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Abstract—Recently, it was found that most multi-objective
particle swarm optimizers (MOPSOs) perform poorly when
tackling many-objective optimization problems (MaOPs). This is
mainly because the loss of selection pressure that occurs when
updating the swarm. The number of non-dominated individuals is
substantially increased and the diversity maintenance mecha-
nisms in MOPSOs always guide the particles to explore sparse
regions of the search space. This behavior results in the final
solutions being distributed loosely in objective space, but far away
from the true Pareto-optimal front. To avoid the above scenario,
this paper presents a balanceable fitness estimation method and a
novel velocity update equation, to compose a novel MOPSO
(called NMPSO), which is shown to be more effective to tackle
MaOPs. Moreover, an evolutionary search is further run on the
external archive in order to provide another search pattern for
evolution. The DTLZ and WFG test suites with 4 to 10 objectives
are used to assess the performance of NMPSO. Our experiments
indicate that NMPSO has superior performance over four current
MOPSOs, and over four competitive multi-objective evolutionary
algorithms (SPEA2-SDE, NSGA-I11, MOEA/DD and SRA), when
solving most of the test problems adopted.

Index Terms—Many-objective optimization problems, particle
swarm optimization, fitness estimation method.

[. INTRODUCTION

N some real-world applications, it is common to face opti-
mization problems having several (often conflicting) objec-
tives [1], [2]. They are termed multi-objective optimization
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problems (MOPs) and attempt to search a Pareto-optimal set
(PS) consisting of the best possible trade-offs among the ob-
jectives. The mapping of PS in objective space is termed Pa-
reto-optimal Front (PF). Over the past twenty years, a number
of nature-inspired heuristic algorithms, e.g., multi-objective
evolutionary algorithms (MOEAs) [3]-[4] and multi-objective
particle swarm optimizers (MOPSOs) [5]-[6], have been re-
ported as an alternative to tackle various kinds of MOPs. Some
early reported MOEAs, such as NSGA-II [3] and SPEA2 [7],
usually adopted two criteria for population selection. Pareto
dominance is first used to guide the search, and then a density
estimator is employed to diversify the set of solutions obtained.
Such operations in MOEAs are very effective in tackling MOPs
with 2 or 3 objectives. However, when solving many-objective
optimization problems (MaOPs, i.e., MOPs with more than 3
objectives), the performance of these MOEAs severely deteri-
orates [8], mainly due to the loss of selection pressure towards
the true PF [9]-[11] and the weakened search capabilities of
their evolutionary operators [12]. With the increase of objec-
tives in MaOPs, most of the generated solutions are mutually
non-dominated.

Most MOEAs designed for MOPs with 2 or 3 objectives, are
no longer suitable for tackling MaOPs. Thus, some research
efforts were made to reduce a high number of objectives [9] or
to redesign MOEAs for MaOPs [8]. Based on their selection
mechanisms, these redesigned MOEAs can be mainly divided
into three categories, i.e., Pareto-based MOEAs, decomposi-
tion-based MOEAs and indicator-based MOEAs.

Pareto-based MOEAs often face difficulties in offering suf-
ficient selection pressure to approach the true PFs of MaOPs,
which is mainly induced by the exponential increase of
non-dominated solutions at each generation. In order to solve
this problem, many Pareto-based MOEAs were redesigned in
different ways, such as using relaxed forms of Pareto domi-
nance, including preference order ranking [13], grid dominance
[14], and even a new dominance relation [15] (i.e., & domi-
nance that is based on predefined reference points and penal-
ty-based boundary intersection approach). These improved
approaches of dominance ranking can significantly strengthen
the selection pressure, thus making more effective the evolu-
tionary search towards the true PF. Another research direction
has consisted in embedding effective diversity maintenance
mechanisms into Pareto-based MOEAs, including two diver-



sity management mechanisms in [16], a shift-based density
estimation (SDE) method in [17], and the use of reference
points in NSGA-III [18].

The decomposition-based MOEAs transform MaOPs into a
set of aggregated sub-problems by decomposition approaches
[19], [20]. This way, a set of well-distributed weight vectors
helps to maintain the population diversity [21]. These MOEAs
have shown their effectiveness in solving complicated MOPs
with 2 or 3 objectives [22]-[24]. Recently, some promising
approaches for this kind of MOEAs have been reported to make
them more suitable for tackling MaOPs, such as MaOEA-R&D
[25], I-DBEA [26], and MOEA/DD [19].

The indicator-based MOEAs, e.g., IBEA [27], SMS-EMOA
[28] and MO-CMA-ES [29], integrate the convergence and
diversity performance into a single indicator (e.g., hypervol-
ume (HV) [30]) for population selection. These HV-based
MOEAs were once a popular alternative for MOPs. However,
the computational cost of this indicator grows exponentially
with the number of objectives, which has severely prevented
the use of HV-based MOEAs for MaOPs. Thus, some efforts
have been made in [31]-[33] to reduce this computational cost.
Moreover, two recently proposed MOEAs, i.e., SRA [34] and
Two_Arch2 [35], were designed by combining two perfor-
mance indicators, in order to synchronously consider the status
of convergence and diversity when tackling MaOPs.

More recently, some reference-based MOEAs [36]-[38]
were designed for tackling MOPs or MaOPs. These approaches
exploit a set of predefined reference points on the environment
selection to perform a multiple targeted search, rather than
decomposing MOPs into a set of sub-problems in decomposi-
tion-based MOEAs. This kind of MOEAs for MaOPs includes
PICEA-g [38] and RVEA [36]. In some sense, NSGA-III and
MOEA/DD also fall into this class due to the use of reference
points in their approaches. The above mentioned MOEAs are
mostly focused on small-scale MaOPs with up to 30 decision
variables. When encountering MaOPs also with a large number
of decision variables (i.e., large-scale MaOPs), more challenges
are brought for MOEAs as pointed out in two recent studies
[39], [40]. However, the study of such large-scale problems is
beyond the scope of this paper.

On the other hand, many MOPSOs were designed to tackle
MOPs with 2 or 3 objectives, showing a promising perfor-
mance [41]-[42]. By witnessing the poor performance of tradi-
tional MOEAs on MaOPs, a natural question that arises is
whether traditional MOPSOs also suffer from the curse of
dimensionality and perform poorly on MaOPs. Unfortunately,
based on our preliminary results (presented in Section I1.C), the
answer is “yes” and the performance of most MOPSOs severely
deteriorates on MaOPs. To overcome this problem, a bal-
anceable fitness estimation (BFE) method is proposed in this
paper as a diversity maintenance mechanism, and then a novel
MOPSO algorithm (called NMPSO) is accordingly imple-
mented. This BFE approach integrates the information of
convergence and diversity for each individual, in order to
strengthen the selection pressure towards the true PF. Then,
based on the parents with high quality on convergence and
diversity, a hybrid search, i.e., a PSO-based search using a new

velocity update equation and an evolutionary search [42] with
simulated binary crossover and polynomial-based mutation, is
conducted to effectively generate the non-dominated solutions.

The performance of NMPSO was evaluated using the DTLZ
[43] and WFG [44] test suites with a number of objectives that
goes from 4 to 10. As we will see later on, when compared to
four current MOPSOs (dMOPSO [45], SMPSO [46],
D*MOPSO [47], and MMOPSO [42]) and four competitive
MOEAs (SPEA2-SDE [17], NSGA-III [18], MOEA/DD [19],
and SRA [34]), NMPSO performed better on most of the test
problems adopted. The effectiveness of the three main com-
ponents (i.e., the BFE method, the novel velocity update equa-
tion and the embedded evolutionary search) of NMPSO, are
also experimentally analyzed. Finally, the performance of the
BFE method in other state-of-the-art multi-objective algorithms
and the parameter sensitivity of the BFE method are also ex-
perimentally analyzed in detail.

The rest of this paper is organized as follows. Section II in-
troduces the related background of MOPSOs and the motiva-
tions of this paper. The details of NMPSO are given in Section
III. Several experimental studies are conducted in Section IV,
in order to investigate the performance of NMPSO. Finally, our
conclusions and some possible paths for future work are pro-
vided in Section V.

II. RELATED BACKGROUND AND MOTIVATIONS

A. Some Current MOPSOs

Particle swarm optimization (PSO) is a population-based
heuristic method inspired on social behavior (e.g., bird flocking
and fish schooling) [48]. Due to its easy implementation and
high search efficiency, PSO has been widely applied to solve
single-objective optimization problems (SOPs) [49], [50],
MOPs [51], and other real-life applications [52]. Regarding
MOPs, a number of MOPSOs have been reported recently [6],
[41], [42]. Generally, two common approaches (Pareto ranking
and decomposition methods) are used in MOPSOs to identify
their swarm leaders. Thus, most of the existing MOPSOs can be
classified into two main categories.

The first category is formed by Pareto-based MOPSOs,
which incorporate Pareto ranking into the standard PSO. In this
way, the personal-best and global-best particles can be easily
made to guide the swarm. Some representative MOPSOs in this
category are OMOPSO [53], SMPSO [46], CMPSO [41], and
pccsAMOPSO [6]. The second category consists of decompo-
sition-based MOPSOs. These MOPSOs adopt a decomposition
approach to transform MOPs into a set of SOPs and then PSO
can be applied directly to solve all of these SOPs. Some rep-
resentative  MOPSOs belonging to this category include
MOPSO/D [54], SDMOPSO [55], dMOPSO [45], D2MOPSO
[47], and MMOPSO [42].

In the above MOPSOs, it was experimentally validated that
some recently proposed MOPSOs, such as SMPSO [46],
pcecsAMOPSO [6], D2MOPSO [47] and MMOPSO [42], have
shown a promising performance in solving MOPs with 2 or 3
objectives. However, their performance on MaOPs are seldom
investigated.
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Fig. 1 The HV curves of dMOPSO, SMPSO, MMOPSO, and NSGA-III for
DTLZ1 and DTLZ2 with 10 objectives

B. Motivations of Our Approach

In this subsection, a group of experiments were conducted to
further study the performance of some MOPSOs on MaOPs.
The DTLZ1 and DTLZ2 test problems [43] with 10 objectives
are adopted as the benchmark functions. The convergence
behaviors of dAMOPSO, SMPSO and MMOPSO were studied
as the representatives for two kinds of MOPSOs. NSGA-III [18]
was also included in this study. All the parameters of these
algorithms were set as suggested in their original references
[45], [46], [42], [18], which also can be found in Section IV.C.
The experiments are run 30 times with a population size of 275
and a maximum number of iterations of 500. The average
values of HV [30] in 30 runs were plotted in Fig. 1 for DTLZ1
and DTLZ2. It is noted that the HV values in Fig. 1 were nor-
malized using the approach in [34], and a larger HV value
indicates a better approximation of the true PF regarding both
convergence and diversity.

