k}
with

fij
(x1) < fij

(x0), j = 1, . . . , l,

and thus, ν := x1 −x0 is a descent direction for all fij
’s at the point x0. For this

(single objective) case there exist various strategies to perform the line search
(see e.g., [16, 56]). One crucial problem is to find a good initial guess t∗ for
a suitable step size (which is e.g. given by 1 when using Newton’s method).
In case t∗ is not already sufficient the step size can for instance be fine tuned
by backtracking methods ([16]). Since x1 can be very close to x0 the distance
‖x1 − x0‖ can thus not always serve as a good choice, and standard methods to
obtain the initial guess do not apply. Instead, we propose the following heuristic
to compute t∗. To capture the idea we begin with the scalar case, i.e., we are
given a function f : R→ R, and values t0, t1 ∈ R with t0 < t1 and f(t0) < f(t1).
We define ∆ := t1 − t0, tl := t0, tm := t1, and tr := t0 + 2∆ and check if

f(tm) − f(tl)

tm − tl
<

f(tr) − f(tm)

tr − tm
. (11)

If the above equation is true, we suggest to approximate f by a quadratic poly-
nomial p(t) = at2 + bt + c (the values of a, b, and c can be derived explicitly by
the interpolation conditions p(tl) = f(tl), p(tm) = f(tm), and p(tr) = f(tr), see
[16]). The reason for (11) is because if the term in (11) is true then p is convex
(see Figure 2 for an example), and thus, it is guaranteed that the extreme point
of p, t∗p = − b

2a
, is a minimizer and takes its value in (t0,∞). Hence, t∗p can be

chosen as a guess for the minimizer of f . (This idea to approximate f locally by
a quadratic polynomial was first proposed by Armijo [3]).
If (11) is false, quadratic approximation may not yield a useful result (in fact,
in that case t∗p may be negative), and we suggest to check condition (11) with
the new data tl := tm, tm := tr, and tr := tl + tl + 4∆ (i.e., doubling the step
size for tr). This process will be repeated until the boundary of the domain ∂Q
is reached (in that case, take the maximal step size tmax as describe below) or
(11) is true. The process will stop after a few iterations. If t∗p is too large (i.e., if
f(t∗p) > f(t1)), smaller step sizes can be found via backtracking.
In Algorithm 2, this idea is tranferred to the multi-objective case. Hereby, fν,i

denotes the restriction of objective fi to the line x0 +Rν, i.e.,

fν,i(t) = fi(x0 + tν), (12)

and quad approx the method to find the minimizer of the quadratic polynomial
as described above.
Note that this step size control differs from the one presented in [51] since the
initial guesses as described in [51] are restricted to the range t∗ ∈ (0, 2‖x1−x0‖2]
which may be too small if x1 is near to x0.

Computation of t̃l We are given a point x0 ∈ Rn and the search direction
a =

∑Nnd

i=1 si(x̃i − x0)/‖x̃i − x0‖ (or alternatively direction (10)) with x̃i ∈

14

0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
l

t
m

t
r

f

2.5 3 3.5 4 4.5 5 5.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

f

t
l

t
m

t
r

Fig. 2. The term in Equation (11) is false for tl, tm, and tr in the left figure and true
in the right figure. In the latter case, the quadratic polynomial is convex.

Algorithm 2 t∗ := hc step(x0, x1)

Require: x0, x1 ∈ Rn with x1 ≺ x0, maximal number of trials Nmax

Ensure: step size t∗ for the hill climber
1: I := {i ∈ {1, . . . , k} : fi(x1) < fi(x0)}
2: ν := x1 − x0

3: ∆ := ‖x1 − x0‖2

4: tl := 0, tm := ∆, tr := 2∆
5: for j = 1, . . . , Nmax do

6: if ∃i ∈ I : (11) is true for tl, tm, tr and fν,i then

7: for all i ∈ I do

8: if (11) is true for tl, tm, tr and fν,i then

9: t∗i := quad approx(tl, tm, tr, fν,i)
10: else

11: t∗i := ∞
12: end if

13: end for

14: return t∗ := mini=1,...,k t∗i
15: else

16: tl := tm, tm := lr, tr := 2 ∗ tr

17: end if

18: end for

19: return t∗ := tm

15

B(x0, r), i = 1, . . . , Nnd, and such that (x0, x̃i), i = 1, . . . , Nnd, are mutually
non-dominating. For this situation, we propose to proceed analogously to [50],
where a step size strategy for multi-objective continuation methods is suggested:
given a target value ǫy ∈ R+—e.g., the minimal value which makes two solutions
distinguishable from a practical point of view—, the task is to compute a new
candidate xnew = x0 + t̃a such that

‖F (x0) − F (xnew)‖∞ ≈ ǫy (13)

In case F is Lipschitz continuous there exists an L ≥ 0 such that

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Q. (14)

This constant can be estimated around x0 by

Lx0
:= ‖DF (x0)‖∞ = max

i=1,...,k
‖∇fi(x0)‖1,

where DF (x0) denotes the Hessian of F at x0 and ∇fi(x0) the gradient of
the i-th objective at x0. In case the derivatives of F are not given (which is
considered in this section) the accumulated information can be used to compute
the estimation

L̃x0
:= max

i=1,...,Nnd

‖F (x0) − F (x̃i)‖∞
‖x0 − x̃i‖∞

,

since the x̃i’s are near to x0. Combining (13), (14) and using the estimation Lx0

leads to the step size control

xnew = x0 +
ǫy

Lx0

a

‖a‖∞
. (15)

Handling constraints In the course of the computation it can occur that iterates
are generated which are not inside the feasible domain Q. That is, we are faced
with the situation that x0 ∈ Q and x1 := x0 + h0ν 6∈ Q, where ν is the search
direction. In that case we propose to proceed analogously to the well-known
bisection method for root finding in order to backtrack from the current iterate
x1 to the feasible set:
let in0 := x0 ∈ Q and out0 := x1 6∈ Q and m0 := in0+0.5(out0−in0) = x0+ h0

2 ν.
If m0 ∈ Q set in1 := m0, else out1 := m0. Proceeding in an analogous way, one
obtains a sequence {ini}i∈N of feasible points which converges linearly to the
boundary ∂Q of the feasible set. One can, for example, stop this process with
an i0 ∈ N such that ‖outi0 − ini0‖∞ ≤ tol, obtaining a point ini0 with maximal
distance tol to ∂Q. See Algorithm 3 for one possible realization. Note that by
this procedure no function evaluation has to be spent (though a feasibility test
may also be of relevant numerical effort in some cases).

In case the domain Q is given by box constraints, i.e., if Q can be written as

Q = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} , (16)

where l, u ∈ Rn with l ≤p u, the backtracking can be performed in one step:
given a point x0 ∈ Q and a search direction ν the maximal step size hmax such
that x0 + hmaxν ∈ Q can be computed as shown in Algorithm 4.

16

Algorithm 3 Backtracking to Feasible Region

Require: x0 ∈ Q, x1 = x0 + h0ν 6∈ Q, tol ∈ R+

Ensure: x̃ ∈ x0x1 ∩ Q with infb∈∂Q ‖b − x̃‖ < tol
1: in0 := x0

2: out0 := x1

3: i := 0
4: while ‖outi − ini‖ ≥ tol do

5: mi := ini + 1
2
(outi − ini)

6: if mi ∈ Q then

7: ini+1 := mi

8: outi+1 := outi

9: else

10: ini+1 := ini

11: outi+1 := mi

12: end if

13: i := i + 1
14: end while

15: return x̃ := ini

Algorithm 4 hmax := ComputeHmax(x0, ν, l, u)

Require: feasible point x0 ∈ Q, search direction ν ∈ Rn\{0}, lower and upper bounds
l, u ∈ Rn

Ensure: maximal step size hmax such that x0 + hmaxν ∈ Q
1: for i = 1, . . .,n do

2: if vi > 0 then

3: di := (ui − xi)/vi

4: else if vi < 0 then

5: di := −(xi − li)/vi

6: else

7: di := ∞
8: end if

9: end for

10: hmax := min
i=1,...,n

di

17

Design parameters We agree that a realization of Algorithm 1 may include a
variety of design parameters which may be difficult to tune and adapt to a
particular problem. However, if the suggestions made in this paper are taken
merely the values for four design parameters have to be chosen (see Table 1):
the parameter r defines the neigborhood search of the procedure. Since this
neighorbood search is used to find a search direction which is afterwards coupled
with a step size control, the value of r is not that important, but should be ‘small’
to guarantee a local search. Nnd is the value which determines the number of
directions which have to be averaged in order to choose the sidestep direction.
In general, a larger value of Nnd leads to a ‘better’ sidestep (in the sense that
the search is performed orthogonal to the upward movement), but will in turn
increase the cost of the search. We have experienced that a low value Nnd, say
5 to 10, already gives satisfactory results, the ‘accuracy’ of the search does not
seem to influence the performance of the HCS (unless the second derivatives of
the objectives are available, see below). The value of ǫy is problem dependent
but can be given quite easily in a real world application (see discussion above
Equation (13)). Finally, the tolerance tol has to be adjusted for constrained
MOPs. The choice of this value is also problem dependent and has to be chosen
in every algorithm dealing with constraints.

