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Abstract: 

The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has shown a superior 

performance in tackling some complicated multiobjective optimization problems (MOPs). However, 

the use of different evolutionary operators and their various parameter settings has a significant impact 

on its performance. To enhance its algorithmic robustness and effectiveness, this paper proposes an 

adaptive composite operator selection (ACOS) strategy for MOEA/D. Four evolutionary operator pools 

are used in ACOS and their advantages are combined to provide stronger exploratory capabilities. 

Regarding each selected operator pool, an online self-adaptation for the parameters tuning is further 

employed for performance enhancement. When compared with other adaptive and improved strategies 

designed for MOEA/D, our proposed algorithm is found to be effective and competitive in solving 

several complicated MOPs. 

Keywords: Adaptive composite operator selection; adaptive parameters tuning; differential evolution; 

decomposition 

1. Introduction 

Multiobjective optimization problems (MOPs) widely exist in many scientific and engineering 

applications, which are aimed at optimizing several (often conflicting) objectives simultaneously [10, 

13, 40]. No single solution can find the optimum for all the objectives simultaneously due to the fact 

that the enhancement of one objective may result in the deterioration of another one. Therefore, the 

target of MOPs is to find a set of equally-optimal solutions, called Pareto-optimal set (PS), which can 

be provided to the decision maker as the alternative solutions for various application cases. 

Nature-inspired heuristic algorithms, such as evolutionary algorithms (EAs) [11, 48, 59], artificial 

immune algorithms [5, 33-34, 43] and particle swarm optimization algorithms [8, 51], have shown the 

promising performance in tackling MOPs. Due to their population-based nature, they are suitable for 

solving MOPs because, if properly manipulated, they can generate multiple Pareto-optimal solutions in 

a single run. Particularly, during the last decades, numbers of multiobjective evolutionary algorithms 

(MOEAs) have been proposed [2, 6, 14, 26, 35, 58]. Most MOEAs are designed based on the use of the 

Pareto dominance relationship or a decomposition approach [16]. As the Pareto dominance relationship 

is very simple and straightforward to apply, Pareto-based MOEAs were the most popular in the 

specialized literature during many years [50]. The most popular MOEAs, e.g., NSGA-II [11] and 

SPEA2 [60], were all designed based on the Pareto dominance relationship. Until now, there are still 
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many improved Pareto-based MOEAs reported in the literature [12, 21, 27, 31-32, 46]. However, as 

pointed out in [36, 53], Pareto-based MOEAs have some difficulties to approach the true 

Pareto-optimal front (PF) when tackling some complicated MOPs. Thus, a novel MOEA based on 

decomposition (MOEA/D) was proposed in [36, 53]. It decomposes MOPs into a set of single-objective 

optimization subproblems (SOPs) and then optimizes all the SOPs cooperatively. The objective of each 

subproblem is a (linear or nonlinear) weighted aggregation of all the objectives in a MOP. 

Neighborhood relationships among these subproblems are defined based on the Euclidean distances of 

their aggregation weight vectors and they can be exploited to enhance the performance of MOEA/D.  

Due to the superior performance provided by MOEA/D in solving some complicated MOPs, many 

enhanced strategies such as dynamical resource allocation [39, 55], enhanced evolutionary operators 

[36-37, 45], adaptive control methods [29, 47, 57], and matching strategies [28, 30], have been 

designed based on the framework of MOEA/D. On the dynamical resource allocation, MOEA/D-DRA 

[55] was proposed based on the fact that different subproblems may have different computational 

difficulties. This approach designs a dynamic computational resource allocation strategy to assign more 

computational resources to the non-convergent subproblems. Another dynamic resource allocation 

scheme for MOEA/D was investigated in [39] to reward the better crossover operator. In this approach, 

the better one between the simplex crossover operator and the center of mass crossover operator can 

gain more computational resources. About the enhanced evolutionary operators, differential evolution 

(DE) was used in [36, 45] to replace simulated binary crossover for effectively producing the new trial 

vectors, while an opposition-based learning strategy was employed in [37] to accelerate the 

convergence speed during the evolutionary process. Regarding the adaptive control methods designed 

in MOEA/D variants, a new version of MOEA/D with an ensemble of different neighborhood sizes 

(ENS-MOEA/D) was proposed in [57] to decrease the impact of neighborhood size on the performance 

of MOEA/D. This approach dynamically determines the selection of different neighborhood sizes using 

their previous search experience, and consequently, this online self-adaptation strategy significantly 

improves the performance of MOEA/D. In [47], an adaptive DE for MOPs (ADEMO/D) was reported. 

This approach adopts probability matching and adaptive pursuit as two adaptive strategy selection 

principles. A DE mutation strategy is picked up from a candidate’s DE pool according to a probability 

that depends on the successful rate to produce better solutions. To adaptively select the preferred 

recombination operator, a novel bandit-based adaptive operator selection was presented for MOEA/D 

(MOEA/D-FRRMAB) in [29]. In this approach, the application rates of different DE operators are 

decided dynamically by their recent performance. A sliding window is used to track the dynamics of 

the search process by recording the recent fitness improvement rates of different operators, and a decay 

mechanism is employed to raise the selection probability of the best operator. At last, considering the 

matching strategies designed for solutions and subproblems, a stable matching model has been 

proposed for MOEA/D (MOEA/D-STM) in [28]. This approach assigns each promising solution to a 

subproblem according to the respective preferences. It maintains the good convergence speed and 

population diversity, and outperforms other enhanced MOEA/D algorithms, such as ENS-MOEA/D 

and MOEA/D-FRRMAB. Similarly, an improved inter-relationship model [30] was built to match the 

solutions and subproblems based on their mutual-preferences. Different from the stable matching 
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model that aims to produce a trade-off between convergence and population diversity, it is essentially a 

diversity first and convergence second strategy, which enables superior solutions to explore the entire 

PF.  

Moreover, some weight generation strategies [17, 23, 41] were also designed to achieve a better 

approximation for complex Pareto-optimal fronts (PFs). Unlike traditional MOEA/D algorithms that 

decompose MOPs into a set of subproblems, a new MOEA/D algorithm [4, 7] was proposed to 

decompose the objective space into different sub-objective spaces using numbers of distinct direction 

vectors. Each sub-objective space at least owns a solution in order to maintain properly the population 

diversity. This idea of decomposition using direction vectors was also studied in [22] to combine with a 

co-evolutionary algorithm, giving rise to the so-called DVCMOA. To extend MOEA/D for 

high-dimensional MOPs, a generalized decomposition approach was designed in [15], while a 

systematic sampling approach was presented in [1] to generate uniformly distributed reference points 

coupled with two independent distance measures and a simple preemptive distance comparison 

scheme. 

It is noted that most of the above MOEA/D variants adopt DE coupled with polynomial mutation 

as their evolutionary operators. However, several research studies on DE operators have revealed that 

the use of hybridized DE operators provides an enhanced optimization performance and algorithmic 

robustness for solving different types of SOPs, because the use of single DE operator may present 

several limitations in tackling some difficult problems characterized by certain complex features [20, 

49]. Since a decomposition approach transforms a MOP into a number of SOPs, it is possible that the 

competitive approaches designed for solving SOPs are also suitable for MOEA/D. Although an 

adaptive operator selection for MOEA/D was recently investigated in MOEA/D-FRRMAB to enhance 

its exploratory capability, four basic DE mutation operators (i.e., “DE/rand/1”, “DE/rand/2”, 

“DE/current-to-rand/2” and “DE/current-to-rand/1”) were selected in MOEA/D-FRRMAB to compose 

the operator pool. This combination of DE mutation strategies may not lead to optimal performance, as 

the composite DE operator pools studied in [49] seem to be more competitive. Working on the research 

direction suggested by MOEA/D-FRRMAB, this paper proposes an adaptive composite operator 

selection and parameter control strategy for MOEA/D (called MOEA/D-CDE). The core idea is to 

design an adaptive MOEA/D algorithm with superior performance. Four composite DE operator pools 

are adaptively employed (such operators were selected based on their previously reported performance), 

and their recent fitness improvement rates are stored using a sliding window. An adaptive control 

strategy is also designed to adjust the parameters in each composite DE pool. Our experimental results 

validate that MOEA/D-CDE is able to find a good approximated subset of PS when solving several 

complicated MOPs, e.g., the Unconstrained Functions (UF) adopted at the competition held at the 2009 

IEEE Congress on Evolutionary Computation (CEC’2009) [56] and the Walking Fish Group (WFG) 

problems [18]. When compared with other enhanced variants of MOEA/D, e.g., MOEA/D-DE [36], 

MOEA/D-DRA [55], ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and MOEA/D-STM [28], 

MOEA/D-CDE performs best on most of the UF and WFG test problems. The advantages of our 

proposed adaptive composite operator selection and parameter control strategy are also experimentally 

analyzed. 
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The rest of this paper is organized as follows. In Section 2, the related background of our work is 

presented, such as the mathematical description of MOPs, a brief introduction of a decomposition 

approach and MOEA/D-DRA. Section 3 gives the details of MOEA/D-CDE, including the adopted 

composite DE mutation strategies, the adaptive composite operator selection, and the adaptive 

parameter control strategy. The experimental results of MOEA/D-CDE and the corresponding analysis 

are provided in Section 4. At last, the conclusions and future work are summarized in Section 5. 

 

2. Related Background 

2.1 Multiobjective Optimization Problems 

Unconstrained multiobjective optimization problems (MOPs) can be stated as follows [40]. 

 1 2Min  ( ) ( ( ), ( ),..., ( ))T
m

x
F x f x f x f x




   
  (1) 

where   is the decision (variable) space, 1 2( , ,..., )nx x x x 
r

 is a candidate solution with n  

variables, : mF R  defines m  real-valued objective functions and mR  is called the objective 

space. In many real-world applications, no point in   can minimize all the objectives simultaneously. 

The best trade-offs among the objectives can be attained by using the definition of Pareto optimality 

[10, 13, 14]. 

Definition 1 (Pareto-dominance): A decision variable vector x
r

 is said to dominate another decision 

variable vector y
r

 (noted as x y
r r

f ) if and only if 
 ( {1,2,..., }: ( ) ( )) ( {1, 2,..., }: ( ) ( ))i i j ji m f x f y j m f x f y      

r r r r
 (2) 

Definition 2 (Pareto-optimal): A solution x
r

 is said to be Pareto-optimal if and only if 
 :y y x 

r r r
f  (3) 

Definition 3 (Pareto-optimal set): The set PS  includes all the Pareto-optimal solutions, as defined by 
 { | : }PS x y y x  

r r r r
f  (4) 

Definition 4 (Pareto-optimal front): The set PF  includes the values of all the objective functions 

corresponding to the Pareto-optimal solutions in PS . 
 1 2{ ( ) ( ( ), ( ),..., ( )) | }T

mPF F x f x f x f x x PS  
r r r r r

 (5) 

2.2 Decomposition Approach 

There are several approaches that can be used to decompose MOPs into a number of SOPs, such 

as the weighted sum approach, the Tchebycheff approach and the boundary intersection method [40, 

53-54]. In this paper, the Tchebycheff approach is adopted as it is mostly used in many variants of 

MOEA/D [28-30, 36, 45, 53, 55, 57]. This approach is formulated as follows. 