As observed from Fig. 1, all the used MOPSOs face some
difficulties in providing a sufficient selection pressure towards
the true PFs of DTLZ1 and DTLZ2. Particularly for SMPSO
and MMOPSO, their HV values are close to 0, which means
that they cannot even find solutions that dominate the reference
point. This poor performance is mainly induced by the use of
Pareto ranking and crowding distance for the archive updates.
Such approach was also found to perform poorly in MOEAs
[17], as it favors poorly converged individuals in less-crowded
regions of the objective space. AMOPSO is purely dependent
on the decomposition approach adopted for the swarm update,
thus it performs much better than SMPSO and MMOPSO.
However, when compared to NSGA-III using HV, the per-
formance of AMOPSO still has lots of room for improvement.

Based on the above study, it is clear that the performance of
two kinds of MOPSOs significantly deteriorates on MaOPs.
This is mainly due to the loss of sufficient selection pressure to
approach the true PFs of MaOPs using the Pareto-ranking
approach or the decomposition approach in them [28], [45],
[46]. Some reported approaches [13]-[18] originally developed
for MOEAs may be embedded into MOPSOs for enhancing
their performance on MaOPs. However, these approaches may
not lead to the optimal performance of MOPSOs, as they were
not originally designed for them and may not properly integrate
with the other components of a MOPSO, e.g., the selection of
global-best particles and the PSO-based search pattern. Thus, in
this paper, a novel BFE method was presented to build a new
MOPSO algorithm (i.e., NMPSO). This BFE approach com-
bines the convergence distance and the diversity distance of
each particle, aiming to strengthen the selection pressure in

approaching the true PFs of MaOPs. Moreover, a novel veloc-
ity update equation was also designed to provide another search
direction and induce more disturbances, while an evolutionary
search was further applied to the external archive in order to
provide an extra search pattern. All of these new features enable
NMPSO to effectively tackle MaOPs. When compared to the
existing MOPSOs, the main contributions of this paper are
summarized as follows:

1) The Pareto-ranking approach and the decomposition ap-
proach in MOPSOs have been found to lack sufficient selection
pressure towards the true PFs of MaOPs. Thus, a novel BFE
method was designed in this paper, which is able to drive the
particles so that they converge fast to the true PFs of MaOPs.
Both convergence distance and diversity distance are consid-
ered in the BFE approach. In this way, diversity and conver-
gence can be properly balanced during the evolutionary process,
and the curse of dimensionality that occurs in MaOPs can be
greatly relieved for MOPSOs.

2) For traditional MOPSOs, the velocity and the position of
each particle are usually guided by the positional information of
the personal-best and global-best particles. In our scheme, a
novel velocity update equation was designed to provide an
extra search direction pointing from the personal-best particle
to the global-best ones. Thus, more disturbances are performed
during the PSO-based search, which helps to guide all the
particles to search towards the global-best particles.

3) An evolutionary search strategy for MOPSOs was ex-
tended to solve MaOPs by running on the external archive after
the PSO-based search. This approach enables the exchange of
elitist information among the individuals of the external archive.
It is expected that this exchange provides an extra search pat-
tern and may circumvent the inefficiency of PSO-based search
on some MaOPs with special features.

III. THE PROPOSED FRAMEWORK AND IMPLEMENTATION

In this section, the details of our proposed NMPSO are de-
scribed. Its four main components, i.e., the proposed BFE
method, the evolutionary search on the external archive, the
novel velocity update equation, and the archive update, are
respectively introduced in the following subsections. At last,
the complete algorithm of NMPSO is also provided.

A. The Novel Fitness Estimation Method

Here, we propose a novel BFE method to overcome the
limitations of both Pareto ranking and decomposition ap-
proaches. The proposed method combines a convergence
distance and a diversity distance to balance the convergence
ability and the population diversity for each solution in objec-
tive space.

Let us assume that the swarm P ={p,, p,,..., p, } includes N
particles. Each particle has the position x; and the velocity v;
(i=1,2,---,N ). For each particle p,, its BFE value fit(p,,P)
consists of two components: a diversity distance and a con-
vergence distance, as follows.

fit(p;, P)=axCd(p,, P)+ fxCv(p,; , P) M



where Cd(p,,P) and Cv(p,,P) respectively denote the nor-
malized diversity and convergence distances of p,; « and S
are two factors that are used to tune the impacts of the diversity
and convergence distances, respectively. When computing this
BFE value, each objective of particle p, is first normalized
using the maximum and minimum values of the corresponding
objective. Such normalization approach helps to eliminate the
impact of different amplitudes on multiple objectives [18]. The
normalized objectives f/(p;,) (k=1,2,...,m ,and m is the total
number of objectives) of p, are obtained using:
Fip= L0 Jimin &)
fr max— f;, min
where f; max and f, min are, respectively, the maximum and
minimum values of the k-th objective obtained from the
non-dominated solutions available in the external archive. Thus,
this approach doesn’t require any information from the true PFs
of the MOP being solved. It is noted that, by this approach, the
normalized objectives f;/(p;) are mostly located between [0,
1], as observed from the experimental results.
Then, the normalized diversity distance Cd(p,,P) is as-
signed by the normalized SDE distance [17], as follows.

SDE(p,) = SDE i
SDE max SDE min
where SDE

o and SDE .. are respectively the maximum and
minimum SDE distances in the swarm (i.e., SDE, . =max
{SDE(p)| pe P} and SDE, , =min{SDE(p)|peP} ). A
larger value of Cd(p,,P) means that the particle p, is sur-
rounded with a faraway neighbor. SDE(p,) is the original
SDE distance defined in [17] using the shifted Euclidian dis-

tance to the nearest neighbor, as follows.

SDE(p,) = min_ \/isde(fk' CONAV)C)

Cd(p,,P) = 3)

where

fk,(pj)_fk,(pi) lffk'(p]) > fk,(pi) (5)

0 otherwise

sde(ﬂ’(pi>,ﬂ’(p,))={

where f; (p,) is the k-th normalized objective of p, as de-
fined in (2).

On the other hand, the convergence distance Cv(p,,P) is
designed to reflect the convergence ability of f/(p;) (k=12,
....m) with respect to the ideal point z"=(0,0,...,0) . It can be
computed as follows.

dis(p,)

il ¥ of 24 (6)
Jm

where dis(p,) denotes the Euclidean distance from f/(p;)

(k=1,2,...,m) to the ideal point z*, as follows.

dis(p;) = sqrt(i () (7

A larger value of Cv(p,,P) indicates that f/(p;,) (k=12,...
,m) is closer to the ideal point z*. Thus, when updating the
external archive, a priority of selecting some individuals with
larger convergence distances will increase the selection pres-
sure towards the ideal point z*, so as to minimize all the ob-

CH(p,, P)=1-

S

N f

Fig. 2 The advantages of using (a) the convergence distance and (b) the
diversity distance in the proposed BFE approach
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Fig. 3 The illustration of the projection distance and the perpendicular

distance regarding the line L
jectives simultaneously. Moreover, the use of diversity distance
encourages to diversify the solutions as evenly as possible.

The above diversity and convergence distances are dynam-
ically balanced using two weight factors « and /. They are
adaptively adjusted for different particles, based on their status
on convergence and diversity. For this purpose, the average
values of all Cd(p,,P) andall Cv(p,,P) inthe particle swarm
P are calculated by

N N

meang, =Y Cd(p,,P)/N and mean,, =Y Cw(p,,P)/N

i=1 i=1

With mean,, , it is easy to find out the particles that are close
to the ideal point. If we take a two-dimensional MOP in Fig. 2
as an example, the objective space can be easily split into two
parts: the close area and the distant area, by comparing the
convergence distance Cv(p,,P) with mean, . The close area
is highlighted with light gray background, while the distant area
is outside the close area, as illustrated in Fig. 2(a). The solutions
in the close area are generally approaching to the ideal point z".
Moreover, when using mean,, , it can further distinguish some
relatively less crowded solutions and some relatively more
crowded solutions, as shown in Fig. 2(b).

However, the above approach may miss some boundary so-
lutions in the true PFs with long tails, as illustrated in Fig. 2.
This problem is aggravated in solving MaOPs, since the num-
ber of boundary solutions is exponentially increased. Thus, two
distance metrics are further introduced to fix the above problem.
Let us assume that L is a line connecting the nadir point
2"’=(1,1,..,,1) and the ideal point z'=(0,0....,0), and f(p)
is the projection of f'(p,) on the L. Then, let d,(p,) be the
projection distance of f'(p;) and z , and d,(p,) be the
perpendicular distance of f'(p;) and L. They are respectively
defined in (8) and (9), as follows.
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To further clarify the computation of d,(p,) and d,(p,),an

d\(p;) (8
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example for a two-dimensional MOP is further given in Fig. 3.
Using the above distance information of d,(p,) and d,(p,),
their average values ( mean,, and mean,, ) among the particle
swarm P can be calculated, by

N N
mean,, =Y d\(p,)/N and mean,, = d,(p,)/N

i=1 i=l
The core idea of BFE is to use a weighted sum approach for
the convergence distance and the diversity distance, as defined
in (1). However, different particles should be assigned with
various weight factors (« and £), in order to promote some
potentially superior solutions and remove some poorly con-
verged ones with good diversity. Therefore, using the above
distance information, i.e., mean. , mean., , mean, and
mean,, , different situations for the particles are considered in
order to properly adjust the setting of & and £ for each parti-
cle, aiming to properly balance convergence and diversity when
tackling MaOPs. Two main categories are first classified using
mean,, .
Case 1: the particles p, with Cv(p,, P) < mean,,
In this category, all the normalized particles are closer to the
ideal point z". To further distinguish their distances from the
ideal point z", mean .1 1s used to produce two cases.
Case 1.1 the particles p, with d,(p,) < mean,,
As the normalized particles are very close to the ideal point,
f is all set to 1.0 without any punishment on the conver-
gence distance. mean,, is further adopted to classify their
crowded information.
Case 1.1.1 the particles p, with Cd(p,,P) < mean,,
These normalized particles are close to the ideal point,
but they are more crowded. Some of them need to be
promoted, while others are punished. Thus, « is setto a
random value in (0.6, 1.3) to randomly promote or punish
their diversity distances.
Case 1.1.2 the particles p, with Cd(p,,P) > mean,,
These normalized particles are both close to the ideal
point and less crowded. Thus, « is set to 1.0 without any
punishment on the diversity distance.
Case 1.2 the particles p, with d,(p,) = mean,,
These normalized particles are a little far away from the ideal
point when compared to the ones in Case 1.1. Thus, £ is set
to 0.9 to slightly punish the convergence distance. Moreover,
mean,, is further adopted to classify their crowded infor-
mation.
Case 1.2.1 the particles p, with Cd(p,,P) < mean,,
Due to the more crowded status, « is further reduced to
0.6 to punish the diversity distance in this case.
Case 1.2.2 the particles p, with Cd(p,,P) > mean,,
Due to the less crowded status, ¢ is set to 0.9 to slightly
punish the diversity distance in this case.
Case 2: the particles p, with Cv(p,,P) = mean,,
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Fig. 4 An example with various cases for adjusting the values of « and /S
These particles are generally far away from the true PF; only
some boundary solutions may probably approach the true PF.
In such case, d,(p,) and d,(p,) are adopted to find out these
boundary solutions. The following cases are considered.

