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Abstract: 

 Most multi-objective immune algorithms (MOIAs) adopt clonal selection to speed up convergence, as 

this operator only clones the best individuals during the search process. However, this approach somehow 

deteriorates the population diversity, which may cause a MOIA to be trapped in a local optimum and could 

also lead to premature convergence when tackling some complicated multi-objective optimization problems 

(MOPs). In order to overcome this problem, an adaptive immune-inspired multi-objective algorithm (AIMA) 

is presented in this paper, in which multiple differential evolution (DE) strategies having distinct advantages 

are embedded into a conventional MOIA. Our proposed approach strengthens the exploration capabilities of 

a MOIA while also improving its population diversity. At each generation, and based on the current search 

stage, an adaptive selection method is designed to choose an appropriate DE strategy for evolution. The core 

idea is to effectively combine the advantages of three DE strategies when solving different MOPs. A number 

of comparative experiments are conducted on the well-known and frequently-used WFG and DTLZ test 

problems. Our experimental results validate the superiority of our proposed AIMA, as it performs better than 

some state-of-the-art multi-objective optimization algorithms and some state-of-the-art MOIAs. 

Keywords: Multi-objective optimization; Immune algorithm; Differential evolution; Adaptive strategy 

selection 
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Optimization problems widely exist in scientific research and engineering applications. Based on the 

number of objectives to be optimized, they are generally classified into single-objective optimization 

problems (SOPs) and multi-objective optimization problems (MOPs). This paper focuses on tackling 

MOPs, which give rise to several challenges due to the aim of optimizing several (often conflicting) 

objectives simultaneously. There is a wide variety of real-world MOPs, such as route planning [39], job 

shop scheduling [20], and data classification [1]. Due to the conflict among the objectives, the 

optimization of a MOP generates a set of solutions representing the best possible trade-off among all the 

objectives, which compose the so-called Pareto-optimal set (PS). The corresponding mapping of PS in 

objective space is termed Pareto-optimal front (PF). Without any further preference information, the goal 

of multi-objective optimization is to produce a set of solutions, which approximate the true PF as close as 

possible and are distributed along the true PF as uniformly as possible. 

Due to the population-based nature of evolutionary algorithms (EAs), they are very suitable for 

tackling MOPs since they can process a set of solutions in a single run. During the recent decades, a 

number of multi-objective EAs (MOEAs) have been designed, showing a very promising performance on 

tackling different MOPs. There are three well-known representatives of state-of-the-art MOEAs, i.e., 

NSGA-II [12], SPEA2 [56], and MOEA/D [52]. Regarding NSGA-II [12], it incorporates a fast 

nondominated sorting approach to direct the search, while a crowding-distance metric is used to maintain 

the population’s diversity. On SPEA2 [56], a nearest neighbor density estimation technique is proposed to 

maintain the population’s diversity, combined with a fine-grained fitness assignment strategy that is used 

to guide the search. For MOEA/D [52], a MOP is decomposed into a set of SOPs and then these SOPs are 

solved in a cooperative manner using evolutionary search. These state-of-the-art MOEAs have inspired 

many enhanced variants. For example, regarding NSGA-II, a novel parent inheritance operator was 

embedded and several jumping gene adaptations have been used in [35] to speed up convergence towards 

the global PF, while a reference point based approach was introduced in [13] to maintain the population’s 

diversity when tackling many-objective optimization problems (i.e., MOPs having more than three 

objectives); for SPEA2, a shift-based density estimation (SDE) strategy [29] was presented to enhance its 

performance on tackling many-objective optimization problems; with respect to MOEA/D, a dynamic 

resource allocation (DRA) strategy was introduced in [53] to dynamically assign the computational 

resources based on the difficulties of sub-problems, and an economic stable matching model (STM) was 

designed in [28] to guarantee the balanced match of sub-problems and solutions by mutual preferences. A 

detailed review of MOEAs can be found in [36]. Especially, some of MOEAs were enhanced based on the 

use of differential evolution (DE), since DE shows excellent search capabilities. The experiments 

conducted by [4] and [44] showed that DE can significantly enhance the performance of MOEAs, as the 
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DE-based variants of three state-of-the-art MOEAs (i.e., NSGA-II, SPEA2 and IBEA) significantly 

outperformed the original ones. In MOEA/D-DE [26] and CMODE [46], a specific DE operator was used 

to substitute the original evolutionary operators of MOEA/D [52] and CMPSO [51], giving rise to a better 

optimization performance; Moreover, in ADEMO/D [45], MOEA/D-FRRMAB [27], and MOEA/D-CDE 

[34], multiple DE operators were further combined to enhance their performance. These promising results 

have evidenced the advantages of incorporating single or multiple DE operators into a MOEA. 

On the other hand, multi-objective immune algorithms (MOIAs) are designed to mimic the process of 

clonal selection [3][6][21][40], as inspired from the biologic immune system. The nondominated 

neighbor-based immune algorithm (NNIA) [21] may be the first real-coded MOIA using the clonal 

selection approach. Since the report of NNIA, a number of other MOIAs have been designed and 

enhanced under its framework [6][24][25][32]. Among these MOIAs, clonal selection is employed to pick 

out a few of less-crowded nondominated solutions, which are then proportionally cloned according to 

their crowding-distance values [12]. Then, the clones undergo the heuristic search operations, such as 

recombination and mutation. By this way, the less-crowded search area will be assigned with more clones 

for exploration. Note that the boundary area is considered as the sparsest area and, therefore, it will be 

explored by more clones. Compared to the selection operator in NSGA-II [12] and most of other MOEAs 

[13][36][46], clonal selection enables MOIAs to allocate more search efforts to the boundary and 

less-crowded areas, which helps to improve the convergence speed and tries to extend the population’s 

diversity. However, when dealing with some complicated MOPs, MOIAs may easily fall into local 

optimum and suffer from premature convergence or stagnation due to the lack of population diversity 

[25][41], as only a few of nondominated solutions are selected for cloning, especially at the early stages 

of the search. To overcome this limitation, some MOIAs [30][31][33][37] have been recently proposed to 

embed the DE operators. These embedded DE operators have been often used to replace or cooperate 

with the simulated binary crossover (SBX) operator [16], as the DE operators normally show a better 

search capability than SBX [31]. Therefore, embedding them can help to enhance the population diversity 

of MOIAs. However, all the MOIAs proposed in [30][31][33][37] only adopt one single DE strategy, 

which may not provide optimal performance when tackling different kinds of MOPs, as different DE 

strategies are suitable for solving certain kinds of problems with different features [11]. Moreover, a 

single DE strategy with fixed parameters settings only presents a monotonous search pattern, which may 

limit the search capability of these MOIAs. In some MOEAs [27][34][45], it was experimentally 

validated that multiple DE strategies seemed more advantageous when solving different kinds of MOPs. 

Thus, it is reasonable to expect that, the introduction of multiple DE strategies into MOIAs may also be 

very promising. Therefore, in this paper, an Adaptive Immune-inspired Multi-objective Algorithm, called 
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AIMA, is proposed in this paper. Three DE strategies with different parameters settings are embedded 

into a state-of-the-art MOIA (i.e., NNIA [21]) and an adaptive DE strategy selection approach is designed 

to automatically run an appropriate DE strategy at each generation based on the current evolutionary stage. 

These three DE strategies can provide different search properties. Thus, they can significantly enhance the 

search capability and population diversity of NNIA when appropriately selected using the adaptive DE 

strategy. When solving the well-known and frequently-used test MOPs (WFG [23] and DTLZ [14]) with 

various features, AIMA shows evident advantages over five state-of-the-art multi-objective optimization 

algorithms (i.e., NSGA-II [12], SPEA2 [56], MOEA/D [52], SMS-EMOA [2], and CMPSO [51]) and 

their DE-based variants [26][46], and four competitive MOIAs (i.e., NNIA [21], IMADE [37], DMMO 

[30], and HEIA [31]). 

The remainder of this paper is organized as follows. Section 2 provides some basic background on 

multi-objective optimization, as well as a brief introduction to MOIAs, and a description of the clonal 

selection operator in NNIA. The details of AIMA are given in Section 3, including the complete 

pseudo-code of AIMA, the three adopted DE strategies, and the adaptive DE strategy selection approach. 

In Section 4, our proposed AIMA is compared with respect to several state-of-the-art MOEAs and MOIAs. 

The advantages of our proposed mechanisms and the sensitivity of our proposed approach to its 

parameters are also analyzed in this section. Finally, our conclusions and some possible paths of future 

research are given in Section 5. 

2. Background 

2.1. Multi-objective Optimization Problems 

Multi-objective optimization problems aim to optimize multiple (often conflicting) objectives 

simultaneously. Without loss of generality, a MOP can be formulated as follows: 

           1 2Min , ,...,
T

mx
F x f x f x f x


                        (1) 

where  1 2, ,..., nx x x x   is a decision vector with n dimensions,   is the feasible region of decision 

space, the mapping function : mF R  defines m objective functions and mR  is the objective space. 

As the objectives may conflict with each other, it is usually impossible to find a solution that can optimize 

all the objectives at the same time. Thus, the definition of Pareto optimality [5] is adopted to find out the 

best trade-offs among all the objectives. 

