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Abstract—Multiobjective multitasking optimization needs to 

solve a set of multiobjective optimization problems simultane-
ously, and tries to speed up their solution by transferring useful 
search experiences across tasks. However, the quality of transfer 
solutions will significantly impact the transfer effect, which may 
even deteriorate the optimization performance with an improper 
selection of transfer solutions. To alleviate this issue, this paper 
suggests a new multiobjective multitasking evolutionary algo-
rithm with decomposition-based transfer selection, called 
MMTEA-DTS. In this algorithm, all tasks are first decomposed 
into a set of subproblems, and then the transfer potential of each 
solution can be quantified based on the performance improve-
ment ratio of its associated subproblem. Only high-potential 
solutions are selected to promote knowledge transfer. Moreover, 
to diversify the transfer of search experiences, a hybrid transfer 
evolution method is designed in this paper. In this way, more 
diverse search experiences are transferred from high-potential 
solutions across different tasks to speed up their convergence. 
Three well-known benchmark suites suggested in the competition 
of evolutionary multitasking optimization and one real-world 
problem suite are used to verify the effectiveness of 
MMTEA-DTS. The experiments validate its advantages in solv-
ing most of the test problems when compared to five recently 
proposed multiobjective multitasking evolutionary algorithms. 
 

Index Terms—Multitasking Optimization, Multiobjective Op-
timization, Knowledge Transfer, Decomposition. 

I. INTRODUCTION 

ptimization problems are ubiquitous in real-world appli-
cations [1]-[3]. These problems are challenging for tradi-

tional optimization methods to solve, owing to their complex 
characteristics with many practical constraints [4]-[6]. In 
particular, multiobjective optimization problems (MOPs) 
[7]-[9] pose a significant challenge since their objectives often 
conflict with each other, and thus a single solution cannot 
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guarantee their optimality simultaneously. Evolutionary algo-
rithms, which rely on population-based search, have been 
recognized as an efficient and effective tool for addressing 
MOPs [10]-[12]. However, with the emergence of cloud 
computing services, an on-demand optimization service is in 
high demand, which needs to solve a large number of opti-
mization tasks requested by several customers concurrently 
[13]. In such cases, separately solving the tasks is inefficient, 
as there are common optimization experiences in tackling 
multiple tasks. Consequently, the study of multitasking opti-
mization (MTO) has received significant attention in recent 
years [14]-[18]. 

As an emerging paradigm in the field of evolutionary 
computation, MTO focuses on solving multiple self-contained 
tasks simultaneously [19], [20], which is inspired by transfer 
learning and multitask learning in predictive analytics [21]. In 
recent studies of MTO, evolutionary computation has been 
widely employed, as this method can exploit the implicit 
parallelism of population-based search to simultaneously 
tackle multiple optimization tasks [19]. One pioneering work 
of Gupta et al. [20] introduces a multifactorial evolution 
paradigm and proposes the first MTO algorithm called MFEA, 
which aims to speed up convergence when solving several 
single-objective optimization tasks by transferring useful 
search experiences across them. Since then, some subsequent 
studies have been conducted to further improve MFEA, such 
as MTO-DRA [22], MFMP [23], MFEA-GSMT [24], and 
AT-MFEA [25]. More recently, the idea of MTO has been 
extended to solve MOPs, in which two or more MOPs can be 
tackled simultaneously in an effective way. However, these 
multiobjective multitasking optimization problems (MMTOPs) 
are more complicated and challenging, as their solution re-
quires consideration of both convergence and diversity of 
different objectives within each task during the knowledge 
transfer process. Although many multiobjective evolutionary 
algorithms (MOEAs) [26]-[28] with very promising perfor-
mance have been proposed recently, they are not sufficiently 
powerful for tackling MMTOPs due to the lack of knowledge 
transfer across tasks. Thus, embedding a multitasking engine 
into traditional MOEAs is a promising approach to transfer 
useful search experiences across tasks [19]. 

In recent years, a number of multiobjective multitasking 
evolutionary algorithms (MMTEAs) [29]-[41] have been 
designed based on multifactorial optimization, inspired by the 
multifactorial inheritance between organisms. In [29], Gupta 
et al. first proposed a multiobjective multifactorial evolution-
ary algorithm called MO-MFEA, which can solve several 
MOP tasks simultaneously using a single population. In this 
algorithm, exploration knowledge is extracted from different 
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tasks and implicitly transferred via assortative mating and 
vertical cultural transmission. Zhou et al. [30] proposed a 
modified MO-MFEA with adaptive knowledge transfer to 
obtain robust and improved performance. In this algorithm, the 
crossover operators as the carriers for knowledge transfer are 
adaptively adjusted based on the search experiences gained in 
the evolutionary process. Feng et al. [31] suggested an explicit 
knowledge transfer model via a denoising autoencoder so that 
different search mechanisms with unique biases can be in-
corporated to tackle various multitasks. Bali et al. [32] de-
signed an enhanced MO-MFEA called MO-MFEA-II to alle-
viate the effect of negative transfer. In this algorithm, an online 
transfer parameter estimation scheme is designed to control 
the extent of knowledge transfer among tasks. Similarly, the 
probability of knowledge transfer is also adaptively adjusted in 
[33]. Moreover, to adapt the domains of different tasks for 
solving MMTOPs, Liang et al. [34] used a mapping matrix 
obtained by subspace alignment to transform the search spaces 
of different tasks, and Gao et al. [35] introduced a subspace 
distribution alignment method with decision variable transfer. 
To adaptively assign computational resources for various tasks, 
Yao et al. [36] directly embedded a dynamic resource alloca-
tion strategy [37] into MO-MFEA, and Wei et al. [38] de-
signed a generalized resource allocation framework. To select 
promising solutions in knowledge transfer, Lin et al. suggested 
transferring only the neighbours of historical solutions with a 
positive transfer effect in EMT/ET [39] and further designed 
an incremental Bayes classifier to identify positive-transfer 
solutions in EMTIL [40], while Chen et al. [41] defined a 
transfer rank for each solution and designed a K-nearest 
neighbors classifier to further distinguish the solutions with 
the same rank for knowledge transfer. In some of our recent 
work [42], the found nondominated solutions from all tasks in 
each generation are used to train a discriminative reconstruc-
tion network model via backpropagation with gradient descent, 
which helps to transfer the solutions of the source task directly 
to the target task. 

In most of the above mentioned MMTEAs, the Pare-
to-dominance method [43] is used for environmental selection. 
However, in our previous studies [44]-[46], the experiments 
have shown that the decomposition methods used in MOEAs 
perform significantly better than the Pareto-dominance 
method in most cases for solving complicated MOPs with 
variable linkages. To the best of our knowledge, only two 
MMTEAs have been designed based on the decomposition 
method. As a pioneering work, Yao et al. [36] designed a new 
MMTEA called MFEA/D-DRA, which is directly extended 
from MOEA/D-DRA [37]. This algorithm can dynamically 
assign different computational resources to various tasks but 
ignores the improvement of knowledge transfer methods. 
Recently, Wang et al. [47] suggested a new decomposi-
tion-based MMTEA, called MTEA/D-DN. This algorithm 
uses neighborhood as a bridge for knowledge transfer among 
different tasks, but its multitasking optimization performance 
is unsatisfactory, as shown in our experimental study. Fol-
lowing this research direction, this paper suggests an improved 
MMTEA with decomposition-based transfer selection, called 

MMTEA-DTS. In our algorithm, all tasks are first decom-
posed into a set of subproblems, and then the transfer potential 
of each solution can be properly quantified based on the per-
formance improvement ratio of its associated subproblem. 
Only solutions with higher transfer potentials will be selected 
for a hybrid transfer evolution to share diverse search experi-
ences across tasks. Compared to the above decomposi-
tion-based MMTEAs (MOEA/D-DRA and MTEA/D-DN), 
our algorithm improves both the selection and evolution of 
transfer solutions, which enhances the final multitasking 
optimization performance. 

To summarize, the main contributions of this paper are the 
following: 

(1) A novel decomposition-based transfer selection is de-
signed to identify high-potential solutions for knowledge 
transfer. The transfer potential of each solution is quantified 
using the performance improvement ratio of its associated 
subproblem, and only solutions with higher transfer potentials 
will be selected as transfer solutions. This way, the negative 
transfer caused by randomly selected transfer solutions can be 
effectively alleviated. 

(2) A hybrid transfer evolutionary mechanism is designed to 
run on the above high-potential solutions. The offspring gen-
erated by the parents in the same task will be transferred into 
other tasks, while the offspring generated by the parents from 
different tasks will be transferred into one random task. This 
way, knowledge transfer is more diversified in our algorithm, 
and the positive transfer effect is promoted. 

(3) A new decomposition-based MMTEA (MMTEA-DTS) 
is proposed with the above decomposition-based transfer 
selection and hybrid transfer evolutionary mechanism. In this 
algorithm, solutions with a high transfer potential will be 
selected to transfer more diverse search experiences across 
tasks, which can better solve a variety of MMTOPs, as ex-
perimentally validated in our empirical studies. 

To assess the efficacy of MMTEA-DTS, a number of em-
pirical studies were conducted to solve three commonly used 
MMTOP test suites, i.e., CIHS-NILS and CPLX suggested in 
the CEC2017 [48] and the CEC2019 [30] competition on 
evolutionary multitasking optimization, respectively, ETMO 
suggested in the CEC2021 competition on evolutionary 
transfer multiobjective optimization [49], and one real-world 
problem suite for training neural networks [42]. Compared to 
five recently proposed MMTEAs (MO-MFEA-II [32], 
MO-MFEA-AKT [30], MO-MFEA-SADE [34], EMT/ET 
[39], and MTEA/D-DN [47]), our experimental results vali-
date that MMTEA-DTS performs better in most cases in terms 
of both solution quality and convergence speed. 