Case 2.1 the particles p, with d (p,) <mean. and

d,(p,) =2 mean,,

Although these normalized particles are far away from the

ideal point, they may be close to the boundaries of the nor-

malized PF. Thus, most of them should be promoted.

mean,, is further used to classify their crowded information.
Case 2.1.1 the particles p, with Cd(p,,P) < mean,,
Since these normalized particles are more crowded, some
of them are promoted, while others are punished. Thus,
a and f are all set to a random value within the range
(0.6, 1.3) to randomly promote or punish their diversity
and convergence distances.
Case 2.1.2 the particles p, with Cd(p,,P) > mean,,
These particles are less crowded and they should be
promoted. Thus, & and f are all set to 1.0 without any
punishment on the diversity and convergence distances.

Case 2.2 the particles p, with d (p,)=mean, or

d,(p;) <mean,,

These normalized particles are far away from the ideal point

and they are all surrounded around the line L. Thus, they are

generally worse than the solutions in Case 1. These particles

are restrained by setting « and £ to 0.2.

An example with a two-dimensional MOP is shown in Fig. 4
to illustrate the above cases. It is worth noting that our approach
also works for MaOPs and was experimentally validated in
Section IV; however, due to the difficulty to illustrate a high
dimensional MOP, only the simple examples with two dimen-
sions are plotted in Figs. 2-4.

B. A Novel Velocity Update Equation

Originally, the velocity and the position of the particles are
usually updated using the positional information of the per-
sonal-best and global-best particles. To provide another search
direction (i.e., the evolutionary direction from the personal-best
particle pointing to the global-best one) and make more dis-
turbances, a novel velocity update equation was designed in
this paper, as follows.

V(D) = wy () 401 (x, 0, =% (0) + 675 (X, = X,(0))

(10)
+ C3r:’y ('xghest, - ‘xphen‘1 )

where ¢ is the iteration number; w is the inertial weight; c1, c2
and c3 are three learning factors; 1, 7> and 3 are three uniformly



Algorithm 1: archive_update (4, S)

1 fori=1to|S|

2 for j=1 to |A|

3 flag = CheckDominance( S; , 4;);

4 if flag ==

5 mark 4, as a dominated solution;

6 else if flag—-1

7 mark S; as a dominated solution; break;
8 end if

9 end for

10 delete the marked dominated solutions from 4;
11 if S; is not marked as a dominated solution

12 add S; to 4;

13 if 4] >N.

14 compute the fitness values using (1)-(7);
15 delete the one with the worst fitness value;
16 end if

17  endif

18 end for

19 return A

distributed random numbers in [0, 1]; Xppes, and xgp, are the
positional information of the personal-best particle and the
global-best particle for p,, respectively. It is noted that x,,,,
for p, is randomly selected from the top 10% individuals in the
external archive with better BFE values (this top 10% was
determined after numerous of experiments). Then, the posi-
tional information of p, is updated using its velocity, as fol-
lows.
X+ =x0)+v,(t+1) (11)
This embedded evolutionary direction helps to guide the
particles to search towards the global-best particles. Thus, it is
expected to enhance the convergence speed of NMPSO.

C. Evolutionary Search on the External Archive

After the PSO-based search takes place, some generated
non-dominated solutions are maintained in the external archive
A using the proposed BFE method. They generally have better
quality on convergence and diversity, and are regarded as
swarm leaders to guide the PSO-based search. To further en-
hance the solution quality in the external archive, another
search pattern, i.e., evolutionary search, is further conducted on
these solutions. This approach is expected to repair the poten-
tial insufficiency of PSO-based search on some MaOPs, so as to
effectively generate the non-dominated solutions [42]. Recent
studies indicate that this sort of hybrid scheme can enhance the
search ability and make an algorithm more robust to tackle
various kinds of MOPs [22], [56]. In NMPSO, the evolutionary
operators, i.e., simulated binary crossover (SBX) and polyno-
mial-based mutation (PM), are used, as they are widely adopted
to solve MOPs and provide a promising search capability [3],
[7], [41]. This evolutionary search strategy was reported by us
in MMOPSO [42] for MOPs, and is extended for MaOPs in this
paper. Due to page limitations, please refer to [42] for imple-
menting this operator.

D. Archive Update

After performing the PSO-based search or the evolutionary
search on the external archive, a population of new solutions is
produced. In order to keep a number of elitist solutions in the
external archive, an appropriate selection mechanism is re-
quired to update the external archive, so that the search direc-
tion can be effectively guided to approximate the true PF.

Algorithm 2: The Complete Algorithm NMPSO
1 initialize =0, 4 = null, and P={p,, p,.-Py};
2 fori=ltoN
3 randomly initialize position X, and set v, =0 for p,;
4 evaluate the objective values of p;,;
5 set pbest; = p, as the personal-best position for p,;
6
7
8

end for
add the non-dominated solutions from P into 4;
compute the fitness values for the solutions of 4 using (1)-(7);
9  while <T
10 fori=lto N
11 update the velocity v, of p, by (10);
12 update the position x; of p, by (11);

13 evaluate the objective values for p,;
14 if pbest, cannot dominate p,

15 set pbest, = p, ;

16 end if

17 end for

18  A=archive update(4,P),

19 evolutionary search strategy is applied on 4 to get a new swarm S
20  evaluate the objectives of new solutions in .S

21 A=archive_update(A4,S);

22 t=t+2;

23 end while

24 output A;

Different from traditional MOPSOs, this paper exploits the
proposed BFE method to further select the non-dominated
solutions in the external archive. Assuming that the set of new
solutions is § and the external archive is 4, the pseudo-code for
updating the archive is shown in Algorithm 1, where the input
is A and S, N, is the maximum size of 4. In Algorithm 1, the
function CheckDominance(4, B) returns the Pareto dominance
relationship between 4 and B. If A dominates B, this function
returns 1. Otherwise, it returns -1 when B dominates or is equal
to A. At last, this operator will return the updated external
archive 4.

E. The Complete Algorithm of NMPSO

The above subsections have introduced the main components
of NMPSO, which include the assignment of fitness values,
velocity update equation, evolutionary search on the external
archive, and the archive update operator. In order to describe
the remaining operations and to facilitate the implementation of
NMPSO, the pseudo-code of its complete algorithm is provided
in Algorithm 2. The initialization procedure is first activated in
lines 1-6 of Algorithm 2. The external archive A4 is initialized
to be null and the iteration number ¢ is set to 0. For each particle
in P, its positional information is randomly generated and its
velocity is set to 0. After that, the objectives of each particle are
evaluated. In line 7, all non-dominated solutions in P are added
into A and their fitness values are computed using (1)-(7) in line
8. Then, NMPSO steps into the main loop of the evolutionary
process until the maximum number of iterations is reached.

In the main loop, the PSO-based search is performed first in
lines 10-17. For each particle in P, its velocity and position are
respectively updated by (10) and (11). After that, its objective
values are evaluated, and the personal-best particle pbest, will
be replaced when it does not dominate the new particle p, .
After the PSO-based search, the archive update procedure is
executed in line 18, with the input 4 and P. The pseudo-code of
this operation can be found in Algorithm 1. Then, in line 19,
the evolutionary search strategy [42] is further run on A4 to
evolve the swarm leaders, providing another search pattern to



cooperate with the PSO-based search. At last, the objectives of
the newly generated solutions are computed in line 20, and then
the archive update process (Algorithm 1) is applied again in
line 21. The iteration counter ¢ is increased by 2 in line 22 as
both the PSO-based search and the evolutionary search are run.
The above evolutionary phase is repeated until the pre-set
maximum number of iterations is achieved. At last, the final
solutions in A4 are reported as the final approximation of PF.

IV. EXPERIMENTAL RESULTS

A. Benchmark Problems

In this study, the DTLZ [43] and WFG [44] test problems
were used, including DTLZ1-DTLZ6 and WFG1-WFG9. For
each problem, the number of objectives was varied from 4 to 10,
ie, me{4,6,8,10}. For DTLZ1-DTLZ6, the number of deci-
sion variables was set as n = m+k-1, where n and m are, re-
spectively, the number of decision variables and the number of
objectives. As suggested in [43], the values of k£ were set to 5
for DTLZ1 and 10 for DTLZ2-DTLZ6. Regarding WFG1-
WFG9, the decision variables are composed by k posi-
tion-related parameters and / distance-related parameters. As
recommended in [34], k is set to 2x(m—1) and [ is set to 20.
The main characteristics of the DTLZ and WFG test problems
are summarized in Table A.I".

B. Performance Measures

The goals of MaOPs include the minimization of the distance
of the solutions to the true PF (i.e., convergence) and the
maximization of the uniform and spread distribution of solu-
tions over the true PF (i.e., diversity). In this paper, IGD [57]
and HV [30] are adopted as the performance measures to assess
convergence and diversity simultaneously. They are widely
used in performance assessment for MaOPs [17]-[19]. Due to
page limitations, please refer to [57] and [30] for details of IGD
and HV. A smaller value of IGD and a larger value of HV
indicate a better approximation of the true PF. It is noted that
these two measures show high consistencies on convex PFs and
certain contradictions on concave PFs as pointed out in [58].

As it is difficult to find uniformly distributed points in the
true PFs of the WFG test problems, their IGD results were not
provided in this study. For the DTLZ test problems with m
objectives, using the systematic approach developed in [59],
the smallest possible value of H (H is the number of divisions in
each objective) was found to make sure that C;i.! | >200000 .
Thus, at least 200000 reference points were uniformly sampled
from their true PFs and were used to compute IGD.