     * *

1
minimize  | , max | |tch

i i i
i m

g x w z w f x z
 

 
  

  (6) 

                            subject to x


 

where   is the decision (variable) space, * * * *
1 2( , ,..., )mz z z z

 is a vector of reference point, i.e., 
* min{ ( ) | }i iz f x x 

 
 for each 1, 2,...,i m . It is noted that when iw  is set to 0, it will be replaced 

by 610iw   in Eq. (6). For each Pareto optimal point x


, there exists a weight vector w


 to make 

sure that x


 is also the optimal solution of Eq. (6). Actually, each optimal solution of Eq. (6) is also a 

Pareto optimal solution of Eq. (1). Therefore, all the Pareto optimal solutions can be obtained by using 
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a set of uniformly distinct weight vectors. 

2.3 Basic Differential Evolution Operators 

Differential evolution is very suitable for dealing with continuous optimization problems [3, 20, 

25, 32, 38, 44]. It generally works through a simple cycle by using mutation, crossover and selection 

operators, which are respectively introduced as follows. 

(1) Mutation: differential evolution employs a mutation strategy to generate a mutant vector ,i gv


 

with respect to each individual ,i gx


 (called a target vector) at generation g. The most widely used DE 

mutation strategies include “DE/rand/1”, “DE/rand/2”, “DE/best/1”, “DE/current-to-rand/1”, 

“DE/current-to-best /2” and “DE/rand-to-best/1” [42]. For example, the basic strategy “DE/rand/1” can 

be defined as follows. 
 

1 2 3, , , ,( )i g r g r g r gv x F x x   
   

  (7) 

where F  is called the mutation scaling factor, 
1 ,r gx


, 
2 ,r gx


 and 
3 ,r gx


 are three distinct individuals 

that are randomly selected from the evolved population at the current generation. 

(2) Crossover: after the mutant vector is produced, the crossover operator is further applied. The 

most widely used recombination operator in DE is binomial crossover, which can be outlined as 

follows. 

 
, ,

, ,
, ,

if(   )

otherwise

i j g rand
i j g

i j g

v r CR or j j
u

x

 
 


,  

,  
  (8) 

where [0,1]CR  is called the crossover rate, r is a uniformly distributed random number in [0,1] , 

randj  is a random index selected from  1, 2,..., n  (n is the number of decision variables) to make sure 

that at least one variable , ,i j gu  ( [1, ])j n  of ,i gu


 is inherited from ,i gv


. It is noted that , ,i j gu  will be 

reinitialized within the feasible range when it is outside its allowable bounds. For example, , ,i j gu  is 

reset to ( )j jr b a   when , ,i j g ju b  or , ,i j g ju a , where r is a uniformly distributed random 

number in [0,1] , ja  and jb  are respectively the lower and upper bounds of the j-th decision 

variable. 

(3) Selection: the selection operation is conducted by comparing the target vector ,i gx


 with the 

trial vector ,i gu


. The better one is usually selected to survive in the next generation. Generally, it can be 

defined as follows. 

 
, , ,

, 1
,

,   if( ( ) ( ))

otherwise

i g i g i g
i g

i g

u f u f x
x

x



 
 ,  

  


   (9) 

It has been experimentally found that “DE/rand/1” and “DE/rand/2” have a slow convergence 

speed but strong exploratory capabilities to avoid premature convergence. Thus, they are suitable for 

solving multimodal problems. On the other hand, “DE/best/1”, “DE/best/2”, “DE/rand-to-best/1” and 

“DE/current-to-best/1” present a fast convergence speed as they employ the best solution found so far 

to do further exploration. Consequently, they are good at tackling unimodal problems [42]. 

“DE/current-to-rand/1” is a rotation-invariant strategy, which makes it more suitable to solve rotated 

problems when compared to other DE strategies [20]. That is to say, different DE mutation strategies 

have certain particular features, which may behave differently in solving different types of SOPs [49]. 

Therefore, in this paper, we use multiple DE mutation strategies to integrate the composite operator 
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pools, with the aim of combining their advantages by using an adaptive operator selection strategy. In 

this way, our proposed algorithm can solve, in a better way, different types of subproblems that are 

decomposed from different types of MOPs. 
 

2.4 Review of the baseline algorithm MOEA/D-DRA 

In this paper, MOEA/D-DRA [55] which won the CEC2009 multiobjective algorithm contest is 

the baseline algorithm on which MOEA/D-CDE is based. By embedding the proposed adaptive 

composite operator selection and parameter control strategy into MOEA/D-DRA, we introduce here 

MOEA/D-CDE. Let’s assume that N  uniformly distributed weight vectors 1 2{ , ,..., }Nw w w w
   

 are 

available, where each ,1 ,2 ,{ , ,..., }j j j j mw w w w


 ( 1, 2,...,j N ) satisfies ,1 1m
j kk w   and , 0j kw   

( [1, ]k m ). Then, the approximation of PF  in Eq. (1) can be decomposed into N  scalar 

optimization subproblems using the Tchebycheff approach (defined in Eq. (6)) with N  weight vectors 

w


. For each weight vector, its T-neighborhoods are composed by the set of T  closest weight vectors 

based on their Euclidean distances. During the evolutionary search, MOEA/D-DRA maintains a 

population of N  individuals 1, 2, ,{ , ,..., }g g N gP x x x
  

, where ,i gx


 ( 1, 2,...,i N ) respectively represent 

the potential solutions for the i-th subproblem at generation g. The best value (i.e., the lowest value for 

minimization problems) found for each objective in Eq. (1) is stored using *
iz ( 1, 2,..., )i m , i.e., 

*
1, ,min{ ( ),..., ( )}i g N gi iz x xf f
 

. As different subproblems may have different computation difficulties, a 

dynamic computational resource assignment was designed in MOEA/D-DRA to automatically allocate 

the computational effort for different subproblems. At first, the utility i  for subproblem i  
( 1, 2,...,i N ) is computed as follows. 

 
1                                              if  >0.001 

(0.95 0.05 / 0.001)    otherwise
i

i
i i





    

  (10) 

where i  is the relative decrease of the aggregated value in subproblem i , which is defined by 

 
* *

*

( | , ) ( | , )

( | , )

tch tch
old i new i

tch
o

i
ld i

g x w z g x w z

g x w z


 

    

     (11) 

As the utility i  for subproblem i  is periodically updated, oldx


 is the old best solution found in the 

last period, while newx


 is the new best solution produced in the current period. If i  is smaller than 

0.001, it indicates that the evolutionary search is stagnated in this period. Thus, the value of i  will be 

reduced in order to save computational resources. 

The pseudo-code of MOEA/D-DRA can be found in Algorithm 1, where   is a pre-defined 

probability to select the set of parents, rn  is the maximum number of parents that are replaced by the 

offspring. In the initialization procedure, as shown in lines 1-2 of Algorithm 1, the current generation 

number g is set to 0 at the beginning, and the set A includes all the indexes of individuals, i.e., 

{1,2,..., }A N  (N is the population size). The utility i  for each subproblem i ( [1, ]i N ) is initially 

set to 1. N weight vectors 1 2{ , ,..., }Nw w w w
   

 are uniformly initialized and the population P  with N 

solutions is randomly generated. Each weight vector iw


 ( [1, ]i N ) finds its T neighbors based on 

their Euclidean distances and the set ( )B i  includes all the T neighbors of weight vector iw


. The ideal 

point *z


 is obtained by * min{ ( ) | }j jz f x x P 
 

 
( 1,2,..., )j m . After that, MOEA/D-DRA enters into 

the loop of the evolutionary process as illustrated in lines 4-32. 
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Algorithm 1: The Pseudo-code of MOEA/D-DRA 
1 Set 0g  , {1,2,..., }A N , and 1i   for each 1,2,...,i N ; 
2 Initialize 1 2{ , ,..., }Nw w w w

   
, 1, 2, ,{ , ,..., }g g N gP x x x

  
, 1 2( ) { , ,..., }TB i i i i , * * * *

1 2( , ,..., )mz z z z


; 
3 while stopping criterion is not satisfied 

4
Select m indexes of the subproblems whose objectives are respectively m objectives ( )if x


 in Eq. (1) to 

form set I; Other / 5N m    subproblems are chosen by using 10-tournament selection based on i , 
which is then added into I; 

5 for j =1 to | |I  
6 i =I(j); 
7 if rand<  
8 ( );E B i  
9 else 

10 ;E A  
11 end 
12 Set 1r i  and then select two different indexes 2r , 3r  randomly from E; 
13 Perform DE operator (Eqs. (7)-(8)) to generate a new solution ,i gu


 from 1 ,r gx


, 2 ,r gx


, 3 ,r gx


; 
14 Execute mutation operator (Eq. (12)) on ,i gu


 to produce a new solution iy


; 

15 for k =1 to m 
16 if * ( )k k iz f y


 

17 * ( )k k iz f y


; 
18 end 
19 end 
20 0c  ; 
21 while rc n && E  is not null 
22 Randomly pick an index k from E; 
23 if * *

,( | , ) ( | , )tch tch
i k k g kg y w z g x w z
    

 
24 Replace ,k gx


 with iy


, and set c=c+1; 

25 end 
26 Delete k from E; 
27 end 
28 end 
29 1g g  ; 
30 if mod( ,50) 0g   
31 update the utility of each subproblem using Eq. (10); 
32 end 
33 end 
34 return P; 

 

During the evolutionary process, the dynamic resource assignment is firstly conducted to select 

the subproblems for evolution as introduced in line 4, where the chosen subproblems are preserved in 

the set I. Then, for each subproblem i in I, a uniformly distributed random number rand is used to 

determine the parent set E that is selected from the entire population or the T neighbors of subproblem i 

(shown in lines 7-11). Each individual in I is evolved using the DE and mutation operators as 

respectively stated in lines 13-14. Assuming that the mutant solution generated with the DE operator 

using Eqs. (7)-(8) is ,i gu


, polynomial mutation is further performed on ,i gu


 to produce a new solution 

iy


. Each variable ,i ky  ( 1,2,...,k n ) of iy


 is obtained by 

 
, ,

,
, ,

( )   if 

                          otherwise  

i k g k k k m
i k

i k g

u b a r p
y

u

   
 


  (12) 

where ka  and kb  are respectively the lower and upper bounds of the k-th variable, r  is a uniformly 

random real number in [0,1], mp  is the mutation probability and k  is calculated as follows. 
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1/( 1)

1/( 1)

(2 ) 1         if 0.5

1 2 (1 )     otherwise
k

r r

r










    
  

  (13) 

where r  is a uniformly random real number in [0,1] and   is the distribution index that controls the 

mutation scale. It is noted that each variable ,i ky  ( 1,2,...,k n ) will be reset to a random value inside 

its allowable bounds when it falls outside them. 