Table 1. Design parameters that are required for the realization of the gradient free
HCS algorithm.

Parameter Description

r Radius for neighborhood search (Alg. 1)

Nnd Number of trials for the hill climber before
the sidestep is performed (Alg. 1)

ǫy Desired distance (in image space) for the
sidestep (7)

tol Tolerance value used for the backtracking
in Alg. 2

3.2 HCS Using Gradient Information

In this section we discuss possible modifications which can be made to increase
the performance of the HCS in case the MOP is sufficiently smooth. It will turn
out that the resulting algorithm is more efficient (see Section 5), but in turn,
more information of the model is required.
Here we describe one possible realization of the HCS using the descent direction
presented in Theorem 2 for the hill climber and some elements from multi-
objective continuation for the sidestep:

18

Given a point x ∈ Rn the quadratic optimization problem (3) can be solved
leading to the vector α̂. In case

‖

k
∑

i=1

α̂i∇fi(x)‖2
2 ≥ ǫP , (17)

i.e., if the square of the norm of the weighted gradients is larger than a given
threshold ǫP ∈ R+, the candidate solution x can be considered to be ‘away’
from P , and thus, it makes sense to seek for a dominating solution. For this,
the descent direction (2) can be taken together with a suitable step size control.
For the latter the step size control described above can be taken, or—probably
better—a step size control which uses gradient information as e.g. described in
[16] or the one presented in [15]. If the value of the term in (17) is less than ǫP ,
this indicates that x is already in the vicinity of P . In that case one can lean
elements from (multi-objective) continuation [24, 2] to perform a search along P .
To do this, we assume for simplicity that we are given a KKT–point x̂ and the
according weight α̂ obtained by (3). Then the point (x̂, α̂) ∈ Rn+k is obviously
contained in the zero set of the auxiliary function F̃ : Rn+k → Rn+1 of the given
MOP which is defined as follows:

F̃ (x, α) =











k
∑

i=1

αi∇fi(x)

k
∑

i=1

αi − 1











. (18)

In [24] it has been shown that the zero set F̃−1(0) can be linearized around x̂
by using a QU-factorization of F̃ ′(x̂, α̂)T , i.e., the transposed of the Jacobian
matrix of F̃ at (x̂, α̂). To be more precise, given a factorization

F̃ ′(x̂, α̂)T = QU ∈ R(n+k)×(n+k), (19)

where Q = (QN , QK) ∈ R(n+k)×(n+k) is orthogonal with QN ∈ R(n+k)×(n+1)

and QK ∈ R(n+k)×(k−1), the column vectors of QK form—under some mild
regularity assumptions on F̃−1(0) at (x̂, α̂), see [24]—an orthonormal basis of
the tangent space of F̃−1(0). Hence, it can be expected that each column vec-
tor qi ∈ QK , i = 1, . . . , k − 1, points (locally) along P and is thus well suited
for a sidestep direction. The step size control can in this case taken exactly as
proposed in Equation (15) since the setting for that case was the same. In fact,
since the search direction qi is indeed pointing along P , the results will be more
accurate than for an averaged direction such as (7) or (10).
Algorithm 5 presents a procedure which is based on the above discussion. Note
that this is one possible realization and that there exist certainly other possi-
ble ways leading, however, to similar results. For instance, alternatively to the
descent direction used in Algorithm 5 the ones proposed in [17] and [5] can be
taken. Further, the vicinity test (17) can be changed, though alternative condi-
tions will most likely also be based on Theorem 1. Finally, the movement along

19

P can be realized by predictor-corrector methods [24, 2] which consist, roughly
speaking, of a repeated application of a predictor step obtained by a lineariza-
tion of F̃−1(0) as in (19) and a corrector step which is done via a Gauss-Newton
method.
Note that the HCS is proposed for the unconstrained case. While an extension
to the constrained case for the hill climber is possible (see, e.g., [17] for possible
modifications) this does not hold for the movement along the Pareto set (i.e.,
the sidestep). Though it is possible to extend system (18) by equality constraints
(e.g., by introducing slack variables to transform the inequality constraints into
equality constraints) this could lead to effiency problems in the numerical treat-
ment [24]. Hence, we restrict ourselves here to the unconstrained case.

As it will be shown in Section 5 the performance of the gradient based HCS
in terms of convergence is better than its gradient free version, but this improve-
ment does not come for free: for the descent direction all objectives’ gradients
have to be available (or approximated), and to perform the linearization of P
even all second derivatives are required.

Algorithm 5 HCS2 (Using Gradient Information)

Require: starting point x0 ∈ Q
Ensure: sequence {xl}l∈N of candidate solutions
1: for l = 0, 1, 2, . . . do

2: compute the solution α̂ of (3) for xl.
3: if ‖

Pk

i=1 α̂i∇fi(xl)‖
2
2 ≥ ǫP then

4: νl := −q(xl)
5: compute tl ∈ R+ and set xl+1 := xl + tlνl

6: else

7: compute F̃ ′(x̂, α̂)T = (QN , QK)U as in (19)
8: choose a column vector q̃ ∈ QK at random
9: compute t̃l ∈ R+ and set xl+1 := xl + t̃lq̃.

10: end if

11: end for

Design parameters Analogue to the gradient free version of the HCS, the values
of some design parameters have to be chosen for the realization of Algorithm
5. ǫy and tol are as discussed above, and Nnd and r are not needed due to
the accuracy of the gradient based search. A new parameter, compared to the
gradient free version of the HCS, is the threshold ǫP for the vicinity test of a
given candidate solution to P . This value is certainly problem dependent, but it
can be made ‘small’ due to the convergence properties of the hill climber (e.g.,
[17]).

20

Table 2. Design parameters that are required for the realization of the HCS algorithm
which involves gradient information.

Parameter Description

ǫy Desired distance (in image space) for the
sidestep (7)

tol Tolerance value used for the backtracking
in Alg. 2

ǫP Threshold for the vicinity test (17)

4 Use of the HCS within MOEAs

Here we address the integration of the HCS into a given MOEA. For this, we
present some modifications required on the standalone version of the HCS to
be able to be coupled efficiently with an evolutionary algorithm and discuss the
cost of the procedure. Finally, we present two particular hybrids where NSGA-II
and SPEA2 are used as base MOEAs.

4.1 Modifying the HCS

In Algorithms 1 and 5 the HCS is presented as standalone algorithm generating
an infinite sequence of candidate solutions which is certainly not applicable when
coupling it with a MOEA. To support the search of the latter algorithm, it is
rather advisable to stop the iteration after a few iterations (denote this parameter
by maxiter). In case the HCS finds only a sequence of dominating solutions (i.e.,
by the hill climber) merely the last dominating solution (denoted by xd) has to
be returned since the other intermetiate solutions are all dominated by xd and
are thus not important for the current population of the MOEA. In case the
sidestep is performed, which indicates that the iterates are near to the (local)
Pareto set, the iteratation can be stopped even before maxiter is reached. The
second modification of HCS compared to the standalone version presented above
that we suggest is to perform the sidestep in each diversity direction which has
been bound during the local search. This is due to the fact that the sidestep is
the expensive part of the HCS (in terms of function calls, see also the discussion
below), and hence all accumulated information should be exploited. Thus, the
modified HCS will return in that case the dominating solution xd (if not equal
with the initial solution x0) and further maximal 2k − 2 sidestep solutions in
all diversity directions of xd, depending on how many diversity directions of xp

have been found within the Nnd ‘unsuccessful’ trials.
Algorithm 6 shows such a modification of the HCS1 for k = 3. Hereby,

C(x, s1, s2, s3), (20)

21

where si ∈ {+,−}, i = 1, 2, 3, denotes the diversity cone at a point x. For
instance, it is

y ∈ C(x, +, +,−) :⇔ {f1(y) > f1(x) and f2(y) > f2(x) and f3(y) < f3(x)}
(21)

The algorithm requires the starting point x0 and returns the set Xnew which
can consist of one candidate solution (i.e., the result of the hill climber xd) up to
seven candidate solutions (xd plus candidates in all the six diversity directions
(9) of xd).
For HCS2, the modifications described above are much easier to handle: if the
sidestep is performed (i.e., if equation (17) is false) the sidestep solutions can be
chosen as

xi
+ := xd + hiqi, xi

− := xd − hiqi, (22)

for all column vectors qi of QK , which leads to 2k − 2 new candidate solutions.