The remainder of this paper is organized as follows. Section 
II provides background information related to the paper. Then, 
Section III details the MMTEA-DTS algorithm. Experimental 
results are presented and analyzed in Section IV. Finally, 
Section V concludes this paper and discusses our future work. 

II. BACKGROUND 

This section first gives the formulation of MMTOPs in 
Section II. A and then introduces a state-of-the-art MOEA 
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(MOEA/D [10]) in Section II.B. Finally, two extensions of 
MOEA/D for solving MMTOPs are introduced, and our im-
provements over them are clarified in Section II.C. 

A. Definition of MMTOPs 

Generally, an MMTOP with K MOPs can be mathemati-
cally formulated as follows: 

               
1 2

1 1 2 2

min  ( , ,..., )

        = ( ( ), ( ),..., ( ))

s.t. ,  {1,2,..., }

K

K K

i i i K 

Q x x x

F x F x F x

x Ω

,                  (1) 

where xi = {x1 
i , x2 

i ,…, xDi 
i }is the Di-dimensional decision var-

iable vector, Ωi denotes the search space of xi, and Fi repre-
sents the i-th MOP to be optimized, as follows: 

1 2min  ( ) ( ( ), ( ),..., ( ))m
i i i i i i i if f fF x x x x ,             (2) 

where m is the number of objectives and ( )j
i if x  (j = 1, …, m) 

is the j-th objective function to be optimized in the i-th MOP. 
Inspired by the way that the human brain solves new tasks by 
leveraging previously acquired knowledge and experiences 
instead of starting from scratch, MMTOPs can be effectively 
tackled by identifying the correlations between different 
MOPs and exploiting the potential parallelism of evolutionary 
algorithms [48]. 

B. The MOEA/D Framework for Tackling MOPs 

MOEA/D [10] uses a decomposition method for converting 
an MOP into a set of single-objective optimization problems 
and then solves them simultaneously. Here, a single-objective 
optimization subproblem decomposed from an MOP ( ( )F x ) 
by the Tchebycheff method [44] is defined as follows: 

    
1

, min max |

s.t. 

tch j j j

j m
g λ f

 
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z ,             (3) 

where 1 2{ , ,..., }mλ λ λλ  is a weight vector, i.e., 0jλ   for all 
j = 1, …, m, and 1 1jm

j λ  .  jf x  is the j-th objective 
function, and 1 2{ , ,..., }mz z zz  is an ideal point to record the 
minimal value of each objective function. 

To clearly introduce the running of MOEA/D, its frame-
work is given in Algorithm 1 with five inputs: 1) N (the 
number of subproblems); 2) 1 2{ , ,..., }mλ λ λλ  (a set of N 
weight vectors); 3) T (the number of weight vectors in the 
neighborhood); 4) δ (the probability that parent solutions are 
selected from the neighborhood); and 5) nr (the maximum 
number of solutions replaced by each offspring). The output of 
MOEA/D is an approximation set (x1,…, xN) to the Pare-
to-optimal set (PS). From the start, in lines 1, 9, 13, and 15 of 
Algorithm 1, MOEA/D can be divided into four functional 
components: 

(1) Initialization in lines 2-6: First, the Euclidean distances 
between any pair of weight vectors are computed, and then the 
T closest weight vectors to each weight vector are found and 
saved into a set B in lines 2-4. Second, an initial population is 
generated uniformly and randomly in the search space, and the 
current minimum value of each objective composes the ideal 
point z. This process can be denoted as a function: (B, x, z) = 
Initialization(N, λ, T). 

(2) Evolutionary process in lines 10-12: For each subprob-

lem i = 1, 2,…, N, rand1 is a real number randomly generated 
in [0, 1]. If it is smaller than δ, the range of mating selection 
and replacement P is set as Bi; otherwise, P is set as {1, …, N} 
in line 10. After that, two indexes 1r  and 2r  are randomly 
selected from P in line 11. Then, differential evolution (DE) 
and polynomial-based mutation (PM) are used to generate the 
offspring y by using xi, 1rx , 2rx  in line 12. In detail, each 
element ky  ( 1,...,k n , and n is the number of decision var-
iables in xi) of the preliminary offspring y' is generated by DE 
as follows: 

 1 2
2if  

otherwise 
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where rand2 is a real number randomly generated in [0, 1], 
while CR and F are two control parameters in DE. Then, PM 
generates y = ( 1,..., ny y ) from y' in the following way: 
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where rand3 and rand4 are two real numbers randomly gener-
ated in [0, 1]. ak and bk (k = 1, 2,…, n) are the lower and upper 
bounds of the k-th decision variable, respectively. The distri-
bution index η and the mutation rate pm are two control pa-
rameters in PM. The above process of generating offspring can 
be denoted as a function: (y, P) = Evolution (δ, i, x, B). 

(3) Update the ideal point in line 14: For each j = 1, …, m, if 
( )j jz f y , then set ( )j jz f y . This process can be denoted 

as a function: z = Update-Ideal-Point(y, z). 
(4) Update the population in lines 16-23: First, the number 

of solution replacements c is initialized as 0, and an index j is 
randomly selected from P. Then, the aggregated function 
values of jx  and y are calculated by (3). When  ,tch jg λy z  

Algorithm 1: MOEA/D (N, λ, T, δ, nr) 
1:  //(B, x, z) = Initialization(N, λ, T) 
2:   for i = 1 : N do
3:       Bi = {i1,…, iT} where λi1,…, λiT are the T closest weight vectors of λi;
4:   end
5:   generate an initial population x1,…, xN and evaluate the objectives;
6:   initialize 1 2{ , ,..., }mz z zz by setting 1min ( )j j i

i Nz f  x ;
7:   while the termination condition is not met do 
8:       for i = 1 : N do
9:          //(y, P) = Evolution(δ, i, x, B); 
10          P = rand1 < δ? Bi : {1,…, N}; 
11:         1r , 2r ← randomly select two indexes from P; 
12:         sequentially run DE and PM on solutions xi, xr1, xr2 to get y;
13         // z =Update-Ideal-Point(y, z); 
14:         for each j = 1 ,…, m, if ( )j jz f y , then set ( )j jz f y ;
15:        // x = Update-Population(P, y, x, nr); 
16:         set c = 0;
17:         while c < nr and P ≠ Ø do
18:               j ← randomly select an index j from P; 
19:              if    , ,tch j tch j jg λ g λ  y z x z  
20:                  jx = y;
21:                   c = c + 1 and remove j from P; 
22:              end if
23:         end while
24: end while
Output: an approximation set (x1,…, xN) to the PS; 
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<  ,tch j jg λx z , jx  is replaced by y, c is incremented by 1, 
and index j is removed from P. Please note that the maximum 
number of solution replacements is not more than nr. This 
process can be denoted as a function: x = Update- Popula-
tion(P, y, x, nr). 

C. Extensions of MOEA/D for MMTOPs 

In a pioneering work, Yao et al. [36] proposed the first 
decomposition-based MMTEA, called MFEA/D-DRA, which 
is an extension of MOEA/D-DRA [37]. However, MFEA/D- 
DRA adopts a simple knowledge transfer method that cannot 
fully leverage the useful search experiences among different 
tasks. To further enhance MFEA/D-DRA, Wang et al. de-
signed MTEA/D-DN [47]. In this algorithm, the internal and 
external neighborhoods of each subproblem are employed as a 
bridge to explore the correlations and potentially useful in-
formation among different tasks to further improve the effi-
ciency of tackling various tasks. Compared to most MMTEAs 
based on the Pareto-dominance method [43], the aforemen-
tioned decomposition-based MMTEAs show more promising 
performance in solving complex MMTOPs with variable 
linkages. 

Inspired by the two aforementioned studies, this paper also 
employs a decomposition-based approach to simultaneously 
solve all tasks as single-objective optimization subproblems. 
However, our algorithm stands out by improving the selection 
and evolution of transfer solutions. To facilitate knowledge 
transfer and speed up the convergence of the associated sub-
problems, our algorithm records the performance improve-
ment ratio of each solution on its associated subproblem as an 
indicator of its transfer potential. Solutions with a higher 
transfer potential are then selected as potential carriers for 
knowledge transfer, which are likely to provide positive 
transfer for other related subproblems. Moreover, to further 
explore the potential synergy among various tasks, our algo-
rithm incorporates a hybrid transfer evolutionary method that 
operates in two different ways: (1) transferring offspring 
evolved in the same task to another task and (2) transferring 
offspring evolved from different tasks into one task. This 
approach diversifies the information exchange in knowledge 
transfer and facilitates the discovery of new solutions that can 
benefit multiple tasks. This way, our algorithm delivers supe-
rior performance for solving different MMTOPs. 

III. OUR PROPOSED ALGORITHM 

In this section, the framework of MMTEA-DTS is first in-
troduced in Section III. A, which is extended from MOEA/D 
introduced in Section II.B. As clarified in Section II. C, 
MMTEA-DTS has two main components different from the 
two existing decomposition-based MMTEA, i.e., a hybrid 
transfer evolution and a decomposition-based transfer selec-
tion, which are respectively introduced in Section III. B and 
Section III.C. 