For each newly generated offspring iy


, its objectives are evaluated and then used to update the 

values of the ideal point *
kz  ( 1,2,...,k m ) as described in lines 15-19. In lines 21-27, if the 

aggregation function value of iy


 is better than the parents from E, it will substitute at most rn  

parents to speed up convergence. At last, the utility i  of each subproblem i ( [1, ])i N  is updated 

for each 50 generations using Eq. (10), as illustrated in lines 30-32. The above evolutionary phase will 

be repeated until the stopping criterion is satisfied. It is noted that the stopping condition can be 

generally set as the maximum number of generations or function evaluations. At the end of algorithm, 

all the solutions in population P are reported as the final approximated PF. 
 

3. The Proposed Algorithm 

3.1 Composite DE Mutation Strategies 

As introduced in Section 2.3, it has been experimentally found that different DE mutation 

strategies have their own advantages in solving different types of SOPs [49]. For example, “DE/rand/1” 

and “DE/rand/2” are good at solving multimodal problems; “DE/best/1”, “DE/best/2”, 

“DE/rand-to-best/1” and “DE/current-to-best/1” are suitable for handling unimodal problems [42]; 

“DE/current-to-rand/1” is more suitable for tackling rotated problems [20]. The use of only one trial 

vector generation strategy may have natural limitations in solving certain types of SOPs. Therefore, 

multiple DE mutation strategies are used to form the composite DE operator pools in this paper. In this 

way, their advantages can be combined to enhance the exploratory capabilities and algorithmic 

robustness when tackling a set of subproblems decomposed from different types of MOPs. 

In this paper, an adaptive operator selection is employed to dynamically select a mutation operator 

pool. The mutation operator pools are composed by the four DE mutation strategies, i.e., “DE/rand/1”, 

“DE/rand/2”, “DE/current-to-rand/1” and “DE/current-to-rand/2” [42]. The definition of “DE/rand/1” 

has been given in Eq. (7), while “DE/rand/2”, “DE/current-to-rand/1” and “DE/current-to-rand/2” are 

respectively defined in Eqs. (14-16). 

 
1 2 3 4 5, , , , , ,( ) ( )i g r g r g r g r g r gv x F x x F x x      

     
 (14) 

 
1 2 3, , , , , ,( ) ( )i g i g i g r g r g r gv x F x x F x x      

     
 (15) 

 
1 2 3 4 5, , , , , , , ,( ) ( ) ( )i g i g i g r g r g r g r g r gv x K x x F x x F x x         

      
  (16) 

where ,i gx


 is called the target vector and ,i gv


 is the mutated vector, the individuals 
1 ,r gx


, 
2 ,r gx


, 
3 ,r gx


, 

4 ,r gx


 and 
5 ,r gx


 are five distinct solutions randomly selected from the evolved population, which are 

also different from ,i gx


. The scaling factors F  and K  are positive control parameters for weighting 

the difference vectors. 

Due to the fact that the composite DE operator pools have been well studied and are suitable for 
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solving different types of SOPs [49], this paper extends the idea of composite DE operator pools to 

tackle MOPs. During the evolution, an operator pool applied for each subproblem will be chosen from 

the four operator pools, by using the proposed adaptive operator selection strategy introduced in 

Section 3.2. These four operator pools iop ( 1,2,3,4)i   are given by 

(1) 1op : “DE/rand/1” and “DE/rand/2”; 

(2) 2op : “DE/current-to-rand/1” and “DE/rand/2”; 

(3) 3op : “DE/current-to-rand/1”; 

(4) 4op : “DE/current-to-rand/2”. 

 
Algorithm 2: Composite_Operator( op , F , E , ,i gx


) 

1 switch ( op ) 
2 case 1op : 
3 Randomly select three distinct indexes 1 2 3, ,r r r  from E ; 
4 Use Eqs. (7) and (8) with F to produce a candidate solution 1y


; 

5 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r  from E ; 
6 If the aggregation value (Eq.(6)) of 

2 ,r gx


 is larger than 
3 ,r gx


, exchange the values of 2r  and 3r ; 
7 If the aggregation value (Eq.(6)) of 

4 ,r gx


 is larger than 
5 ,r gx


, exchange the values of 4r  and 5r ; 
8 Use Eqs. (14) and (8) to produce a candidate solution 2y


; 

9 return 1y


, 2y


; 
10    case 2op : 
11 Randomly select three indexes 1 2 3, ,r r r  ( 1 2 3r r r i   ) from E ; 
12 If the aggregation value (Eq.(6)) of 

2 ,r gx


 is larger than 
3 ,r gx


, exchange the values of 2r  and 3r ; 
13    Use Eqs. (15) and (8) to produce a candidate solution 1y


; 

14 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r  from E ; 
15 Use Eqs. (14) and (8) with F to produce a candidate solution 2y


; 

16 return 1y


, 2y


; 
17    case 3op : 
18 Randomly select three indexes 1 2 3, ,r r r  ( 1 2 3r r r i   ) from E ; 
19 Use Eqs. (15) and (8) with F to produce a candidate solution 1y


; 

20 return 1y


; 
21 case 4op : 
22 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r  from E ; 
23  Use Eqs. (16) and (8) with F to produce a candidate solution 1y


; 

24 return 1y


; 
25 end 

 

The “DE/rand/1” strategy is the most commonly used strategy in many DE variants [3, 19-20, 25, 

36, 38, 42, 44-45], where all difference vectors are randomly selected from the evolved population. 

Consequently, it has no bias to any special search direction, and thus chooses a new search direction at 

random each time. In the “DE/rand/2” and “DE/current-to-rand/2” strategies, two difference vectors are 

employed, which may lead to larger perturbation than “DE/rand/1” and “DE/current-to-rand/1” that are 

coupled with only one difference vector. Thus, they can produce the trial vectors with more significant 

difference than “DE/rand/1” and “DE/current-to-rand/1”. It is noted that in operator pool 1op , the 

difference vectors 
2 ,r gx


 and 
4 ,r gx


 
in “DE/rand/2” are always better than 

3 ,r gx


 and 
5 ,r gx


 
by 

switching their positions. In this way, the base vector will be mutated following the better evolutionary 

direction to speed up convergence. In the same way, “DE/current-to-rand/1” in operator pool 2op  also 

employs the above difference vector selection strategy to speed up convergence. To clearly illustrate 

the implementation of the composite operator pools, the corresponding pseudo-code is given in 
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Algorithm 2, the input of which is op (the selected operator pool), F (the adaptive scaling factor 

introduced in Section 3.3), E (the index set of parents), and ,i gx


 (the target vector at the current 

generation). The output of Algorithm 2 are two offspring ( 1y


, 2y


) for 1op  and 2op , and one offspring 

( 1y


) for 3op  and 4op . 

 

3.2 Adaptive Composite Operator Selection 

It has been experimentally found that different DE mutation strategies coupled with different 

control parameter settings have shown several advantages in solving different types of SOPs [9, 20, 25, 

29, 38, 42]. Thus, they can be effectively combined to enhance overall performance. In this paper, four 

operator pools introduced in Section 3.1 are used to produce new solutions. In order to select a better 

operator pool, a bandit-based operator pools selection scheme is employed. In this approach, it can 

adaptively determine the preferred operator pool according to the historical search experience [29]. At 

first, a two-dimensional performance array (2)( )Array W  is used to record the impact caused by the 

application of an operator pool during the evolutionary process. (1)( )Array j  ( 1,2,...,j W ) will 

mark the indexes ( 1,2,3,4)i   for the used operator pools iop , and (2)( )Array j  ( 1,2,...,j W ) 

will memorize the fitness improvement rates (FIR) that are obtained with the used operator pools iop  
( 1,2,3,4)i  , as defined in Eq. (17). 

 i i
i

i

pf cf
FIR

pf


   (17) 

where ipf  is the fitness value of the parent, and icf  is the fitness value of the offspring. This array 

follows the first-in, first-out (FIFO) mechanism. That is to say, the recently used operator pool and its 

FIR value are added at the tail of this array, while the first one in the array is removed. Based on this 

array, the iReward  ( 1,2,3,4)i   is calculated by summarizing all FIR values obtained by each 

operator pool iop , and then the credit value iFRR  assigned to the operator pool iop  is obtained as 

follows. 

 4

1

i
i

jj

Reward
FRR

Reward





  (18) 

Then, the iFRR  values and the times of operator pool (stored in in  for  ( [1,4])iop i ) selected in 

the recent W  applications are employed to pick out a better operator pool using Eq. (19). 

 

4

1

{1,2,3,4}

2 ln
arg max

jj
i i

i i

n
op FRR C

n




      
 


  (19) 

where C  is a scaling factor to control the trade-off between the fitness improvement rates and the 

number of used operator pools. Based on our experiments, too small values or too large values of C 

will have a negative impact on the optimization performance when solving certain types of MOPs. 

Thus, it is suggested to select a value of C within the range [4, 7]. In this study, C is set to 5.0 as 

referred from [29]. Therefore, the operator pool ( [1, 4])iop i  that can give the maximum value of Eq. 

(19) will be selected to produce the offspring. It is noted that once the offspring are generated using the 

selected operator pool, this FIR array will be updated and used to calculate a new maximum value of 
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Eq. (19). By this way, the best operator pool can be adaptively adjusted. The pseudo-code for this 

operator pool selection mechanism is provided in Algorithm 3 and its input is the performance array 

(2)( )Array W . Based on the performance of the W  most recent applications, Algorithm 3 will 

adaptively return a selected operator pool. 