4.2 Cost of the HCS

Crucial for the efficient usage of the HCS within a MOEA is the knowledge of
its cost. Here we measure the cost of one step of the modified HCS as described
above (i.e., for maxiter = 1). Unfortunately, the different algorithms use differ-
ent information (mainly different gradient information) of the model. For sake
of comparison, we measure the cost of the HCS in terms of required function
calls (to be more precise, we measure the running time for a function call and
neglect the memory requirement). That is, to measure HCS2 we have to find an
equivalent in terms of function calls for the computation or approximation of the
derivative ∇f(x) and the second derivative ∇2f(x) of a function f : Rn → R at
a point x. If for instance automatic differentiation (AD) is used to compute the
derivatives, we can estimate 5 function calls for the derivative call and 4 + 6n
function call for the second derivative [20]. These values change when using finite
differences (FD). If for instance the forward difference quotient

∂f

∂xi

(x) ≈
f(x1, . . . , xi + δi, . . . , xn) − f(x1, . . . , xn)

δi

, i ∈ {1, . . . , n} (23)

where δi ∈ R+ is a small value, is used to estimate the gradient, apparently n
function calls are required. The central difference quotient leads to more accu-
rate approximations, but does in turn require 2n function calls ([20]). A forward
difference quotient approximation of the second derivative requires a total of n2

function calls (and 2n2 or 4n2 function calls when using the central difference
quotient, depending on how the rule is applied). Finally, we have to estimate the
number of function calls required for a line search for the hill climber. Here we
take the value of 3 obtained by our observations.

A call of HCS1 requires at least four function calls: one for the local search
around x0. If the new candidate solution is either dominating or dominated by
x0—which is very likely in the early stage of the optimization process—the next

22

Algorithm 6 HCS1 (for use within MOEAs for k = 3)

Require: maximal number of iterations maxiter, rest as in Alg. 1
Ensure: set of candidate solutions Xnew

1: L1 := 0, L2 := 0, L3 := 0
2: a1 := 0 ∈ Rn, a2 := 0 ∈ Rn, a3 := 0 ∈ Rn

3: no a1 := 0, no a2 := 0, no a3 := 0
4: nondom := 0
5: x1,0 := x0

6: for i = 1, 2, . . . , maxiter do

7: for j = 1, 2, . . . , Nnd do

8: choose x2 ∈ B(x1,i−1, r) at random
9: if x1,i−1 ≺ x2 then

10: compute t ∈ R+ as in Alg. 1 (l. 6-10), set x1,i := x2 + t(x1,i−1 − x2).
11: nondom := 0, a1 = a2 = a3 = 0
12: continue

13: else if x2 ≺ x1,i−1 then

14: comp. t ∈ R+ as in Alg. 1 (l. 11-13), set x1,i := x1,i−1 + t(x2 − x1,i−1).
15: nondom := 0, a1 = a2 = a3 = 0
16: continue

17: else

18: nondom := nondom + 1
19: if x2 ∈ C(x1,i−1,−,−, +) then

20: a1 := a1 + (x2 − x1,i−1)/‖x2 − x1,i−1‖∞
21: no a1 := no a1 + 1
22: L1 := max(L1, ‖F (x2) − F (x1,i−1)‖∞/‖x2 − x1,i−1‖∞)
23: end if

24: if x2 ∈ C(x1,i−1, +,+,−) then

25: a1 := a1 + (x1,i−1 − x2)/‖x1,i−1 − x2‖∞
26: no a1 := no a1 + 1
27: L1 := max(L1, ‖F (x1,i−1) − F (x2)‖∞/‖x1,i−1 − x2‖∞)
28: end if

29: if x2 ∈ C(x1,i−1,−,+,−) then

30: update a2, no a1, and L2 analogue to lines 19 –22.
31: end if

32: if x2 ∈ C(x1,i−1, +,−, +) then

33: update a2, no a2, and L2 analogue to lines 24 –27.
34: end if

35: if x2 ∈ C(x1,i−1, +,−,−) then

36: update a3, no a3, and L3 analogue to lines 19 –22.
37: end if

38: if x2 ∈ C(x1,i−1,−,+, +) then

39: update a3, no a3, and L3 analogue to lines 24 –27.
40: end if

41: end if

42: end for

43: Xnew := {x1,i} ⊲ perform sidesteps and return
44: if no a1 > 0 then

45: ν1 := a1/‖a1‖∞, h1 := ǫy/L1

46: x
(1)
+ := xi,Nnd

+ h1ν1, x
(1)
− := xi,Nnd

− h1ν1

47: Xnew := Xnew ∪ {x(1)
+ , x

(1)
− }

48: end if

49: if no a2 > 0 then

50: compute x
(2)
+ , x

(2)
− analogue to lines 44–47, set Xnew := Xnew ∪ {x(2)

+ , x
(2)
− }

51: end if

52: if no a3 > 0 then

53: compute x
(3)
+ , x

(3)
− analogue to lines 44–47, set Xnew := Xnew ∪ {x(3)

+ , x
(3)
− }

54: end if

55: return

56: end for

57: Xnew := {x1,maxiter} ⊲ return dominating solution

23

point is found via line search resulting in 4 function calls due to our assumptions.
When a sidestep, the most expensive event of the HCS, is performed, this means
that first Nnd trials have been made around x0, and then candidates in maximal
2k − 2 directions are computed (for each one function call is required, see (15))
leading to a total of Nnd + 2k − 2 function calls.
The HCS2 needs for the realization of the hill climber the gradients of all k
objectives, the solution of (QOP) (which we do not count here since k is typically
low, and thus, the quadratic problem is easy to solve with standard techniques)
and one line search. This makes 5k +3 function calls when using AD and kn+3
function calls when using FD (here we assume the forward difference method).

For a sidestep, k gradients and the second derivative of
∑k

i=1 αifi(xd) have to
be computed, and further 2k − 2 sidestep candidates are produced. This leads
to 6n + 7k + 2 function calls when using AD and to n2 + k(n + 2) − 2 function
calls when using FD.

Table 3. Cost of one step of the HCS measured in function calls. To convert the
derivative calls in HCS2 into function calls we have used values based on automatic
differentiation (AD) and finite differences (FD).

Method No. of function calls required

HCS1 from 4 to Nnd + 2k − 2
HC2 (AD) 5k + 3
HC2 (FD) kn + 3
HCS2 (AD) from 5k + 3 to 6n + 7k + 2
HCS2 (FD) from kn + 3 to n2 + k(n + 2) − 2

Table 3 summarizes the cost of the different algorithms using the different
conversion rules. Hereby, HC2 denotes the hill climber as presented in Algorithm
5 but without the sidestep operator (i.e., for ǫP = 0). Table 4 gives the numerical
values for k = 3, and Nnd = 3, and n1 = 10 and n2 = 30. It is obvious that
FD should only be used for models with moderate dimensional parameter space
since else the cost of the HCS2 will get tremendous. On the other side, note
that the cost of HCS1 is independent of n and thus relatively inexpensive, in
particular in higher dimensions.

4.3 Integration into MOEAs

The questions which remains open is how to integrate the HCS into a given
MOEA in order to obtain an efficient memetic strategy. Here we make first steps
to answer this problem and propose hybrids with the state of the art MOEAs
NSGA-II and SPEA2. The numerical results in the next section show that the
combination is advantageous, however, we think that more effort has to be done
to obtain a universal and self adaptive memetic algorithm which is beyond the

24

Table 4. Numerical values for the cost of the HCS algorithms for the settings (a)
n1 = 10, k = 3, Nnd = 3 and (b) n2 = 10, k = 3, Nnd = 3. See Table 3 for details.

No. of function calls required No. of function calls required
Method for n1 = 10, k = 3, Nnd = 3 for n2 = 30, k = 3, Nnd = 3

HCS1 from 4 to 9 from 4 to 9
HC2 (AD) 18 18
HC2 (FD) 33 93
HCS2 (AD) from 18 to 83 from 18 to 203
HCS2 (FD) from 33 to 138 from 93 to 996

scope of this paper.

The modified HCS can be written in the shorthand form as

PHCS = HCS (x0), (24)

where x0 is a given point (e.g., coming from the current population of the MOEA)
and PHCS is the output set. Given a probability pHCS for the application of the
procedure on an individual of a population, the operator can be defined set-wise
as

PHCS = HCS (P, pHCS), (25)

where P denotes a given population. By doing so, the HCS can be interpreted
as a particular mutation operator, and thus, can in principle be integrated into
any given MOEA with little effort. However, this should be handled with care
since the efficiency of the resulting hybrid depends (among others) on (a) which
elements of the population the HCS is applied to, and (b) the balance of the ge-
netic search and the HCS (see also Section 2.2). As an example for (a) we have
observed that if the HCS is merely applied on elements of the external archive
in a combination with SPEA2, that this ‘elitism approach’ has a negative effect
on the diversity of the population, at least in early stages of the search. Even
the application of the sidestep could not compensate this effect, since it is ap-
plied on a few, possibly closely located solutions. Problem (b) is another typical
problem when designing memetic strategies (probably first reported in [31] in
the context of multi-objective optimization), and in particular in our setting due
to the relatively high cost of the HCS compared to classical mutation operators.
Most important for the effect and the cost of the HCS are the parameters
maxiter and Nnd (for HCS1). In general, it can be said that if both values
of maxiter and Nnd are high, the local improvement of a point x0 will be nearly
optimal (i.e., the elements of PHCS will be near to local solutions). This can
be advantageous for uni-modal models but can in turn reduce the efficiency of
the entire search algorithm for multi-modal models due to the high cost of the
HCS and the relatively high chance that the search gets stuck in a local (and
not global) solution. If the values of maxiter and Nnd are low, the local im-
provements in one application of HCS will typically be sub-optimal. However,

25

the choice of low values offers on the other hand two advantages: first, the HCS
spends less function calls for unpromising starting points. That is apparently
also the case for promising starting points but we have observed that it is ad-
vantageous to repeat the local search more often instead to spend the function
calls for single solutions (future populations contain points which are at least
as good as the point x0 from the current population). The second advantage is
that the population is not disturbed by drastic improvements of single solutions
which may cause trouble in elitist strategies ([35]).
The next question is the choice of the probability pHCS to apply the HCS. Due
to the cost of the HCS a low value seems to be advisable which also coincides
with our observations. Further, we suggest not to apply the HCS in every gen-
eration in order not to disturb the efficient but highly sensitive interplay of the
different operators of the MOEA (as e.g. done in [69]).
To summarize, we suggest low values for the parameters maxiter and Nnd which
influence efficiency and cost of one application of the HCS, and a low value for
the probability pHCS of its application which influences the overall cost of the
local search. See next section for particular choices of these values.
In the following, we propose two particular combinations where we use NSGA-II
and SPEA2 as base MOEAs.