For computing the HV indicator, as suggested in [34], all the
objectives are normalized using the vector 1.1 x ( f, max, f, max,
<y f,, max) , where f; max (k=12,..,m) is the maximum
value of the k-th objective in the true PFs. Then, the reference
point is set to (1.0,1.0,...,1.0) in order to compute HV. The
recently proposed WFG algorithm [60] was used to compute
the exact HV values. Note that the solutions that cannot dom-
inate the reference point are not considered for computing HV.

! Due to space limitations, it is provided in the supplementary file.

TABLE |
PARAMETERS SETTINGS OF ALL THE ALGORITHMS COMPARED

Algorithm Parameters settings

SMPSO ®€[0.1,0.5], ¢,¢c, €[1.5,2.5], p, =1/n, , =20
dMOPSO ®€[0.1,0.5], ¢,¢c, €[1.5,2.5]
D*MOPSO 0 <[0.1,0.5] , ¢.c, €[1.5,2.5]
MMOPSO @ € [0.1,0.5], ¢,¢, €[1.5,2.5], p, =0.9, p, =1/n,n,=n, =20
SPEA2-SDE p.=0.9, p, =1/n,n,=20,n, =20
NSGA-III p.=1.0, p, =1/n,n,=30,7, =30
MOEA/DD p, =1/n,n.=20,n, =20, 7=20, 6 =0.9,n, =2

SRA p.=1.0,p, =0.1,7.=15,n, =15, p. =0.4
NMPSO »€[0.1,0.5], ¢,¢,,¢, €[1.5,2.5], p. =1/n, 17, =20

C. Experimental Settings of All Compared Algorithms

In this paper, four MOPSOs (d(MOPSO [45], SMPSO [46],
D>MOPSO [47] and MMOPSO [42]), and four competitive
MOEAs (SPEA2-SDE [17], NSGA-III [18], MOEA/DD [19]
and SRA [34]), were used for performance comparison.

Due to the use of weight vectors, the population sizes of
dMOPSO, D’MOPSO, MMOPSO, MOEA/DD and SRA have
to be same as the number of weight vectors. The population size
of NSGA-III is slightly larger than the number of weight vec-
tors as it has to keep the population size as a multiple of four.
For the test problems with 4, 6, 8, and 10 objectives, the number
of weight vectors are respectively set to 165, 252, 330, and 275,
using the approach introduced in [19]. Thus, NSGA-III adopts
population sizes of 166, 254, 332, and 276 for 4-, 6-, 8- and
10-objective problems respectively, while the other algorithms
adopt population sizes and archive sizes which are the same as
the number of weight vectors.

To allow a fair comparison, the related parameters of all the
compared algorithms were set as suggested in their references,
as summarized in Table I. p, and p, are, respectively, the
crossover probability and the mutation probability; 7, and 7,
are respectively the distribution indexes of SBX and polyno-
mial-based mutation. For dMOPSO, SMPSO, D*MOPSO,
MMOPSO and NMPSO, their control parameters c¢;, ¢,, 3
were randomly sampled in [1.5, 2.5] and the inertia weight @
was randomly produced from [0.1, 0.5]. Regarding MOEA/DD,
T defines the neighborhood size among the weight coefficients;
¢ indicates the probability to select parent solutions from T’
neighbors; 7, is the maximum number of parent solutions that
are replaced by each child solution. p/ in SRA is an inherent
parameter of stochastic ranking, which controls the balance
between two indicators. Moreover, the parameter to control the
execution of two velocity update equations is set to 0.9 for
MMOPSO. The maximum number of function evaluations
(FEs) was set to 10° for all the test problems adopted. All the
experiments were run 30 times with different random seeds,
and their mean HV and IGD values and the standard deviations
(included in brackets after the mean results) in 30 runs were
collected for comparison.

Moreover, to obtain a statistically sound conclusion, Wil-
coxon’s rank sum test was further performed in order to show
the statistically significant differences between the results
obtained by NMPSO and those obtained by other algorithms
with a significance level & =0.05. In the following tables, the

symbols “+7, “-, and “~” indicate that the results obtained by



TABLE II
COMPARISON OF RESULTS OF NMPSO AND FOUR CURRENT MOPSOS ON DTLZ1-DTLZ6 USING HV

Problem | Obj SMPSO dMOPSO D*MOPSO MMOPSO NMPSO
4 [ 0.87112(8.35E-03)_ | 0.85891(1.59E-02)_ | 0.33849(3.82E-01)_ | 0.52503(4.07E-01)— | 0.93395(2.46E-03)
DTLZI 6 | 0.80783(1.88E-01)— | 0.79468(7.26E-02)— | 0.33610(3.36E-01)- | 0.03923(9.88E-02)— | 0.98546(1.42E-03)
8 | 0.38105(3.62E-01) | 0.80518(6.53E-02) | 0.34003(3.53E-01)— | 0.00001(8.20E-05)— | 0.99550(6.49E-04)
10 | 0.15327(2.13E-01)_ | 0.86621(2.635-02)_ | 0.07738(1.45E-01)_ | 0.00000(0.00E+00)_ | 0.99730(5.67E-04)
4 [ 0.53785(2.24E-02)- | 0.62180(1.71E-03)— | 0.64826(4.98E-03) | 0.63686(5.37E-03)— | 0.71559(1.10E-03)
DTLZ2 6 | 0.21131(4.38E-02)— | 0.78214(1.26E-02) | 0.62044(2.86E-02)— | 0.44369(6.90E-02)— | 0.87599(1.71E-03)
8 | 0.07322(2.70E-02) | 0.72540(1.45E-02) | 0.50662(3.63E-02)— | 0.05344(4.27E-02)_ | 0.93969(1.33E-03)
10 | 0.00591(8.50E-03)— | 0.60867(1.39E-02)— | 0.35002(5.09E-02)- | 0.00264(9.10E-03)— | 0.96595(2.13E-03)
4 | 0.44853(6.14E-02)- | 0.57035(3.61E-02)— | 0.00000(0.00E+00)— | 0.04925(1.51E-01)— | 0.71553(1L.31E-03)
DTLZ3 6 | 0.01338(3.61E-02)— | 0.35392(9.39E-02)_ | 0.00000(0.00E+00)_ | 0.00000(0.00E+00)_ | 0.87539(1.46E-03)
8 | 0.00196(1.07E-02)_ | 0.31699(8.75E-02) | 0.00000(0.00E+00)_ | 0.00000(0.00E+00)_ | 0.94089(1.38E-03)
10 | 0.00195(1.07E-02)— | 0.41953(5.56E-02)— | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.96347(2.05E-03)
4 [ 0.16067(1.73E-02)_ | 0.12657(I.11E-02)_ | 0.19207(5.83E-03)_ | 0.17542(6.45E-03)_ | 0.22544(3.94E-03)
DTLZ4 6 | 0.03020(3.11E-02)— | 0.09177(1.86E-02)— | 0.10273(1.44E-02)- | 0.06695(1.61E-02)_ | 0.16299(8.34E-03)
8 | 0.00242(7.97E-03)— | 0.05283(4.55E-02) | 0.05899(2.54E-02) | 0.01505(2.78E-02) | 0.13357(1.81E-02)
10 | 0.00008(4.11E-04)— | 0.00941(2.65E-02)— | 0.04697(3.17E-02)_ | 0.00830(1.98E-02)— | 0.12022(1.75E-02)
4 [ 0.14590(7.02E-04)_ | 0.14494(5.44E-05)_ | 0.14833(2.23E-03)_ | 0.14629(8.12E-04)_ | 0.15062(2.03E-04)
DTLZS 6 | 0.11366(4.97E-04)+ | 0.10572(6.14E-05) | 0.11768(1.15E-04)+ | 0.11392(3.95E-04)+ | 0.11075(3.26E-03)
8 | 0.10347(3.57E-04)+ | 0.09424(1.86E-05)+ | 0.10620(7.72E-05)+ | 0.10391(2.53E-04)+ | 0.08840(2.16E-02)
10 | 0.09784(3.41E-04)+ | 0.09814(5.86E-05)+ | 0.10076(3.26E-05)+ | 0.09820(2.62E-04)+ | 0.09046(1.49E-02)
4 | 0.14248(1.30E-03)_ | 0.14494(5.49E-06)+ | 0.14483(2.54E-03)_ | 0.01362(2.20E-02)— | 0.15038(3.54E-04)
DTLZ6 6 | 0.10529(1.33E-03)— | 0.10570(3.51E-06) | 0.11291(1.32E-03)~ | 0.00059(3.23E-03)_ | 0.11306(1.07E-03)
8 | 0.09735(3.36E-04) | 0.09423(1.96E-06) | 0.10197(8.43E-04)+ | 0.00260(1.42E-02)— | 0.09805(1.37E-03)
10 | 0.09279(6.89E-04)~ | 0.09818(5.64E-06)+ | 0.09834(6.55E-04)+ | 0.00303(1.66E-02)— | 0.09249(9.47E-04)
Best/All 0/24 0/24 5/24 0/24 19/24
Better/WorselSimilar 3/20/1 4/20/0 5/18/1 3/21/0 —