 
Algorithm 3: Operator_Selection( (2)( )Array W ) 
1 Initialize 0iReward  for all iop  ( 1,2,3, 4)i  ; 
2 Set 0in   ( 1, 2,3,4)i  ; 
3 for 1 to j W  
4 (1)( )i Array j ; 
5 (2)( )i iReward Reward Array j  ; 
6 in   ; 
7 end 
8

4
1 iiRewardSum Reward  ; 

9 for 1 to 4i   
10 i iFRR Reward RewardSum ; 
11 end 
12 Select an operator pool iop  ( [1, 4])i  using Eq. (19); 
13 return iop ; 

 

3.3 Adaptive Parameter Control Strategy 

The parameter adaptation schemes in DE have been experimentally found to be very competitive 

in solving different types of SOPs [20, 42]. In this paper, the adaptive parameter strategy in JADE [52] 

is modified to tackle MOPs. At each generation, the scaling factor F  used in the operator pools is 

independently generated by 
 ( ,0.1)F Cauchy F    (20) 

where ( , 0.1)Cauchy F   is a random real number sampled from a Cauchy distribution with location 

parameter F  and scale parameter 0.1. The value of F
 
will be regenerated if 0F   or 1F  . This 

location parameter F  of the Cauchy distribution is initialized to 0.5 and is then updated at the end of 

each generation, as follows. 
 = (1 ) ( )F F POW successw w mF ea FF n      (21) 

where Fw
 
is a pre-defined weight factor, and the set successF

 
collects all the successful scaling factors 

that can generate better trial vectors at each generation. The ( )POWmean   function stands for the power 

mean [20], as given by 

 
1/

( ) ( / | |)
success

kk
POW success success

x F

mean F x F


    (22) 

where successF  denotes the cardinality of the set successF , and k is set to 1.5 as it gives the best results 

on a wide variety of optimization problems [20]. As revealed by our parameter tuning experiments, a 

small random perturbation added to the weight term Fw  can enhance the performance of 

MOEA/D-CDE. Thus,
 Fw

 
is randomly generated from [0.8, 1] in this paper. 

It is noted that the adaptive parameter control strategy is only employed for the scaling factor F. 

All the parameter settings of the DE operator pools are given as follows. 

(1) In 1op , the parameter F uses the above adaptive parameter control strategy, while CR is set to 
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1 for “DE/rand/1”. The parameters F and CR are respectively set to 0.2 and 0.8, and K is a uniformly 

distributed random value generated in [0, 1] for “DE/rand/2”. 

(2) In 2op , the parameter F uses the above adaptive parameter control strategy, while CR is set to 

1 for “DE/rand/2”. The parameters F and CR are all set to 1 for “DE/current-to-rand/1”.  

(3) In 3op , the parameter F uses the above adaptive parameter control strategy, while CR is set to 

1 and K is set to a uniformly distributed random value in [0, 1]
 
for “DE/current-to-rand/2”. 

(4) In 4op , the parameter F uses the above adaptive parameter control strategy, while CR is set to 

1 for “DE/current-to-rand/1”. 

 

3.4 The Complete Algorithm MOEA/D-CDE 

In the above subsections, the four composite DE operator pools used in this paper were introduced 

in Section 3.1, and then an adaptive composite operator selection described in Section 3.2 was 

employed to pick out a better operator pool for each individual. Besides that, an adaptive parameter 

approach (introduced in Section 3.3) was exploited to adjust the scaling factor F in each DE operator 

pool. These proposed approaches are the main contributions of this paper, which greatly enhance the 

optimization performance and algorithmic robustness. By embedding the proposed approaches into the 

pseudo-code of MOEA/D-DRA, we gave rise to our proposed MOEA/D-CDE. To clearly introduce the 

implementation of MOEA/D-CDE, its pseudo-code is given in Algorithm 4. 

In the initialization phase, similar to MOEA/D-DRA, some relevant parameters (i.e., g , A , i , 

w


, P , ( )B i  and *z


) are initialized in lines 1-2 of Algorithm 4. Besides that, a two-dimensional 

performance array (2)( )Array W  used to store the fitness improvement rates and the corresponding 

index point _Array index  are also initially set in line 3. 

During the evolutionary process, the subproblems to be solved are selected into set I using a 

dynamic resource assignment mechanism, as shown in line 5. For each subproblem i in set I, an 

operator pool op is selected in lines 8-12, where each operator pool is forced to be used once in the first 

four selections. Then, the parent set E is chosen in lines 13-17 and the scaling factor F used in operator 

pool op is sampled by Eq. (20) (line 18). With these parameters (i.e., op, E, F, ,i gx ), the offspring are 

generated using the composite operator pools as introduced in Algorithm 2 (line 19), and further 

mutated using polynomial mutation in line 22. The new offspring ( 1y


, 2y


 generated by 1op  or 2op , 

and 1y


 produced by 3op  or 3op ) are used to update the reference point *z


 in lines 23-27, and 

renew at most rn  individuals from the parents set E as shown in lines 28-37, where indexof( )op  

returns the index of operator pool op . The fitness improvement rates caused by op will be stored in 

(2)( )Array W  (lines 39-40). Once all the individuals in set I are evolved, the successful values of F are 

used to update the F   value using Eqs. (21)-(22), as shown in line 43. At last, the utility i  of each 

subproblem i ( [1, ])i N  is updated at each 50 generations using Eq. (10), as illustrated in lines 45-47. 

The above evolutionary phase will be repeated until reaching the stopping criterion (e.g., a maximum 

number of generations or function evaluations). At the end of algorithm, all the solutions in population 

P are reported as the final approximation of the PF. 
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Algorithm 4: The Pseudo-code of MOEA/D-CDE 
1 Set 0g  , {1,2,..., }A N , and 1i   for each 1,2,...,i N ; 
2 Initialize 1 2{ , ,..., }Nw w w w

   
, 1, 2, ,{ , , ..., }g g N gP x x x

  
, 1 2( ) { , ,..., }TB i i i i  and * * * *

1 2( , ,..., )mz z z z


;  
3 Set ( )( ) 0Array i j   for each 1,2i   and 1,2,...,j W , _ 1Array index  ; 
4 while stopping criterion is not satisfied 

5
Select m indexes of the subproblems whose objectives are respectively m objectives ( )if x


 in Eq. (1) to 

form the set I; Other / 5N m    subproblems are chosen by using 10-tournament selection based on i , 
which is then added into I; 

6 for 1j   to I  

7 ( )i I j ; 
8 if 4j   && 0g   
9 jop op ; 

10 else 
11 op = Operator_Selection( (2)( )Array W ) (Algorithm 3); 
12 end 
13 if rand   
14 ( );E B i  
15 else 
16 ;E A  
17 end 
18       The scaling factor F used in operator pool op  is generated by Eq. (20); 
19 { 1y


, 2y


}=Composite_Operator( op , F , E , ,i gx


)(Algorithm 2);// 2y


 is null when op is 3op  or 4op  
20 for 1l   to 2 
21 if ( ly


 is not null) 

22 Apply mutation operator (Eq. (12)) on ly


 to produce a new solution ly


; 
23 for 1k   to m  
24 if * ( )k k lz f y


 

25 * ( )k k lz f y


 
26 end 
27    end 
28 0c  , lE E ; 
29 while rc n && lE  is not null 
30       Randomly pick an index k from lE ; 
31        * * *

, ,( | , ) ( | , ) ( | , )tch tch tch
i k g k l k k g kg x w z g y w z g x w z  

       
 

32       if 0i   
33          Replace ,k gx


 with ly


, and set c=c+1; 

34       indexof( ) indexof( )op o ipFIR FIR   ; 
35    end 
36 Delete k from lE ; 
37 end 
38        end 
39 [0][ _ ] indexof( )Array Array index op  and indexof( )[1][ _ ] opArray Array index FIR   ; 
40 _ _ mod ;Array index Array index W  
41 end 
42 end 
43 Update F   using Eqs. (21)-(22); 
44 1g g  ; 
45 if mod( ,50) 0g   
46 update the utility of each subproblem using Eq. (10); 
47 end 
48 end 
49 return P; 

 

4 Experimental Studies 

In this section, several experimental studies are conducted in order to analyze the advantages of 
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MOEA/D-CDE. First, some background of our experiments is presented. 19 test instances are then 

introduced in Section 4.1, and two performance measures are described in Section 4.2 for examining 

both convergence and population diversity. Section 4.3 provides the parameters settings for all the 

compared algorithms. Second, MOEA/D-CDE is compared to five competitive MOEA/D variants, i.e., 

MOEA/D-DE [36], MOEA/D-DRA [55], ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and 

MOEA/D-STM [28], and the relevant discussions on their performance comparison are given in 

Section 4.4. Third, the effectiveness of the composite DE operator pools and the proposed adaptive 

parameter control strategy are respectively analyzed in Sections 4.4 and 4.5. Finally, the time 

complexity analysis of our algorithm is provided in Section 4.6. 

4.1 Test Instances 

In order to evaluate the performance of MOEA/D-CDE, 19 unconstrained test instances are 

employed here as our benchmark problems for conducting the empirical study. They can be classified 

into two test problem series, i.e., the UF and the WFG problem series. More specifically, UF1-UF10 

are the benchmark functions adopted in the CEC2009 competition [56], and they are characterized with 

very complicated PS in decision space; WFG1-WFG9 are designed to have a wide range of complex 

characteristics [18], including non-separable, deceptive, degenerate problems, mixed PF shapes and 

variable dependencies. UF and WFG test problems are difficult to be optimized, and have already been 

used in many MOEAs [28-30, 36, 45] to investigate their optimization performance. The number of 

decision variables for UF1-UF10 is set to 30, while the numbers of position-related and 

distance-related decision variables for WFG1-WFG9 are respectively set to 8 and 2. Moreover, 

UF1-UF7 and WFG1-WFG9 are bi-objective test problems, while UF8-UF10 are three-objective test 

problems. More detailed information about the UF and the WFG test problems can be respectively 

found in [56, 18]. 

4.2 Performance Measures and Experimental Settings 

4.2.1 Performance Metrics 

After the approximation sets are obtained by the compared algorithms, two performance measures 

are used to assess their performance [59], i.e., inverted generational distance (IGD) and Hypervolume 

(HV). These performance measures can assess both convergence and diversity for the approximation 

sets and they are defined next. 

IGD: Let *P  be a set of Pareto-optimal points uniformly sampled along the true PF, and P  be 

an approximation set obtained by MOEA. The IGD value of P  is computed as follows [31]. 

    **
*

,
,

| |
x P

dist x P
IGD P P

P
  



  (23) 

where  ,dist x P


 is the Euclidean distance between the point x


 and its nearest neighbor in P , and 
*| |P  is the cardinality of *P . The true PF of each test problem has to be known in advance when 

calculating IGD. In our empirical studies, 1000 and 10000 uniformly distributed points are respectively 

sampled along the PF for the bi-objective and the three-objective test instances. Generally, a lower IGD 

value indicates the better convergence and diversity of P . 
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HV: Let * * * *
1 2( , ,..., )T

mz z z z


 be a reference point in the objective space that is dominated by all 

the Pareto-optimal points. HV measures the size of the objective space dominated by the solutions in 

P  and bounded by *z


, and is defined as follows [58]. 