NSGA-II-HCS As discussed above, crucial are the questions when and to
which elements the local search has to be applied within a given MOEA. For
NSGA-II, we suggest to perform the local search (i.e., HCS) only on the best
individuals of a given generation. This is made in order to find leader individuals
to pull the entire population to better solutions during the search. This exclusive
search can be done since the diversity of the best (i.e., non-dominated) solutions
is typically quite high, also in early stages of the search. Thus, it is likely to
generate well-spread leader individuals from the beginning of the search which
helps to pull the population to the entire Pareto set.
Algorithm 7 shows an algorithm which combines NSGA-II with HCS. Hereby,
the procedures ‘Fast Non-Dominated Sort’, ‘Crowding Distance Assignment’ and
‘Generate Child Population’ are well known as parts of the NSGA-II, a thorough
discussion can be found in [13].

Algorithm 7 applies the local search each s generation after reproduction.
The local search is applied only to non-dominated individuals, and, due to the
cost of the procedure, is performed with a certain (low) probability. After hav-
ing computed the improved solutions of local search, the regular operations of
ranking and crowding are used as in NSGA-II.
Contrary to [51], where the local search has been applied after 75 percent of a
given budget B of function calls have been spent, we have observed that it is
advantageous to apply the HCS in all stages of the search to pull the population
permanently to the Pareto set. In fact, we propose here that the local search
should be evenly distributed over the run of the algorithm. This guideline and
the choice to take only non-dominated solutions as starting points for the HCS
has an implication on the rule to choose pHCS : the number of non-dominated

26

Algorithm 7 NSGA-II-HCS

1: procedure NSGA-II-HCS(N ,G, pHCS, s)
2: Generate Random Population P (size N).
3: Evaluate Objective Values.
4: Fast Non-Dominated Sort
5: Crowding Distance Assignment
6: Generate Child Population Poffs

7: for i := 1, . . . , G do

8: Using P := P ∪ Poffs:
9: if mod(i,s)==0 then

10: LocalSearch(pHCS)
11: end if

12: Fast Non-Dominated Sort
13: Crowding Distance Assignment
14: Generate Child Population Poffs

15: end for

16: end procedure

17: procedure LocalSearch(pHCS)
18: for all a ∈ P do

19: if ∄b ∈ P such that b ≺ a then

20: Aa = HCS({a}, pHCS)
21: P := P ∪ Aa

22: end if

23: end for

24: end procedure

27

points (or rank 0 solutions) is typically very low at the beginning of the search,
further on increasing, and from a certain stage of the process the number of
non-dominated solutions is nearly constant (i.e., equal to the population size).
A constant value of pHCS would hence lead to a permanent growth of the frac-
tion of the local search within the memetic strategy, at least in the beginning
of the search. To counteract to this effect it seems to be better to start with
a relatively high probability pmax and to decrease this value during the search
process until a prescribed (low) probability pmin is reached. This value is then
chosen for the remainder of the run of the algorithm.
For the computations presented in the next section we have used the following
strategy which is based on the above considerations: starting with the probabil-
ity pHCS(0) := pmax the local search probabilities for the subsequent generations
are updated as follows

pHCS(i) = max







−2(pmax − pmin)

B

i
∑

j=1

fc(j) + pmax , pmin







, (26)

where fc(j) denotes the number of function calls spent in the j-th generation.
Hereby, the first expression in (26) is a linear term in the number of function
calls spent. Its value is pmax for zero function calls (i.e., at the beginning of the
search) and pmin for B/2. That is, after at least 50 percent of a given budget
has been spent, the local search probability for future generations is constantly
set to pmin (i.e., pmin times the population size is the number of HCS calls one
is willing to spend in average per generation in advanced stages of the search).

SPEA2-HCS Unlike above, where NSGA-II is used as base MOEA, we have
observed that for a hybridization with SPEA2 it is not always beneficial to apply
the HCS only to members of the archive which consists only of non-dominated
solutions. This is because the archive can—in particular in early stages of the
search—consist of few, and probably not well spread solutions (which changes
with increasing number of iterations). Thus, for a hybrid of HCS with SPEA2,
we suggest to apply the local search operator to members of the mating pool, i.e.,
also to dominated solutions. Consequently, we propose by the above discussion
to set pHCS constant since the size of the mating pool does not change. See
Algorithm 8 for a pseudocode of SPEA2-HCS.

5 Results and Discussions

Here we present and discuss some numerical results for the HCS as well as for
the two memetic strategies in order to demonstrate the strength of both the
HCS as standalone algorithm as well as its benefit as a local search procedure
within a given MOEA. The MOPs we have used here are listed in Table 5. All
computations have been done using the programming language Matlab5.

5 https://www.mathworks.com

28

Table 5. The MOPs under investigation in this work. Hereby, k̃ = n − k + 1.

CONV1

f1(x) = (x1 − 1)4 +
Pn

j=2(xj − 1)2

f2(x) =
Pn

j=1(xj + 1)2

CONV2

fi(x) =
n

P

j=1

j 6=i

(xj − aj)
2 + (xi − ai)

4, i = 1, 2, 3

a1 = (1, . . . , 1) ∈ Rn

a2 = (−1, . . . ,−1) ∈ Rn

a3 = (1,−1, 1,−1 . . .) ∈ Rn

ZDT4

f1(x) = x1

f2(x) = g(x)(1−
p

f1/g(x))
g(x) = 1 + 10(n − 1) +

Pn

i=2(x
2
i − 10cos(4πxi))

0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, . . . , n

DTLZ1

f1(x) = 1
2
x1x2 . . . xk−1(1 + g(x))

f2(x) = 1
2
x1x2 . . . (1 − xk−1)(1 + g(x))

...
fk−1(x) = 1

2
x1(1 − x2)(1 + g(x))

fk(x) = 1
2
(1 − x1)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi − 1
2
)2 − cos(20π(xi − 1

2
))

–

0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ2

f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

...
fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) =
n

P

i=k

(xi −
1
2
)2

0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ3

f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi −
1
2
)2 − cos(απ(xi −

1
2
))

–

α = 20
0 ≤ xi ≤ 1, i = 1, . . . , n

29

Algorithm 8 SPEA2–HCS

1: Generate initial population P0 ⊂ Q and set A0 := ∅, P̄0 := ∅.
2: for k = 0, 1, . . . , Nmaxiter do

3: P k+1 := non-dominated solutions of Pk ∪ Ak

4: Set Ak+1 := non-dominated solutions of P k+1

5: Calculate fitness values of individuals in P k+1

6: Perform tournament selection in P k+1 to fill the mating pool
7: Apply crossover, mutation and the local search operators (HCS) to the mating

pool.
8: Denote the resulting population by Pk+1.
9: end for

5.1 HCS as a Standalone Algorithm

Since the two variants of the HCS as described in Algorithm 1 (which we will
denote by HCS1 in this section) and in Algorithm 5 (denoted by HCS2) have no
orientation in the search along the Pareto set, we have modified it for bi-objective
models in the following way in order to demonstrate its potential (see also dis-
cussion in Section 3.1): the HCS—i.e., both variants—is started as described
above. If the current iterate xp is close enough to P such that the sidestep pro-
cedure can start (taking Ns = 5), first improvements according to f1 are sought
(leading to a ‘left up’ movement from F (xtemp) along the Pareto front). If no
improvements according to f1 can be obtained, an analogue ‘right down’ move-
ment is performed starting again from xtemp. This is intended so ‘screen’ the
entire connected component of P which is near to xtemp.
However, since this orientation is not needed within the use of a MOEA because
in that case only few iterates are being computed from a given starting point,
these modifications are only done within this subsection.