TABLE 111
COMPARISON OF RESULTS OF NMPSO AND FOUR CURRENT MOPSOS ON ALL THE WFG TEST PROBLEMS USING HV

Problem Obj SMPSO dMOPSO D*MOPSO MMOPSO NMPSO
4 | 0.31576(1.14E-03)— | 0.26635(6.13E-03)— | 0.31950(4.30E-03)— | 0.39336(1.62E-02)— | 0.52338(4.68E-02)
WFGI 6 | 0.28075(1.13E-03)— | 0.12624(7.25E-02)— | 0.28017(1.28E-03)— | 0.31132(8.27E-03)~ | 0.31310(2.87E-02)
8 [ 0.25085(1.28E-03)— | 0.17239(5.50E-02)— | 0.25083(4.46E-03)— | 0.27036(5.16E-03)— | 0.30105(2.48E-02)
10 | 0.22844(8.30E-04)— | 0.23433(6.93E-03)— | 0.22868(2.14E-03)— | 0.25032(5.16E-03)— | 0.35450(2.85E-02)
4 | 0.88570(9.30E-03)— | 0.89872(1.25E-02)— | 0.93764(8.38E-03)+ | 0.94506(7.75E-03)+ | 0.90990(2.09E-02)
WFG2 6 | 0.85438(1.26E-02)— | 0.89341(2.73E-02)— | 0.98044(5.73E-03)+ | 0.97353(8.34E-03)+ | 0.95129(1.36E-02)
8 | 0.82910(1.27E-02)— | 0.88682(3.48E-02)— | 0.98490(6.23E-03)+ | 0.97006(1.29E-02)+ | 0.95685(1.10E-02)
10 | 0.81552(1.62E-02)— | 0.91891(2.30E-02)— | 0.98364(1.10E-02)+ | 0.96302(8.65E-03)— | 0.97190(7.46E-03)
4 1 0.57295(9.03E-03)— | 0.61074(5.78E-03)— | 0.58840(2.06E-02)— | 0.63232(7.58E-03)— | 0.64159(7.46E-03)
WFG3 6 | 0.57858(4.33E-03)— | 0.51596(8.86E-03)— | 0.44868(1.17E-02)— | 0.61953(1.29E-02)— | 0.62875(1.93E-02)
8 | 0.58232(7.05E-03)— | 0.50064(1.16E-02)— | 0.44462(1.06E-02)- | 0.61338(1.57E-02)+ | 0.59836(2.04E-02)
10 | 0.57938(7.22E-03)— | 0.59233(1.65E-02)~ | 0.43639(1.06E-02)— | 0.61220(1.85E-02)~ | 0.59713(3.15E-02)
4 1 0.49905(1.23E-02)— | 0.50238(1.50E-02)- | 0.54863(1.70E-02)— | 0.60441(1.04E-02)- | 0.68391(4.57E-03)
WFG4 6 | 0.51041(1.67E-02)— | 0.48342(7.19E-02)— | 0.60493(2.16E-02)- | 0.56324(2.63E-02)— | 0.80582(5.81E-03)
8 | 0.54610(1.37E-02)— | 0.43862(5.73E-02)— | 0.59826(4.34E-02)— | 0.53171(2.01E-02)— | 0.84608(6.52E-03)
10 | 0.54348(1.54E-02)— | 0.52419(5.89E-02)— | 0.57271(4.10E-02)— | 0.51800(2.03E-02)— | 0.86091(1.12E-02)
4 | 0.42291(2.08E-02)— | 0.44871(1.17E-02)- | 0.58159(1.71E-02)— | 0.55815(1.12E-02)- | 0.65076(3.18E-03)
WFG5 6 | 0.44352(8.98E-03)— | 0.44550(3.61E-02)— | 0.63662(3.52E-02)— | 0.52345(1.94E-02)— | 0.78738(3.95E-03)
8 [0.47011(9.58E-03)— | 0.41874(6.60E-02)— | 0.62917(3.37E-02)— | 0.48677(2.07E-02)— | 0.82642(2.12E-02)
10 | 0.46125(1.02E-02)— | 0.42312(5.53E-02)— | 0.56291(4.55E-02)— | 0.46894(2.24E-02)— | 0.81452(7.04E-02)
4 | 0.57315(1.55E-02)— | 0.48437(6.66E-03)— | 0.52866(2.89E-02)— | 0.59429(1.34E-02)— | 0.67962(1.93E-02)
WFG6 6 | 0.58982(7.32E-03)— | 0.58591(3.19E-02)— | 0.54956(3.70E-02)— | 0.62134(4.42E-02)- | 0.77341(1.33E-03)
8 | 0.66852(7.46E-03)— | 0.52409(2.82E-02)— | 0.52397(5.00E-02)— | 0.53279(6.66E-02)— | 0.83212(1.45E-03)
10 | 0.70282(5.49E-03)— | 0.46106(6.07E-02)— | 0.48522(5.83E-02)— | 0.47034(2.84E-02)— | 0.84099(3.52E-03)
4 |0.43846(1.28E-02)— | 0.44268(1.85E-02)— | 0.57321(1.02E-02)— | 0.62853(1.38E-02)— | 0.70792(1.84E-03)
WFGT 6 | 0.44976(1.07E-02)— | 0.33475(2.26E-02)— | 0.62033(2.06E-02)— | 0.57569(4.24E-02)— | 0.85530(2.93E-03)
8 [0.47750(9.80E-03)— | 0.32102(3.14E-02)— | 0.64829(2.52E-02)— | 0.51140(2.29E-02)— | 0.90840(3.18E-03)
10 | 0.48140(1.30E-02)— | 0.36077(3.43E-02)- | 0.59008(7.33E-02)— | 0.48357(1.76E-02)— | 0.91978(3.73E-02)
4 1 0.35209(1.13E-02)— | 0.30493(1.49E-02)- | 0.41031(2.23E-02)— | 0.48334(9.22E-03)- | 0.60192(2.72E-03)
WEGS 6 | 0.38456(9.40E-03)— | 0.25108(3.16E-02)— | 0.32909(3.22E-02)— | 0.47464(1.77E-02)— | 0.71651(6.05E-03)
8 | 0.41921(1.03E-02)— | 0.26339(2.69E-02)— | 0.34397(2.12E-02)- | 0.49009(1.44E-02)- | 0.77505(1.35E-02)
10 | 0.42315(1.06E-02)— | 0.30059(2.50E-02)— | 0.32889(2.43E-02)— | 0.48133(1.89E-02)— | 0.82269(2.01E-02)
4 | 0.47574(1.21E-02)— | 0.42512(1.69E-02)— | 0.56727(4.03E-02)— | 0.53991(1.99E-02)— | 0.66352(5.74E-03)
WEGY 6 | 0.44639(1.31E-02)— | 0.44239(2.84E-02)— | 0.56911(5.04E-02)— | 0.53473(2.23E-02)— | 0.74228(3.09E-02)
8 | 0.47213(1.15E-02)— | 0.42943(4.64E-02)— | 0.52285(4.14E-02)— | 0.48925(3.60E-02)— | 0.76002(1.01E-02)
10 | 0.47187(1.37E-02)— | 0.45585(4.47E-02)— | 0.46274(4.79E-02)— | 0.44355(1.58E-02)— | 0.81563(2.04E-02)
Best/All 0/36 0/36 3/36 3/36 30/36
Better/WorselSimila 0/36/0 0/35/1 4/32/0 4/30/2 —




TABLE IV
COMPARISON OF RESULTS OF NMPSO AND FOUR COMPETITIVE MOEAS ON DTLZ1-DTLZ6 USING HV

Problem |Obj|  SPEA2/SDE MOEA/DD NSGA-III SRA NMPSO
4 | 0.92637(3.77E-03)— | 0.94479(L.40E-04)+ | 0.94447(3.94E-04)+ | 0.92765(3.63E-03)~ | 0.93395(2.46E-03)
DTLZ1 6 | 0.97587(2.68E-03) | 0.99218(6.83E-05)+ | 0.99130(2.72E-03)+ | 0.98165(2.24E-03)~ | 0.98546(1.42E-03)
3 | 0.98804(1.46E-03)— | 0.99836(1.36E-04)+ | 0.99837(5.44E-04)+ | 0.99143(1.52E-03)- | 0.99550(6.49E-04)
10 | 0.98828(1.75E-03)- | 0.99698(4.11E-04)— | 0.99944(1.32E-04)+ | 0.99165(1.59E-03)— | 0.99730(5.67E-04)
4 [ 0.71072(1.25E-03)— | 0.71525(1.12E-05) | 0.71498(1.84E-04)— | 0.67848(3.46E-03)_ | 0.71559(1.10E-03)
DTLZ2 6 | 0.86799(1.98E-03) | 0.87524(4.90E-05) | 0.87219(3.48E-04)— | 0.82319(3.93E-03)— | 0.87599(1.71E-03)
8 | 0.93509(1.50E-03) | 0.94542(8.29E-05)+ | 0.93900(8.59E-04)— | 0.88231(4.33E-03)- | 0.93969(1.33E-03)
10 | 0.96429(1.52E-03)— | 0.96887(1.40E-04)+ | 0.96341(7.45E-04) | 0.89041(6.78E-03)— | 0.96595(2.13E-03)
4 | 0.70774(3.65E-03)— | 0.71025(4.17E-03)— | 0.69637(1.43E-02)- | 0.66303(2.32E-02)— | 0.71553(1.31E-03)
DTLZ3 6 | 0.86115(4.08E-03) | 0.86617(5.03E-03) | 0.69106(2.84E-01)— | 0.80647(1.89E-02)_ | 0.87539(1.46E-03)
3 | 0.92084(7.76E-03) | 0.91744(6.42E-02)— | 0.51569(3.58E-01)— | 0.87154(2.07E-02)— | 0.94089(1.38E-03)
10 | 0.95344(5.66E-03)— | 0.96100(3.87E-03)— | 0.78669(2.90E-01) | 0.87668(1.87E-02)— | 0.96347(2.05E-03)
4 | 0.19461(6.73E-02)— | 0.22471(1.89E-05)~ | 0.22453(2.81E-04)— | 0.18341(3.71E-02)— | 0.22544(3.94E-03)
DTLZ4 6 | 0.15414(9.12E-03) | 0.17615(2.19E-04)+ | 0.17506(9.26E-04)+ | 0.10464(1.57E-02)— | 0.16299(3.34E-03)
8 | 0.12278(1.51E-02) | 0.15928(3.29E-04)+ | 0.15650(2.17E-03)+ | 0.05099(2.30E-02)— | 0.13357(1.81E-02)
10 | 0.11065(1.67E-02)- | 0.13961(3.48E-03)+ | 0.13987(1.32E-03)+ | 0.01587(1.82E-02)— | 0.12022(1.75E-02)
4 [ 0.14205(1.39E-03)— | 0.12704(3.33E-03)_ | 0.13552(4.53E-03)_ | 0.12453(4.03E-03)_ | 0.15062(2.03E-04)
DTLZ5 6 | 0.09711(3.38E-03) | 0.09524(6.93E-03)— | 0.01462(1.35E-02)— | 0.03780(1.57E-02)— | 0.11075(3.26E-03)
8 | 0.08108(4.44E-03) | 0.06662(1.58E-02) | 0.00447(1.50E-02)— | 0.01085(1.25E-02)_ | 0.08840(2.16E-02)
10 | 0.08158(5.91E-03)— | 0.06660(1.21E-02)— | 0.00410(1.13E-02)~ | 0.00608(1.10E-02)_ | 0.09046(1.49E-02)
4 [ 0.13295(9.98E-03)— | 0.00000(0.00E+00)— | 0.03224(1.89E-02)- | 0.02239(5.91E-03)_ | 0.15038(3.54E-04)
DTLZ6 6_| 0.00810(3.62E-03) | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.11306(1.07E-03)
8 | 0.00004(3.98E-05) | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.09805(1.37E-03)
10 | 0.00001(2.75E-05)— | 0.00000(0.00E-+00)— | 0.00000(0.00E+00)— | 0.00000(0.00E+00)— | 0.09249(9.47E-04)
Best/All 0/24 6/24 3724 0/24 1524
Better/WorselSimila 0/24/0 8/15/1 771710 0/22/2 —

other algorithms are significantly better than, worse than, and
similar to the ones obtained by NMPSO using this statistical
test, respectively.