Definition 1. (Pareto-dominance): A decision vector x is said to dominate another decision vector y 

(denoted as x yf ) if and only if 

             1, 2, , : 1, 2, , :i i j ji m f x f y j m f x f y      K K           (2) 

Definition 2. (Pareto optimality): A solution x is said to be Pareto-optimal if and only if 

 :y y x  f                                 (3) 
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Definition 3. (Pareto-optimal set): The set PS includes all the Pareto-optimal solutions, and is defined by 

    | :x y y x   fPS                            (4) 

Definition 4. (Pareto-optimal front): The set PF includes the values of all the objective functions 

corresponding to the Pareto-optimal solutions in PS. 

         1 2, , , |
T

mF x f x f x f x x  KPF PS                  (5) 

2.2. A Brief Introduction to MOIAs 

The first MOIA was designed in [50] to solve a multi-criterion design problem, in which the concept 

of antibody-antigen affinity is used to modify the fitness assignment mechanism of a standard genetic 

algorithm. After that, a variety of MOIAs were designed with the aim of enhancing performance. Based 

on the special features inspired by the immune system, most MOIAs can be classified into three main 

categories.  

The first kind of MOIAs is designed based on the clonal selection approach [3], which applies the 

cloning operator to produce copies of antibodies having the highest affinity values. In the multi-objective 

immune system algorithm (MISA) [8], the antibodies with high affinities were cloned to have multiple 

copies and an adaptive grid was used to maintain the population’s diversity. In the immune dominance 

clonal multi-objective algorithm (IDCMA) [24], the antibody-antibody affinity was used to reflect the 

similarity among antibodies, which helps to guide the application of the cloning operator on an effective 

search region (i.e., the least-crowded region). This approach was modified to implement a real-coded 

MOIA in NNIA [21]. In the hybrid immune multi-objective algorithm (HIMO) [6], a hybrid operator 

combining Gaussian mutation and polynomial-based mutation was designed, which was further enhanced 

by using an adaptive mutation operator in the micro-population immune multi-objective algorithm 

(MIMO) [32].  

There is a second class of MOIAs which adopts immune network theory to evolve the population and 

to maintain the population’s diversity. In the vector artificial immune system (VAIS) [18], two 

evolutionary loops were performed, in which the inner loop is used to exploit the search space, while the 

outer one using the suppression mechanism is adopted to lower the redundancy among similar antibodies. 

In the weight-based MOIA [19], a random weighted sum method was used as a fitness assignment 

scheme and a new truncation approach was presented to eliminate similar individuals.  

The last kind of MOIAs combines an immune system with another heuristic, by embedding operators 

of another heuristic into MOIAs. In the immune-inspired Pareto archived evolution strategy [10], two 

hypermutation operators were integrated to solve a MOP extracted from the problems of ab initio protein 

structure prediction. In the evolutionary artificial immune algorithm [43], the global search capabilities of 

EAs were combined with the learning capabilities of artificial immune systems. In the immunity-based 
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hybrid evolutionary algorithm [49], a sorting scheme featuring uniform crossover, multi-point mutation, 

and crowding distance sorting were hybridized to solve both unconstrained and constrained MOPs. 

In recent years, some new MOIAs with competitive performance have been designed. For example, a 

novel MOIA was introduced in [25] with two interesting methods. One is to design a resource allocation 

model to speed up convergence, while the other is to use a double-sphere crowding distance measure to 

improve the population’s diversity. In [37], the immune multi-objective optimization algorithm with 

differential evolution inspired recombination (IMADE) was reported. This approach presents a novel 

recombination operator, combining a newly designed DE operator and simulated binary crossover (SBX) 

[16]. Therefore, it provides two different search patterns during the search process. A double-module 

immune algorithm for MOPs (DMMO) [30] was presented with two evolutionary modules, with the aim 

of simultaneously enhancing the convergence speed and the population’s diversity. The first module is 

used to optimize each objective independently using DE in each sub-population, while the second module 

follows the traditional procedures of MOIAs to optimize multiple conflicting objectives. In [33], a novel 

hybrid multi-objective immune algorithm with adaptive differential evolution (ADE-MOIA) was 

designed. This approach introduces an adaptive DE operator to further enhance the robustness of MOIAs 

in solving various kinds of MOPs. More recently, the hybrid evolutionary immune algorithm for MOPs 

(HEIA) [31] was reported, providing a novel hybrid evolutionary framework for MOIAs. This approach 

divides the cloned individuals into several sub-populations, which are then separately evolved by using 

different evolutionary strategies. An implementation of this framework with two evolutionary strategies 

(SBX and DE) is shown in HEIA. 

2.3. Clonal Selection Operator in NNIA 

To illustrate the way in which the clonal selection operator works, here a well-known state-of-the-art 

MOIA (i.e., NNIA [21]) is introduced. This approach was inspired on the design of many other MOIAs 

[6][24][25][32][33][37]. Its main contribution is to propose a nondominated neighbor-based selection and 

a crowding-distance-based proportional cloning mechanism. These two approaches actually constitute the 

clonal selection operator in NNIA. To show the way in which this operator works, in Fig. 1, we show the 

population evolution in a single generation at time t for NNIA. 
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Fig. 1 The population evolution of NNIA 
 

First, an offspring population Ot is produced by applying the evolutionary operators (i.e., SBX and 

polynomial-based mutation [21]) on the current population Pt (with size N). Then, Ot is merged with the 

archive population Et, and the nondominated solutions from this union are selected to form a temporary 

population Dt. If the size of Dt is smaller than N, all the solutions in Dt are chosen for the new archive 

population Et+1. Otherwise, N solutions in Dt with the largest values on crowding distance [12] are 

selected. Thus, the size of the archive is not fixed, and such size may be very small especially at the early 

stages of the search. At last, the iteration counter t is increased by 1 and clonal selection is performed to 

produce a new population Pt. This approach first selects nA solutions with the largest crowding-distance 

values [12], to form the population with cloned parents At (nA is always set to be far smaller than N). Then, 

the parents  ( 1,2,..., )i Aa i n  in At are all cloned proportionally based on their crowding-distance values. 

The mathematical model of proportional cloning is defined by 

 1 1
,An

t i i i ti
P q a a A 

  U                               (6) 

where the operator  represents the cloning operator and the parameter iq  denotes the number of 

clones corresponding to each solution ia  in At . The value of iq  is calculated by 

 
 

1

A

i
i n

jj

cd a
q N

cd a


 
  
  

                               (7) 

where  icd a  is the crowding-distance value [12] for ia . In this way, the solution with a larger 

crowding-distance value will have more clones, as a larger value of iq  will be assigned in Eq. (7). Since 

the crowding-distance values for boundary solutions are positive infinity, their crowding-distance values 

are reset to be the double of the maximum value of solutions in At except for the boundary solutions [21]. 

An example is given here to clarify this procedure. Suppose that there are five solutions in population At 

and the corresponding values of the objective functions are (0, 1.0), (0.3, 0.6), (0.5, 0.5), (0.6, 0.4) and 

(1.0, 0) for a bi-objective problem. Therefore, their crowding-distance values can be computed according 
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to the method in [12], i.e., 2.0, 1.0, 0.5, 1.0, and 2.0, respectively for the five individuals. Assuming that 

N=65, we get 1 20q  , 2 10q  , 3 5q  , 4 10q   and 5 20q   according to Eq. (7). 

 According to the above process of clonal selection, it can be easily observed that the clonal selection 

operator in NNIA puts more clones to search the less-crowded and boundary areas, thus it shows very 

promising convergence speed, as validated in [21][31]. However, according to the No-Free-Lunch 

theorem [48], as we produce more clones of the best solutions, the higher will be the loss of population 

diversity [41]. As experimentally validated in [41], when the nondominated solutions are few (this case 

often happens at the early stage of the search), the population diversity in NNIA is extremely poor and it 

is very easy to get trapped into a local optimum when solving some complicated MOPs with many local 

PFs (e.g., DTLZ1, DTLZ3 and WFG1) or with disconnected PFs (e.g., DTLZ7 and WFG2). To 

overcome this problem, some MOIAs [30][31][33][37] have tried to embed the search capabilities of DE. 

Although these MOIAs were shown to obtain promising results, they only adopted one single DE strategy, 

which provides limited search capabilities and may not perform well in tackling various types of MOPs 

with different features. Therefore, this paper proposes to embed three DE strategies with different 

parameter settings into a MOIA and then adaptively select an appropriate DE strategy for running at each 

generation, aiming to enhance the search capabilities of MOIAs during the different search stages, as 

introduced in Section 3. 