In the following we will test HCS1 and HCS2 on a convex model (i.e., a model
which does not contain local minima where the local search can get stuck) and
we will investigate both the unconstrained and the constrained case. Then we
will consider a multi-modal and constrained model (ZDT4).
Consider the MOP CONV1. The Pareto set of this model which is equal to
P is located within [−1, 1]n. First, we turn our attention to the unconstrained
case: Figure 3 shows two results obtained by the modified algorithms HCS1 and
HCS2 with dimension n = 10 and domain Q = [−5, 5]10. In both cases the same
starting point x0 has been chosen. Since P is located within Q, no constraint
handling techniques had to be applied in order to generate the sequence. For
HCS1 a total of 1693 function calls had to be spent in order to get this result.
For HCS2, 207 function calls, 60 evaluations of the gradient and 192 evaluations
of the Hessian were required (which are both given analytically. A conversion
due to Section 4.2 would lead to 13,095 function calls). Figure 3 shows some
qualitative differences as anticipated from the design of the different algorithms:
HCS2 converges faster (in this case three iterates—not counting the function
calls—were needed to reach P while HCS1 needed 6 iterations) and the non-

30

dominated front is much better compared to the results obtained by the gradient
free version HCS1 (In fact, the solution of HCS2 is practically identical to the
true Pareto front). However, both results are satisfying since both non-dominated
fronts represent a good approximation of the Pareto front with reasonable effort.

Next we consider the constrained case. Figure 4 shows a numerical result
from the HCS1 where we have used dimension n = 2 and for the domain Q =
[0.5, 1.5]× [1, 2]. The Pareto set is given by PQ = [0.5, 1]×{1} and thus included
in the boundary of Q. The figures show that also in this case the HCS1 is capable
of approaching the solution set, and moving along it further on. However, a total
of 997 function calls had to be spent in this setting, that is, more in comparison
to the unconstrained case (note that the dimension of the model is much lower
in the latter case).
Finally, we consider the problem ZDT4, which is a highly nonlinear and multi-
modal model. Figure 5 shows two results in image space for two different initial
solutions x0, z0 ∈ Q = [0, 1] × [−5, 5]9 and for the two variants of the HCS. As
anticipated, the results for both algorithms and starting points differ significantly
since the HCS is a local strategy and ZDT4 contains many local Pareto fronts.
However, both procedures also in this case are able to explore a part of the local
Pareto front which is located ‘near’ to the image of the initial solution.

5.2 HCS Coupled with a MOEA

Here we make some comparisons of the two state of the art MOEAs NSGA-II and
SPEA2 with their respective hybrid variants NSGA-II-HCS and SPEA2-HCS in
order to demonstrate the possible benefit of the HCS when applied within a
MOEA. Since we are dealing in this section with MOPs where the Pareto set is
located at the boundary of the domain, we have used for these models a modi-
fication of HCS2 which acts just as a hill climber. That is, the search along the
Pareto set is not performed (the value ǫP is set to 0). To be conform with our
notations and to avoid confusions, we denote this algorithm by HC2.
In order to evaluate the performance of the algorithms we have used the Gen-
erational Distance [66], the Inverted Generational Distance [9] and the Two Set
Coverage Measure [70] as indicators. A brief description follows.
Denote by δi the minimum Euclidean distance from the image F (xi) of a given
point xi, i = 1, . . . , n, to the true Pareto front F (PQ). The Generational Distance
(GD) of a set (population) P = {x1, . . . , xn} is defined as

GD =
1

n

√

√

√

√

n
∑

i=1

δ2
i (27)

The Inverted Generational Distance (IGD) is analogous to GD but measured
from F (PQ) to F (P).
Given two finite subsets A and B ofRn the Two Set Coverage Measure is defined
as

SC(A, B) = A ≺ B =
|{b ∈ B such that ∃a ∈ A with a ≺ b}|

|B|
(28)

31

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

100

120

f
1

f 2

F(x
0
)

(a) Solution HCS1

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

100

120

f
1

f 2

F(x
0
)

(b) Solution HCS2

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

40

45

f
1

f 2

HCS2
HCS1

(c) Comparison Non-dominated Fronts

Fig. 3. Numerical result of HCS for MOP CONV1 with Q = [−5, 5]10 in objective
space (unconstrained case).

32

0.4 0.6 0.8 1 1.2 1.4 1.6

1

1.2

1.4

1.6

1.8

2

x
1

x 2

x
0

(a) Parameter Space

0 0.2 0.4 0.6 0.8 1 1.2
6

7

8

9

10

11

12

13

f
1

f 2

F(x
0
)

(b) Image Space

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

f
1

f 2

(c) Zoom Image Space and Pareto Front

Fig. 4. Numerical result of HCS1 for MOP CONV1 with Q = [0.5, 1.5] × [1, 2] (con-
strained case).

33

0 0.2 0.4 0.6 0.8 1 1.2 1.4
60

65

70

75

80

85

90

95

100

105

f
1

f 2

F(z
0
)

F(x
0
)

(a) Result HCS1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
60

65

70

75

80

85

90

95

100

105

f
1

f 2

F(x
0
)

F(z
0
)

(b) Result HCS2

Fig. 5. Numerical result of HCS1 and HCS2 for MOP ZDT4 in objective space for two
initial solutions x0 and z0.

If A ≺ B = 1, it means that all the elements of B are dominated by at least
one element of A. If on the other hand A ≺ B = 0, it means that no element of
B is dominated by any element of A. Since the Two Set Coverage Metric is not
symmetric always both values SC(A, B) and SC(B, A) have to be taken into
account.

Convex Models First we consider the convex and thus uni-modal models
CONV1 (k = 2 objectives) and CONV2 (k = 3) which are taken from [15], and
set the dimension of the parameter space to n = 30. For both models we are in-
terested in the unconstrained case (where the Pareto set does not intersect with
the boundary of the domain) and in the constrained case. Since the Pareto set of
both unconstrained problems (that is, for Q = R30) is located within [−1, 1]30

we have chosen to take the domains Qu := [−5, 5]30 and Qc = [−1, 1]×[1, 2]29 for
the unconstrained and the constrained model, respectively. Denote the resulting
models by CONV1-U and CONV1-C (analogue for CONV2).
Tables 7 and 8 show averaged numerical results obtained on the convex models
using SPEA2, NSGA-II and the according memetic strategies. For the realiza-
tion we have used the parameter values displayed in Table 6 and a budget of
B = 10, 000 function calls. B is chosen relatively low in order to obtain signifi-
cant differences in the indicator values. For the two cases where we hybridize the
base MOEA with the HCS the following observations can be made: the values
of the Set Coverage and the GD improve when the HCS1 is used for additional
local search. The values are even much better when using HC2 or HCS2 for the
local search (the improvement is roughly one order of magnitude). The latter
is certainly due to the fact that we are dealing with convex models: the gradi-
ent based search—though much more costly than HCS1 for n = 30, see Table
3—leads to great improvements of given initial points which do not get stuck at
local solutions. Thus, the population is pulled to the ‘right’ set at any stage of

34

the optimization process. For IGD the results are not that conclusive, however,
improvements can be observed.
In Figure 6, one result of NSGA-II and their memetic variants is plotted which
reflects the above discussion: Figure 6 (a) shows the effect of the HCS1, i.e.,
better convergence and spread than the result of NSGA-II due to the two search
directions of HCS1. Convergence is on the other side much better in Figures
6 (b) and (c) where gradient information is used. When comparing the latter
two figures, the effect of the sidestep get visible: The spread in Figure 6 (c) is
apparently better than in Figure 6 (b), where the solutions fall into clusters.
Table 9 gives an impression on the overall cost of the HCS within the search
procedure. The table shows the amount of calls of the hill climber and sidestep
procedures of HCS within SPEA2-HCS used to obtain the results in Figure 6.
HCS1 used 22 percent of the total budget B of SPEA2-HCS1. The relatively
large amount of sidestep calls is due to the low value of Nnd (=3). Larger values
of Nnd would yield in less sidestep calls and in turn more hill climber calls. The
cheapest local search operator is HC2 with a portion of 13 percent of the func-
tion calls since this operator merely computes the gradients to perform the hill
climber. The sidestep operator is much more costly since the second derivatives
are involved as Table 9 shows for HCS2: this local search operator spent 61 per-
cent of B. The better result in Figure 6 (c) compared to Figure 6 (b) in terms
of spread was obtained by merely 20 sidestep calls which, however, used quite a
lot of function calls for this.
Concluding, it can be said that on the convex models (two and three objectives,
constrained and unconstrained) a combination of the two base MOEAs with the
HCS variants improves on one hand the overall performance of the search. On
the other hand considerations of the cost of the operators show that its appli-
cation should be handled with care since else the HCS can take the lion’s share
of the budget which results in a risk to decrease the overall performance (note
that we have assumed B to be constant).