D. Comparisons of NMPSO with Four Current MOPSOs
1) Comparison Results on DTLZ1-DTLZ6

Table II provides the HV comparison results of NMPSO
with respect to four current MOPSOs (SMPSO, dMOPSO,
D*MOPSO and MMOPSO) on DTLZ1-DTLZ6 with 4 to 10
objectives. As observed from Table II, NMPSO obtained the
best results on 19 out of 24 comparisons, which validated the
superior performance of NMPSO. Only D?°MOPSO performed
best on 5 comparisons, while SMPSO, dMOPSO, and
MMOPSO were not best on any DTLZ test problem. These
results are summarized in the second last row of Table II.

It was also found that SMPSO, D*MOPSO and MMOPSO
all performed significantly worse on DTLZ1-DTLZ4 regarding
HV, especially when using a high number of objectives (i.e., 10
objectives). This is mainly because they all use Pareto-ranking
and crowding distance to update the external archive, leading
them to favor the solutions that are less crowded but poorly
converged. The pure decomposition approach adopted in
dMOPSO can help to mitigate the above problem, but it cannot
provide sufficient selection pressure towards the true PFs.
NMPSO performed much better on these problems as the BFE
method strongly prefers the solutions that are well converged
and less crowded. For DTLZ5-DTLZ6 with degenerate PFs,
only MMOPSO performed significantly worse on DTLZ6 with
different numbers of objectives, while other MOPSOs per-
formed competitively on these two problems. To make a
one-to-one comparison, NMPSO performed better than
SMPSO, dMOPSO, D*MOPSO, and MMOPSO on 20, 20, 18,
and 21 out of 24 comparisons, but it was only respectively

worse than SMPSO, dMOPSO, D*MOPSO, and MMOPSO on
3,4, 5, and 3 comparisons. These results were summarized in
the last row of Table II, where “Better/ Worse/Similar” indicates
the number of test problems, in which the performance of the
compared algorithm was better than, worse than or similar to
that of NMPSO. Thus, when considering DTLZ1-DTLZ6 with
4 to 10 objectives, NMPSO showed a superior performance
over the four current MOPSOs regarding HV.

In Table A.II%, the comparative results of NMPSO and four
current MOPSOs are listed for DTLZ1-DTLZ6 with 4 to 10
objectives using IGD. Similar to the conclusions that are ob-
served from the HV comparison results, NMPSO also per-
formed best on most of 24 comparisons and significantly out-
performed other compared MOPSOs on DTLZI1-DTLZA4.
Based on the summary on the second last row and the last row
of Table A.II, it was further confirmed using IGD that NMPSO
performed best on most of the DTLZ test problems when
compared to four current MOPSOs.

2) Comparison of Results on WFGI1-WFG9

Table III provides the comparison of results of NMPSO and
four current MOPSOs on all the WFG test problems with 4 to
10 objectives, using HV. From the second last row of Table I1I,
it was found that NMPSO performed best on 30 out of 36
comparisons and this was very evident to justify the superior
performance of NMPSO over other compared MOPSOs on the
WFG test problems. Only D2MOPSO and MMOPSO gave the
best results on 3 out of 36 comparisons, while SMPSO and
dMOPSO could not perform best on any WFG problem.

Regarding WFGI1, which has a convex and mixed PF,
NMPSO showed a better performance than the other compared
MOPSOs. For WFG2, which has a disconnected and mixed PF,

2 Due to space limitations, it is provided in the supplementary file.



TABLE V
COMPARISON OF RESULTS OF NMPSO AND FOUR COMPETITIVE MOEAS ON WFG1-WFG9 USING HV

Problem Obj SPEA2/SDE MOEA/DD NSGA-III SRA NMPSO
4 | 0.65143(2.74E-02)+ | 0.51368(2.79E-02)~ | 0.43286(1.78E-02)— | 0.50900(3.93E-02)~ | 0.52338(4.68E-02)
WEGI 6 | 0.60434(1.77E-02)+ | 0.42223(3.17E-02)+ | 0.31471(1.28E-02)~ | 0.55975(2.32E-02)+ | 0.31310(2.87E-02)
8 ] 0.55220(1.86E-02)+ | 0.46695(2.83E-02)+ | 0.26840(3.31E-03)— | 0.55713(1.88E-02)+ | 0.30105(2.48E-02)
10 | 0.65586(1.71E-02)+ | 0.21728(1.83E-02)— | 0.25086(9.36E-03)— | 0.66445(3.02E-02)+ | 0.35450(2.85E-02)
4 10.94238(6.35E-02)+ | 0.93301(5.65E-02)+ | 0.94581(6.42E-02)+ | 0.92642(4.14E-02)+ | 0.90990(2.09E-02)
WFG2 6 | 0.95979(5.23E-02)+ | 0.93687(2.84E-02)— | 0.95272(5.13E-02)+ | 0.93878(4.18E-02)~ | 0.95129(1.36E-02)
8 10.97331(3.17E-02)+ | 0.91781(2.91E-02)— | 0.96453(3.21E-02)+ | 0.95742(7.38E-03)~ | 0.95685(1.10E-02)
10 | 0.97351(3.15E-02)+ | 0.89845(2.05E-02)— | 0.94013(6.91E-02)~ | 0.94468(4.10E-02)— | 0.97190(7.46E-03)
4 | 0.59096(1.38E-02)— | 0.58279(9.17E-03)— | 0.61316(7.48E-03)— | 0.57766(1.20E-02)— | 0.64159(7.46E-03)
WEG3 6 | 0.55960(1.99E-02)— | 0.53002(1.34E-02)— | 0.59198(8.80E-03)— | 0.55007(1.52E-02)— | 0.62875(1.93E-02)
8 | 0.55431(1.80E-02)— | 0.48280(1.06E-02)— | 0.62912(5.21E-03)+ | 0.54755(1.56E-02)— | 0.59836(2.04E-02)
10 | 0.54560(2.09E-02)— | 0.44924(1.00E-02)— | 0.62146(1.35E-02)+ | 0.51375(1.51E-02)— | 0.59713(3.15E-02)
4 | 0.66718(3.60E-03)— | 0.67761(2.67E-03)— | 0.67839(3.87E-03)— | 0.59355(7.34E-03)— | 0.68391(4.57E-03)
WEG4 6 | 0.75318(6.93E-03)— | 0.78002(6.26E-03)— | 0.77915(6.23E-03)— | 0.68045(1.25E-02)— | 0.80582(5.81E-03)
8 | 0.77802(8.74E-03)- | 0.75855(1.90E-02)— | 0.80935(7.16E-03)- | 0.69552(1.13E-02)- | 0.84608(6.52E-03)
10 | 0.77130(6.32E-03)— | 0.58753(3.00E-02)— | 0.77864(1.87E-02)— | 0.66495(1.65E-02)— | 0.86091(1.12E-02)
4 10.63077(3.29E-03)— | 0.63450(1.96E-03)— | 0.64966(2.80E-03)~ | 0.55280(7.34E-03)- | 0.65076(3.18E-03)
WEG5 6 | 0.72647(5.31E-03)- | 0.74107(2.78E-03)— | 0.76937(3.52E-03)— | 0.62870(1.31E-02)— | 0.78738(3.95E-03)
8 | 0.74001(8.62E-03)— | 0.72923(1.17E-02)— | 0.80113(4.70E-03)— | 0.63074(1.84E-02)- | 0.82642(2.12E-02)
10 | 0.73887(9.34E-03)— | 0.57475(2.74E-02)— | 0.79803(1.06E-02)- | 0.64139(2.58E-02)— | 0.81452(7.04E-02)
4 | 0.64677(5.12E-03)— | 0.64310(6.40E-03)— | 0.65311(6.37E-03)— | 0.55670(1.46E-02)— | 0.67962(1.93E-02)
WEG6 6 | 0.74256(5.87E-03)— | 0.76130(9.75E-03)— | 0.77516(6.62E-03)~ | 0.61882(1.20E-02)- | 0.77341(1.33E-03)
8 | 0.75288(8.22E-03)— | 0.77939(1.26E-02)— | 0.81660(1.20E-02)— | 0.62233(1.79E-02)— | 0.83212(1.45E-03)
10 | 0.75606(1.52E-02)— | 0.65932(2.11E-02)— | 0.82710(1.00E-02)- | 0.60421(2.66E-02)— | 0.84099(3.52E-03)
4 | 0.68503(3.37E-03)— | 0.68890(1.06E-03)— | 0.69819(1.66E-03)— | 0.60671(9.88E-03)— | 0.70792(1.84E-03)
WFG7 6 | 0.79354(4.80E-03)— | 0.81015(4.11E-03)— | 0.82118(6.88E-03)— | 0.69191(8.73E-03)— | 0.85530(2.93E-03)
8 | 0.82817(6.03E-03)— | 0.82636(9.19E-03)— | 0.85661(8.27E-03)— | 0.71407(1.74E-02)— | 0.90840(3.18E-03)
10 | 0.82361(9.47E-03)— | 0.68170(2.59E-02)— | 0.84829(9.74E-03)- | 0.67854(2.61E-02)— | 0.91978(3.73E-02)
4 | 0.59254(2.80E-03)— | 0.58559(2.85E-03)— | 0.59304(3.77E-03)— | 0.49760(8.89E-03)— | 0.60192(2.72E-03)
WFGS 6 | 0.68863(4.54E-03)— | 0.67691(1.39E-02)— | 0.67374(7.31E-03)— | 0.54864(1.06E-02)— | 0.71651(6.05E-03)
8 | 0.72513(6.52E-03)— | 0.69091(2.59E-02)— | 0.68192(1.51E-02)~ | 0.55550(1.49E-02)— | 0.77505(1.35E-02)
10 | 0.73895(9.09E-03)— | 0.57145(2.45E-02)— | 0.70996(1.82E-02)— | 0.53447(1.96E-02)— | 0.82269(2.01E-02)
4 ] 0.61530(2.59E-02)- | 0.59102(2.04E-02)- | 0.59086(1.42E-02)- | 0.57022(1.16E-02)— | 0.66352(5.74E-03)
WEGY 6 | 0.71834(2.22E-02)— | 0.66347(1.76E-02)— | 0.69495(1.32E-02)— | 0.64949(1.16E-02)— | 0.74228(3.09E-02)
8 | 0.74802(9.44E-03)— | 0.65233(2.45E-02)— | 0.73441(1.73E-02)— | 0.66342(1.71E-02)— | 0.76002(1.01E-02)
10 | 0.73542(1.78E-02)— | 0.47674(4.16E-02)— | 0.69967(2.07E-02)— | 0.64793(2.15E-02)— | 0.81563(2.04E-02)
Best/All 5/36 0/36 4/36 2/36 25/36
Better/Worsel/Simila 8/28/0 3/32/1 5/27/4 4/29/3 —
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NMPSO only obtained the 3rd rank, as it was outperformed by
D*MOPSO and MMOPSO, while it outperformed SMPSO and
dMOPSO. Concerning WFG3 with linear and uni-modal PF,
NMPSO was best on WFG3 with 4 and 6 objectives, while
MMOPSO performed best on WFG3 with 8 and 10 objectives.
For WFG4-WFG9 with concave PFs, NMPSO showed a su-
perior performance over the other compared MOPSOs. As
observed from the one-to-one comparisons in the last row of
Table III, SMPSO and dMOPSO were unable to beat NMPSO
on any of the WFG test problems; only D*MOPSO and
MMOPSO gave a better performance than NMPSO in 4 out of
36 comparisons. For the rest of the comparisons on the WFG
test problems with different numbers of objectives, NMPSO
performed best or at least similarly regarding HV. Due to the
more difficult features and different scaled values in the true
PFs of the WFG test problems, the superior performance of
NMPSO on these problems further confirmed its advantages
over other MOPSOs and the effectiveness of the three proposed
operators used in NMPSO.