A. The Framework of MMTEA-DTS 

To clarify the running of MMTEA-DTS, its framework is 
provided in Algorithm 2 based on MOEA/D [10] with four 
inputs: 1) K (the number of tasks); 2) Tp (the probability of 

knowledge transfer); 3) a (a parameter to control the size of the 
potential transfer solution set); and 4) TV (transfer potentials). 
The output of MMTEA-DTS is an approximation set (x1, …, 
xK) to the PSs of all tasks. Here, the functional components of 
MOEA/D introduced in Section II are reused in Algorithm 2. 
Specifically, each task i from 1, …, K maintains the following 
parameters: 1) Bi (a set of neighborhoods); 2) zi (an ideal 
point); 3) λi (a set of weight vectors); and 4) xi (a set of solu-
tions). 

MMTEA-DTS starts from an initialization process in lines 
1-6. For each task i from 1, …, K in line 2, its neighborhood set 
Bi, population xi, and ideal point zi are initialized by the func-
tion Initialization(N, λi, T) introduced in Algorithm 1 (here, 
N is the population size and T is the neighborhood size for each 
task). In particular, each initial solution in xi is randomly 
sampled in [0, 1] to facilitate knowledge transfer across tasks, 
and the vector length of each solution is set the same as the 
maximum number of decision variables among all tasks. In 
line 3, for each j-th solution (j = 1, …, N) in task i, its transfer 
potential j

iTV  is initialized as 1.0. In the above initialization 
process, the number of function evaluations is set to N × K in 
line 5, where × means the multiplication operator. As seen in 
line 6, E is initialized as a set of N × K tuples that are used to 
track high-potential solutions for knowledge transfer, where 
the first index is the associated task and the second index is the 
associated subproblem. 

While the current number of maximum times has not been 
reached, the evolutionary process in lines 7-21 is run. Each 
high-potential solution in E is used to generate an offspring y 
for the current task i or another task, as controlled by a transfer 
probability Tp. When rand is smaller than Tp in line 9, y is 
evolved by our hybrid transfer evolution (Algorithm 3) in line 
10 as a transfer solution into other tasks, and the index of the 
target task (target) different from i is randomly selected in line 
10. Otherwise, the same evolution in MOEA/D is run in line 
13 to optimize its associated task, and the target is set to i in 
line 14. Then, the offspring y is evaluated for the target task, 
and the counter of function evaluations is incremented by 1 in 
line 16. In lines 17-18, the evaluated solution y is used to 

Algorithm 2: MMTEA-DTS (K, Tp, a, TV) 
1:   for i = 1 : K do
2:       (Bi, xi, zi) = Initialization(N, λi, T);//function in Algorithm 1
3:       for each j = 1,…, N, set j

iTV  = 1.0; 
4:   end for
5:   set FEs = N × K;
6:   E= {(1, 1),…, (1, N),…, (K, 1),…,(K, N)}; 
7:   while FEs < MaxFEs
8:       for each (i, j) in E
9:          if rand < tp
10:              (y, P) = HTE (x, B, i, j);//Algorithm 3 
11:              target ← randomly select an index different from i in{1, …, K};
12:         else
13:              (y, P) = Evolution(δ, j, xi, Bi);//function in Algorithm 1
14:             target = i;
15:         end if
16:         evaluate y for the target task and FEs = FEs + 1; 
17:         ztarget = Update-Ideal-Point(y, ztarget);//function in Algorithm 1
18:          xtarget= Update-Population(P, y, xtarget, nr);//function in Algorithm 1
19:      end for
20:      E = DTS (TV, a);//Algorithm 4 
21:   end while
Output: an approximation set (x1, …, xK) to the PSs of all tasks
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update the ideal point and solutions of the target task. After all 
the selected solutions in E are evolved or transferred, the 
potential transfer solution set is updated by the decomposi-
tion-based transfer selection (Algorithm 4) in line 20. 

B. A Hybrid Transfer Evolutionary Mechanism 

To clarify the behavior of our hybrid transfer evolutionary 
mechanism, its pseudocode is provided in Algorithm 3 with 
four inputs: 1) x (all K sets of solutions); 2) B (all K sets of 
neighborhoods); 3) i (the index of the source task); and 4) j (the 
index of the subproblem). It is noted that the indexes i and j are 
used to track the transfer solution in E. Two options of 
knowledge transfer are randomly selected here: (1) the transfer 
solution is evolved in line 2 with the solutions in source tasks 
by Evolution(δ, j, xi, Bi), as introduced in Algorithm 1, which 
can share the search experiences of the source task with other 
target tasks; and (2) the transfer solution is evolved in lines 4-6 
with the solutions of other tasks by sequentially running sim-
ulated binary crossover (SBX) and PM, which further diver-
sifies the sharing of search experiences across all tasks. 

Here, in line 6, the SBX operator is introduced, which will 

generate a temporary solution y , as follows: 

       
   

   

1 2

1 2

1 2

1 2

5

1
1 1

2
1

if  0.5

otherwi1 se1
2

 

j j
i i

j j
i i

raβ dβ

β β

n       

   

   



   

x x

x

y

x

,(7) 

where rand5 is a real number randomly generated in [0, 1], i1 
and i2 are randomly selected from {1, …, K}, and j1 and j2 are 
randomly selected from {1, …, N}. An exponential probability 
distribution β is defined by 
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
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,               (8) 

where u is a random number generated in the range [0, 1] and 
cη  is the crossover distribution index. Finally, PM is run on y' 

to generate y = (y1, …, yn) by (5). 

C. Decomposition-based Transfer Selection 

To clarify the behavior of our decomposition-based transfer 
selection mechanism, its pseudocode is provided in Algo-
rithm 4 with two inputs: 1) TV (transfer potentials of all 
solutions for K tasks) and 2) a (a parameter to control the size 
of the potential transfer solution set). First, in line 1, the set S is 
used to locate all the solutions where the first and second 
elements indicate the solution’s index and its associated task, 
respectively. If there is little improvement from the last gen-

eration in line 2, all the solutions should be selected for po-
tential knowledge transfer and evolution. Thus, the potential 
transfer solution set E is reinitialized as S in line 3. Otherwise, 
in line 5, the performance improvement ratio j

i  of the j-th 
subproblem in the i-th task is computed based on (3) as fol-
lows: 

   
 
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,
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,
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
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 



λ zλ

λ

x z x

x z
,         (9) 

where ,
j
i oldx  and ,

j
i newx are the old solution in the last generation 

and the new solution in the current generation associated with 
the subproblem, respectively. Then, in lines 6-8, the transfer 
potential of each solution associated with the j-th subproblem 
in the i-th task is updated by 

       
                  1  if Δ

Max Δ ,  0  otherwise( )

j
i Mj

i j j
i M i

TV
TV

  
 

 
, (10) 

where j
i  is the performance improvement ratio of its asso-

ciated subproblem in (9) and ΔM is their median improvement 
ratio collected from the last generation. After that, all the 
solutions are sorted in descending order based on the transfer 
potentials in line 9, and the top K N

a
    tuples in S are added 

into E as the potential transfer solutions for the next generation 
in line 10, where x    is a floor function retuning the maxi-
mum integer no larger than x . Note that a is a preset parameter 
to control the size of E, and its impact will be experimentally 
studied in Section IV.E. This way, the solutions with perfor-
mance improvement ratios larger than the median ratio are 
preferred for undertaking both evolution and knowledge 
transfer among the tasks. 

IV. EXPERIMENTAL STUDIES 

In this section, MMTEA-DTS is compared to five recently 
proposed MMTEAs on three well-known test suites to assess 
its performance. Then, more experiments and discussions 
about the effectiveness of our hybrid transfer evolutionary 
mechanism and our decomposition-based transfer selection 
mechanism are presented. Finally, our performance on a re-
al-world application is also studied. 

A. The Three Used Test Suites 

The first is the classical multitasking multiobjective test 
suite proposed in the IEEE CEC2017 competition on evolu-
tionary multitasking optimization [48]. These test problems 
have three degrees of intersection, i.e., complete intersection 

Algorithm 3: HTE (x, B, i, j)//Hybrid Transfer Evolution 
1:     if rand < 0.5 
2:          (y, P) = Evolution(δ, j, xi, Bi); 
3:     else 
4:          i1, i2 ← randomly select two indexes from {1, …, K}; 
5:          j1, j2 ← randomly select two indexes from {1, …, N}; 
6:          sequentially run SBX and PM on solutions xj1 

i1
, xj2 

i2
 to get y;

7:          P = {1, …, N}; 
8:     end if 
Output: the transfer child y, the range of population replacement P;

Algorithm 4: DTS (TV, a)//Decomposition-based Transfer Selection 
1:    set S = {(1, 1),…, (1, N),…, (K, 1),…,(K, N)}; 
2:    if there is little improvement in last generation 
3:        E = S; 
4:    else 
5:        compute the performance improvement ratio of each subproblem in (9);
6:       for i = 1 : K do 
7:            for each j = 1 ,…, N, update j

iTV  by (10); 
8:       end for 
9:       sort S in a descending order based on their transfer potentials by (10);

10:     save the first K N
a
   tuples into E 

11:   end if 
Output: the potential transfer solution set E; 
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(CI), partial intersection (PI), and no intersection (NI). Addi-
tionally, they have three degrees of similarity in the fitness 
landscapes, i.e., high similarity (HS), medium similarity (MS), 
and low similarity (LS). Thus, there are nine types of test 
problems, i.e., CIHS, CIMS, CILS, PIHS, PIMS, PILS, NIHS, 
NIMS, and NILS, which include two MOPs in one task. Their 
detailed definitions can be found in Table A. I of the Sup-
plementary Material due to page limitations. 