DTLZ for Three Objectives Finally, we consider the MOPs DTLZ1, DTLZ2
and DTLZ3 (see [14] and Table 5), where we have chosen n = 30 for the dimen-
sion of the parameter space, k = 3 objectives, and the domain Q = [0, 1]30 for
all models.
Tables 11 and 12 show averaged numerical results obtained on the test functions
by the MOEAs and MEMOEAs under consideration. Hereby, we have used the
parameter values shown in Table 10 and a budget of B1 = 100, 000 function calls
for the multi-modal models DTLZ1 and DTLZ3 and a budget of B2 = 10, 000
for the uni-modal model DTLZ2 (this has again been done in order to prevent
too small values of the indicators). The conclusions which can be drawn from
the results are not as straightforward as for the convex case. While a similar
trend as for the convex case can be observed for DTLZ2, this does not hold for
the multi-modal models. Apparently, the two MEMOEAs which use HC2 can
not compete with their base MOEAs (however, to be fair the construction of
the models already suggests that gradient information is worthless. Thus, it is

35

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

f
1

f 2

Pareto front
NSGA−II
NSGA−II−HCS1

(a) NSGA-II vs. NSGA-II-HCS1

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

f
1

f 2

Pareto front
NSGA−II
NSGA−II−HC2

(b) NSGA-II vs. NSGA-II-HC2

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

f
1

f 2

Pareto front
NSGA−II
NSGA−II−HCS2

(c) NSGA-II vs. NSGA-II-HCS2

Fig. 6. Numerical result for CONV1-U using NSGA-II and the three memetic strate-
gies NSGA-II-HCS1, NSGA-II-HC2, and NSGA-II-HCS2. The best result (spread and
convergence) in this case was obtained by SPEA2-HCS2.

36

Table 6. Parameter values used for SPEA2 and NSGA-II and the memetic strategies
SPEA2-HCS and NSGA-II-HCS on the convex problems.

SPEA2-HCS NSGA-II-HCS

Parameters unbounded bounded unbounded bounded

Npop 100 100 100 100

Na 100 100 - -

ηc - - 15 15

ηm - - 20 20

pc 0.9 0.9 0.9 0.9

pm 0.1 0.1 1/30 1/30

pHCS1 0.2 0.2 - -

sHCS1 5 5 10 10

pHCS2 0.1 0.1 - -

sHCS2 10 10 10 10

εy 5 2 5 5

εP 0.0001 0.0001 0.0001 0.0001

r 0.1 0.02 0.1 0.1

maxiter 10 10 10 10

Nnd 5 5 3 3

tol 10−4 10−4 10−4 10−4

rather a question of the choice of the model than an indication of a general fail-
ure of the HC2). On the other hand, SPEA2-HCS1 outperforms its base MOEA
SPEA2 significantly on these highly multi-modal models. Such an improvement,
however, can not be observed from NSGA-II-HCS1 and NSGA-II. The latter
MOEA is already performing very good on these MOPs which makes it hard for
a local search strategy such as the HCS—which causes extra cost—to improve
the overall performance, in particular on such complex problems.

Based on the numerical results presented in this section, it can be said that
both variants of the standalone HCS accomplish their task, i.e., they are capable
of moving toward and along the Pareto set. That is, by using the HCS, entire
connected components of the (local) Pareto set can be explored starting with one
single solution. Furthermore, it has been shown that the hybridization of the HCS
with a given MOEAs can improve the overall performance of the base MOEA.
More precisely, satisfying results have yet been obtained for uni-modal MOPs.
The results on multi-modal models, however, are so far not that conclusive in
general but depending on the base MOEA. Due to the relative high cost of the
HCS and the natural handicap of local search methods for multi-modal problems
the balance of local and genetic search (such as for DTLZ1 and DTLZ3) is a
challenging task. To handle this efficiently, adaptive strategies are indispensable,
and further research should be done in that direction.

37

Table 7. Numerical results of SPEA2 and the memetic strategies SPEA2-HCS on
the convex problems using dimension n = 30 and performing 10,000 function calls.
Statistics were gathered from 30 independent runs.

Indicators

Problems GD IGD

CONV1-U

SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HCS2(C)
SPEA2-HC2(D)

3.5762(0.9190)
1.9399(0.5721)
0.1139(0.0505)
0.1483(0.0463)

2.5469(0.3460)
2.2846(0.5483)
1.8377(0.9405)
1.8792(0.9371)

CONV1-C
SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HC2(C)

6.8446(2.7245)
6.3508(1.9602)
0.2800(1.1503)

1.2491(0.1268)
1.1985(0.1225)
0.4268(0.0069)

CONV2-U

SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HCS2(C)
SPEA2-HC2(D)

3.5762(0.9190)
1.9399(0.5721)
0.1139(0.0505)
0.1483(0.0463)

2.5469(0.3460)
2.2846(0.5483)
1.8377(0.9405)
1.8792(0.9371)

CONV2-C
SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HC2(C)

1.7887(0.4642)
1.6342(0.7454)
0.4902(0.1789)

0.4882(0.1086)
0.4341(0.1303)
0.2774(0.1440)

Set Coverage CONV1-U

B ≺ A A ≺ B C ≺ A A ≺ C D ≺ A A ≺ D

0.7834(0.2726) 0.0984(0.1929) 0.9742(0.0755) 0(0) 0.9770(0.0753) 0(0)

Set Coverage CONV1-C

B ≺ A A ≺ B C ≺ A A ≺ C

0.4881(0.4119) 0.2932(0.3604) 1(0) 0(0)

Set Coverage CONV2-U

B ≺ A A ≺ B C ≺ A A ≺ C D ≺ A A ≺ D

0.5602(0.2900) 0.1223(0.1405) 0.8963(0.2118) 0(0) 0.9893(0.0324) 0(0)

Set Coverage CONV2-C

B ≺ A A ≺ B C ≺ A A ≺ C

0.6426(0.3622) 0.1796 (0.2752) 1(0) 0(0)

38

Table 8. Numerical results of NSGA-II and the memetic strategies NSGA-II-HCS on
the convex problems using dimension n = 30 and performing 10,000 function calls.
Statistics were gathered from 30 independent runs.

Indicators

Problems GD IGD

CONV1-U

NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HCS2(C)
NSGA-II-HC2(D)

1.2847(0.2258)
0.5661(0.0938)
0.0606(0.0054)
0.0590(0.0048)

1.6994(0.2843)
1.1123(0.4191)
1.5931(0.9827)
1.3167(0.8445)

CONV1-C
NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HC2(C)

1.3747(0.1687)
0.1143(0.0417)
0.0063(0.0041)

1.0594(0.1027)
0.3470(0.0661)
0.0386(0.0540)

CONV2-U

NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HCS2(C)
NSGA-II-HC2(D)

2.1814(0.4247)
1.1465(0.1249)
0.1041(0.0133)
0.1171(0.0136)

0.4618(0.0652)
0.4533(0.0784)
0.3815(0.1582)
0.3374(0.1466)

CONV2-C
NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HC2(C)

2.1165(0.3591)
0.4333(0.1673)
0.0127(0.0114)

1.4540(0.1725)
0.5873(0.0794)
0.4232(0.1127)

Set Coverage CONV1-U

B ≺ A A ≺ B C ≺ A A ≺ C D ≺ A A ≺ D

0.9516(0.0977) 0.0218(0.0597) 0.9412(0.0825) 0.0032(0.0155) 0.9418(0.1144) 0(0)

Set Coverage CONV1-C

B ≺ A A ≺ B C ≺ A A ≺ C

1(0) 0(0) 1(0) 0(0)

Set Coverage CONV2-U

B ≺ A A ≺ B C ≺ A A ≺ C D ≺ A A ≺ D

0.8433(0.1572) 0.0103(0.0332) 0.9397(0.1233) 0(0) 0.9633(0.1035) 0(0)

Set Coverage CONV2-C

B ≺ A A ≺ B C ≺ A A ≺ C

1(0) 0 (0) 1(0) 0(0)

Table 9. Cost of the HCS variants within SPEA2-HCS in one run on CONV1-U (the
run which produced the result displayed in Figure 6).

Hill climber calls Sidestep calls Function calls
Method (no sidestep) (w or w/o sidestep) (total)

HCS1 7 68 2229

HC2 69 0 1262

HCS2 51 20 6145

39

Table 10. Parameter values used for SPEA2 and NSGA-II and the memetic strategies
SPEA2-HCS and NSGA-II-HCS on the DTLZ functions.

Parameters SPEA2-HCS NSGA-II-HCS

Npop 200 200

Na 100 -

ηc - 15

ηm - 20

pc 0.9 0.9

pm 0.01 1/30

pHCS1 0.3 -

pHCS2 0.3 -

s 10 10

εy 1 5

εP 0.0001 0.0001

r 0.05 0.1

maxiter 5 10

Nnd 5 3

tol 10−4 10−4

Table 11. Numerical results of SPEA2 and the memetic strategies SPEA2-HCS on the
DTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000 function
calls. Statistics were gathered from 30 independent runs.

Indicators

Problems GD IGD

DTLZ1
SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HC2(C)

22.7984(1.6658)
12.2165(3.9738)
48.06789(7.5157)

2.4303(0.4716)
1.5389(0.2132)
1.3770(0.4404)

DTLZ2
SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HC2(C)

0.0529(0.0102)
0.0342(0.0404)
0.0557(0.0164)

0.0011(0.0001)
0.0007(0.0001)
0.0012(0.0001)

DTLZ3
SPEA2(A)
SPEA2-HCS1(B)
SPEA2-HCS2(C)

218.3484(9.9639)
28.1974(3.8434)
198.8947(27.5283)

10.3885(2.2814)
3.2152(0.3890)
3.6925(0.7106)

Set Coverage DTLZ1

B ≺ A A ≺ B C ≺ A A ≺ C

0.9789(0.0286) 0.0157(0.0227) 0.6925(0.2840) 0.2100(0.2710)

Set Coverage DTLZ2

B ≺ A A ≺ B C ≺ A A ≺ C

0.7820(0.0779) 0.0040(0.0089) 0.2060(0.0888) 0.3660(0.1740)

Set Coverage DTLZ3

B ≺ A A ≺ B C ≺ A A ≺ C

1(0) 0(0) 0.7905(0.0862) 0.0877(0.0586)

40

Table 12. Numerical results of NSGA-II and the memetic strategies NSGA-II-HCS
on the DTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000
function calls. Statistics were gathered from 30 independent runs.