3. Our Proposed Algorithm AIMA 

The main contribution of AIMA is to present the use of multiple DE strategies during the 

evolutionary process. The other components of AIMA are designed following the framework of NNIA, as 

shown in Fig. 1. Two main enhancements in AIMA are clarified with respect to NNIA. NNIA uses the 

SBX operator and polynomial-based mutation to produce offspring in each generation, while AIMA 

adopts an adaptively selected DE strategy and polynomial-based mutation. Moreover, in the archive 

update process, if the number of nondominated solutions in Dt (in Fig. 1) is larger than N, NNIA selects N 

of the least-crowded nondominated solutions based on their crowding-distance values [12] to construct 

the new archive Et+1, while AIMA adopts the archive truncation method from SPEA2 [56], keeping the N 

least-crowded nondominated solutions based on their Euclidean distances to the nearest neighbor. This 

way, the weakness of NNIA regarding the loss of population diversity can be somehow alleviated. To 

show the details of AIMA, its pseudo-code is provided in Algorithm 1, where t and MAX_G are 

respectively the current generation and the maximum number of generations, the parameter selected 

records the selected index for DE, and the parameter hold_gens records the number of generations that the 

stagnant state holds. 
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Algorithm 1: Pseudo-code of AIMA 

1 Initialize t=0, selected=1, hold gens=0, 0E   ;
2 Randomly generate an initial population P0; 
3 while t < MAX_G  
4 // Evolution 
5 Apply DEselected strategy to Pt to produce the offspring population Ot; 
6     Apply polynomial-based mutation to Ot; 
7     // Identification of nondominated solutions 
8     Identify the nondominated solutions in t tE O to form Dt; 
9     // Selection of an appropriate DE strategy for next generation 
10     [selected, hold_gens] = Adaptive DE Strategy Selection(hold_gens, Et, Ot) (Algorithm 2); 
11     // Archive update 
12     Et+1 = Dt; 
13     if +1tE N  
14         Keep N less-crowded solutions in Et+1 by the archive truncation method in [56]; 
15     end if 
16     t = t + 1; 
17     // Clonal Selection  
18     Calculate the crowding-distance values of solutions in Et; 
19     Select nA solutions with the larger crowding-distance values to form At; 
20     Apply proportional cloning (Eq. 6) on At to generate a new population Pt; 
21 end while 
22 return Et; 

At the beginning of AIMA, some related parameters (i.e., t, selected, and hold_gens) as well as the 

archive E0 are initialized in line 1, and then the evolution population is randomly generated in line 2. 

Then, AIMA goes into its main loop in lines 3-21, until t reaches the maximum number of generations, 

i.e., MAX_G. Regarding each generation at time t, the offspring population Ot is generated in lines 5-6 by 

running an adaptively selected DE strategy (DEselected) and by applying polynomial-based mutation to the  

population Pt. Then, in line 8, the offspring population Ot and the archive Et are combined, and their 

nondominated solutions are selected to form the temporary population Dt. After that, in line 10, our 

proposed adaptive DE strategy selection is run to select a preferred DE strategy to be used in the next 

generation, by setting the value of selected. Next, the archive update procedure is carried out and all the 

solutions in Dt are collected into the archive Et+1 in line 12. If the size of Et+1 exceeds the predefined 

maximum archive size N, the archive truncation process as introduced in [56] is executed on Et+1 to keep 

the N least-crowded individuals. At last, the generation time t is increased by 1, and the evolution 

population Pt is produced by the clonal selection approach in lines 18-20, as introduced in Section 2.3. At 

the end of AIMA, the solutions in the archive Et are reported as the approximation set. From the 

pseudo-code of AIMA, the main contributions of this paper focus on the adopted DE strategies in line 5 

and the corresponding adaptive DE strategy selection in line 10. To  further clarify the way in which 

AIMA works, the three adopted DE strategies and the adaptive DE strategy selection mechanism are 

respectively introduced in the following subsections. 

3.1. The Three Adopted DE Strategies 
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Differential evolution is a simple yet powerful stochastic search method, which has been shown to be 

an efficient and effective optimizer for both SOPs and MOPs [26]. Different DE strategies with their 

control parameter settings show distinct search characteristics and, therefore, they can provide different 

advantages and cooperate with each other to solve different kinds of MOPs. In this paper, three 

well-known DE strategies (i.e., rand/1/bin, rand/2/bin and rand/1/bin~, respectively named DE1, DE2, and 

DE3) with fixed parameter settings are used, as respectively listed in Eqs. (8)-(10). 

   1, 2, 3, 4, 5,

1 ,

,

  if  or 
DE : , with 0.9 and 0.7

                                                                  otherwise

r j r j r j r j r j rand

i j

i j

X F X X F X X rand Cr j j
U Cr F

X

          


  (8) 

 1, 2, 3,

2 ,

,

  if  or 
DE : , with 0.5 and 0.5

                                   otherwise

r j r j r j rand

i j

i j

X F X X rand Cr j j
U Cr F

X

       


       (9) 

 , 1, 2,

3 ,

,

  if  or 
DE : , with 0.1 and 0.5

                                 otherwise

i j r j r j rand

i j

i j

X F X X rand Cr j j
U Cr F

X

       


        (10) 

In the above equations, Ui,j is called the trial vector and Xi,j is the target vector in the current 

population. Cr is the crossover rate and F is the scaling factor. r1, r2, r3, r4, and r5 are the distinct 

integers randomly selected from [1, N]. The subscript j represents the jth variable of the decision vector 

(j=1, 2,…, n). rand is a real number randomly generated in [0, 1] and randj  is an integer randomly 

selected from [1,2,..., ]n . At each generation, one DE strategy will be selected to produce trial vectors for 

all the target vectors in the current population. The details of the proposed adaptive DE strategy selection 

will be introduced in the following subsection. 

Among these three DE strategies, rand/1/bin and rand/2/bin are the two most commonly used when 

tackling MOPs. All the used vectors in them are randomly selected from the population, so they can 

provide different search directions and bear strong exploration capabilities [47]. Thus, these two strategies 

are good for solving multimodal problems. Compared to rand/1/bin, rand/2/bin has a better perturbation 

and can generate more different trial vectors since it has two difference vectors [38][42][55]. Thus, 

rand/2/bin shows better exploration capabilities than rand/1/bin, which may make it more suitable for 

solving MOPs with complex PF, e.g., disconnected PF. For rand/1/bin~, the difference vector is added to 

the current solution rather than a randomly selected solution, which leads to local search around the target 

vector. On the other hand, the settings of control parameters in DE, i.e., Cr and F, also have great impact 

on the performance of DE. The value of Cr determines how much information the offspring (the trial 

vector) can inherit from its parent (the target vector). A large Cr value makes the trial vector very different 

from the target vector, since more information in the trial vector is inherited from the mutant vector 

created by DE rather than from the target vector in the current population [11][47]. This results in 

exploration around the target vector and helps to enhance the population diversity. On the contrary, a 
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small value of Cr lets the trial vector be different from the target vector on only few dimensions, thus 

encouraging exploitation around the target vector. Considering the scaling factor, a large value of F can 

provide a large search step to extend the search area and to diversify the population, while a small value 

of F makes the search around the target vector and thus, it can speed up convergence [47]. 

Therefore, the three DE strategies with specific parameters settings in Eqs. (8)-(10) exhibit distinct 

advantages. For DE1, it employs rand/2/bin with large values of Cr and F, thus it has a very strong global 

search capability (i.e., exploration) and can greatly enhance the population diversity. On the contrary, DE3 

applies rand/1/bin~ and couples with a small value of Cr, which encourages to conduct local search (i.e., 

exploitation). Whereas, in DE2, the rand/1/bin strategy with moderate values of Cr and F are used. This 

lets DE2 be able to balance exploration and exploitation during the search. It can be regarded as a 

trade-off strategy between DE1 and DE3. 

3.2. Adaptive DE Strategy Selection 

The three DE strategies introduced in this paper are expected to complement one another for tackling 

MOPs with different characteristics. To reach this goal, an adaptive DE strategy selection is introduced 

here. As pointed out in [26] and [33], when dealing with some complicated MOPs, a global search 

capability is usually required to explore the entire search space and to maintain a diversified population at 

the early stages of the search. In contrast, at later stages of the search process, local search is preferred to 

speed up convergence towards the true PF. Thus, in this paper, AIMA divides the search process into three 

stages, i.e., early stage, middle stage and later stage. 

At the early stages of the search, the information about the search space is limited; so, a DE strategy 

with a strong global search capability is needed to effectively explore the whole search space, which helps 

to maintain the population diversity and to prevent the algorithm from falling into a local optimum. The 

middle stage of the search will come after exploring for a certain number of generations, in which some 

attention should be paid to speeding up convergence. A DE strategy that can balance exploration and 

exploitation is preferred at this stage to speed up convergence without lowering too much the diversity. At 

the later stages of the search, the algorithm often cannot find many good solutions, even after a long 

search period, since the solutions found so far may be close to the true PF in this stage. Therefore, a DE 

strategy encouraging local search is preferred to find better solutions around the current solutions. Based 

on the above analysis, DE1 should be assigned with a large execution probability at the early stage to 

encourage exploration, while DE3 should be run with a large probability at the later stage to encourage 

exploitation. Regarding the middle stage, DE2 should be executed more times to balance exploration and 

exploitation. 

In AIMA, the execution probabilities of DE1 and DE3 at each generation are respectively denoted by 
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p1 and p3, which are tuned according to the stages of the search. For DE2, the execution probability at 

each generation is calculated by 1-p1-p3. 
 