The second is the complex multitasking multiobjective op-
timization test suite CEC2019-CPLX proposed in the IEEE 
CEC2019 competition on evolutionary multitasking optimi-
zation, which contains ten MMTOPs constructed from F1-F9 
of the LZ09 benchmarks [10]. Their detailed definitions can be 
found in Tables A.II-A. III of the Supplementary Material due 
to page limitations. 

The third are the benchmark problems proposed in the 
CEC2021 competition on evolutionary transfer multiobjective 
optimization, where forty benchmark functions are designed, 
covering diverse types and properties of multitasks [49]. Only 
ETMOF1-ETMOF8 belonging to MMTOPs are used in this 
paper. Their detailed definitions can be found in Tables A. IV- 
A. VI of the Supplementary Material due to page limitations. 

B. The Compared Algorithms and Parameters Settings 

In this study, MMTEA-DTS1 is compared to five competi-
tive MMTEAs, i.e., four Pareto-dominance-based MMTEAs 
(MO-MFEA-II [32], MO-MFEA-AKT [30], MO-MFEA- 
SADE [34], and EMT/ET [39]) and one recent decomposi-
tion-based MMTEA (MTEA/D-DN [47]). MFEA/D-DRA [36] 
is not included for comparison, as it has been found to be 
inferior than MTEA/D-DN. To ensure a fair comparison, all 
the compared MMTEAs were run using the original source 
codes provided by their authors with their recommended 
parameters settings. Due to page limitations, Table A. VII of 
the Supplementary Material summarizes their parameters 
settings, where these parameters should be set by the user and 
some randomly generated values are used in the mutation, 
crossover and knowledge transfer operators, such as (4)-(8). 

The population size for each task is set as N = 100, and the 
maximum number of function evaluations (FEs) is set as FEs = 
50000 in each task for all the compared MMTEAs. A rela-
tively small number of FEs is more practical for real-world 
MMTOPs due to computational resource limitations. Each 
algorithm is run 30 times on the test problems independently to 
obtain the mean values and standard deviations. It is noted that 
the crossover operators for knowledge transfer across different 
tasks include DE and SBX. When generating offspring without 
knowledge transfer in each task, the DE operator is used in all 
the compared MMTEAs to ensure a fair comparison, as sug-
gested in [47]. The weight vectors used in MTEA/D-DN and 
MMTEA-DTS are generated using the systematic method 
described in [10]. Other parameters settings in MMTEA-DTS 
are summarized at the end of Table A. VII in the Supplemen-
tary Material. 

                                                           
1The source codes of MMTEA-DTS and of all the test problems adopted 

are available at https://github.com/Linqiuzhen/DTS. 

C. Performance Measure 

The goal of solving MOPs is to find a solution set with an 
even distribution that can approximate the true Pareto-optimal 
front (PF). The inverted generational distance (IGD) [50], [51] 
is a widely used performance indicator that can assess both the 
diversity and convergence of a solution set, and is calculated 
using: 

   
*

2*

*

1
IGD , min ( , )dist



  y S
x PF

S PF x y
PF

,    (11) 

where S represents a set of solutions obtained by an MMTEA, 
PF* represents a subset of the true PF, and dist(x,y) is the 
Euclidean distance between two solutions x in PF* and y in S. 
IGD can evaluate the convergence and diversity performance 
by calculating the average value of the minimum distance from 
each reference point on the true PF to the solution set obtained 
by an MMTEA. Thus, a smaller IGD value indicates a better 
overall performance of the MMTEA in terms of convergence 
and diversity. In our study, the number of solutions sampled in 
PF* (|PF*|) is set to 5000 and 10000 for biobjective problems 
and tri-objective problems, respectively. 

Based on the above IGD values, a comprehensive indicator 
(i.e., the mean standard score (MSS) [48]), is further used to 
evaluate the overall multitasking optimization performance of 
an MMTEA. Suppose N MMTEAs are compared for solving 
an MMTOP with K optimization tasks T1, T2,..., TK, each of 
which is executed independently with L runs. Then, for each 
MMTEA, its MSS value on the test problem is computed by 

                     
1 1

1 K
k k

L

k l k

lI μ
MS

L δK
S

 


  ,                     (12) 

where Il 
k denotes the IGD value obtained by an MMTEA in the 

lth run on task Tk (k = 1, 2,…, K), while μk and δk are the mean 
value and standard deviation of the IGD results obtained by 
each compared MMTEA in all runs, respectively. A smaller 
value of MSS indicates a better overall performance of an 
MMTEA on the minimized MMTOP [48]. 

D. Statistical Results and Discussion 

Tables I-III provide the IGD and MSS results obtained by 
all the compared MMTEAs for tackling three test suites of 
MMTOPs from the MTO computation in CEC2017, CEC2019, 
and CEC2021, respectively. In all the tables, the best mean 
value for each test instance is highlighted by boldface and gray 
background. Moreover, the Wilcoxon rank-sum test is con-
ducted on the IGD values with a significance level of 5%, and 
the symbols ‘+’, ‘-’, and ‘≈’ behind each mean IGD value 
indicate that MMTEA-DTS performs better than, worse than, 
and similarly to the corresponding MMTEA, respectively, 
based on the IGD indicator. The symbols ‘+’ and ‘-’ behind 
each MSS value indicate that MMTEA-DTS performs better 
than and worse than the corresponding MMTEA based on the 
MSS indicator, respectively. In the second to last row of each 
table, the values of “≈/+/-” summarize the numbers of test 
problems on which MMTEA-DTS performs significantly 
better than, worse than, and similarly to the corresponding 
MMTEA based on the IGD or MSS indicator, respectively. 
Moreover, to comprehensively show the performance of each 
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MMTEA in each test suite, the average performance ranks are 
provided in the last row of each table, which are obtained by 
using Friedman’s test [52] on the IGD results. 
1) Performance Comparisons on CIHS-NILS 

Table I provides the mean values and standard deviations of 
the IGD and MSS results obtained by all the compared 
MMTEAs in 30 independent runs for tackling nine test 
MMTOPs in CEC2017. From the IGD results in Table I, 
MMTEA-DTS performs significantly better than 
MO-MFEA-II, MO-MFEA-AKT, EMT/ET, and 
MTEA/D-DN on 16, 17, 16, and 12 cases out of a total of 18 
tasks, respectively. It should be noted that our MMTEA-DTS 
can perform well on MMTOPs with varying degrees of simi-
larity. Although MO-MFEA-II adopts a multi-Gaussian dis-
tribution model to estimate the similarity of two solution sets, 
its estimation is not always accurate, which may induce a 
negative transfer effect. This is mainly because the number of 
samples is relatively small in MO-MFEA-II for building the 
Gaussian model in a high-dimensional decision space. Alt-
hough MO-MFEA-AKT uses an adaptive multiple-operator 
strategy to enhance the effect of knowledge transfer, its per-
formance is still not satisfactory due to the randomly selected 
transfer parents. Similarly, MTEA/D-DN does not perform as 
well mainly due to this random mating strategy. In EMT/ET, 
only the neighbours of transfer solutions showing a positive 
effect before are selected for knowledge transfer, but it still 
does not work well on this test suite. In our algorithm, as the 

qualities of transfer solutions are estimated by the transfer 
potentials in (10), MMTEA-DTS can always select the transfer 
solutions with promising evolutionary directions, which are 
further diversified by our hybrid transfer evolution. Thus, 
MMTEA-DTS can perform better than the above mentioned 
MMTEAs. Due to the subspace alignment strategy used, 
MO-MFEA-SADE performs comparably with MMTEA-DTS 
on this test suite, but MMTEA-DTS still has some advantages. 
For example, in the IGD results of CIMS1 and CIMS2, where 
CIMS1 is a harder task with multimodality and both tasks have 
nonseparable decision variables, MMTEA-DTS can obtain a 
well-converged solution set for CIMS1 by transferring the 
search experiences from the relatively easy task CIMS2, while 
MO-MFEA-SADE may become trapped occasionally in the 
local optima of CIMS1. The performance ranks based on the 
IGD results (shown in the last row of Table I) also indicate that 
MMTEA-DTS performs best on this test suite among all the 
competitors, as it has the smallest rank (1.65). 

Moreover, by observing another comprehensive indicator 
(MSS) in Table I, when compared with MO-MFEA-II, MO- 
MFEA-AKT, MO-MFEA-SADE, EMT/ET, and MTEA/D- 
DN, MMTEA-DTS performs significantly better on 8, 8, 6, 8, 
and 8 cases out of a total of 9 MMTOPs, while it is only 
outperformed on 1, 1, 3, 1 and 1 cases, respectively. Thus, 
these MSS results further confirm the advantages of 
MMTEA-DTS on this test suite. 
2) Performance Comparisons on CPLX1-CPLX10 

TABLE I 
THE MEAN VALUES AND STANDARD DEVIATIONS OF IGD AND MSS RESULTS OBTAINED BY THE COMPARED MMTEAS IN CEC2017 

CEC2017 
MO-MFEA-II MO-MFEA-AKT MO-MFEA-SADE EMT/ET MTEA/D-DN MMTEA-DTS 

IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS

CIHS1 2.61E-03 + 
(7.14E-04) 1.29 + 

1.08E-03 + 
(3.20E-04) 0.40 + 

1.67E-04 -
(9.44E-06) -0.361 +

4.43E-03 +
(1.08E-03) 2.18 +

2.63E-04 + 
(5.89E-05) -0.21 + 

1.76E-04
(5.08E-06)

-0.363
CIHS2 8.14E-03 + 

(1.36E-03) 
4.56E-03 + 
(7.57E-04) 

4.69E-04 +
(2.87E-05)

1.11E-02 +
(1.71E-03)