       * *
1 1, ... ,m m

x P
HV P VOL f x z f x z


        

 
   (24) 

where the function VOL(∙) means the Lebesgue measure. In our experiments, the normalized objective 

function values are used to compute HV and the reference points are set to (2.0, 2.0) and (2.0, 2.0, 2.0) 

respectively for bi-objective and three-objective test problems. A larger HV value is always preferred as 

it indicates a better quality of P  for approximating the entire PF. 

4.2.2 Experimental Settings for the Compared Algorithms 

In this study, our algorithm MOEA/D-CDE is compared with respect to five competitive 

MOEA/D variants, i.e., MOEA/D-DE [36], MOEA/D-DRA [55], ENS-MOEA/D [57], 

MOEA/D-FRRMAB [29] and MOEA/D-STM [28] on all the UF and WFG test problems. It is noted 

that the Tchebycheff approach defined in Eq. (6) is used as the decomposition method for all the 

compared algorithms. The parameters settings of MOEA/D-DE [36], MOEA/D-DRA [55], 

ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and MOEA/D-STM [28] are respectively listed in 

Table 1. All these parameters settings used in this paper are suggested by their authors.  
 

Table 1 
The parameters settings of the compared algorithms 

MOEA/D-DE 0.5F  , 1.0CR  , 2rn  . 

MOEA/D-DRA 0.5F  , 1.0CR  , 0.1T N  , 0.01rn N  . 

ENS-MOEA/D 0.5F  , 1.0CR  , 50LP  . 

MOEA/D-FRRMAB 0.5F  , 1.0CR  , 0.5K  , 5.0C  , 0.5W N  , 1.0D  , 2rn  . 

MOEA/D-STM 0.5F  , 1.0CR  , 2rn  . 

MOEA/D-CDE 2rn  , 0.5W N  , 5.0C  . 

 

In Table 1, F and CR are respectively the scaling factor and crossover rate used in DE. T  denotes 

the neighborhood size and rn  indicates the maximum number of parents replaced by each new 

offspring. For ENS-MOEA/D, LP defines the number of generations to update the selection probability 

for each neighborhood size. The possible neighborhood sizes for bi-objective and three-objective 

problems in ENS-MOEA/D are respectively set to {30, 60, 90, 120} and {60, 80, 100, 120, 140}. K is 

also a scaling factor used in MOEA/D-FRRMAB. C, W and D are the three control parameters used in 

the bandit-based adaptive operator selection of MOEA/D-FRRMAB. For all the compared algorithms, 

the population size N  is set to 600 for UF1-UF7 and 1000 for UF8-UF10, while N  is set to 100 for 

WFG1-WFG9; the maximum number of function evaluations is set to 600000 for the UF test problems 

and to 25000 for the WFG test problems. All the compared algorithms are implemented in JAVA, 

except for ENS-MOEA/D which was implemented in MATLAB. The parameters settings of our 

proposed MOEA/D-CDE algorithm are further clarified as follows. The probability for polynomial 

mutation is set as 1/mp n , and its distribution index is set to 20, i.e., 20  . The settings of the 

control parameters CR, F and K in the four operator pools adopted are explained in Section 3.3. The 

neighborhood size T  is set to 20 and rn  is set to 2. The probability   that controls the selection of 
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parent vectors from the entire population or the neighborhood is set to 0.9. As the size of the 

performance array W used in the adaptive composite operator selection strategy will lower the 

optimization performance when it is set to a very small value, it is suggested to set W not smaller than 

0.5 N  (we set W as 0.5 N  in our experiments). Each compared algorithm is run by 30 

independent times for each test problem. Experimental results are collected in the corresponding 

comparison tables, and the best mean results of IGD and HV are highlighted in boldface. Moreover, in 

order to have a statistically sound conclusion, a popular nonparametric test (i.e., Wilcoxon’s rank sum 

test) was further conducted to assess the statistical significance of the difference between the results 

obtained by MOEA/D-CDE and those obtained by the other algorithms with a significance level 

 =0.05. 

 

4.3 Comparison of MOEA/D-CDE with Five MOEA/D Variants 

4.3.1 Performance Comparison on UF instances 

In this subsection, MOEA/D-CDE is compared with respect to five MOEA/D variants, namely, 

MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM, on all the 

UF test problems. 
Table 2 

Comparative results of all the algorithms adopted on the UF test problems regarding IGD 

Algorithms 
Problems 

MOEA/D-
DE 

MOEA/D-
DRA 

ENS-MOE
A/D 

MOEA/D-FR
RMAB 

MOEA/D-
STM 

MOEA/D-
CDE 

UF1 
Mean 7.759E-04 + 1.006E-03 - 8.734E-04 - 8.094E-04 ≈ 8.721E-04 - 8.072E-04 
Std 5.33E-05 5.51E-05 5.32E-05 5.88E-05 6.23E-05 2.83E-05 

UF2 
Mean 1.946E-03 - 1.698E-03 - 2.241E-03 - 1.171E-03 - 1.473E-03 - 9.283E-04 
Std 6.49E-04 1.63E-04 5.13E-04 3.40E-04 8.66E-04 1.31E-04 

UF3 
Mean 3.134E-03 - 9.659E-04 + 1.437E-03 ≈ 1.098E-03 + 2.509E-03 - 1.443E-03 
Std 2.59E-03 8.30E-05 2.15E-03 2.95E-04 2.55E-03 8.10E-04 

UF4 
Mean 5.151E-02 - 5.540E-02 - 4.831E-02 - 4.893E-02 - 4.775E-02 - 3.190E-02 
Std 2.92E-03 3.80E-03 2.81E-03 2.91E-03 3.16E-03 6.77E-04 

UF5 
Mean 1.943E-01 - 1.963E-01 - 2.680E-01 - 1.918E-01 - 1.937E-01 - 9.101E-02 
Std 5.25E-02 7.05E-02 5.15E-03 5.98E-02 5.97E-02 2.73E-02 

UF6 
Mean 7.186E-02 - 1.676E-01 - 6.133E-02 - 9.073E-02 - 7.030E-02 - 5.903E-02 
Std 3.09E-02 1.89E-01 4.31E-02 1.31E-01 3.52E-02 6.39E-03 

UF7 
Mean 8.940E-04 - 1.687E-03 - 8.714E-04 - 8.906E-04 - 8.855E-04 - 8.006E-04 
Std 7.80E-05 2.50E-03 4.24E-04 9.71E-05 4.43E-05 1.66E-04 

UF8 
Mean 4.002E-02 - 3.260E-02 - 3.205E-02 - 3.022E-02 ≈ 1.816E-02 + 2.908E-02 
Std 5.45E-03 2.81E-03 2.63E-03 2.29E-03 4.67E-04 2.53E-03 

UF9 
Mean 3.027E-02 - 1.092E-01 - 5.676E-02 - 3.201E-02 - 1.617E-02 + 2.154E-02 
Std 3.03E-02 4.93E-02 3.15E-02 3.56E-02 4.66E-04 5.66E-02 

UF10 
Mean 3.713E-01 - 3.143E-01 - 3.138E-01 - 3.432E-01 - 3.221E-01 - 2.168E-01 
Std 5.23E-02 7.77E-02 4.32E-02 4.93E-02 4.00E-02 4.31E-02 

-/+/≈ 9/1/0 9/1/0 9/0/1 7/1/2 8/2/0  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to the Wilcoxon’s rank sum test at a 0.05 significance level 

 

Table 2 provides the comparative results of all the algorithms adopted, in which the mean IGD 

values and the standard deviation (Std) from 30 independent runs are listed. These simulation results 
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show that MOEA/D-CDE performs best on UF2, UF4-UF7 and UF10 when compared to the other 

algorithms. Particularly, MOEA/D-CDE performs better than MOEA/D-DE, MOEA/D-DRA, 

ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on 9, 9, 9, 7 and 8 out of 10 UF test 

problems, while MOEA/D-CDE is only worse than MOEA/D-DE on UF1, worse than MOEA/D-DRA 

on UF3, worse than MOEA/D-FRRMAB on UF3, and worse than MOEA/D-STM on UF8 and UF9. 

Moreover, the Wilcoxon’s rank sum test reveals that MOEA/D-CDE performs similarly to 

ENS-MOEA/D on UF3 and to MOEA/D-FRRMAB on UF1 and UF8. Based on the summary in the 

last row of Table 2, it is reasonable to conclude that MOEA/D-CDE is better than MOEA/D-DE, 

MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM when considering all the 

UF test problems with respect to IGD. This clearly indicates that our proposed approach enhances the 

optimization performance of MOEA/D-CDE. 
Table 3 

Comparative results of all the algorithms adopted on the UF test problems regarding HV 

Algorithms 
Problems 

MOEA/D-
DE 

MOEA/D-
DRA 

ENS-MOE
A/D 

MOEA/D-FR
RMAB 

MOEA/D-
STM 

MOEA/D-
CDE 

UF1 
Mean 3.6597 - 3.6613 - 3.6529 - 3.6624 ≈ 3.6635 ≈ 3.6645
Std 1.59E-03 1.08E-03 1.01E-03 1.57E-03 6.59E-04 8.54E-04

UF2 
Mean 3.6552 - 3.6558 - 3.6502 - 3.6565 - 3.6580 ≈ 3.6643
Std 4.74E-03 8.15E-03 5.18E-03 7.71E-03 2.35E-03 5.42E-03

UF3 
Mean 3.6401 - 3.6653 + 3.6598 ≈ 3.6234 - 3.6404 - 3.6636
Std 2.40E-02 1.53E-02 1.56E-03 7.63E-02 2.59E-02 4.57E-03

UF4 
Mean 3.1930 - 3.1560 - 3.1692 - 3.1717 - 3.2018 - 3.2438
Std 1.20E-02 2.33E-02 1.90E-02 1.58E-02 7.98E-03 2.14E-02

UF5 
Mean 3.1658 - 2.7735 - 2.6537 - 2.7587 - 3.2919 + 3.2631
Std 3.27E-01 3.81E-01 3.04E-01 3.06E-01 3.55E-01 3.28E-01

UF6 
Mean 3.0686 - 2.9021 - 3.1105 - 2.9839 - 3.1339 - 3.2465
Std 1.04E-01 3.22E-01 2.15E-01 3.25E-01 1.05E-01 1.38E-01