 
(a)                                    (b) 

Fig. 2 The tendencies of 1p  in (a) and of 3p  in (b) 
 

As it is difficult to define the boundary between the early stage and the middle stage, there isn’t a 

numerical indicator that can exactly decide the current stage of the search. Here, we simply let 1p  be 

dynamically reduced as the search goes on, and it is expressed as follows: 

1

1.0
0.9

1 exp(20 ( 0.3))
_

p
t

MAX G

 
  

                          (11) 

where t is the current generation number, and MAX_G is the pre-defined maximum number of 

generations. To clearly show the dynamic change of 1p , its tendency is illustrated in Fig. 2(a), where the 

value of 1p  is reduced from 0.9 to 0. As observed from Fig. 2(a), 1p  is set to be large at the start of the 

search and it decreases rapidly after about one quarter of MAX_G. Therefore, AIMA has a large 

probability to use DE1 and may spread the population diversity at the early stage of the search. After 

running for about half of MAX_G, DE1 is applied with a very small probability and more computational 

resources are assigned to run DE2 and DE3. 

 In order to tune the value of 3p , an estimation method is designed in this paper to reflect the 

possibility that the search process has entered the later stage. When the estimated possibility is larger, a 

larger value will also be assigned to 3p . Here, to clearly describe the estimation method, two relevant 

terms are introduced: 

(1) Elimination: if a solution X in archive Et
 is dominated by one solution in the offspring 

population Ot, it will be eliminated from Et. The number of eliminated solutions in Et is recorded 

by eNum, and then the elimination ratio in Et is recorded by / | |teRatio eNum E  ( | |tE  returns 

the size of Et). If AIMA can generate many good solutions at the tth generation, most of the 
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solutions in Et will be eliminated, which results in a large value of eRatio. Otherwise, a small 

value of eRatio is obtained when AIMA only obtains a few good solutions. 

(2) Stagnant state: In AIMA, we monitor the average eRatio value (denoted as avgRatio) during the 

last previous LP generations. Then, we set a pre-defined low ratio LR% to judge whether the 

search of AIMA is stagnant. If avgRatio is lower than LR%, it indicates that a few better 

solutions are produced by AIMA during the previous LP generations and the algorithm may stay 

in a stagnant state. The values of LP and LR were respectively set to 5 and 10 after running 

several experiments. 

AIMA records the number of generations that the stagnant state holds, as denoted by hold_gens and 

then uses hold_gens to tune the value of 3p . It is noted that, once the stagnant state is broken, i.e., 

avgRatio is larger than LR%, the value of hold_gens will be reset to zero. Once AIMA is unable to find 

many good solutions during a long period of search, the value of hold_gens will be increased, which 

indicates that the stagnant state has been going on for lots of generations. In such case, we consider that 

the solutions found so far may be close to the true PF and there is a larger possibility that the evolution 

has entered the later stage. Then, a large value should be assigned to 3p  for encouraging a local search, 

when the value of hold_gens is getting larger. Thus, the value of 3p  is assigned to dynamically change 

with hold_gens, so as to adaptively control the execution probability of DE3, as expressed by  

3

1.0
0.9

1 exp( 20 ( 0.25))
_

p
hold_gens
MAX G

 
   

                     (12) 

where MAX_G is the pre-defined maximum number of generations. To clearly show the dynamic change 

of 3p , its tendency is also demonstrated in Fig. 2(b), where the value of 3p  is increased from 0 to 0.9. 

When the value of hold_gens is small, a small 3p  will be used, as the search may get stuck temporarily 

and it is not so sure that the search has stepped into the later stage. Conversely, if the value of hold_gens 

is large, it is more likely that the search has turned into the later stage and, therefore, a large value of 3p  

is adopted. 

Finally, after the values of 1p  and 3p  are computed, the roulette wheel selection method [12] is 

employed to select a preferred DE strategy to be used in the next generation according to 1p  and 3p . It 

is noted that 1p  and 3p  will be normalized when their summation is larger than 1. To clearly describe 

our adaptive DE strategy selection, its pseudo-code is shown in Algorithm 2. 
 

Algorithm 2: Adaptive DE Strategy Selection ( hold_gens, Et, Ot) 

1 Get 1p  by Eq.(11); 
2 Calculate the average elimination ratio (avgRatio) of last LP generations;  
3 if avgRatio  LR% 
4      hold_gens = hold_gens + 1;
5 Else 
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6      hold_gens = 0; 
7 end if 
8 Get 3p  by Eq. (12);  
9 /* the roulette wheel method is used here */ 
10 Randomly generate the value of rand in [0,1];
11 if 1rand p  
12     Set selected = 1;             // select DE1 
13 else if 1 3+rand p p  
14     Set selected = 3;             // select DE3 
15 Else 
16     Set selected = 2;             // select DE2 
17 end if 
18 return selected and hold_gens; 

4. Experimental Studies 

In this section, to assess the overall performance of AIMA, several experimental studies are launched. 

First, some related information about the experiments is provided, including the benchmark problems, the 

performance measures, and the parameters settings of all the compared algorithms. Then, we provide 

experimental results comparing AIMA with different kinds of MOEAs and their DE-based variants, as 

well as with four competitive MOIAs. Moreover, the advantages of the proposed mechanisms in AIMA 

and their sensitivity to their corresponding parameters are also investigated in this section. 

4.1. Benchmark Problems 

In this study, sixteen frequently-used test MOPs without any constraints, including nine two-objective 

problems (WFG1-WFG9 [23]) and seven three-objective problems (DTLZ1-DTLZ7 [14]), were used to 

assess the performance of AIMA. These test MOPs are characterized for having different complex 

features, such as convexity, concavity, discontinuity, non-uniformity, and many local PFs. Thus, the WFG 

and DTLZ test suites are widely used in many experimental studies for performance comparisons among 

different multi-objective optimization algorithms [2][21][51]. It is noted that, the number of decision 

variables in all these MOPs is set to 10. Especially for the WFG test problems, 10 decision variables are 

composed by 8 position parameters and 2 distance parameters. 

4.2. Performance Measures 

It is well-known that the main aim of solving MOPs includes two aspects, i.e., convergence and 

diversity. That is to say, a set of solutions is preferred to approximate the true PF as close as possible and 

to cover the true PF as widely as possible. Therefore, in this paper, the widely used performance measure, 

inverted generational distance (IGD) [26], is adopted to assess the performance of all the compared 

algorithms in terms of both convergence and diversity. 

Let *P  denote a subset of Pareto-optimal solutions uniformly distributed along the true PF and P be 

an approximation set obtained by multi-objective optimization algorithms. The IGD metric measures the 
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average distance from each point in *P  to its nearest point in P regarding the objective space, and is 

calculated as follows. 

   **

*

,
, x P

d x P
IGD P P

P
                            (13) 

where  ,d x P  represents the Euclidean distance from x to its nearest neighbor in P. Generally, a smaller 

value of this measure indicates a better performance on convergence and diversity. To clearly show the 

calculation of IGD in this paper, the numbers of used points in *P  for all the test problems adopted are 

listed in Table 1. All these true PFs were downloaded from http://jmetal.sourceforge.net/problems.html 

and we have pre-processed these PFs by removing some duplicated points in them. 
 

Table 1 Number of points in the subset of true PFs 

Problem Points Problem Points Problem Points Problem Points 

WFG1 605 WFG5 2601 WFG9 2601 DTLZ4 4000 

WFG2 111 WFG6 2601 DTLZ1 10000 DTLZ5 333 

WFG3 301 WFG7 2601 DTLZ2 10000 DTLZ6 140 

WFG4 1181 WFG8 10201 DTLZ3 4000 DTLZ7 676 

4.3. Experimental Settings 

In this study, AIMA is compared to five state-of-the-art multi-objective optimization algorithms, i.e., 

NSGA-II [12], SPEA2 [56], MOEA/D [52], SMS-EMOA [2], and CMPSO [51]. Moreover, to have a 

more fair comparison, AIMA is also compared to five DE-based variants of the above algorithms, i.e., 

NSGA-II-DE, SPEA2-DE, MOEA/D-DE [26], SMS-EMOA-DE, and CMODE [46], as AIMA is also a 

DE-based variant for MOIAs. The original SBX is replaced by the “DE/rand/1/bin” strategy in 

NSGA-II-DE, SPEA2-DE, and SMS-EMOA-DE in this paper. These DE-based variants have been shown 

to outperform the original ones when solving most test MOPs [44][4]. MOEA/D-DE and CMODE are 

respectively the improved versions of MOEA/D and CMPSO by embedding DE. Besides that, to further 

validate the superiority of AIMA over other MOIAs, AIMA is compared to four competitive MOIAs, 

including NNIA [21], IMADE [37], DMMO [30], and HEIA [31]. In order to make a fair comparison, all 

the compared MOIAs also use the same archive truncation approach of SPEA2 in the experiments.  

It is noted that the implementations of NSGA-II, SPEA2, MOEA/D-DE, and SMS-EMOA can be 

found in jMetal [17], while the source codes of CMPSO, CMODE, NNIA, IMADE, DMMO, and HEIA 

are realized by us based on the framework of jMetal. In order to allow a fair comparison and provide a 

better performance for all the compared algorithms, their relevant parameters are set as suggested in the 

corresponding references. For NSGA-II-DE, SPEA2-DE, and SMS-EMOA-DE, the values of Cr and F 

are respectively set to 0.3 and 0.5 as used in [44], which show significant improvements with respect to 
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the original algorithms. The rest of the parameters in these three variants are set the same as those in 

NSGA-II, SPEA2, and SMS-EMOA. For AIMA, the number of individuals picked out from the archive 

for cloning, nA, is set to N/5 as other MOIAs do. The mutation probability pm and distribution index m  

in polynomial-based mutation (PM) are set the same with the compared algorithms, i.e., 1/n and 20. The 

values of LP and LR are respectively set to 5 and 10. When solving all the test problems, the maximum 

number of function evaluations (FEs) is set to 25000 for all the compared algorithms. The population size 

N and the archive size are all set to 100, except that CMPSO and CMODE which still adopt a population 

size of 20 for each swarm as suggested by their authors.  