1.47E-03 + 
(2.85E-04) 

4.42E-04
(7.70E-05)

CIMS1 1.10E-01 + 
(9.15E-02) 1.30 + 

6.42E-02 + 
(8.62E-02) 0.60 + 

3.30E-02 +
(6.81E-02) 0.29 +

9.55E-02 +
(8.40E-02) 1.26 +

1.49E-04 + 
(2.20E-05) -0.051 + 

1.41E-04
(8.60E-08)

-0.052
CIMS2 1.64E-02 + 

(1.67E-02) 
6.30E-03 + 
(6.08E-03) 

3.65E-03 +
(5.06E-03)

1.77E-02 +
(1.67E-02)

1.90E-04 + 
(2.88E-05) 

1.74E-04
(1.53E-07)

CILS1 1.49E-03 + 
(3.42E-04) 0.02 + 

7.49E-04 + 
(1.82E-04) 0.00 + 

1.75E-04 -
(7.32E-06) -0.02 +

2.13E-03 +
(4.02E-04) 0.04 +

1.25E-02 + 
(6.59E-02) 0.45 + 

1.82E-04
(8.13E-06)

-0.03
CILS2 2.02E-04 + 

(8.56E-06) 
1.94E-04 + 
(9.94E-06) 

1.66E-04 +
(6.46E-06)

2.27E-04 +
(1.58E-05)

6.24E-04 + 
(2.33E-03) 

1.62E-04
(1.52E-06)

PIHS1 1.66E-02 + 
(6.21E-03) 1.13 + 

2.33E-02 + 
(7.04E-03) 1.73 + 

1.81E-04 -
(7.19E-06)

-0.34 -

2.16E-02 +
(8.56E-03) 1.64 +

6.11E-04 ≈ 
(1.61E-04) -0.26 + 

5.50E-04
(1.63E-04) -0.32

PIHS2 5.57E-01 + 
(1.52E-01) 

7.89E-01 + 
(1.45E-01) 

1.48E-03 -
(3.37E-03)

7.75E-01 +
(1.68E-01)

5.33E-02 + 
(2.90E-02) 

3.69E-03
(5.41E-03)

PIMS1 4.97E-03 ≈ 
(2.41E-03) -0.11 - 

6.44E-03 ≈ 
(1.91E-03) 0.18 - 

1.39E-03 -
(8.10E-04)

-1.18 -

4.03E-03 -
(2.07E-03) 0.01 -

2.06E-03 - 
(8.12E-04) -0.30 - 

1.45E-02
(1.70E-02) 0.58

PIMS2 1.21E+01 ≈ 
(4.20E+00) 

1.44E+01 + 
(3.77E+00) 

2.55E+00 -
(1.85E+00)

1.41E+01 +
(3.46E+00)

1.19E+01 ≈ 
(5.26E+00) 

1.33E+01
(3.76E+00)

PILS1 7.48E-04 + 
(1.41E-04) 0.50 + 

6.56E-04 + 
(1.82E-04) 0.30 + 

1.77E-04 -
(4.03E-05) 0.20 +

6.69E-04 +
(2.00E-04) 0.35 +

3.49E-04 - 
(1.82E-04) 0.00 + 

3.86E-04
(1.46E-04)

-0.41
PILS2 4.63E-02 + 

(8.84E-03) 
4.18E-02 + 
(9.93E-03) 

2.25E-01 +
(9.15E-02)

4.74E-02 +
(1.09E-02)

1.06E-01 + 
(1.83E-01) 

9.37E-04
(3.50E-04)

NIHS1 2.04E+00 + 
(2.01E-01) 1.38 + 

1.73E+00 + 
(6.19E-02) 0.41 + 

1.47E+00 +
(6.85E-03) -0.31 +

2.25E+00 +
(2.21E-01) 2.06 +

1.50E+00 + 
(1.44E-02) -0.24 + 

1.46E+00
(2.00E-02)

-0.33
NIHS2 3.35E-03 + 

(1.16E-03) 
1.47E-03 + 
(4.25E-04) 

1.84E-04 -
(7.28E-06)

4.73E-03 +
(1.30E-03)

3.30E-04 + 
(6.88E-05) 

2.12E-04
(1.72E-05)

NIMS1 3.62E-01 + 
(3.19E-01) 1.01 + 

2.10E-01 + 
(1.65E-01) 0.14 + 

2.39E-01 +
(2.24E-01) 0.20 +

3.64E-01 +
(2.89E-01) 0.77 +

1.80E-01 ≈ 
(2.35E-01) 0.05 + 

1.02E-01
(1.23E-02)

-0.11
NIMS2 6.91E-02 + 

(9.96E-02) 
3.28E-03 + 
(8.11E-03) 

4.09E-03 +
(8.65E-03)

4.04E-02 +
(7.97E-02)

9.65E-04 + 
(1.24E-03) 

1.89E-04
(3.81E-05)

NILS1 1.06E-03 + 
(2.00E-04) 1.11 + 

9.81E-04 + 
(1.23E-04) 0.88 + 

8.20E-04 ≈
(2.82E-05)

-0.77 -

8.21E-04 ≈
(4.32E-05) 0.01 +

8.96E-04 ≈ 
(1.68E-04) -0.15 + 

8.36E-04
(2.12E-05) -0.65

NILS2 6.44E-01 + 
(5.42E-04) 

6.44E-01 + 
(7.12E-04) 

6.42E-01 ≈
(5.45E-04)

6.43E-01 +
(2.64E-04)

6.42E-01 + 
(5.20E-04) 

6.42E-01
(1.32E-04)

≈/+/- 2/16/0 0/8/1 1/17/0 0/8/1 2/8/8 0/6/3 1/16/1 0/8/1 4/12/2 0/8/1 / / 

Rank 4.96 4.35 2.41 4.73 2.90 1.65 



 8

Table II gives the mean values and standard deviations of 
the IGD and MSS results obtained by all the compared 
MMTEAs in 30 independent runs for tackling the CPLX 
problems in CEC2019. Please note that CPLX1-CPLX10 
comprise a variety of MOPs with complicated PS shapes, and 
there is little degree of intersection in PSs between different 
tasks except for CPLX2, CPLX4, and CPLX10, which is a 
major challenge for MMTEAs. From the IGD results in Table 
II, the overall performance of MMTEA-DTS is significantly 
better than that of the others. MMTEA-DTS outperforms 
MO-MFEA-II, MO-MFEA-AKT, MO-MFEA-SADE, and 
EMT/ET on nearly all 20 tasks. Additionally, MMTEA-DTS 
performs remarkably better than MTEA/D-DN. As there is 
little degree of intersection between the tasks, the subspace 
alignment method used in MO-MFEA-SADE is not effective, 
which leads to its poor performance. Decomposition-based 
MMTEAs transform all tasks into a number of subproblems, 
allowing for the exploration of useful search experiences 
among these subproblems. This is the primary reason for the 
superior performance of MTEA/D-DN and MMTEA-DTS 

over other Pareto-dominance-based MMTEAs. When ad-
dressing MMTOPs with little intersection in this test suite, the 
decomposition-based transfer selection and hybrid transfer 
evolutionary mechanism used in MMTEA-DTS provide two 
advantages, which are the main reasons for its superior per-
formance over MTEA/D-DN in 16 out of the total 20 tasks. 
The first benefit is reducing negative transfer occurrence. 

When negative transfer occurs on a subproblem, the associated 
solution’s transfer potential will be reduced, making it less 
likely to be selected for knowledge transfer afterward. The 
second benefit is diversifying the knowledge transfer and 
exploring the synergy among different tasks in the evolution-
ary process. The solution with higher transfer potential will 
undergo our hybrid transfer evolution, which increases the 
likelihood of transferring diverse and useful search experi-
ences among the tasks, even when there is little degree of 
intersection among them. The performance ranks based on the 
IGD results, as shown in the last row of Table II, further 
confirm the advantages of MMTEA-DTS for solving this test 
suite, as its rank (1.06) is the smallest. 

Moreover, by observing another comprehensive indicator 
(MSS) in Table II, the advantages of MMTEA-DTS for solv-
ing this test suite are evident, as it outperforms other compet-
itors on all 10 MMTOPs. 
3) Performance Comparisons on ETMOF1-ETMOF8 

Table III gives the mean values and standard deviations of 
the IGD and MSS results obtained by all the compared 
MMTEAs in 30 independent runs for tackling 
ETMOF1-ETMOF8 in CEC2021. As one of the latest test 
suites in the field of MTO, ETMOF1-ETMOF8 include vari-
ous MOPs with complicated PSs and multiple PF shapes, 
which are modified from LZ09 [10], DTLZ [53], and LSMOP 
[54]. As observed from the IGD results in Table III, 
MMTEA-DTS performs significantly better than 

TABLE II 
THE MEAN VALUES AND STANDARD DEVIATIONS OF IGD AND MSS RESULTS OBTAINED BY THE COMPARED MMTEAS IN CEC2019 

CEC2019 
MO-MFEA-II MO-MFEA-AKT MO-MFEA-SADE EMT/ET MTEA/D-DN MMTEA-DTS 

IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS

CPLX1_1 4.08E-04 + 
(2.30E-05) 0.39 + 

3.98E-04 + 
(1.49E-05) 0.34 + 

3.03E-04 +
(1.46E-05) -0.28 +

3.97E-04 +
(2.11E-05) 1.45 +

2.44E-04 ≈ 
(1.39E-05) -0.900 + 

2.50E-04
(2.54E-05)

-0.903
CPLX1_2 2.44E-03 + 

(8.57E-04) 
2.59E-03 + 
(7.17E-04) 