Indicators

Problems GD IGD

DTLZ1
NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HC2(C)

8.5024(1.2081)
10.4444(1.1505)
18.1555(4.6705)

1.5998(0.1530)
1.6856(0.2202)
1.0096(0.1899)

DTLZ2
NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HC2(C)

0.0363(0.0041)
0.0293(0.0033)
0.0097(0.0039)

0.0022(0.0002)
0.0018(0.0001)
0.0005(0)

DTLZ3
NSGA-II(A)
NSGA-II-HCS1(B)
NSGA-II-HC2(C)

17.6126(3.5630)
16.9381(2.9723)
24.6485(3.6724)

3.2696(0.7721)
2.9951(0.6861)
2.5127(0.4320)

Set Coverage DTLZ1

B ≺ A A ≺ B C ≺ A A ≺ C

0.1610(0.1376) 0.6035(0.2565) 0.4885(0.1354) 0.3960(0.1627)

Set Coverage DTLZ2

B ≺ A A ≺ B C ≺ A A ≺ C

0.7125(0.1869) 0.1235(0.0790) 0.9715(0.0284) 0.0105(0.0116)

Set Coverage DTLZ3

B ≺ A A ≺ B C ≺ A A ≺ C

0.5010(0.3365) 0.3965(0.3243) 0.4435(0.3225) 0.4550(0.2857)

41

6 Conclusions and Future Work

We have proposed a novel point-wise iterative search procedure, the Hill Climber
with Sidestep (HCS), which is designed for the local search of a given multi-
objective optimization problem. The HCS is intended to be capable to moving
both toward and along the set of (local) Pareto points, depending on the location
of the current iterate. We have proposed two variants of the HCS, a gradient
free version (HCS1) and one version which exploits gradient information (HCS2).
Both algorithms can be used as standalone algorithms to explore parts of the
Pareto set starting with one single solution and are able to handle constraints of
the model to some extend. Further, we have addressed the problem of integrat-
ing the HCS into a given MOEA in order to obtain a novel memetic strategy.
As examples, we have proposed the two algorithms (or family of algorithms)
SPEA2-HCS and NSGA-II-HCS which are derived from SPEA2 and NSGA-II,
respectively. Finally, we have presented some numerical results indicating the
efficiency of the HCS as a standalone algorithm and its benefit when beeing
integrated into a MOEA. More precisely, the results of SPEA2-HCS and NSGA-
II-HCS show that the combination as proposed here is advantageous in many
cases. However, it has to be mentioned that for this the design parameters of the
HCS and the balance between local and genetic search has to be chosen properly,
which is so far not done in an adaptive manner.

For future work, there are some interesting topics which can be addressed to
advance the present work. In the first place, there is probably the design of an
adaptive strategy to choose the design parameters as discussed above. Further,
the coupling of local and global search could be improved. For this, an adaptive
choice of the local search probability would be desirable (as done in [8]), or
other techniques to reduce the computational complexity, e.g., by involving the
information of the current population into the HCS. Another interesting topic
would be to develop a version of HCS2 which can move efficiently along the
Pareto set even if it is contained in the boundary of the domain which would
allow for a more general use of the algorithm. Finally, it is conceivable to apply
and advance the standalone HCS to other contexts. Areas which seem to be
promising for that are numerical path-following (see [54] for a first study) or
dynamic multi-objective optimization.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments which
greatly helped them to improve the contents of the paper. The third author
gratefully acknowledges support from the CONACyT project no. 45683-Y.

References

1. S. F. Adra, I. Griffin, and P. J. Fleming. Hybrid Multiobjective Genetic Algo-
rithm with a New Adaptive Local Search Process. In Hans-Georg Beyer et al.,

42

editor, 2005 Genetic and Evolutionary Computation Conference (GECCO’2005),
volume 1, pages 1009–1010, New York, USA, June 2005. ACM Press.

2. E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer, 1990.
3. L. Armijo. Minimization of functions having Lipschitz-continuous first partial

derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.
4. N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic integration

of parameterized local search into evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 8(2):137–155, 2004.

5. P. A. N. Bosman and E. D. de Jong. Exploiting Gradient Information in Nu-
merical Multi-Objective Evolutionary Optimization. In Hans-Georg Beyer et al.,
editor, 2005 Genetic and Evolutionary Computation Conference (GECCO’2005),
volume 1, pages 755–762, New York, USA, June 2005. ACM Press.

6. J. Branke and S. Mostaghim. About Selecting the Personal Best in Multi-Objective
Particle Swarm Optimization. In Thomas Philip Runarsson, Hans-Georg Beyer,
Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley, and Xin Yao, editors,
Parallel Problem Solving from Nature - PPSN IX, 9th International Conference,
pages 523–532. Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik,
Iceland, September 2006.

7. M. Brown and R. E. Smith. Directed Multi-Objective Optimisation. International
Journal of Computers, Systems and Signals, 6(1):3–17, 2005.

8. A. Caponio and F. Neri. Integrating cross-dominance adaption in multi-objective
memetic algorithms. In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors, Multi-
Objective Memetic Algorithms, pages 325–351. Springer, Studies in Computational
Intelligence , Vol. 171, 2009.

9. C. A. Coello Coello and N. Cruz Cortés. Solving Multiobjective Optimization
Problems using an Artificial Immune System. Genetic Programming and Evolvable
Machines, 6(2):163–190, June 2005.

10. C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer, New York, second edition,
September 2007. ISBN 978-0-387-33254-3.

11. I. Das and J. Dennis. Normal-boundary intersection: A new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal
of Optimization, 8:631–657, 1998.

12. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

13. K. Deb, A. Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197, April 2002.

14. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In Ajith Abraham, Lakhmi Jain, and
Robert Goldberg, editors, Evolutionary Multiobjective Optimization. Theoretical
Advances and Applications, pages 105–145. Springer, USA, 2005.

15. M. Dellnitz, O. Schütze, and T. Hestermeyer. Covering Pareto sets by multilevel
subdivision techniques. Journal of Optimization Theory and Applications, 124:113–
155, 2005.

16. J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, 1983.

17. J. Fliege and B. Fux Svaiter. Steepest descent methods for multicriteria optimiza-
tion. Mathematical Methods of Operations Research, 51(3):479–494, 2000.

18. F. Glover and M. Laguna. Tabu Search. Springer, 1997.

43

19. T. Goel and K. Deb. Hybrid Methods for Multi-Objective Evolutionary Algo-
rithms. In Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-Hwan Kim, and
Xin Yao, editors, Proceedings of the 4th Asia-Pacific Conference on Simulated Evo-
lution and Learning (SEAL’02), volume 1, pages 188–192, Orchid Country Club,
Singapore, November 2002. Nanyang Technical University.

20. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA,
2000.

21. N. Hansen and A. Ostermeier. Completely Derandomized Self-adaptation in Evo-
lution Strategies. Evolutionary Computation, 9(2):159–195, Summer 2001.

22. K. Harada, J. Sakuma, and S. Kobayashi. Uniform Sampling of Local Pareto-
Optimal Solution Curves by Pareto Path Following and its Applications in Multi-
objective GA. In Dirk Thierens, editor, 2007 Genetic and Evolutionary Compu-
tation Conference (GECCO’2007), volume 1, pages 813–820, London, UK, July
2007. ACM Press.

23. W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis, Uni-
veristy of California, San Diego. USA, 1994.

24. C. Hillermeier. Nonlinear Multiobjective Optimization - A Generalized Homotopy
Approach. Birkhäuser, 2001.

25. X. Hu, Z. Huang, and Z. Wang. Hybridization of the Multi-Objective Evolution-
ary Algorithms and the Gradient-based Algorithms. In Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003), volume 2, pages 870–877,
Canberra, Australia, December 2003. IEEE Press.

26. C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-objective
Optimization. Evolutionary Computation, 15(1):1–28, Spring 2007.

27. A. W. Iorio and X. Li. Solving rotated multi-objective optimization problems using
differential evolution. In AI 2004: Advances in Artificial Intelligence, Proceedings,
pages 861–872. Springer-Verlag, Lecture Notes in Artificial Intelligence Vol. 3339,
2004.

28. A. W. Iorio and X. Li. Rotated problems and rotationally invariant crossover in
evolutionary multi-objective optimization. International Journal of Computational
Intelligence and Applications, 7(2):149–186, 2008.

29. H. Ishibuchi and T. Murata. Multi-Objective Genetic Local Search Algorithm. In
Toshio Fukuda and Takeshi Furuhashi, editors, Proceedings of the 1996 Interna-
tional Conference on Evolutionary Computation, pages 119–124, Nagoya, Japan,
1996. IEEE.