All the compared algorithms are launched 30 times on each problem using a personal computer with 

3.6 GHZ CPU and 8 GB RAM. The mean value (Mean) and standard deviation (Std) from 30 runs 

regarding IGD are used for comparison purposes. The best result and second best result in the comparison 

tables are respectively marked with dark gray background and light gray background. Moreover, in order 

to have a statistically sound conclusion, Wilcoxon’s rank sum test with a significance level  =0.05 is 

further run, which shows the statistical significance of the difference between the results obtained by 

AIMA and those obtained by the other algorithms. 

 

4.4. Experimental Results 

4.4.1. Performance Comparisons of AIMA with Various Multi-objective Optimization Algorithms 

A) Performance comparisons with five state-of-the-art multi-objective optimization algorithms 

In Table 2, the comparison results of AIMA with NSGA-II, SPEA2, MOEA/D-DE, SMS-EMOA, 

and CMPSO are provided when solving the DTLZ and WFG test suites. All the comparison results of 

AIMA with each algorithm are summarized in the last row of Table 2, where “-”, “+”, and “≈” indicate 

that the results of the algorithm are respectively worse than, better than, and similar to those of AIMA 

using Wilcoxon’s rank sum test with 0.05  . Based on these results, it is clear that AIMA respectively 

outperforms NSGA-II, SPEA2, MOEA/D, SMS-EMOA, and CMPSO on 16, 13, 12, 13, and 16 out of 16 

test problems, while AIMA is only worse than SPEA2 on DTLZ2 and WFG4, worse than MOEA/D on 

DTLZ2, and worse than SMS-EMOA on WFG4 and WFG9. Particularly, AIMA performs significantly 

better on WFG2 when compared to its five competitors. For WFG2, AIMA can obtain a better IGD result 

with an accuracy level of 10-2, while other competitors only obtain IGD results under an accuracy level of 

10-1. As WFG2 has five disconnected segments on its true PF, the competitors failed to find all the 

segments, while AIMA was able to cover the entire PF due to its strong search capability.  
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To visually display the superiority of AIMA, the nondominated solution sets found for DTLZ6 and 

WFG8 are plotted in Fig. 3 and Fig. 4, respectively, where the true PFs are identified with red color. It is 

noted that, only the solution set with the median IGD value in 30 runs is illustrated for comparison. 

Regarding DTLZ6, the solution sets obtained by AIMA and CMPSO seem well-converged and have a 

uniform distribution along the true PF. Their performances are not visually distinguished from the plots. 

For MOEA/D and SMS-EMOA, although they are able to closely approximate the true PF, they fail to 

get an even distribution for the solution sets. The other two MOEAs, i.e., NSGA-II and SPEA2, are 

unable to approach the true PF closely. On WFG8, all the algorithms except for CMPSO can find the 

solutions that converge well to the true PF. However, as shown in Fig. 4, the solutions obtained by AIMA 

seem more even than those of its competitors. 

 

 

 

Table 2 IGD comparison results of AIMA and five state-of-the-art multi-objective optimization 

algorithms 
Problems  NSGA-II SPEA2 MOEA/D SMS-EMOA CMPSO AIMA

DTLZ1 Mean 8.163E-01 - 4.958E-01 - 6.551E-02 ≈ 2.021E-01 ≈ 2.041E+00 - 1.934E-01
Std 6.04E-01 3.32E-01 1.31E-01 2.03E-01 6.20E-01 2.09E-01

DTLZ2 
Mean 6.829E-02 - 5.495E-02 + 5.155E-02 + 7.396E-02 - 6.342E-02 - 5.568E-02
Std 2.81E-03 1.01E-03 3.49E-04 1.29E-03 2.03E-03 1.13E-03 

DTLZ3 Mean 2.772E+00 - 2.124E+00 - 2.376E-01 ≈ 7.223E-01 - 4.657E+00 - 3.992E-01
Std 2.06E+00 1.47E+00 3.56E-01 6.73E-01 1.33E+00 6.85E-01

DTLZ4 Mean 6.390E-02 - 1.166E-01 - 1.048E-01 ≈ 1.374E-01 - 1.701E-01 - 4.106E-02
Std 7.28E-03 1.15E-01 1.11E-01 1.25E-01 1.19E-01 2.53E-03

DTLZ5 Mean 5.528E-03 - 4.406E-03 ≈ 1.905E-02 - 4.919E-03 - 6.019E-03 - 4.449E-03
Std 2.78E-04 1.68E-04 1.56E-05 1.50E-04 3.49E-04 1.46E-04

DTLZ6 Mean 5.332E-01 - 5.170E-01 - 3.565E-02 - 3.557E-02 - 4.502E-03 - 4.018E-03
Std 5.18E-02 4.25E-02 1.58E-02 2.47E-02 2.06E-04 1.10E-04

DTLZ7 Mean 7.602E-02 - 1.219E-01 - 1.338E-01 - 2.022E-01 - 7.356E-02 - 5.789E-02
Std 3.94E-03 1.59E-01 4.30E-02 9.46E-02 4.34E-03 1.30E-03

WFG1 Mean 1.561E+00 - 1.787E+00 - 1.766E+00 - 1.855E+00 - 7.287E-01 - 9.581E-02
Std 1.47E-01 7.16E-02 1.09E-01 1.24E-01 2.35E-01 1.90E-01

WFG2 Mean 1.400E-01 - 1.255E-01 - 2.178E-01 - 1.751E-01 - 1.910E-01 - 2.460E-02
Std 8.46E-02 8.05E-02 6.65E-02 8.20E-02 7.44E-02 2.48E-02

WFG3 Mean 1.559E-02 - 1.575E-02 - 4.146E-02 - 2.020E-02 - 1.476E-02 - 1.170E-02
Std 9.72E-04 2.87E-03 2.19E-02 7.03E-03 6.77E-04 1.09E-04

WFG4 Mean 1.385E-02 - 1.239E-02 + 1.611E-02 - 1.017E-02 + 1.404E-02 - 1.268E-02
Std 6.40E-04 3.91E-04 1.82E-03 3.53E-04 1.02E-03 3.63E-04

WFG5 Mean 6.794E-02 - 6.693E-02 - 6.787E-02 - 6.709E-02 - 6.565E-02 - 6.536E-02
Std 4.52E-04 2.79E-04 7.87E-04 4.35E-04 5.66E-03 5.71E-03

WFG6 Mean 2.180E-02 - 2.476E-02 - 3.368E-02 - 2.684E-02 - 2.889E-02 - 1.409E-02
Std 6.81E-03 1.27E-02 1.33E-02 1.01E-02 7.98E-03 4.43E-03

WFG7 Mean 1.968E-02 - 2.254E-02 - 1.763E-02 - 3.928E-02 - 1.570E-02 - 1.249E-02
Std 5.60E-03 8.80E-03 2.62E-03 1.75E-02 9.95E-04 3.49E-04

WFG8 Mean 6.489E-02 - 1.045E-01 - 1.247E-01 - 1.066E-01 - 1.397E-01 - 3.825E-02
Std 9.14E-03 4.26E-02 4.38E-02 3.23E-02 1.10E-01 4.92E-03

WFG9 Mean 1.595E-02 - 1.295E-02 - 1.493E-02 - 1.221E-02 + 1.636E-02 - 1.246E-02
Std 1.60E-03 6.06E-04 5.42E-04 7.49E-04 1.23E-03 3.37E-04

-/+/≈ 16/0/0 13/2/1 12/1/3 13/2/1 16/0/0  



 
18 

“-”, “+”, and “≈” indicate that the results of the algorithm are worse than, better than, and similar to that of 

AIMA using Wilcoxon’s rank sum test with 0.05   

 

 

Fig. 3 The nondominated solution set of each algorithm on DTLZ6 

 
Fig. 4 The nondominated solution set of each algorithm on WFG8 

 

Table 3 The IGD comparison results of AIMA and DE-based variants of five state-of-the-art 

multi-objective optimization algorithms 
Problems  NSGA-II-DE SPEA2-DE MOEA/D-DE SMS-EMOA-DE CMODE AIMA 

DTLZ1 Mean 5.314E-02 ≈ 4.474E-02 ≈ 9.944E-01 - 4.950E-02 + 6.476E+00 - 1.934E-01
Std 8.63E-02 5.50E-02 7.44E-01 8.38E-02 3.28E+00 2.09E-01

DTLZ2 Mean 6.386E-02 - 5.616E-02 - 5.232E-02 + 7.430E-02 - 5.941E-02 - 5.568E-02
Std 2.17E-03 1.32E-03 4.59E-04 9.53E-04 1.63E-03 1.13E-03

DTLZ3 Mean 6.518E-02 ≈ 1.127E-01 ≈ 1.954E+00 - 1.396E-01 ≈ 1.553E+01 - 3.992E-01
Std 3.50E-03 1.80E-01 1.52E+00 2.40E-01 7.57E+00 6.85E-01