2.91E-03 +
(8.31E-04)

1.39E-02 +
(4.91E-03)

7.83E-04 + 
(2.02E-04) 

3.46E-04
(2.10E-05)

CPLX2_1 3.96E-04 + 
(2.10E-05) 1.48 + 

3.10E-04 + 
(2.31E-05) 0.15 + 

3.18E-04 +
(8.79E-05) 0.29 +

3.81E-04 +
(1.49E-05) 0.65 +

2.39E-04 ≈ 
(1.24E-05) -0.86 + 

2.44E-04
(1.96E-05)

-0.95
CPLX2_2 5.52E-03 + 

(1.23E-03) 
2.97E-03 + 
(8.61E-04) 

3.23E-03 +
(9.00E-04)

2.98E-03 +
(6.69E-04)

1.17E-03 + 
(2.91E-04) 

7.17E-04
(2.21E-04)

CPLX3_1 5.11E-03 + 
(7.89E-04) -0.10 + 

6.00E-03 + 
(2.32E-03) 0.04 + 

5.21E-03 +
(4.34E-04) 0.09 +

1.69E-02 +
(1.73E-03) 1.92 +

6.70E-03 + 
(3.34E-03) 0.16 + 

1.47E-03
(4.21E-04)

-0.65
CPLX3_2 2.93E-03 + 

(7.41E-04) 
3.34E-03 + 
(6.37E-04) 

4.32E-03 +
(8.72E-04)

9.85E-03 +
(7.26E-03)

3.71E-03 + 
(7.04E-04) 

1.35E-03
(1.95E-04)

CPLX4_1 5.57E-03 + 
(1.59E-03) 0.06 + 

5.04E-03 + 
(6.76E-04) 0.00 + 

4.99E-03 +
(3.67E-04) 1.07 +

1.74E-02 +
(1.07E-03) 2.01 +

6.24E-03 + 
(5.78E-03) 0.15 + 

1.14E-03
(2.04E-04)

-0.42
CPLX4_2 5.96E-03 + 

(1.96E-03) 
5.30E-03 + 
(6.17E-04) 

6.37E-02 +
(9.34E-03)

5.51E-02 +
(1.71E-02)

7.45E-03 + 
(6.75E-03) 

1.15E-03
(2.35E-04)

CPLX5_1 2.65E-03 + 
(6.38E-04) 0.02 + 

2.76E-03 + 
(4.79E-04) 0.03 + 

3.85E-02 +
(2.30E-03) 1.26 +

9.76E-03 +
(5.93E-03) 1.47 +

3.27E-03 + 
(2.43E-03) -0.01 + 

1.25E-03
(1.65E-04)

-0.07
CPLX5_2 6.63E-03 + 

(8.72E-04) 
6.83E-03 + 
(1.17E-03) 

2.96E-03 -
(3.25E-04)

5.90E-02 +
(2.15E-02)

4.26E-03 - 
(2.02E-03) 

5.30E-03
(8.13E-04)

CPLX6_1 2.86E-03 + 
(8.10E-04) 0.04 + 

2.55E-03 + 
(7.39E-04) -0.01 + 

2.89E-03 +
(3.01E-04) 1.06 +

8.79E-03 +
(6.80E-03) 1.80 +

3.37E-03 + 
(2.46E-03) 0.11 + 

1.49E-03
(1.92E-04)

-0.21
CPLX6_2 5.60E-03 + 

(1.17E-03) 
5.63E-03 + 
(7.35E-04) 

6.12E-02 +
(1.14E-02)

5.93E-02 +
(1.39E-02)

6.17E-03 + 
(4.56E-03) 

1.99E-03
(2.90E-04)

CPLX7_1 3.06E-03+ 
(7.20E-04) 0.09 + 

3.16E-03 + 
(5.11E-04) 0.22 + 

3.55E-03 +
(5.25E-04) 0.25 +

3.77E-03 +
(5.51E-04) 0.78 +

2.70E-03 + 
(6.19E-04) -0.16 + 

1.02E-03
(1.59E-04)

-1.19
CPLX7_2 2.33E-03 + 

(9.94E-04) 
2.59E-03 + 
(1.07E-03) 

2.10E-03 +
(4.18E-04)

3.48E-03 +
(3.27E-03)

2.08E-03 + 
(6.04E-04) 

1.34E-03
(2.61E-04)

CPLX8_1 2.33E-03 + 
(7.62E-04) 0.68 + 

2.73E-03 
(1.46E-03) 0.64 + 

1.20E-02 +
(4.30E-03) 0.80 +

5.06E-03 +
(4.84E-03) 0.73 +

2.48E-03 + 
(1.03E-03) -0.09 + 

1.66E-03
(2.39E-04)

-0.45
CPLX8_2 1.53E-02 + 

(6.01E-03) 
1.42E-02 + 
(4.26E-03) 

2.16E-03 +
(4.56E-04)

1.18E-02
(4.84E-03)

4.49E-03 + 
(1.54E-03) 

8.15E-04
(8.61E-04)

CPLX9_1 7.07E-03 + 
(1.47E-03) 0.02 + 

6.72E-03 + 
(1.14E-03) -0.01 + 

3.94E-02 +
(2.19E-03) 1.81 +

6.30E-02 +
(9.31E-03) 2.10 +

4.07E-03 - 
(1.86E-03) -0.03 + 

5.29E-03
(5.13E-04)

-0.10
CPLX9_2 6.65E-03 + 

(2.23E-03) 
5.24E-03 + 
(7.73E-04) 

6.45E-02 +
(6.16E-03)

5.22E-02 +
(1.83E-02)

7.37E-03 + 
(5.81E-03) 

1.91E-03
(2.82E-04)

CPLX10_1 1.03E-02 + 
(4.25E-03) 0.33 + 

1.28E-02 + 
(4.33E-03) 0.97 + 

8.56E-03 +
(3.75E-03) 0.19 +

1.04E-02 +
(4.01E-03) 0.54 +

5.58E-03 + 
(1.96E-03) -0.32 + 

1.39E-03
(7.85E-04)

-1.26
CPLX10_2 7.58E-03 + 

(2.83E-03) 
1.04E-02 + 
(3.93E-03) 

7.85E-03 +
(1.71E-03)

9.08E-03 +
(3.28E-03)

6.33E-03 + 
(1.84E-03) 

2.52E-03
(8.74E-04)

≈/+/- 0/20/0 0/10/0 0/20/0 0/10/0 0/19/1 0/10/0 0/20/0 0/10/0 2/16/2 0/10/0 / / 

Rank 3.81 3.75 4.51 5.36 2.51 1.06 
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MO-MFEA-II, MO-MFEA-AKT, MO-MFEA-SADE, 
EMT/ET and MTEA/D-DN on 18, 18, 10, 12 and 12 cases out 
of a total of 18 tasks, respectively. Since the public source 
codes of MO-MFEA-SADE and EMT/ET cannot solve the 
MMTOP with more than two tasks, only the first two tasks of 
ETMOF7 and ETMOF8 are solved by them. MMTEA-DTS 
can provide a better overall performance than other competi-
tors, and its performance rank (1.70) in the last row of Table III 
is the smallest, which validates the advantages of 

MMTEA-DTS in handling these complex MMTOPs. 

Moreover, by observing another comprehensive indicator 
(MSS) in Table III, when compared with MO-MFEA-II, MO- 
MFEA-AKT, MO-MFEA-SADE, EMT/ET, and MTEA/D- 
DN, MMTEA-DTS performs significantly better on 8, 8, 7, 8, 
and 6 cases out of a total of 9 test MMTOPs, respectively. 
Only MO-MFEA-SADE and MTEA/D-DN can outperform 
MMTEA-DTS on 1 and 2 cases, respectively. Thus, these 
MSS results further confirm the advantages of MMTEA-DTS 
on this test suite. 

TABLE III 
THE MEAN VALUES AND STANDARD DEVIATIONS OF IGD AND MSS RESULTS OBTAINED BY THE COMPARED MMTEAS IN CEC2021 

ETMO2021 
MO-MFEA-II MO-MFEA-AKT MO-MFEA-SADE EMT/ET MTEA/D-DN MMTEA-DTS 

IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS IGD MSS

ETMOF1_1 9.42E-04 + 
(7.19E-05) 0.39 + 

8.86E-04 + 
(1.02E-04) -0.13 + 

8.73E-04 +
(4.07E-05) -0.06 +

1.06E-03 +
(6.12E-05) 1.14 +

8.60E-04 + 
(9.17E-05) 0.03 + 

6.52E-04
(5.95E-05)

-1.66
ETMOF1_2 2.14E-03 + 

(1.70E-04) 
1.91E-03 + 
(2.20E-04) 

1.99E-03 +
(1.38E-04)

2.38E-03 +
(2.39E-04)

2.09E-03 + 
(2.47E-04) 

1.41E-03
(1.21E-04)

ETMOF2_1 2.67E-03 + 
(1.65E-03) 0.55 + 

2.51E-03 + 
(1.02E-03) 0.22 + 

1.35E-03 +
(2.60E-04) 0.15 +

3.94E-03 +
(1.51E-03) 1.47 +

5.67E-04 + 
(2.43E-04) 

-0.94 - 

3.79E-04
(3.56E-05) -0.77

ETMOF2_2 9.35E-03 + 
(5.99E-04) 

8.43E-03 + 
(3.52E-04) 

9.40E-03 +
(2.81E-04)

1.11E-02 +
(1.58E-03)

6.60E-03 - 
(4.74E-04) 

7.34E-03
(3.14E-04)