UF7 
Mean 3.4889 - 3.4807 - 3.4817 - 3.4898 - 3.4945 ≈ 3.4968
Std 4.35E-03 4.15E-02 2.08E-01 6.16E-03 1.40E-03 3.25E-03

UF8 
Mean 7.3543 - 7.3627 - 7.3792 - 7.3828 ≈ 7.4325 + 7.3927
Std 1.53E-02 2.12E-02 1.03E-02 1.15E-02 3.12E-02 2.02E-02

UF9 
Mean 7.5523 - 7.3836 - 7.5623 - 7.6482 ≈ 7.6852 ≈ 7.6828
Std 1.52E-01 2.03E-01 1.32E-01 1.63E-01 2.28E-01 1.41E-01

UF10 
Mean 3.5327 - 3.7621 - 3.8123 ≈ 3.6212 - 2.8217 - 3.8237
Std 2.98E-01 2.51E-01 5.82E-01 3.38E-01 5.12E-01 2.51E-01

-/+/≈ 10/0/0 9/1/0 8/0/2 7/0/3 4/2/4  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to the Wilcoxon’s rank sum test at a 0.05 significance level 
 
Table 3 provides the comparative results of all the algorithms adopted on the UF test problems 

using HV. It is noted that these HV results in Table 3 shows a slight difference with the IGD results in 

Table 2. This is possible as pointed out in [24] that the performance metrics of IGD and HV show high 

consistencies on convex PFs and certain contradictions on concave PFs. As observed from Table 3, 

MOEA/D-CDE performs best on 6 (i.e., UF1-UF2, UF4, UF6-UF7 and UF10) out of 10 UF test 

problems. In more detail, MOEA/D-CDE performs better than MOEA/D-DE, MOEA/D-DRA, 

ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on 10, 9, 8, 7 and 4 out of 10 UF test 

problems. Nevertheless, MOEA/D-CDE is beaten by MOEA/D-DRA on UF3 and MOEA/D-STM on 
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UF5 and UF8. The Wilcoxon’s rank sum test indicates that MOEA/D-CDE obtains statistically similar 

results to ENS-MOEA/D on UF3 and UF10, to MOEA/D- FRRMAB on UF1, UF8 and UF9, and to 

MOEA/D-STM on UF1-UF2, UF7 and UF9. As summarized in the last row of Table 3, MOEA/D-CDE 

is better than or similar to MOEA/D-DE, ENS-MOEA/D and MOEA/D-FRRMAB on all the UF test 

problems. Regarding the comparison with MOEA/D-DRA and MOEA/D-STM, MOEA/D-CDE 

performs better or similarly on more than half of the UF test problems. Therefore, the advantages of 

MOEA/D-CDE are further confirmed by using HV. 
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Fig. 1. Evolutionary curves of the median IGD values versus the number of function evaluations on the UF test problems. 
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In order to provide an overview of the evolutionary progress for all the compared algorithms, 

Figure 1 plots the evolutionary curves of the median IGD values versus the number of function 

evaluations on each UF test problem. The plots in Fig. 1 illustrate that MOEA/D-CDE gradually 

reduces the median IGD values and gets closer to the true PF as we approach the maximum number of 

generations. One important phenomenon observed from Fig. 1 is that MOEA/D-CDE may perform 

worse at early stages of the evolutionary process, but can outperform the other algorithms at later 

stages. This could be due to the fact that MOEA/D-CDE uses an adaptive operator selection 

mechanism to pick up a better set of operators from our four composite operator pools. In this way, the 

exploratory capability of MOEA/D-CDE is sufficiently enhanced to avoid the intrinsic limitation of 

using a single DE operator, which may produce stagnation at later stages of the evolutionary process. 

From Fig. 1, it is clear that MOEA/D-CDE is significantly better than the other algorithms on UF2, 

UF4, UF5 and UF10. Even for UF1, UF3, UF6, and UF7, MOEA/D-CDE also shows a competitive 

performance among all the compared algorithms. Only for UF8 and UF9, MOEA/D-CDE performs 

significantly worse than MOEA/D- STM. 
 

4.3.2 Performance Comparison on WFG instances 

Table 4 shows the performance comparison of all the compared algorithms on the WFG test 

problems, regarding IGD. Experimental results in Table 4 indicate that MOEA/D-CDE is also 

competitive in solving the WFG test problems. MOEA/D-CDE obtains the best IGD values on WFG1, 

WFG3, WFG4, WFG6 and WFG7, while MOEA/D-FRRMAB and MOEA/D-DRA are respectively 

best on WFG2 and WFG8. MOEA/D-STM performs best on WFG5 and WFG9.  
Table 4 

Comparative results of all the compared algorithms on the WFG test problems regarding IGD 

Algorithms 
Problems 

MOEA/D-D
E 

MOEA/D-D
RA 

ENS-MOE
A/D 

MOEA/D-F
RRMAB 

MOEA/D-S
TM 

MOEA/D-C
DE 

WFG1 
Mean 1.056E-01 - 1.263E-01 - 5.678E-01 - 2.559E-01 - 3.633E-02 - 2.482E-02 
Std 1.06E-01 1.25E-01 2.07E-01 2.22E-01 5.09E-02 6.11E-03 

WFG2 
Mean 1.210E-01 - 7.528E-02 ≈ 1.764E-01 - 6.882E-02 + 9.908E-02 - 7.596E-02 
Std 6.93E-02 1.88E-02 8.13E-02 2.32E-02 6.09E-02 5.11E-02 

WFG3 
Mean 1.316E-02 ≈ 1.314E-02 ≈ 1.341E-02 - 1.316E-02 ≈ 1.316E-02 ≈ 1.314E-02 
Std 3.77E-05 2.82E-05 3.01E-04 3.56E-05 3.25E-05 2.25E-05 

WFG4 
Mean 1.776E-02 - 1.694E-02 - 1.644E-02 - 1.763E-02 - 1.651E-02 - 1.574E-02
Std 2.41E-03 1.74E-03 1.49E-03 1.46E-03 8.87E-04 4.87E-04 

WFG5 
Mean 6.723E-02 - 6.725E-02 ≈ 6.761E-02 - 6.721E-02 ≈ 6.710E-02 + 6.714E-02 
Std 1.25E-04 1.18E-04 5.20E-04 1.59E-04 7.67E-05 9.54E-05 

WFG6 
Mean 2.661E-02 - 2.598E-02 - 2.902E-02 - 2.514E-02 - 2.133E-02 - 1.551E-02 
Std 1.50E-02 6.99E-03 1.31E-02 1.25E-02 1.11E-02 4.20E-03 

WFG7 
Mean 2.134E-02 - 1.704E-02 - 2.023E-02 - 1.929E-02 - 1.657E-02 - 1.635E-02
Std 1.16E-02 1.39E-03 1.14E-02 9.47E-03 3.21E-04 2.36E-04 

WFG8 
Mean 3.887E-02 + 2.868E-02 + 3.558E-02 + 3.788E-02 + 4.755E-02 - 3.994E-02 
Std 5.07E-03 3.71E-03 5.52E-02 4.84E-03 1.22E-02 4.67E-02 

WFG9 
Mean 1.513E-02 - 1.570E-02 - 1.638E-02 - 1.600E-02 - 1.474E-02 ≈ 1.480E-02 
Std 3.27E-04 6.21E-04 1.08E-03 1.02E-03 2.54E-04 2.38E-04 

-/+/≈ 7/1/1 5/1/3 8/1/0 5/2/2 6/1/2  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
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Table 5 
Comparative results of all the compared algorithms on the WFG test problems regarding HV 

Algorithms 
Problems 

MOEA/D-
DE 

MOEA/D-
DRA 

ENS-MOE
A/D 

MOEA/D-
FRRMAB 

MOEA/D-
STM 

MOEA/D-C
DE 

WFG1 
Mean 5.5112 - 6.8664 - 5.9698 - 4.6059 - 7.0776 - 8.5524
Std 1.47E-01 1.61E-01 1.78E-01 1.52E-01 1.51E-01 8.12E-02

WFG2 
Mean 8.0716 - 8.3403 - 5.8943 - 8.3308 - 8.1708 - 8.3756
Std 3.54E-01 6.58E-02 5.81E-02 1.07E-01 2.55E-01 2.99E-02

WFG3 
Mean 7.9531 ≈ 7.9526 ≈ 7.7063 - 7.9516 ≈ 7.9517 ≈ 7.9520
Std 3.68E-03 2.09E-03 4.23E-04 7.17E-04 2.57E-03 6.73E-04

WFG4 
Mean 5.2590 - 5.3676 - 5.2636 - 5.2300 - 5.2687 - 5.4940
Std 1.48E-01 1.03E-01 8.17E-02 1.23E-01 1.39E-01 6.27E-02

WFG5 
Mean 5.1658 ≈ 5.1660 ≈ 4.1341 - 5.1642 - 5.1671 ≈ 5.1691
Std 6.66E-04 7.50E-04 3.15E-02 1.34E-03 6.80E-04 1.45E-02

WFG6 
Mean 5.1764 - 4.9812 - 5.1296 - 5.2245 - 5.4106 - 5.5996
Std 5.14E-01 2.93E-01 6.69E-01 5.67E-01 4.95E-01 2.33E-01

WFG7 
Mean 5.7808 ≈ 5.8893 + 5.6743 - 5.8225 ≈ 5.7796 ≈ 5.7693
Std 3.17E-01 1.88E-01 1.63E-01 1.33E-01 2.30E-01 1.35E-01

WFG8 
Mean 4.8798 - 5.1071 + 4.6298 - 4.8987 - 4.7161 - 4.9429
Std 2.52E-01 9.03E-02 1.39E-01 2.05E-01 3.16E-01 1.23E-01

WFG9 
Mean 5.6016 - 5.6023 - 5.6012 - 5.5993 - 5.6033 - 5.6044
Std 5.58E-03 1.12E-02 1.49E-02 4.27E-03 1.22E-02 2.93E-03

-/+/≈ 6/0/3 5/2/2 9/0/0 7/0/2 6/0/3  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 

 

As observed from Table 4, MOEA/D-CDE and MOEA/D-STM perform significantly better than 

MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D and MOEA/D-FRRMAB on WFG1. Regarding WFG2, 

MOEA/D-DE and ENS-MOEA/D cannot solve it very well. For WFG3-WFG9, all the compared 

algorithms can properly approximate the true PFs, as their IGD results are all under the accuracy level 

of 10-2. The Wilcoxon rank sum test shows that MOEA/D-CDE is similar to MOEA/D-DE on WFG3, 

to MOEA/D-DRA on WFG2, WFG3 and WFG5, to MOEA/D-FRRMAB on WFG3 and WFG5, and to 

MOEA/D-STM on WFG3 and WFG9. To conclude, MOEA/D-CDE performs better than or similarly 

to MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on at 

least 7 out of 9 WFG test problems, which further confirms the advantages of our algorithm. It is worth 

noting that MOEA/D-CDE and MOEA/D-FRRMAB have shown a comparable performance on most 

of the WFG test problems. This is mainly because both of them are designed based on the adaptive 

selection of DE operators. However, our experimental results validate that our proposed algorithm with 

composite DE operator pools has a superior overall performance.  