DTLZ4 Mean 6.359E-02 - 4.916E-02 - 3.007E-02 + 4.871E-02 - 5.799E-02 - 4.106E-02
Std 6.01E-03 2.08E-02 5.78E-04 2.08E-02 3.40E-02 2.53E-03

DTLZ5 Mean 5.302E-03 - 5.334E-03 - 1.901E-02 - 4.959E-03 - 7.036E-03 - 4.449E-03
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Std 2.13E-04 3.04E-04 4.70E-05 1.46E-04 6.65E-04   1.46E-04

DTLZ6 Mean 5.865E-03 - 4.057E-03 ≈ 1.714E-02 - 4.817E-03 - 4.953E-02 - 4.018E-03
Std 3.68E-04 1.24E-04 4.97E-05 1.53E-04 1.06E-01 1.10E-04

DTLZ7 Mean 7.399E-02 - 5.964E-02 - 1.407E-01 - 1.647E-01 - 9.277E-02 - 5.789E-02
Std 3.89E-03 1.57E-03 5.89E-02 5.67E-02 8.78E-02 1.30E-03

WFG1 Mean 1.104E-01 - 1.045E-01 ≈ 5.705E-02 + 1.281E-01 - 1.317E-02 + 9.581E-02
Std 1.95E-01 2.26E-01 1.18E-01 2.71E-01 1.69E-03 1.90E-01

WFG2 Mean 4.995E-02 - 6.130E-02 - 1.976E-01 - 5.974E-02 - 3.947E-02 - 2.460E-02
Std 4.36E-02 1.44E-02 7.50E-02 1.52E-02 2.52E-02 2.48E-02

WFG3 Mean 1.399E-02 - 1.218E-02 - 1.325E-02 - 1.188E-02 - 1.250E-02 - 1.170E-02
Std 5.15E-04 2.04E-04 1.74E-04 1.38E-03 2.12E-04 1.09E-04

WFG4 Mean 1.277E-02 ≈ 1.317E-02 - 1.582E-02 - 1.021E-02 + 1.283E-02 ≈ 1.268E-02
Std 8.00E-04 6.25E-04 7.38E-04 5.62E-04 3.97E-04 3.63E-04

WFG5 Mean 6.800E-02 - 6.614E-02 - 6.716E-02 - 6.677E-02 - 6.369E-02 + 6.536E-02
Std 4.86E-04 5.56E-03 2.79E-04 5.95E-03 8.89E-03 5.71E-03

WFG6 Mean 1.834E-02 - 1.400E-02 ≈ 2.799E-02 - 1.787E-02 - 1.632E-02 - 1.409E-02
Std 8.44E-03 5.02E-03 1.24E-02 8.95E-03 6.27E-03 4.43E-03

WFG7 Mean 1.447E-02 - 1.277E-02 - 1.779E-02 - 1.101E-02 + 1.287E-02 - 1.249E-02
Std 8.54E-04 3.47E-04 6.78E-03 2.43E-04 3.36E-04 3.49E-04

WFG8 Mean 7.031E-02 - 1.633E-01 - 3.854E-02 ≈ 1.517E-01 - 8.737E-02 - 3.825E-02
Std 8.77E-03 3.38E-02 4.60E-03 2.56E-02 5.06E-02 4.92E-03

WFG9 Mean 1.522E-02 - 1.314E-02 - 1.469E-02 - 1.258E-02 ≈ 1.397E-02 - 1.246E-02
Std 8.79E-04 4.64E-04 2.06E-04 9.00E-04 7.53E-04 3.37E-04

-/+/≈ 13/0/3 11/0/5 12/3/1 11/3/2 13/2/1  

“-”, “+”, and “≈” indicate that the results of the algorithm are worse than, better than, and similar to those of AIMA using 

Wilcoxon’s rank sum test with 0.05   

B) Performance comparisons with the DE-based variants of five state-of-the-art multi-objective 

optimization algorithms  

As AIMA is designed based on the DE strategies, to further investigate the performance of AIMA, 

the “DE/rand/1/bin” strategy is also embedded into the above compared algorithms and AIMA is further 

compared to five DE-based variants, i.e., NSGA-II-DE, SPEA2-DE, MOEA/D-DE, SMS-EMOA-DE, 

and CMODE. Table 3 lists the IGD comparison results of AIMA with these DE-based variants. As 

observed from Table 3, all these variants have better overall performance when compared to the original 

ones. Nevertheless, AIMA still shows superior performance over these algorithms, as AIMA performs 

significantly better than NSGA-II-DE, SPEA2-DE, MOEA/D-DE, SMS-EMOA-DE, and CMODE on 13, 

11, 12, 11, and 13 out of 16 test problems, respectively; whereas, AIMA is respectively outperformed by 

MOEA/D-DE, SMS-EMOA-DE, and CMODE on 3, 3, and 2 out of 16 test problems. 

To visually show the advantages of AIMA, Fig. 5 provides the nondominated solution sets found by 

all the compared algorithms on WFG2. For AIMA, the obtained solutions are evenly distributed along all 

the disconnected segments of WFG2, while other competitors only approximate some parts of the 

segments of the true PF. In order to show the evolutionary progress of some compared algorithms 

(NSGA-II, SPEA2, MOEA/D-DE, SMS-EMOA, CMODE, and AIMA), Fig. 6 plots the evolutionary 

curves of the average IGD values from 30 runs versus the number of function evaluations on each WFG 

problem. It is easily observed that AIMA achieves the best overall performance when solving most of the 
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WFG test problems. 

 

 

 
Fig. 5 The nondominated solution set obtained by each algorithm on WFG2 
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Fig. 6 Evolutionary curves of the average IGD values from 30 runs versus the number of function 

evaluations on the WFG test problems 
 

From the above discussion on the performance comparisons of AIMA with respect to five 

state-of-the-art multi-objective optimization algorithms and their DE-based variants regarding the IGD 

values, it is reasonable to conclude that AIMA performs better than its five competitors and their 

DE-based variants on tackling most of the DTLZ and WFG test problems. 

 

 

Table 4  IGD comparison results of all the compared MOIAs  
 NNIA IMADE DMMO HEIA AIMA 
 Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) 

DTLZ1  2.660E+00(1.92E+00) - 8.127E-01(1.19E+00) - 3.122E-01(2.83E-01) - 5.237E-01(7.62E-01) - 1.934E-01(2.09E-01)

DTLZ2 5.593E-02(1.40E-03) ≈ 6.067E-02(1.78E-03) - 5.657E-02(1.16E-03) - 5.809E-02(1.03E-03) - 5.568E-02(1.13E-03)

DTLZ3 3.544E+00(3.60E+00) - 1.361E+00(2.96E+00) - 5.785E-01(6.92E-01) - 7.946E-01(8.25E-01) - 3.992E-01(6.85E-01)

DTLZ4 1.081E-01(1.09E-01) - 4.686E-02(5.46E-03) - 8.044E-02(8.35E-02) - 5.047E-02(7.09E-03) - 4.106E-02(2.53E-03)

DTLZ5 4.720E-03(2.81E-04) - 5.119E-03(2.82E-04) - 4.803E-03(3.54E-04) - 5.217E-03(5.31E-04) - 4.449E-03(1.46E-04)

DTLZ6 5.175E-01(1.02E-01) - 4.051E-03(1.41E-04) ≈ 4.033E-03(1.32E-04) ≈ 4.059E-03(1.13E-04) ≈ 4.018E-03(1.10E-04)

DTLZ7 1.157E-01(1.53E-01) - 6.047E-02(1.47E-03) - 2.298E-01(2.03E-01) - 6.950E-02(5.07E-02) - 5.789E-02(1.30E-03)

WFG1 1.364E+00(1.80E-01) - 1.251E-02(3.94E-04) ≈ 1.244E-02(3.37E-04) ≈ 1.249E-02(3.88E-04) ≈ 9.581E-02(1.90E-01)

WFG2 1.781E-01(7.99E-02) - 3.765E-02(4.56E-02) ≈ 2.104E-01(5.79E-02) - 8.387E-02(7.92E-02) - 2.460E-02(2.48E-02)

WFG3 1.272E-02(1.24E-03) - 1.214E-02(1.97E-04) - 1.200E-02(2.75E-04) - 1.187E-02(1.82E-04) - 1.170E-02(1.09E-04)

WFG4 1.247E-02(5.03E-04) + 1.296E-02(4.16E-04) - 1.261E-02(3.95E-04) ≈ 1.253E-02(4.24E-04) ≈ 1.268E-02(3.63E-04)

WFG5 6.658E-02(3.84E-04) - 6.549E-02(5.63E-03) ≈ 6.643E-02(2.03E-04) ≈ 6.663E-02(2.56E-04) - 6.536E-02(5.71E-03)

WFG6 2.181E-02(6.04E-03) - 1.638E-02(7.87E-03) - 2.200E-02(7.38E-03) - 2.032E-02(8.78E-03) - 1.409E-02(4.43E-03)

WFG7 1.735E-02(5.92E-03) - 1.286E-02(3.52E-04) - 1.291E-02(5.68E-04) - 1.263E-02(4.05E-04) ≈ 1.249E-02(3.49E-04)

WFG8 7.671E-02(4.77E-02) - 2.676E-02(3.80E-03) + 4.575E-02(4.44E-02) - 3.714E-02(4.47E-02) + 3.825E-02(4.92E-03)