ETMOF3_1 4.33E-03 + 
(3.48E-03) 0.51 + 

4.16E-03 + 
(2.40E-03) 0.51 + 

3.81E-03 +
(8.01E-04) 0.13 +

5.15E-03 +
(3.59E-03) 1.19 +

3.53E-03 + 
(3.59E-03) -0.06 + 

1.95E-03
(4.05E-04)

-0.37
ETMOF3_2 4.13E-03 + 

(8.45E-04) 
4.22E-03 + 
(6.97E-04) 

3.34E-03 +
(1.34E-03)

5.63E-03 +
(1.28E-03)

2.93E-03 + 
(1.19E-03) 

2.84E-03
(5.18E-04)

ETMOF4_1 8.89E+04 + 
(9.94E+04) 1.70 + 

2.60E+04 + 
(1.57E+04) 0.59 + 

4.25E-01 -
(6.89E-02) -0.004 -

2.56E+02 +
(1.42E+02) 0.004 +

8.04E+00 + 
(3.39E+00) 0.0013 + 

2.78E+00
(2.65E+00) 0.0011

ETMOF4_2 1.26E+02 + 
(1.31E+02) 

5.10E+01 + 
(5.52E+01) 

1.88E-01 -
(7.54E-03)

4.12E-01 +
(5.80E-02)

4.46E-01 + 
(5.30E-02) 

3.47E-01
(5.89E-02)

ETMOF5_1 1.39E+02 + 
(6.25E+01) 1.99 + 

1.16E+02 + 
(4.49E+01) 1.90 + 

2.67E-01 ≈
(1.51E-03) -0.06 +

2.62E-01 ≈
(5.16E-03) -0.06 +

2.71E-01 + 
(2.94E-03) 0.17 + 

2.66E-01
(2.68E-03)

-0.07
ETMOF5_2 1.33E+00 + 

(1.60E-01) 
1.43E+00 + 
(1.68E-01) 

2.77E-01 +
(2.80E-02)

2.38E-01 ≈
(2.36E-02)

4.84E-01 + 
(1.58E-01) 

2.34E-01
(2.58E-02)

ETMOF6_1 2.80E+03 + 
(8.31E+03) 0.97 + 

3.36E+03 + 
(5.49E+03) 0.89 + 

1.04E+05 +
(5.31E+05) 0.24 +

1.13E+01 +
(1.41E+01) 0.003 +

6.91E-01 ≈ 
(2.92E-01) 0.001 + 

6.65E-01
(2.01E-01)

-0.001
ETMOF6_2 1.78E+03 + 

(7.04E+02) 
1.62E+03 + 
(8.62E+02) 

4.17E-02 ≈
(6.10E-03)

1.64E-01 +
(8.11E-02)

4.87E-02 + 
(3.50E-02) 

4.27E-02
(3.41E-02)

ETMOF7_1 5.41E-03 + 
(3.92E-03) 

0.79 + 

6.08E-03 + 
(3.67E-03) 

1.48 + 

7.01E-04 -
(2.16E-04)

-0.16 +

1.56E-03 ≈
(2.79E-04)

0.03 +

4.75E-04 - 
(2.16E-04) 

-0.21 - 

1.69E-03
(1.22E-03)

0.05 ETMOF7_2 3.47E-02 + 
(2.83E-02) 

9.96E-02 + 
(1.09E-01) 

1.29E-02 -
(2.22E-03)

1.82E-02 ≈
(2.16E-03)

1.13E-02 - 
(2.38E-03) 

1.87E-02
(6.44E-03)

ETMOF7_3 4.37E-02 + 
(6.82E-03) 

3.67E-02 + 
(5.07E-03) / / 1.77E-02 - 

(3.57E-03) 
2.18E-02

(3.33E-03)

ETMOF8_1 7.35E-02 + 
(3.95E-02) 

0.47 + 

5.00E-02 + 
(2.27E-02) 

0.01 + 

1.68E-01 +
(8.89E-02)

1.17 +

5.41E-02 +
(2.43E-02)

0.33 +

8.83E-03 + 
(2.34E-03) 

-0.91 + 

7.58E-03
(8.01E-04)

-1.07ETMOF8_2 2.99E-02 + 
(1.01E-02) 

1.31E-02 + 
(3.33E-03) 

2.18E-02 +
(7.26E-03)

2.11E-02 +
(5.32E-03)

2.39E-03 + 
(8.23E-04) 

1.99E-03
(2.00E-04)

ETMOF8_3 9.49E-03 + 
(1.35E-03) 

6.79E-03 + 
(1.15E-03) / / 1.24E-03  ≈ 

(2.07E-04) 
1.29E-03

(8.99E-05)
≈/+/- 0/18/0 0/8/0 0/18/0 0/8/0 2/10/4 0/7/1 4/12/0 0/8/0 2/12/4 0/6/2 / / 

Rank 4.93 4.47 3.33 4.34 2.24 1.70 
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Fig. 1 Final solution sets of MMTEA-DTS and its five competitors on CIHS2, CIMS1, CIMS2, PILS2, NIHS1 and NIMS2 in CEC2017 
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4) Visual Comparisons 
To visually compare all the compared MMTEAs, their final 

solution sets with the 15th best IGD metric in 30 independent 
runs are plotted in Fig. 1 for solving CIHS2, CIMS1, CIMS2, 
PILS2, NIHS1 and NIMS2 in CEC2017, in Fig. S1 of the 
Supplementary Material for solving CPLX1_2 in CEC2019, 
and in Fig. S2 of the Supplementary Material for solving 
ETMOF2_1 in CEC2021 due to page limitations. From these 
plots, it is easy to observe that MMTEA-DTS obtains the best 
approximation to the PF in terms of convergence and diversity. 

Moreover, in order to provide a comprehensive visual 
comparison of all the adopted MMTEAs, their average per-
formance ranks on each test MMTOP are obtained by using 
Friedman’s test [52] on the IGD results. These ranks are 
plotted in Fig. 2, where a lower rank indicates a better per-
formance, and the ranks of MMTEA-DTS are connected by a 
red line for ease of observation. As shown in Fig. 2, 
MMTEA-DTS performs best on most of the test cases. 

E. More Discussions 

1) Effectiveness of the Proposed Methods 
To analyze the effectiveness of the proposed methods, the 

performance of MMTEA-DTS is further compared to its four 
variants: (1) MMTEA-DTS without using knowledge transfer 
by setting Tp = 0, denoted as NO-KT, (2) MMTEA-DTS 
without our decomposition-based transfer selection by setting 
all the transfer potentials to 1, denoted as NO-DTS, and (3) 
MMTEA-DTS without using our hybrid transfer evolutionary 
mechanism by only transferring the offspring generated by the 
parents in the same task into one different task or only trans-
ferring the offspring generated by the parents from different 
tasks into one random task, denoted as KT-1 and KT-2, re-
spectively. Each algorithm is run 30 times independently, and 
the parameters settings of all the variants are set the same as 
that of MMTEA-DTS for a fair comparison. Due to page 
limitations, Tables B.I-B. III of the Supplementary Material 

provide the IGD and MSS results obtained by all the compared 
MMTEA-DTS variants for tackling three test suites of 
MMTOPs from the MTO computation in CEC2017, CEC2019, 
and CEC2021, respectively. Table IV collects the summary of 
comparisons of these compared MMTEA-DTS variants in all 
the test suites. From the statistical results (≈/+/-) of IGD and 
MSS, it can be observed that MMTEA-DTS performs better 
than the other variants in most cases. According to the ranks in 
Table IV, MMTEA-DTS performs best in each of the three test 
suites, as its ranks are 2.04, 2.32, and 1.70 for the three test 
suites, respectively. Without knowledge transfer across dif-
ferent tasks, NO-KT performs worst, as its ranks are respec-
tively 4.61, 4.04, and 4.43 for the three test suites, which 
validates that knowledge transfer is the main contributor to the 
performance improvement of MMTEA-DTS. In NO-DTS, due 
to the absence of decomposition-based transfer selection, it 
also shows relatively poor performance with ranks of 3.80, 
3.83, and 3.62 respectively for the three test suites, indicating 
that decomposition-based transfer selection is the secondary 
contributor to the performance improvement of MMTEA-DTS. 
KT-1 and KT-2 perform relatively better, as their ranks are 
(2.39, 2.40, and 2.50) and (2.16, 2.41, and 2.23) for the three 
test suites, respectively. However, MMTEA-DTS still shows 
some advantages over KT-1 and KT-2 by combining their 
advantages. Thus, the hybrid transfer evolutionary mechanism 
is the third contributor to our performance improvement. 