Table 5 provides comparative results of all the compared algorithms on the WFG test problems 

regarding HV. It is observed that MOEA/D-CDE performs best on 6 (i.e., WFG1, WFG2, 

WFG4-WFG6, and WFG9) out of 9 WFG test problems. In more detail, MOEA/D-CDE performs 

better than or similarly to MOEA/D-DE, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on 

all the WFG test problems. Regarding the comparison with MOEA/D-DRA, MOEA/D-CDE performs 

better or similarly on 7 out of 9 WFG test problems. These experimental results with respect to HV also 

confirm the advantages of MOEA/D-CDE, when compared to the other algorithms in solving all the 

WFG test problems. 
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Table 6 
Comparative results of all the MOEA/D-CDE variants on the UF test problems regarding IGD 

Algorithms 
Problems 

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5 
MOEA/
D-CDE 

UF1 
Mean 8.702E-04 - 9.019E-04 - 8.201E-04 ≈ 8.266E-04 - 7.976E-04 + 8.072E-04 
Std 3.15E-05 4.08E-05 4.59E-05 8.84E-05 1.59E-05 2.83E-05 

UF2 
Mean 1.185E-03 - 1.271E-03 - 1.097E-03 - 5.872E-03 - 1.182E-03 - 9.283E-04 
Std 4.55E-04 3.03E-04 2.83E-04 1.52E-02 6.83E-04 1.31E-04 

UF3 
Mean 1.285E-03 + 2.407E-03 - 2.669E-03 - 9.876E-03 - 2.086E-03 - 1.443E-03 
Std 7.70E-04 1.84E-03 1.66E-03 1.29E-02 1.90E-03 8.10E-04 

UF4 
Mean 2.899E-02 + 4.408E-02 - 5.206E-02 - 5.366E-02 - 3.289E-02 ≈ 3.190E-02 
Std 4.65E-04 1.46E-03 2.70E-03 3.56E-03 5.94E-04 6.77E-04 

UF5 
Mean 9.201E-02 ≈ 1.988E-01 - 1.671E-01 - 2.519E-01 - 8.413E-02 + 9.101E-02 
Std 6.43E-02 5.69E-02 6.33E-02 1.08E-01 1.01E-02 2.73E-02 

UF6 
Mean 5.527E-02 ≈ 1.035E-01 - 7.106E-02 - 3.034E-01 - 6.994E-02 - 5.903E-02 
Std 4.73E-03 1.34E-01 6.57E-02 1.75E-01 4.76E-02 6.39E-03 

UF7 
Mean 8.611E-04 - 9.281E-04 - 9.743E-04 - 3.052E-03 - 8.091E-04 ≈ 8.006E-04 
Std 2.36E-05 3.45E-05 2.30E-04 3.98E-03 1.48E-04 1.66E-04 

UF8 
Mean 3.887E-02 - 3.081E-02 ≈ 6.032E-02 - 2.076E-02 + 5.088E-02 - 2.908E-02 
Std 4.82E-03 1.38E-02 1.43E-02 2.09E-03 8.75E-03 2.53E-03 

UF9 
Mean 3.033E-02 - 5.005E-02 - 4.035E-02 - 4.428E-02 - 4.481E-02 - 2.154E-02
Std 2.90E-02 4.95E-02 4.08E-02 4.84E-02 4.86E-02 5.66E-02 

UF10 
Mean 2.239E-01 ≈ 3.997E-01 - 2.112E-01 ≈ 3.779E-01 - 2.434E-01 ≈ 2.168E-01 
Std 5.46E-02 5.25E-02 3.98E-02 6.01E-02 5.93E-02 4.31E-02 

-/+/≈ 5/2/3 9/0/1 8/0/2 9/1/0 5/2/3  
 “-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar 
to that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
 

Table 7 
Comparative results of all the compared algorithms on the UF test problems regarding HV 
Algorithms 

Problems CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5 
MOEA/
D-CDE 

UF1 
Mean 3.6644 ≈ 3.6638 ≈ 3.6614 - 3.6619 - 3.6644 ≈ 3.6645 
Std 1.55E-04 4.66E-04 1.59E-03 1.56E-03 2.42E-04 8.54E-04 

UF2 
Mean 3.6595 - 3.6581 - 3.6602 - 3.6301 - 3.6611 ≈ 3.6643 
Std 8.27E-03 7.68E-03 5.49E-03 6.20E-02 6.25E-03 5.42E-03 

UF3 
Mean 3.6643 + 3.6625 ≈ 3.6607 - 3.6153 - 3.6630 ≈ 3.6636 
Std 1.14E-03 2.59E-03 8.18E-03 8.92E-02 3.20E-03 4.57E-03 

UF4 
Mean 3.2348 - 3.2094 - 3.1829 - 3.1694 - 3.2268 - 3.2438 
Std 1.70E-02 7.36E-03 1.11E-02 1.86E-02 2.26E-02 2.14E-02 

UF5 
Mean 3.3198 + 3.2794 ≈ 3.1351 - 2.6826 - 3.3203 + 3.2631 
Std 2.31E-02 7.26E-01 1.47E-01 2.60E-01 2.04E-02 3.28E-01 

UF6 
Mean 3.2255 - 3.1165 - 3.1822 - 2.6161 - 3.2013 - 3.2465 
Std 6.05E-02 3.11E-01 2.24E-01 3.12E-01 9.46E-02 1.38E-01 

UF7 
Mean 3.4977 ≈ 3.4957 ≈ 3.4943 - 3.4606 - 3.4975 ≈ 3.4968 
Std 1.05E-03 2.35E-03 4.36E-03 5.07E-02 8.98E-04 3.25E-03 

UF8 
Mean 7.3866 - 7.3644 - 7.3653 - 7.4042 + 7.3835 - 7.3927 
Std 1.52E-02 2.59E-02 1.74E-02 3.44E-03 1.62E-02 2.02E-02 

UF9 
Mean 7.6969 + 7.6112 - 7.6421 - 7.6329 - 7.6361 - 7.6828 
Std 1.63E-01 2.26E-01 1.49E-01 2.12E-01 2.13E-01 1.41E-01 

UF10 
Mean 4.0851 + 3.7792 - 3.8265 ≈ 3.8686 + 3.7591 - 3.8237 
Std 5.00E-01 3.01E-01 3.47E-01 3.15E-01 5.38E-01 2.51E-01 

-/+/≈ 4/4/2 6/0/4 9/0/1 8/2/0 5/1/4  
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
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4.4 The Effectiveness of the Composite DE Operator Pools 

In order to verify the effectiveness of our proposed composite DE operator pools, MOEA/D-CDE 

is further compared with five MOEA/D-CDE variants, i.e., CDE-op.1, CDE-op.2, CDE-op.3, 

CDE-op.4, and CDE-op.5. It is noted that CDE-op.i (i=1, 2, 3, 4) adopts the operator pool iop  defined 

in Section 3.1, while CDE-op.5 employs all the four DE mutation strategies used in this paper, i.e., 

“DE/rand/1”, “DE/rand/2”, “DE/current-to-rand/1” and “DE/rand/2”. In order to allow a fair 

comparison, all the parameters settings for all the MOEA/D-CDE variants are set the same with those 

of MOEA/D-CDE, as introduced in Section 4.3. 

Table 6 provides comparative results of MOEA/D-CDE with respect to all the other MOEA/D- 

CDE variants adopted here, on the UF test problems, regarding IGD. The experimental results show 

that MOEA/D-CDE performs best on UF2, UF7, UF9 and UF10, CDE-op.1 is best on UF3, UF4 and 

UF6, CDE-op.4 gets the best performance on UF8, and CDE-op.5 obtains the best results on UF1 and 

UF5. The Wilcoxon’s rank sum test shows that MOEA/D-CDE performs similarly to CDE-op. 1 on 

UF5, UF6 and UF10, to CDE-op.2 on UF8, to CDE-op.3 on UF1 and UF10, to CDE-op.5 on UF4, UF7 

and UF10. These experimental results reveal that certain DE operator pools can perform best for some 

UF test problems. However, the overall performance of MOEA/D-CDE is better when considering all 

the UF test problems, as MOEA/D-CDE is respectively better than CDE-op.1, CDE-op.2, CDE-op.3, 

CDE-op.4 and CDE-op.5 on 5, 9, 8, 9 and 5 out of 10 UF test problems. On the other hand, CDE-op.1, 

CDE-op.4 and CDE-op.5 only outperform MOEA/D-CDE on 2, 1 and 2 test problems, respectively. 

CDE-op.2 and CDE-op.3 are unable to outperform MOEA/D-CDE on any of the UF test problems.  

Table 7 further gives comparative results of MOEA/D-CDE on the UF test problems using HV, 

when compared to the other MOEA/D-CDE variants. As observed from Table 7, MOEA/D-CDE 

performs best on 4 (i.e., UF1-UF2, UF4, UF6) out of 10 UF test problems. One difference with the 

above IGD results is that MOEA/D-CDE can’t outperform CDE-op.1 when considering this HV metric, 

but only obtains comparable results with CDE-op.1 as MOEA/D-CDE performs better than, similar to, 

and worse than CDE-op.1 on 4, 2 and 4 UF test problems. For the remaining MOEA/D-CDE variants, 

similar conclusions with that of the above IGD results can be made that MOEA/D-CDE performs 

significantly better as it performs better than or similar to CDE-op.2, CDE-op.3, CDE-op.4 and 

CDE-op.5 on 10, 10, 8 and 9 out of 10 UF test problems, respectively.  

Table 8 provides comparative results of MOEA/D-CDE with respect to all the MOEA/D-CDE 

variants on the WFG test problems, showing that MOEA/D-CDE is best on WFG8 and WFG9. 

Furthermore, CDE-op.1 performs best on WFG1, WFG4 and WFG5, CDE-op.3 is best on WFG3, 

CDE-op.4 obtains the best results on WFG7, and CDE-op.5 gets the best results on WFG2 and WFG6. 