WFG9 1.360E-02(1.51E-03) - 1.302E-02(5.15E-04) - 1.254E-02(4.61E-04) ≈ 1.286E-02(5.99E-04) - 1.246E-02(3.37E-04)

-/+/≈ 14/1/1 11/1/4 11/0/5 11/1/4  

“-”, “+”, and “≈” indicate that the results of the algorithm are worse than, better than, and similar to that of AIMA using 

Wilcoxon’s rank sum test with 0.05   

C) Performance comparisons of AIMA with four competitive MOIAs 

In the above subsections, it is experimentally validated that AIMA is able to outperform some 

state-of-the-art multi-objective optimization algorithms and their DE-based variants in solving the WFG 

and DTLZ test problems. To further study the performance of AIMA, AIMA is compared to four 
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competitive MOIAs in this subsection, i.e., NNIA [21], IMADE [37], DMMO [30], and HEIA [31], in 

tackling the WFG and DTLZ test problems. In these algorithms, IMADE, DMMO, and HEIA are three 

improved variants of NNIA with a single DE strategy. It is noted that the compared MOIAs also adopt the 

same archive truncation approach of SPEA2 in our experiments, which highlights the influences of our 

proposed approaches and makes the comparisons fairer. All the IGD results of the compared MOIAs are 

listed in Table 4. As observed from the last row of Table 4, AIMA yields better results than NNIA, 

IMADE, DMMO, and HEIA on 14, 11, 11, and 11 out of 16 test problems, respectively. On the contrary, 

AIMA is respectively outperformed by NNIA, IMADE, and HEIA on only 1 test problem. These IGD 

results substantially validate that the three DE strategies and the adaptive DE strategy selection in AIMA 

can significantly enhance the optimization performance of MOIA, since the main difference among these 

MOIAs relies on the adopted evolutionary operators, such as SBX in NNIA, both of SBX and DE in 

DMMO, IMADE and HEIA, and three DE strategies in our algorithm. 

 

 
Fig. 7 The nondominated solution set with the median IGD value found by each compared MOIA on 

DTLZ1 
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Fig. 8 The nondominated solution set with the median IGD value found by each compared MOIA on 

DTLZ3 

 

To visually show the advantages of AIMA over these compared MOIAs, the final nondominated 

solution set with the median IGD value in 30 runs is plotted in Figs 7-8, respectively for DTLZ1 and 

DTLZ3. From the plots in Fig. 7, it is observed that the solutions found by AIMA can closely approach 

and evenly cover the true PF of DTLZ1, while other four compared MOIAs only find scattered solutions 

distributed far away from the true PF. Regarding Fig. 8, the solutions obtained by AIMA are also with 

good diversity and coverage for the true PF of DTLZ3. However, other compared MOIAs can neither 

converge to the true PF nor keep a good population diversity. Moreover, to show the evolutionary 

progress of all the compared MOIAs, Fig. 9 gives the plots of the evolutionary curves of the average IGD 

values from 30 runs versus the number of function evaluations on each DTLZ test problem. It also 

illustrates the superiority of AIMA over the compared MOIAs, on tackling most of the DTLZ test 

problems. 
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Fig. 9 Evolutionary curves of the average IGD values from 30 runs versus the number of function 

evaluations on the DTLZ test problems 
 

4.4.2. Further Discussions of AIMA 

In the above subsections, it is experimentally shown that AIMA outperforms five state-of-the-art 

multi-objective optimization algorithms and their DE-based variants, as well as four competitive MOIAs. 

This superior performance, as we expect, is mainly brought by using the multiple DE strategies and the 

corresponding adaptive DE strategy selection. Here, the following experiments are further conducted to 

verify our above opinion. Four variants of AIMA, namely, AIMA-DE1, AIMA-DE2, AIMA-DE3, and 

AIMA-EP, are adopted for performance comparison. Regarding AIMA-DEi  1,2,3i  , the single DEi 

strategy defined in Section 3.1 is used, while AIMA-EP chooses one from these three DE strategies with 

an equal probability, i.e., 1/3, at each generation. To make a fair comparison, all the parameter settings in 

the AIMA variants are set the same as that in AIMA. Their IGD comparison results on all the WFG and 

DTLZ test problems are provided in Table 5. 
 

Table 5 IGD comparison results of AIMA and four variants 

 AIMA-DE1 AIMA-DE2 AIMA-DE3 AIMA-EP AIMA 
 Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) 

DTLZ1  1.634E+01(8.66E+00) - 1.074E-01(2.37E-01) + 3.270E-01(4.32E-01) ≈ 1.162E-01(2.31E-01) ≈ 1.934E-01(2.09E-01)

DTLZ2 6.420E-02(1.98E-03) - 5.560E-02(1.12E-03) ≈ 5.573E-02(9.28E-04) ≈ 5.716E-02(1.27E-03) - 5.568E-02(1.13E-03)

DTLZ3 1.476E+01(9.99E+00) - 5.494E-01(1.48E+00) - 7.622E-01(1.05E+00) - 4.383E-01(6.64E-01) ≈ 3.992E-01(6.85E-01)

DTLZ4 4.856E-02(4.36E-03) - 4.250E-02(4.56E-03) ≈ 4.387E-02(4.41E-03) - 5.515E-02(6.89E-02) - 4.106E-02(2.53E-03)

DTLZ5 1.006E-02(1.25E-03) - 4.480E-03(1.72E-04) ≈ 4.309E-03(9.74E-05) - 5.013E-03(4.29E-04) - 4.449E-03(1.46E-04)

DTLZ6 4.042E-03(1.26E-04) ≈ 4.015E-03(1.15E-04) ≈ 4.015E-03(1.25E-04) ≈ 4.087E-03(1.19E-04) - 4.018E-03(1.10E-04)

DTLZ7 6.011E-02(1.29E-03) - 7.813E-02(7.06E-02) - 6.709E-02(5.20E-02) - 5.958E-02(1.43E-03) - 5.789E-02(1.30E-03)

WFG1 1.092E-01(1.98E-01) ≈ 3.627E-01(3.08E-01) - 2.198E-01(3.28E-01) - 2.064E-01(2.43E-01) -  9.581E-02(1.90E-01)

WFG2 1.160E-02(1.01E-02) + 5.970E-02(3.94E-02) - 1.602E-01(9.16E-02) - 2.835E-02(2.64E-02) ≈ 2.460E-02(2.48E-02)

WFG3 1.349E-02(4.83E-04) - 1.180E-02(1.78E-04) - 1.186E-02(1.63E-04) - 1.199E-02(1.80E-04) - 1.170E-02(1.09E-04)

WFG4 1.314E-02(5.26E-04) - 1.248E-02(5.00E-04) + 1.255E-02(3.78E-04) ≈ 1.274E-02(3.70E-04) ≈ 1.268E-02(3.63E-04)

WFG5 6.980E-02(2.91E-03) - 6.665E-02(3.21E-04) - 6.642E-02(1.67E-04) ≈ 6.544E-02(5.67E-03) ≈ 6.536E-02(5.71E-03)

WFG6 1.385E-02(4.90E-04) + 2.015E-02(8.98E-03) - 2.148E-02(6.57E-03) - 1.967E-02(1.53E-02) - 1.409E-02(4.43E-03)

WFG7 1.365E-02(5.33E-04) - 1.243E-02(3.43E-04) ≈ 1.263E-02(5.33E-04) ≈ 1.284E-02(3.10E-04) - 1.249E-02(3.49E-04)

WFG8 4.214E-02(4.07E-03) - 4.833E-02(3.69E-03) - 6.263E-02(7.31E-02) - 3.625E-02(3.18E-03) ≈ 3.825E-02(4.92E-03)

WFG9 1.649E-02(9.43E-04) - 1.288E-02(5.68E-04) - 1.315E-02(6.58E-04) - 1.278E-02(3.71E-04) 1.246E-02(3.37E-04)

-/+/≈ 12/2/2 9/2/5 10/0/6 10/0/6  
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“-”, “+”, and “≈” indicate that the results of the algorithm are worse than, better than, and similar to that of 

AIMA using Wilcoxon’s rank sum test with 0.05   
 

Compared to the variants with a single DE strategy, AIMA performs better than each of them on most 

of the test MOPs, even though AIMA-DE1 and AIMA-DE2 outperform AIMA on a few problems, e.g., 

WFG2 and WFG6. In detail, AIMA obtains better IGD results than AIMA-DE1, AIMA-DE2, AIMA-DE3, 

and AIMA-EP respectively on 12, 9, 10, and 10 out of 16 test problems. This indicates that the three DE 

strategies in AIMA can cooperate with each other to yield the overall better performance when solving 

different kinds of MOPs. Although AIMA-EP also adopts three DE strategies, AIMA still achieves better 

results than AIMA-EP on 10 out of 16 test problems. This confirms that our adaptive DE strategy 

selection is reasonable and effective to solve various MOPs. 

As our adaptive DE strategy selection is designed based on the elimination ratio of nondominated 

solutions in the external archive, this approach can also be applied to other Pareto-based multi-objective 

optimization algorithms. To further investigate the performance of our proposed method, it is applied to 

NSGA-II and SPEA2. These two variants are respectively called NSGA-II-MDE and SPEA2-MDE in 

this paper. NSGA-II-MDE is compared to the original NSGA-II and its DE-based variant (NSGA-II-DE). 