To visually show the comprehensive comparison of all the 
adopted MMTEA-DTS variants, their average performance 
ranks on each test MMTOP are obtained by using Friedman’s 
test [52] on the IGD results, which are plotted in Fig. 3. Here, 
the ranks of MMTEA-DTS are connected by a red line for ease 
of observation. As observed in Fig. 3, MMTEA-DTS obtains 
the first rank in most cases. Moreover, the convergence curves 
obtained by all the adopted MMTEA-DTS variants are plotted 
in Fig. 4 for solving the problems with three degrees of inter-
section (CI, PI and NI) in CEC2017. For the tasks with 

TABLE IV 
THE SUMMARY OF COMPARISONS OF THE COMPARED MMTEA-DTS VARIANTS IN ALL THE TEST SUITES 

 

NO-KT NO-DTS KT-1 KT-2 MMTEA-DTS 

IGD 
(≈/+/-) 

MSS 
(≈/+/-) 

Rank
IGD 

(≈/+/-) 
MSS 

(≈/+/-) 
Rank

IGD 
(≈/+/-)

MSS
(≈/+/-)

Rank
IGD 

(≈/+/-)
MSS

(≈/+/-)
Rank 

IGD 
(≈/+/-) 

MSS
(≈/+/-)

Rank

CEC2017 1/15/2 0/9/0 4.61 2/14/2 0/7/2 3.80 11/7/0 0/7/2 2.39 14/2/2 0/5/4 2.16 / / 2.04

CEC2019 6/12/2 0/10/0 4.04 8/12/0 0/10/0 3.83 18/1/1 0/4/6 2.40 19/0/1 0/7/3 2.41 / / 2.32

CEC2021 1/16/1 0/8/0 4.43 3/13/2 0/7/1 3.62 13/5/0 0/7/1 2.50 18/0/0 0/4/4 2.23 / / 1.70

 
Fig. 2 Average performance ranks of the compared MMTEAs on each case Fig. 3 Average performance ranks of the compared variants on each case 



 11

complete intersection (CIHS1 and CIMS1), Fig. 4(a) indicates 
that the adoption of knowledge transfer in MMTEA-DTS can 
always significantly speed up convergence. This is because the 
high-potential transfer solutions selected by the decomposi-
tion-based method can greatly promote the transfer effect. For 
the tasks with partial intersection (PIMS1 and PIMS2) in Fig. 
4(b), although the convergence speed of MMTEA-DTS is not 
the fastest at the beginning, it could still reach the best con-
vergence at the end by combining the advantages of the de-
composition-based transfer selection and the hybrid transfer 
evolutionary mechanism. For the tasks with no intersection 
(NIMS1 and NILS1) in Fig. 4(c), the potential synergy of tasks 
can still speed up convergence to some extent, and all the 
variants could finally achieve the same degree of convergence. 
Based on these plots in Fig. 4, it is reasonable to conclude that 
transferring valuable knowledge across tasks using the pro-
posed decomposition-based transfer selection and hybrid 
transfer evolution can speed up convergence for solving var-
ious tasks with different degrees of intersection. 
2) Analysis of Transfer Ratios and Directions 

In MMTEA-DTS, an adaptive transfer ratio can be realized 
through the use of decomposition-based transfer selection. 
Due to page limitations, CIHS, CIMS, and CILS are taken as 
examples, and their transfer ratios in the evolutionary process 
are visually plotted in Fig. 5, which are averaged from 30 
independent runs of MMTEA-DTS. As observed from Fig. 5, 
the transfer ratios evidently fluctuate at each generation of the 
evolutionary process, as the demands for knowledge transfer 

between two tasks are not always the same. In MMTEA-DTS, 
decomposition-based transfer selection can estimate the 
transfer potential of each solution based on the performance 
improvement ratio to its associated subproblem, which could 
be used to dynamically adjust the transfer ratios among all 
tasks. As observed in Fig. 5(a), more solutions in task2 are 
transferred to task1 in the early stages of the evolutionary 
process, while at later stages, this situation reverses. However, 
in Fig. 5(b), the transfer ratios of task1 significantly fluctuate 
in the early stages of the evolutionary process and become 
relatively stable at a later stage. In Fig. 5(c), a large number of 
solutions in task1 are transferred to task2 during a short period 
of the early stages of the evolutionary process, and more 
solutions in task2 are transferred to task1 afterwards. Thus, 
based on the above observations in Fig. 5, MMTEA-DTS can 
dynamically adjust the transfer ratios and directions among 
different tasks for solving various MMTOPs.  
3) Sensitivity Analysis 

In this experiment, the sensitivity of parameter a used in 
MMTEA-DTS is studied, which controls the size of the po-
tential transfer solution set. Here, the values of this parameter 
are set as a = 1, 3, 5, 7, 9, while other parameters in 
MMTEA-DTS are set the same as in the above experiments. 
All three test suites mentioned above are used, and Friedman’s 
test [52] is run on the IGD results for statistical analysis. Due 
to page limitations, Tables B.IV-B. VI of the Supplementary 
Material provide the IGD and MSS results obtained by 
MMTEA-DTS with different a values for tackling three test 
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                                                         (a)                                                                   (b)                                                                  (c) 

Fig. 4 The convergence curves obtained by the compared MMTEA-DTS variants on (a) CI, (b) PI and (c) NI problems 

 
(a)                                                                                  (b)                                                                             (c) 

Fig. 5 Transfer ratios of MMTEA-DTS on (a) CIHS, (b) CIMS and (c) CILS 
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suites of MMTOPs from the MTO computation in CEC2017, 
CEC2019, and CEC2021, respectively. Fig. 6 plots their 
average performance ranks for each test problem based on the 
IGD results. As observed from Fig. 6, the average performance 
ranks of MMTEA-DTS gradually improve from a = 1 to a = 3 
and then are steady from a = 3 to a = 7, but slightly deteriorate 
from a = 7 to a = 9. That is, when a is set too small (i.e., a = 1), 
the solutions are more likely to be treated equally, so the effect 
of our decomposition-based transfer selection mechanism 
cannot be displayed; however, when a is set relatively large 
(i.e., a = 9), only a few solutions are selected to be evolved and 
for knowledge transfer, which may result in a lack of diversity 
in the evolutionary process. Thus, a is recommended to be set 
between 3 and 7, as the IGD results of MMTEA-DTS with 
these corresponding a values are statistically similar in most 
test cases. 
4) Real-world Application 

To evaluate the real-world applicability of MMTEA-DTS, 
six real-world MMTOPs (RTMF1- RTMF6) in RTMF [42] 
were adopted to simulate the training of deep neural networks 
(DNNs) on multiple different bi-classification tasks, where 
each task endeavors to optimize the weights (i.e., the variables) 
of the involved DNN. As defined in [55], two objectives 
(complexity and classification error of DNNs) are concur-
rently minimized. For instance, in RMTF2, task 1 is to dis-
tinguish between two different varieties of raisins (Kecimen or 
Besni) [56], while task 2 is to distinguish between two dif-
ferent varieties of rice (Cammeo or Osmancik) [57]. Due to 
page limitations, the detailed definitions of these RMTF test 
problems are given in Table A.VIII. 

In this study, MMTEA-DTS is compared to MO-MFEA-II, 
MO-MFEA-AKT, MO-MFEA-SADE, EMT/ET, MTEA/D- 
DN and DRNEA (a baseline algorithm in [42]) for solving 
these RMTF test problems. Each task has a population size of 
50, and each MMETA runs for 200 iterations. The parameters 
settings for DRNEA are the same as suggested in [42], and the 
parameters settings for other MMETAs are the same as in 
Section IV.B. Since the PFs of practical RMTF problems 
(RMTFs) are unknown, the hypervolume (HV) [58] with a 
reference point (1, 1) is used as the metric to assess the per-
formance of each solver for RMTFs. Generally, a larger value 
of HV indicates a better performance of MMTEA. All the 
compared MMTEAs are run 20 times independently, and the 
comparison results of HV values are provided in Table B. VII 
of the Supplementary Material due to page limitations. Fig. 7 

plots their average performance ranks for each RMTF problem 
by using Friedman’s test [52] based on the average HV value 
of the tasks in each RMTF problem, where the ranks of 
MMTEA-DTS are connected by a red line for easy observation. 
MMTEA-DTS performs best on all the RMTF problems, as 
observed from Fig. 7. MMTEA-DTS also obtains the best rank 
on 14 out of a total of 15 cases, as shown in Table B.VII. This 
is because our algorithm is able to consistently select the 
high-potential solutions for knowledge transfer, which are 
further diversified by our hybrid transfer evolutionary mech-
anism, resulting in enhanced performance. Thus, this experi-
ment provides empirical evidence for the effectiveness of 
MMTEA-DTS in real-world applications, specifically in 
training DNNs for bi-classification problems. 

V. CONCLUSIONS AND FUTURE WORK 

This paper has proposed a new multiobjective multitasking 
evolutionary algorithm with decomposition-based transfer 
selection, called MMTEA-DTS. Decomposition-based trans-
fer selection can properly quantify the transfer potential of 
each solution for knowledge transfer based on the feedback of 
the improvement ratio to its associated subproblem, which 
helps to alleviate the negative transfer effect. Moreover, to 
diversify and explore more useful search experiences, a hybrid 
transfer evolutionary mechanism is proposed in 
MMTEA-DTS. The experiments have validated that both 
operations can be cooperatively used to fully exploit the po-
tential complementarity among the tasks and that the proposed 
decomposition-based transfer selection has a significant con-
tribution to our performance improvement. The experiments 
have also validated that MMTEA-DTS outperforms four 
Pareto-dominance-based MMTEAs (MO-MFEA-II [32], 
MO-MFEA-AKT [30], MO-MFEA-SADE [34], and EMT/ET 
[39]) and one decomposition-based MMTEA (MTEA/D-DN 
[47]) when solving most cases of three well-known test suites 
and one real-world problem suite. 

Although our algorithm has shown very promising perfor-
mance, there are still some areas that warrant further investi-
gation in our future work. For instance, the performance of 
distinct decomposition methods for various tasks should be 
further studied to facilitate knowledge transfer. Additionally, 
the relevance of different subproblems among the tasks should 
be further studied to improve the efficiency of mating selection 
and evolution during knowledge transfer. Finally, the appli-
cation of this algorithm in more real-world MMTOPs [59] 

 
Fig. 6 Average performance rankings obtained by MMTEA-DTS with different

a values based on the IGD results 

 
Fig. 7 Average performance ranks of the compared MMTEAs on each   

real-world problem 
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should be further studied in future work. 
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