E. Comparisons of NMPSO with Four Competitive MOEAs
In the above subsections, it was experimentally validated that
NMPSO performed better than four current MOPSOs on most
of the DTLZ and WFG test problems. However, these com-
pared MOPSOs were not specifically designed to tackle

MaOPs, and it may be not so challenging for NMPSO to out-
perform them. To further justify the advantages of NMPSO, it
was compared to four competitive MOEAs, i.e., SPEA2-SDE
[17], MOEA/DD [19], NSGA-III [18], and SRA [34].

1) Comparison Results on DTLZ1-DTLZ6

Table IV lists the comparison of results of NMPSO with four
competitive MOEAs on DTLZ1-DTLZ6 with 4 to 10 objec-
tives, using HV. As observed from the second last row of Table
IV, NMPSO obtained the best results on 15 out of 24 compar-
isons, while MOEA/DD and NSGA-III respectively performed
best on 6 and 3 comparisons. SPEA2-SDE and SRA could not
perform best on any of the DTLZ test problems. Although these
compared MOEAs are all redesigned to tackle MaOPs,
NMPSO still achieved the best performance on more than half
of 24 comparisons. These results further justified the ad-
vantages of NMPSO.

For DTLZ1 and DTLZ4, NMPSO performed better than
SPEA2/SDE and SRA, but worse than MOEA/DD and
NSGA-III. Regarding DTLZ2, NMPSO had a similar perfor-
mance as MOEA/DD, and it was better than the other algo-
rithms. For the rest of the DTLZ test problems, NMPSO
showed a significantly better performance. Particularly, for
DTLZ5 and DTLZ6 with degenerate PFs, MOEA/DD,
NSGA-III, and SRA all performed poorly, as they used refer-



ence points to guide the evolutionary search and these reference
points cannot uniformly match the degenerate PFs of DTLZS
and DTLZ6. SPEA2/SDE had a better performance on DTLZ5
and DTLZ6, due to the use of the SDE method, but it was still
worse than NMPSO, as our proposed BFE approach can pro-
vide a stronger selection pressure than the SDE method. As
indicated by the one-to-one comparisons in the last row of
Table IV, NMPSO respectively performed better than
SPEA2/SDE, MOEA/DD, NSGA-III, and SRA on 24, 15, 17,
and 22 out of 24 comparisons; whereas, NMPSO was only
beaten by SPEA2/SDE, MOEA/DD, NSGA-III, and SRA on 0,
8, 7, and 0 comparisons, respectively. Therefore, when com-
pared to these four MOEAs, NMPSO still showed a superior
performance on most of the DTLZ test problems, regarding
HV.

In Table A.III%, the comparison of results of NMPSO and
four competitive MOEAs are listed for DTLZ1-DTLZ6 using
IGD. The advantages of NMPSO were not so evident as ob-
served from the HV comparison of results. SPEA2/SDE and
MOEA/DD respectively gave the best performance on 5 and 8
out of 24 comparisons, while NMPSO only performed best on 9
out of 24 comparisons. From the one-to-one comparisons in the
last row of Table A.III, NMPSO still performed better than the
compared MOEAs as it performed better on most of the com-
parisons using DTLZ1-DTLZ6 with 4 to 10 objectives.

2) Comparison of Results on WFGI-WFG9

Table V provided the comparison of results of NMPSO and
four competitive MOEAs on WFG1-WFG9 with 4 to 10 ob-
jectives using HV. As SPEA2/SDE, MOEA/DD, NSGA-III
and SRA are specifically re-designed to solve MaOPs, they
showed a better performance than the compared MOPSOs in
Table III. However, NMPSO still outperformed these compet-
itive MOEAs on most comparisons using the WFG test prob-
lems. As observed from the last second row of Table V,
NMPSO obtained the best results on 25 out of 36 comparisons,
while SPEA2/SDE, NSGA-III, and SRA respectively per-
formed best on 5, 4, and 2 comparisons. MOEA/DD was not
able to perform best on any of the WFG test problems. Since
these compared MOEAs were validated to perform well on
MaOPs, the superior performance of NMPSO over these algo-
rithms further confirmed the advantages of NMPSO.

For WFG1, SPEA2/SDE and SRA seemed more advanta-
geous; NMPSO obtained the 3rd rank on this problem as it
performed better than MOEA/DD and NSGA-III. Regarding
WFG2, SPEA2/SDE and NSGA-III showed the best perfor-
mance, while NMPSO still obtained the 3rd rank on DTLZ2, as
it outperformed MOEA/DD and SRA. For the rest of the
comparisons on WFG3-WFG9, it was evident that NMPSO
performed best on most of the comparisons. Moreover, from
the last row of Table V, NMPSO was found to outperform
SPEA2/SDE, MOEA/DD, NSGA-III and SRA on 28, 32, 27,
and 29 out of 36 comparisons, respectively; whereas, NMPSO
was only beaten by SPEA2/SDE, MOEA/DD, NSGA-III and
SRA on 8, 3, 5, and 4 comparisons, respectively. Therefore, it is
reasonable to conclude that NMPSO performed better than

3 Due to space limitations, it is provided in the supplementary file.
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SPEA2/SDE, MOEA/DD, NSGA-III and SRA, on most of the
HV comparisons for the WFG problems. This superiority of
NMPSO was mainly produced by the proposed BFE method,
which strengthens the selection pressure towards the true PFs,
by properly balancing the convergence and diversity distances.

To further study the evolutionary behaviors of all compared
algorithms, Fig. A.13 plotted their evolutionary curves using
their average HV values on all the 10-objective WFG test
problems. The average HV results are recorded periodically at
each 1000-FEs in all the 10° FEs. The subfigures in Fig. A.1
confirm the advantages of NMPSO in providing a strong se-
lection pressure towards the true PFs for 10-objective
WFG4-WFG9 problems. Only for 10-objective WFG1 problem,
NMPSO was shown to perform significantly worse than
SPEA2/SDE and SRA.

F. A Further Discussion and Analysis on the Performance

Based on the above comparison of results on the DTLZ and
WFG test problems, it is interesting to find out that, the de-
composition and reference point based MOEAs, such as
MOEA/DD and NSGA-III, performed competitively on
DTLZ1-DTLZA4. This observation is consistent with that ob-
served from [18] and [19]. It is mainly because a set of dis-
tributed weight vectors or reference points used in decomposi-
tion or reference points based MOEAs can properly match the
true PFs of DTLZ1-DTLZ4 due to the regularity of their PFs
(being either a hyperplane or a hypersphere), which can cor-
rectly guide the search and diversify the obtained solutions
evenly over the true PFs. Moreover, these MOEAs also adopt
specific mechanisms to keep a good balance between diversity
and convergence. For example, the PBI approach used in
MOEA/DD simultaneously measures diversity and conver-
gence of a solution. The non-dominated sorting method and a
well-designed niching procedure in NSGA-III work collabora-
tively to strengthen the selection pressure. However, regarding
the other test problems, such as DTLZ5, DTLZ6 and WFG,
their results are not so promising since the predefined weight
vectors or reference points cannot properly match their PFs.
Therefore, the performance of decomposition or reference point
based MOEAs strongly depends on the shapes of PFs as
pointed out in [61]. It is worth emphasizing that our proposed
NMPSO is not based on decomposition nor on reference points,
but it is mainly guided by the proposed BFE method to
strengthen the selection pressure towards the true PFs. Thus,
the performance of NMPSO is not significantly affected by the
shapes of the PF’s, and it also performs relatively well on the
DTLZ and WFG test problems.