Similar comparison experiments are also conducted for SPEA2-MDE. Their IGD comparison results on 

16 test problems are provided in Table 6.  

As observed in the last row of Table 6, NSGA-II-MDE performs better than NSGA-II and 

NSGA-II-DE respectively on 12 and 11 test problems; on the contrary, NSGA-II-MDE is only 

outperformed by NSGA-II and NSGA-II-DE respectively on 3 and 4 test problems. Similarly, 

SPEA2-MDE outperforms SPEA2 and SPEA2-DE respectively on 12 and 8 test problems, while 

SPEA2-MDE is only outperformed by SPEA2 and SPEA2-DE on 3 test problems. These two algorithms 

(NSGA-II-MDE and SPEA2-MDE) show significant superiority over their original algorithms (NSGA-II 

and SPEA2), and their single-DE variants (NSGA-II-DE and SPEA2-DE). Based on these observations, it 

is reasonable to conclude that our proposed adaptive DE strategy selection is able to improve the overall 

performance of Pareto-based multi-objective optimization algorithms. 
 
 

Table 6 IGD comparison results of NSGA-II, SPEA2 and their DE-based variants 
  NSGA-II NSGA-II-DE NSGA-II-MDE SPEA2 SPEA2-DE SPEA2-MDE

DTLZ1 Mean 8.163E-01 + 5.314E-02 + 3.305E+00 4.958E-01 - 4.474E-02 + 1.208E-01
Std 6.04E-01 8.63E-02 1.00E+00 3.32E-01 5.50E-02 2.21E-01

DTLZ2 Mean 6.829E-02 - 6.386E-02 + 6.683E-02 5.495E-02 + 5.616E-02 + 5.897E-02
Std 2.81E-03 2.17E-03 1.54E-03 1.01E-03 1.32E-03 1.37E-03

DTLZ3 Mean 2.772E+00 + 6.518E-02 + 9.166E+00 2.124E+00 - 1.127E-01 ≈ 1.841E-01
Std 2.06E+00 3.50E-03 2.80E+00 1.47E+00 1.80E-01 3.06E-01

DTLZ4 Mean 6.390E-02 + 6.359E-02 + 6.836E-02 1.166E-01 - 4.916E-02 - 4.850E-02
Std 7.28E-03 6.01E-03 5.37E-03 1.15E-01 2.08E-02 4.61E-03

DTLZ5 Mean 5.528E-03 - 5.302E-03 - 4.351E-03 4.406E-03 + 5.334E-03 + 8.002E-03
Std 2.78E-04 2.13E-04 1.10E-04 1.68E-04 3.04E-04 7.17E-04

DTLZ6 Mean 5.332E-01 - 5.865E-03 - 4.039E-03 5.170E-01 - 4.057E-03 ≈ 4.067E-03
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Std 5.18E-02 3.68E-04 1.28E-04 4.25E-02 1.24E-04 1.65E-04

DTLZ7 Mean 7.602E-02 ≈ 7.399E-02 ≈ 7.432E-02 1.219E-01 - 5.964E-02 ≈ 5.986E-02
Std 3.94E-03 3.89E-03 4.12E-03 1.59E-01 1.57E-03 1.40E-03

WFG1 Mean 1.561E+00 - 1.104E-01 - 1.244E-02 1.787E+00 - 1.045E-01 - 1.257E-02
Std 1.47E-01 1.95E-01 2.50E-04 7.16E-02 2.26E-01 3.74E-04

WFG2 Mean 1.400E-01 - 4.995E-02 - 1.016E-02 1.255E-01 - 6.130E-02 - 1.068E-02
Std 8.46E-02 4.36E-02 4.28E-04 8.05E-02 1.44E-02 8.26E-04

WFG3 Mean 1.559E-02 - 1.399E-02 - 1.187E-02 1.575E-02 - 1.218E-02 - 1.191E-02
Std 9.72E-04 5.15E-04 1.27E-04 2.87E-03 2.04E-04 1.01E-04

WFG4 Mean 1.385E-02 - 1.277E-02 - 1.069E-02 1.239E-02 + 1.317E-02 - 1.283E-02
Std 6.40E-04 8.00E-04 2.89E-04 3.91E-04 6.25E-04 6.35E-04

WFG5 Mean 6.794E-02 - 6.800E-02 - 6.623E-02 6.693E-02 - 6.614E-02 - 6.484E-02
Std 4.52E-04 4.86E-04 3.05E-03 2.79E-04 5.56E-03 7.50E-03

WFG6 Mean 2.180E-02 - 1.834E-02 - 1.270E-02 2.476E-02 - 1.400E-02 ≈ 1.276E-02
Std 6.81E-03 8.44E-03 2.55E-04 1.27E-02 5.02E-03 2.45E-04

WFG7 Mean 1.968E-02 - 1.447E-02 - 1.247E-02 2.254E-02 - 1.277E-02 ≈ 1.265E-02
Std 5.60E-03 8.54E-04 2.36E-04 8.80E-03 3.47E-04 3.00E-04

WFG8 Mean 6.489E-02 - 7.031E-02 - 5.814E-02 1.045E-01 - 1.633E-01 - 8.031E-02
Std 9.14E-03 8.77E-03 7.64E-03 4.26E-02 3.38E-02 8.69E-03

WFG9 Mean 1.595E-02 - 1.522E-02 - 1.278E-02 1.295E-02 ≈ 1.314E-02 - 1.282E-02
Std 1.60E-03 8.79E-04 3.27E-04 6.06E-04 4.64E-04 4.20E-04

-/+/≈ 12/3/1 11/4/1 12/3/1 8/3/5 
“-”, “+”, and “≈” indicate that the results of the algorithm are worse than, better than, and similar to that of 

NSGA-II-MDE or SPEA2-MDE using Wilcoxon’s rank sum test with 0.05   
 
 
 
 

4.4.3. Parameter sensitivity analysis in AIMA 

When designing AIMA, some parameters, such as LP and LR, are introduced. In order to study their 

impact on AIMA, different combinations of parameter values are examined on six test problems with 

different properties, i.e., DTLZ1 (linear PF and many local PFs), DTLZ3 (concave PF and many local 

PFs), DTLZ5 (degenerate PF), WFG1 (mixed and biased PF), WFG2 (discontinuous PF), and WFG9 

(deceptive PF). 

In Section 3.2, LP is the number of previous generations used for calculating the average elimination 

ratio (avgRtiao), while LR is the threshold of judging whether stagnation has occurred. To study their 

impact on AIMA, seven representative values for LP (i.e., 1, 5, 10, 20, 30, 50, and 100) and for LR (i.e., 5, 

10, 15, 20, 30, 50, and 100) are used. In Fig. 10, the IGD values of DTLZ1, DTLZ3, DTLZ5, WFG1, 

WFG2, and WFG9 are obtained using AIMA with different combinations of LP and LR. Other parameters 

settings are the same as listed in Section 4.3. It is noted that also 30 independent runs have been 

conducted for each combination on each test problem. 

As observed from Fig. 10, a small LR (5 to 15) is good for DTLZ1 and DTLZ3, while for the 

remaining problems, the IGD values change a little when LP and LR change. Only for DTLZ5 and WFG9, 

the performance of AIMA will be significantly worsened when some extremely small values of LR and 

LP are used. Thus, it is evident that AIMA is less sensitive to the settings of LP and LR except for some 
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extreme values. These figures also indicate that our settings for LP and LR are reasonable and effective. 
 
 

 

 
Fig. 10 IGD values for DTLZ1, DTLZ3, DTLZ5, WFG1, WFG2, and WFG9 with different combinations of LP and LR 

 

5. Conclusions and Future Work 

In this paper, an adaptive immune-inspired multi-objective algorithm with multiple differential 

evolution strategies (AIMA) was proposed. In this approach, three DE strategies with distinct features are 

embedded into MOIAs. At each generation, one of them is adaptively selected to be used based on the 

current search stage. This adaptive DE strategy selection makes three DE strategies effectively cooperate 

with each other, which significantly improves the search capability and enhances the population diversity. 

The experimental results have revealed that AIMA is able to successfully solve different types of MOPs, 

i.e., the DTLZ and WFG test problems. When compared to five state-of-the-art multi-objective 

optimization algorithms (i.e., NSGA-II, SPEA2, MOEA/D, SMS-EMOA, and CMPSO) and their 

DE-based variants (i.e., NSGA-II-DE, SPEA2-DE, MOEA/D-DE, SMS-EMOA-DE, and CMODE), and 

four competitive MOIAs (i.e., NNIA, IMADE, DMMO, and HEIA), AIMA was shown to have a superior 

overall performance in finding an approximation set, which is close to the true PF and distributed evenly 

along the true PF. Moreover, the advantages of incorporating multiple DE strategies and the 

corresponding adaptive DE strategy selection are experimentally confirmed, and the impact of some 

parameters in AIMA is also investigated. 

Our future study will aim to further enhance the performance of AIMA, and extend it to tackle more 

complicated MOPs, such as large scale problems on both the objective and decision spaces [7][54]. 
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Furthermore, the extension of AIMA to solve some real-world applications will also be studied in our 

future work. 
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