30. H. Ishibuchi and T. Murata. A multi-objective genetic local search algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, 28(3):392–403, August 1998.

31. H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computation, 7(2):204–223, 2003.

32. A. Jaszkiewicz. Do Multiple-Objective Metaheuristics Deliver on Their Promises?
a Computational Experiment on the Set-Covering Problem. IEEE Transactions
on Evolutionary Computation, 7(2):133–143, April 2003.

33. W. E. Karush. Minima of functions of several variables with inequalities as side
conditions. PhD thesis, University of Chicago, 1939.

34. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science. New Series, 220(4598):671–680, 1983-05-13.

44

35. J. Knowles and D. Corne. M-PAES: A Memetic Algorithm for Multiobjective
Optimization. In 2000 Congress on Evolutionary Computation, volume 1, pages
325–332, Piscataway, New Jersey, July 2000. IEEE Service Center.

36. J. Knowles and D. Corne. Memetic Algorithms for Multiobjective Optimization:
Issues, Methods and Prospects. In William E. Hart, N. Krasnogor, and J.E. Smith,
editors, Recent Advances in Memetic Algorithms, pages 313–352. Springer. Studies
in Fuzziness and Soft Computing, Vol. 166, 2005.

37. N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England, Bristol, United Kingdom, 2002.

38. H. Kuhn and A. Tucker. Nonlinear programming. In J. Neumann, editor, Pro-
ceeding of the 2nd Berkeley Symposium on Mathematical Statistics and Probability,
pages 481–492, 1951.

39. M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-coded memetic al-
gorithms with crossover hill-climbing. Evolutionary Computation, 12(3):273–302,
2004.

40. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
Boston, Massachusetts, 1999.

41. T. Murata, S. Kaige, and H. Ishibuchi. Generalization of Dominance Relation-
Based Replacement Rules for Memetic EMO Algorithms. In Erick Cantú-Paz et al.,
editor, Genetic and Evolutionary Computation—GECCO 2003. Proceedings, Part
I, pages 1234–1245. Springer. Lecture Notes in Computer Science Vol. 2723, July
2003.

42. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, New York, 1999.

43. U.-M. O’Reilly and F. Oppacher. Hybridized crossover-based search techniques for
program discovery. In Proceedings of the 1995 World Conference on Evolutionary
Computation, volume 2, pages 573–578, Perth, Australia, 1995. IEEE Press.

44. V. Pareto. Manual of Political Economy. The MacMillan Press, 1971 (original
edition in French in 1927).

45. S. Poles, E. Rigoni, and T. Robič. MOGA-II Performance on Noisy Optimiza-
tion Problems. In Bogdan Filipič and Jurij Šilc, editors, Bioinspired Optimization
Methods and Their Applications. Proceedings of the International Conference on
Bioinspired Optimization Methods and their Applications, BIOMA 2004, pages 51–
62. Jožef Stefan Institute, Ljubljana, Slovenia, October 2004.

46. E. Rigoni and S. Poles. NBI and MOGA-II, two complementary algorithms for
Multi-Objective optimization. In Dagstuhl Seminar Proceedings 04461. Practical
Approaches to Multi-Objective Optimization, pages 1–22, 2005.

47. H.H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. The Computer Journal, 3(3):175–184, 1960.

48. H. Satoh, M. Yamamura, and S. Kobayashi. Minimal generation gap model for
gas considering both exploration and exploitation. In Iizuka ’96, volume 2, pages
494–497, Fukuoka, Japan, 1996.

49. S. Schäffler, R. Schultz, and K. Weinzierl. A stochastic method for the solution of
unconstrained vector optimization problems. Journal of Optimization Theory and
Applications, 114(1):209–222, 2002.

50. O. Schuetze, M. Laumanns, E. Tantar, C. A. Coello Coello, and E.-G. Talbi. Con-
vergence of Stochastic Search Algorithms to Gap-Free Pareto Front Approxima-
tions. In Dirk Thierens, editor, 2007 Genetic and Evolutionary Computation Con-
ference (GECCO’2007), volume 1, pages 892–899, London, UK, July 2007. ACM
Press.

45

51. O. Schuetze, G. Sanchez, and C. A. Coello Coello. A new memetic strategy for the
numerical treatment of multi-objective optimization problems. In 2008 Genetic
and Evolutionary Computation Conference (GECCO’2008), pages 705–712. ACM
Press, Atlanta, USA, July 2008. ISBN 978-1-60558-131-6.

52. O. Schütze. Set Oriented Methods for Global Optimization. PhD thesis, University
of Paderborn, 2004. <http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/>.

53. O. Schütze, C. A. Coello Coello, S. Mostaghim, E.-G. Talbi, and M. Dellnitz.
Hybridizing Evolutionary Strategies with Continuation Methods for Solving Multi-
Objective Problems. Engineering Optimization, 40(5):383–402, May 2008.

54. O. Schütze, A. Lara, and C. A. Coello Coello. Evolutionary continuation methods
for optimization problems. Proceedings of Genetic and Evolutionary Computation
Conference, (GECCO 2009, to appear), 2009.

55. O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto Sets by
Multilevel Evolutionary Subdivision Techniques. In Carlos M. Fonseca, Peter J.
Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors, Evolutionary
Multi-Criterion Optimization. Second International Conference, EMO 2003, pages
118–132, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer Science.
Volume 2632.

56. O. Schütze, E.-G. Talbi, C. A. Coello Coello, L. V. Santana-Quintero, and
G. Toscano Pulido. A Memetic PSO Algorithm for Scalar Optimization Prob-
lems. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007),
pages 128–134, Honolulu, Hawaii, USA, April 2007. IEEE Press.

57. K. Sindhya, K. Deb, and K. Miettinen. A Local Search Based Evolutionary Multi-
objective Optimization Approach for Fast and Accurate Convergence. In Günter
Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and Nicola Beume, editors,
Parallel Problem Solving from Nature–PPSN X, pages 815–824. Springer. Lecture
Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.

58. A. Sinha, Y.-P. Chen, and D. E. Goldberg. Designing Efficient Genetic and Evo-
lutionary Algorithm Hybrids. In William E. Hart, N. Krasnogor, and J.E. Smith,
editors, Recent Advances in Memetic Algorithms, pages 259–288. Springer. Studies
in Fuzziness and Soft Computing, Vol. 166, 2005.

59. J. E. Smith and T. C. Fogarty. Operator and parameter adaption in genetic
algorithms. Soft Computing, 1(2):81–87, 1997.

60. O. Soliman, L. T. Bui, and H. Abbass. A memetic coevolutionary multi-objective
diffierential evolution algorithm. In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors,
Multi-Objective Memetic Algorithms, pages 325–351. Springer, Studies in Compu-
tational Intelligence , Vol. 171, 2009.

61. B. Suman. Study of simulated annealing based algorithms for multiobjective opti-
mization of a constrained problem. Computers & Chemical Engineering, 28:1849–
1871, 2004.

62. M. Vasile. A Behavior-based Meta-Heuristic for Robust Global Trajectory Op-
timization. In 2007 IEEE Congress on Evolutionary Computation (CEC’2007),
pages 494–497, Singapore, 2007. IEEE Press.

63. M. Vasile. Hybrid behavioral-based multiobjective space trajectory optimization.
In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors, Multi-Objective Memetic Algo-
rithms, pages 231–254. Springer, Studies in Computational Intelligence , Vol. 171,
2009.

64. M. Vasile and M. Locatelli. A hybrid multiagent approach for global trajectory op-
timization. Journal of Global Optimization, 2008. (in press) DOI:10.1007/s10898-
008-9329-3.

46

65. M. Vasile and C. Maddock. Design of optimal spacecraft-asteroid formations
through a hybrid global optimization approach. International Journal of Intel-
ligent Computing and Cybernetics, 1(2):239–268, 2008.

66. D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Com-
puter Engineering. Graduate School of Engineering. Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio, May 1999.

67. Y. Wang, Z. Cai, G. Guo, and Y. Zhou. Multiobjective optimization and hybrid
evolutionary algorithm to solve constrained optimization problems. IEEE Transac-
tions on Systems, Man and Cybernetics Part B–Cybernetics, 37(3):560–575, June
2007.

68. E. F. Wanner, F. G. Guimaraes, R. H.C. Takahashi, and P. J. Fleming. A Quadratic
Approximation-Based Local Search Procedure for Multiobjective Genetic Algo-
rithms. In 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pages
3361–3368, Vancouver, BC, Canada, July 2006. IEEE.

69. Y. Yin, T. Okabe, and B. Sendhoff. Adapting weighted aggregation for multi-
objective evolution strategies. In Evolutionary Multi-Criterion Optimization. First
International Conference, EMO 2001, pages 96–110. Springer. Lecture Notes in
Computer Science. Volume 1993, 2001.

70. E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, Summer
2000.

71. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou,
and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods for Design, Op-
timization and Control with Applications to Industrial Problems, pages 95–100,
Athens, Greece, 2002.

72. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolution-
ary Computation, 3(4):257–271, November 1999.