To further support the above discussion, a recent refer-
ence-based MOEA (RVEA [36]) was also included to compare
with NMPSO. Its parameters settings follow those indicated in
[36], also with the same population size and maximum function
evaluations as introduced in Section IV.C. The source code of
RVEA is provided by the authors and the experimental results
of RVEA and NMPSO are listed in Table A.IV3. It is noted that,
due to the larger number of decision variables used in the WFG
test problems, the results of RVEA on these problems are
different from those presented in [36]. From Table A.IV, it is
clear that RVEA also performed competitively with NMPSO
on DTLZ1-DTLZA4, as their true PFs can be properly matched



TABLE VI
COMPARISON OF RESULTS OF NMPSO AND THREE NMPSO VARIANTS ON
DTLZ1-DTLZ6 AND WFG1-WFG9 USING HV

Problem Obj [ NMPSO-I | NMPSO-II | NMPSO-III | NMPSO
4 0.90135— | 0.93404~ | 0.93074 — [0.93395
DTLZ1 1.13E-04 1.48E-03 1.28E-03 2.46E-03
10 | 0.99739~ | 0.98182— | 0.99763+ |0.99730
5.99E-05 9.74E-03 3.75E-04 5.67E-04
4 0.60044— | 0.69318— | 0.71435— |0.71559
DTLZ2 4.08E-03 4.02E-03 1.96E-03 1.10E-03
10 | 0.87332— | 0.90822— | 0.96051- |0.96595
3.69E-03 7.28E-03 5.65E-03 2.13E-03
4 0.60013— | 0.69169— | 0.71444— |0.71553
DTLZ3 5.38E-03 4.97E-02 1.45E-03 1.31E-03
10 | 0.86390— | 0.75762— | 0.96183~ |0.96347
1.08E-02 6.28E-02 3.69E-03 2.05E-03
4 0.15543— | 0.16431— | 0.22366— |0.22544
DTLZ4 9.58E-03 2.83E-02 4.36E-03 3.94E-03
10 | 0.10507—| 0.09094- | 0.09738- |0.12022
1.54E-02 8.89E-05 2.93E-02 1.75E-02
4 0.09426— | 0.14951- | 0.14825- [0.15062
DTLZS 2.94E-03 5.85E-04 3.96E-03 2.03E-04
10 | 0.09091+ | 0.09095+ | 0.04915- |0.09046
3.79E-10 2.31E-04 3.32E-02 1.49E-02
4 0.09326— | 0.14546~ | 0.15054+ |[0.15038
DTLZ6 1.76E-03 2.75E-02 2.59E-04 3.54E-04
10 | 0.09091—- | 0.09091— | 0.09334+ |0.09249
5.51E-06 2.09E-06 8.75E-04 9.47E-04
4 0.67899+ | 0.31155— | 0.51099~ |[0.52338
FGI 3.16E-02 4.02E-03 3.26E-02 4.68E-02
w 10 | 0.57343+ | 0.22949— | 0.35623~ |0.35450
2.51E-02 233E-03 2.00E-02 2.85E-02
4 0.96124+ | 0.85073— | 0.91376~ |0.90990
FG2 7.25E-03 1.33E-02 1.14E-02 2.09E-02
W 10 | 0.98563+ | 0.88240- | 0.97773+ |0.97190
3.91E-03 1.90E-02 7.52E-03 7.46E-03
4 0.65397+ | 0.60975— | 0.65005+ |0.64159
WFG3 6.54E-03 1.02E-02 6.12E-03 7.46E-03
10 | 0.68056+ | 0.60291~ | 0.57778~ |0.59713
1.63E-02 2.75E-02 4.42B-02 3.15E-02
4 0.42772— | 0.64645— | 0.68852+ |0.68391
PG4 4.04E-02 4.72E-03 4.78E-03 4.57E-03
W 10 | 0.68630— | 0.76935- | 0.85612— |0.86091
3.81E-02 2.62E-02 1.25E-02 1.12E-02
4 0.47973— | 0.60830— | 0.65245~ |0.65076
WEGS 2.26E-02 9.28E-03 4.00E-03 3.18E-03
10 | 0.58443— | 0.61798— | 0.82647~ |0.81452
2.42E-02 2.87E-02 3.94E-02 7.04E-02
4 0.49185— | 0.63589— | 0.66352— |[0.67962
WFG6 2.61E-02 1.01E-02 2.83E-02 1.93E-02
10 | 0.70638— | 0.84583+ | 0.84075~ |0.84099
2.62E-02 3.71E-03 3.46E-03 3.52E-03
4 0.48193— | 0.56678— | 0.70707~ |0.70792
WFGT 3.22E-02 8.00E-03 1.46E-03 1.84E-03
10 | 0.75482— | 0.63185— | 0.91600~ |0.91978
3.80E-02 4.16E-02 3.17E-02 3.73E-02
4 0.43538— | 0.48383— | 0.60300~ |[0.60192
WFGS 2.87E-02 1.13E-02 2.51E-03 2.72E-03
10 | 0.67815- | 0.60757— | 0.81522~ |0.82269
3.26E-02 3.11E-02 2.73E-02 2.01E-02
4 0.39874— | 0.60874— | 0.65780— |0.66352
FGO 3.15E-02 1.45E-02 5.53E-03 5.74E-03
W 10 | 0.49258—| 0.75873— | 0.78337~ |0.81563
2.51E-02 2.42E-02 2.64E-02 2.04E-02

Best/All 6/30 3/30 7/30 14/30
Better/Worse/Similar 7/22/1 2/25/3 6/11/13 —

by the reference points in RVEA. However, on the WFG test
problems with true PFs that cannot be properly matched by the
reference points, RVEA was outperformed by NMPSO on most
comparisons.

G. Effectiveness of the Proposed Operators

The above comparisons have validated the superior perfor-
mance of NMPSO over four current MOPSOs and four com-
petitive MOEAs, on the DTLZ and WFG test problems with 4
to 10 objectives. As introduced in Section I, three novel oper-
ators, i.e., the BFE method, evolutionary search on the external
archive, and a novel velocity update equation, were employed
in NMPSO to enhance its performance. To study their respec-
tive contributions, NMPSO was compared to three variants of
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NMPSO, named NMPSO-I, NMPSO-II and NMPSO-III. In
NMPSO-I, the proposed BFE method was replaced by the SDE
method proposed in [17]. Regarding NMPSO-II, evolutionary
search on the external archive was removed from NMPSO,
only performing the pure PSO-based search. For NMPSO-III,
the proposed velocity update equation in (10) was replaced by
the original one in [46]. In order to allow a fair comparison, all
the parameters settings were the same in NMPSO and its three
variants (NMPSO-I, NMPSO-II and NMPSO-III).

Table VI shows the comparison of results of NMPSO and
three NMPSO variants on DTLZ1-DTLZ6 and WFG1-WFG9
with 4 and 10 objectives, using HV. In this table, the mean
results are listed above the standard deviations obtained in 30
runs. Based on the second last row of Table VI, NMPSO per-
formed best on 14 out of 30 comparisons, while NMPSO-I,
NMPSO-II, and NMPSO-III respectively obtained the best
performance on 6, 3, and 7 comparisons. These experimental
results validate that all the three operators contribute to en-
hancing the performance of NMPSO. To study their respective
contributions, each variant was separately compared to
NMPSO below.

Regarding the comparison of NMPSO with NMPSO-I,
NMPSO performed better on 22 comparisons, similarly on 1
comparison, and worse on 7 comparisons as revealed in the last
row of Table VI. The effectiveness of the BFE method was
justified experimentally, as it helps to enhance the performance
of NMPSO on most of the 30 comparisons performed. The BFE
method was very effective in improving the performance of
NMPSO on DTLZ1-DTLZ6 and WFG4-WFG9 with 4 and 10
objectives. These experimental results validated that the pro-
posed BFE method can provide a stronger selection pressure
than the SDE method, when solving most of the test problems
adopted. Also, the BFE method was the main contribution to
the enhancement of NMPSO, as NMPSO-II and NMPSO-III
with the BFE method all showed a better performance than
NMPSO-I on most of the comparisons shown in Table VI.

When compared to NMPSO-II, NMPSO was better on 25
comparisons, similar on 3 comparisons, and worse on 2 com-
parisons. These results corroborated the advantages of per-
forming evolutionary search on the external archive. In other
words, the absence of evolutionary search on the external
archive will lower the performance of NMPSO on most of the
test problems adopted, which justifies the statement that the
evolutionary search is able to cooperate with the PSO-based
search and to overcome the inefficiency of PSO-based search
on some MaOPs. By further comparing NMPSO-II to NMP-
SO-I and NMPSO-III, it was also found that this operator was
the second main contribution to the enhanced performance of
NMPSO.

Finally, the effectiveness of our novel velocity update equa-
tion was also verified, as NMPSO respectively performed
better than, worse than, and similarly to NMPSO-III on 11, 6,
and 13 out of 30 comparisons. This modified velocity update
equation can slightly enhance the performance of NMPSO by
introducing one evolutionary direction pointing to the glob-
al-best particles. Since the global-best particles are randomly
selected from the solutions with better BFE values in the ex-



ternal archive, the embedded evolutionary direction provides
more disturbances and guides the particles to search towards
the global-best particles, so as to enhance the convergence
speed of NMPSO.

Therefore, based on the above experimental results, it is
reasonable to conclude that all three novel operators contribute
to enhancing the overall performance of NMPSO in solving the
DTLZ and WFG test problems with 4 and 10 objectives.

H. More Discussions about the BFE Method

Due to page limitations, further discussions were provided in
the supplementary file of this paper, in order to evaluate the
effectiveness of the BFE method in other state-of-the-art algo-
rithms and to analyze the impact of & and S in the BFE
method.

V. CONCLUSIONS

In this paper, NMPSO, a novel MOPSO algorithm with a
balanceable fitness estimation (BFE) method was designed to
tackle MaOPs. This BFE method combines the convergence
and diversity distances, which helps to relieve the curse of
dimensionality in MaOPs and guides all the particles to ap-
proach the true PFs of MaOPs. Two more operators were also
used in NMPSO. One is the evolutionary search on the external
archive, which can provide another search pattern and is aimed
to overcome the ineffectiveness of PSO-based search on certain
types of MaOPs; the other is a novel velocity update equation
used to provide another search direction for PSO-based search
and to induce more diversity. These proposed novel operators
cooperate to enhance the overall performance of NMPSO in
tackling MaOPs. The DTLZ and WFG test problems with 4 to
10 objectives were adopted in our experimental comparisons to
validate the performance of NMPSO. When compared to four
current MOPSOs (i.e., dMOPSO [45], SMPSO [46],
D*MOPSO [47], and MMOPSO [42]), and four competitive
MOEAs (i.e., SPEA2-SDE [17], NSGA-III [18], MOEA/DD
[19], and SRA [34]), the experimental results clearly showed
the superior performance of NMPSO in obtaining a
well-approximated and well-distributed solution set for MaOPs.
The effectiveness of our three novel operators (the BFE method,
evolutionary search on the external archive and a novel velocity
update equation) was also experimentally verified in NMPSO.
More discussions about the BFE method were provided. The
BFE method was embedded into other multi-objective algo-
rithms (i.e., NSGA-II and NNIA), which revealed that the BFE
method was more effective on MaOPs with a higher number of
objectives and more suitable to cooperate with the PSO-based
search. The parameter sensitivity analysis of BFE was also
conducted by comparing our dynamic settings with different
pre-defined fixed settings of ¢ and .

This behavior of the BFE method will be further studied in
our future work. Its performance on NMPSO will be further
studied to tackle MaOPs with more than 10 objectives, and the
BFE method will be investigated by embedding it into other
kinds of MOEAs. Moreover, the application of NMPSO to
some real-world problems is also considered as part of our
future work.
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