Regarding the comparison with CDE-op.2, CDE-op.3, and CDE-op.4, MOEA/D-CDE performs 

significantly better as it is better or similar on 8 out of 9 WFG test problems. For CDE-op.1 and 

CDE-op5, the Wilcoxon’s rank sum test shows that they obtain statistically similar results with 

MOEA/D-CDE on 6 out of 9 WFG test problems. Besides that, MOEA/D-CDE performs better than 

CDE-op.1 on WFG6, and CDE-op5 on WFG4 and WFG7. Therefore, MOEA/D-CDE performs slightly 

better than CDE-op5, but worse than CDE-op.1. 
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Table 8 
Comparative results of all the MOEA/D-CDE variants on the WFG test problems regarding IGD 

Algorithms 
Problems 

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5 
MOEA/
D-CDE 

WFG1 
Mean 2.301E-02 + 9.733E-02 - 2.153E-01 - 1.632E-01 - 2. 451E-02 ≈ 2.482E-02 
Std 2.20E-03 9.10E-02 1.82E-01 2.34E-01 6.02E-03 6.11E-03 

WFG2 
Mean 7.609E-02 ≈ 7.612E-02 ≈ 9.052E-02 - 1.517E-01 - 7.575E-02 ≈ 7.596E-02 
Std 1.19E-02 3.91E-02 3.47E-02 8.33E-02 2.35E-02 5.11E-02 

WFG3 
Mean 1.313E-02 ≈ 1.320E-02 ≈ 1.280E-02 + 1.297E-02 + 1.315E-02 ≈ 1.314E-02 
Std 2.13E-05 7.70E-05 2.16E-04 1.92E-04 2.35E-05 2.25E-05 

WFG4 
Mean 1.563E-02 + 1.843E-02 - 1.732E-02 - 1.710E-02 - 1.701E-02 - 1.574E-02 
Std 6.44E-04 3.32E-03 1.57E-03 1.61E-03 2.28E-03 4.87E-04 

WFG5 
Mean 6.710E-02 ≈ 6.742E-02 - 6.754E-02 - 6.734E-02 - 6.712E-02 ≈ 6.714E-02 
Std 5.42E-03 5.17E-03 1.41E-04 1.04E-04 5.52E-03 9.54E-05 

WFG6 
Mean 1.817E-02 - 1.557E-02 ≈ 2.677E-02 - 3.381E-02 - 1.399E-02 + 1.551E-02 
Std 1.45E-02 1.38E-02 1.14E-02 5.30E-03 4.86E-05 4.20E-03 

WFG7 
Mean 1.636E-02 ≈ 1.678E-02 - 1.641E-02 ≈ 1.630E-02 ≈ 1.692E-02 - 1.635E-02 
Std 1.87E-04 2.11E-04 9.76E-03 6.88E-03 1.96E-04 2.36E-04 

WFG8 
Mean 4.016E-02 ≈ 6.085E-02 - 5.382E-02 - 1.071E-01 - 4.102E-02 ≈ 3.994E-02 
Std 4.51E-02 7.60E-02 4.64E-02 1.14E-01 4.54E-02 4.67E-02 

WFG9 
Mean 1.482E-02 ≈ 1.535E-02 - 1.594E-02 - 1.612E-02 - 1.504E-02 ≈ 1.480E-02 
Std 1.56E-04 3.41E-04 1.38E-03 1.04E-03 3.57E-04 2.38E-04 

-/+/≈ 1/2/6 6/0/3 7/1/1 7/1/1 2/1/6  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 

 

Table 9 
Comparative results of all the MOEA/D-CDE variants on the WFG test problems regarding HV 

Algorithms 
Problems 

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5 
MOEA/
D-CDE 

WFG1 
Mean 8.8999 + 7.5038 - 6.6769 - 6.9624 - 8.4248 ≈ 8.5524 
Std 5.92E-01 1.62E-01 1.83E-01 1.57E-01 9.54E-01 8.12E-02 

WFG2 
Mean 8.3602 ≈ 8.2947 - 8.2158 - 8.0046 - 8.3735 ≈ 8.3756 
Std 1.818E-02 1.76E-01 1.44E-01 3.34E-01 2.81E-02 2.99E-02 

WFG3 
Mean 7.9518 ≈ 7.9511 ≈ 7.9547 + 7.9546 + 7.9519 ≈ 7.9520 
Std 9.437E-04 2.85E-03 5.94E-03 5.86E-03 7.80E-04 6.73E-04 

WFG4 
Mean 5.5599 + 5.2197 - 5.2581 - 5.2328 - 5.4023 - 5.4940 
Std 4.511E-02 1.45E-01 1.60E-01 1.30E-01 6.86E-02 6.27E-02 

WFG5 
Mean 5.1690 ≈ 5.1673 - 5.1647 - 5.1648 - 5.1681 ≈ 5.1691 
Std 1.325E-02 1.34E-02 1.61E-03 1.30E-03 1.23E-02 1.45E-02 

WFG6 
Mean 5.5160 - 5.6063 ≈ 5.0673 - 4.6939 - 5.6751 + 5.5996 
Std 4.562E-01 3.74E-01 5.04E-01 1.38E-01 2.62E-04 2.33E-01 

WFG7 
Mean 5.8581 + 5.7036 - 5.9019 + 5.9199 + 5.6676 - 5.7693 
Std 2.700E-01 8.94E-02 1.05E-01 7.28E-02 2.23E-01 1.35E-01 

WFG8 
Mean 4.9775 + 4.9306 - 4.6732 - 4.6732 - 4.9745 + 4.9429 
Std 1.919E-01 2.07E-01 2.31E-01 3.12E-01 1.32E-01 1.23E-01 

WFG9 
Mean 5.6040 ≈ 5.5998 - 5.6020 ≈ 5.5780 - 5.6022 ≈ 5.6044 
Std 1.185E-03 2.46E-03 2.51E-02 2.61E-01 1.85E-03 2.93E-03 

-/+/≈ 1/4/4 7/0/2 6/2/1 7/2/0 2/2/5  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 

 

Table 9 further gives comparative results of MOEA/D-CDE on the WFG test problems using HV, 
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when compared to the other MOEA/D-CDE variants. As observed from Table 9, MOEA/D-CDE 

performs best on WFG2, WFG5 and WFG 9. One difference with the above IGD results is that 

MOEA/D-CDE only obtains comparable results with CDE-op.5 as MOEA/D-CDE performs better than, 

similar to, and worse than CDE-op.5 on 2, 5 and 2 WFG test problems, respectively. For the remaining 

MOEA/D-CDE variants, similar conclusions with that of the above IGD results can be observed.  

MOEA/D-CDE performs significantly better than CDE-op.2, CDE-op.3, and CDE-op.4, but worse than 

CDE-op.1. 

Based on the comparison summary in the last rows of Tables 6-9, the effectiveness of the 

composite DE operator pools used in MOEA/D-CDE is experimentally validated (i.e., it is shown that 

the use of composite DE operator pools enhances the overall performance of our proposed approach 

when considering all the UF and WFG test problems).  

 

4.5 The Effectiveness of Adaptive Parameter Control Strategy 

To investigate the effectiveness of the adaptive parameter control strategy adopted in the composite 

DE operator pools, our algorithm is further compared to the MOEA/D-CDE variants with fixed 

parameters settings and other adaptive parameters settings. In MOEA/D-CDE, only the value of CR is 

fixed while the value of F is adaptively determined as introduced in Section 3.3. The compared 

MOEA/D-CDE variants follow the same procedures as MOEA/D-CDE except that the composite DE 

operator pools use different control parameters settings, which are described as follows. 

(1) CDE-1: the parameters settings for the DE operator pools are set to F = 0.1 and CR = 0.1; 

(2) CDE-2: the parameters settings for the DE operator pools are set to F = 1.0 and CR = 0.9; 

(3) CDE-3: the parameters settings for the DE operator pools are set to F = 0.8 and CR = 0.2; 

(4) CDE-4: the parameter CR for the DE operator pools is adaptively determined as introduced in 

[20], and F is set to the fixed value of 1.0; 

(5) CDE-5: the settings of F and CR for the DE operator pools are all adaptively determined as 

introduced in Section 3.3. 

Tables 10-13 respectively give the experimental results of all the compared algorithms on the UF 

and the WFG test problems using IGD and HV. As observed from Table 10, our algorithm performs 

best on 6 out of 10 UF test problems, i.e., UF1-UF3 and UF6-UF9. Moreover, our algorithm 

respectively outperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 8, 10, 8, 8 and 7 out of 10 UF 

test problems. Nevertheless, MOEA/D-CDE is only beaten by CDE-1 on UF4 and UF10, by CDE-3 on 

UF10, by CDE-op.4 on UF10, and by CDE-5 on UF4-UF5 and UF10. The Wilcoxon’s rank sum test 

also indicates that our algorithm performs similarly to CDE-3 on UF4 and to CDE-4 on UF4. Therefore, 

when considering all the UF test problems on IGD, our algorithm is better than all the MOEA-D/CDE 

variants with other parameters settings. Moreover, the HV results of all the compared algorithms in 

Table 11 further confirm the effectiveness of our adaptive parameter control strategy in solving the UF 

test problems, as our algorithm performs better than or similar to CDE-1, CDE-2, CDE-3, CDE-4 and 

CDE-5 on 9, 9, 8, 9 and 8 out of 10 UF test problems.  
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Table 10 
Comparative results of the MOEA/D-CDE variants using different parameters settings on the UF test problems 

regarding IGD 
Algorithms 

Problems 
CDE-1 CDE-2 CDE-3 CDE-4 CDE-5 

MOEA/
D-CDE 

UF1 
Mean 1.511E-03 - 1.917E-03 - 2.600E-03 - 4.474E-03 - 1.816E-03 - 8.072E-04 
Std 1.21E-02 1.21E-04 6.26E-04 2.20E-04 4.48E-04 2.83E-05 

UF2 
Mean 3.678E-03 - 2.472E-03 - 2.300E-03 - 2.819E-03 - 2.337E-03 - 9.283E-04 
Std 1.74E-03 3.29E-04 1.06E-03 1.03E-03 2.50E-03 1.31E-04 

UF3 
Mean 1.732E-02 - 7.549E-03 - 5.380E-02 - 6.073E-02 - 1.722E-03 - 1.443E-03 
Std 3.78E-02 4.81E-03 1.96E-02 8.90E-03 1.64E-02 8.10E-04 

UF4 
Mean 2.631E-02 + 3.557E-02 - 3.210E-02 ≈ 2.921E-02 ≈ 2.743E-02 + 3.190E-02 
Std 1.46E-03 2.61E-04 5.17E-04 5.27E-04 9.93E-04 6.77E-04 

UF5 
Mean 2.037E-01 - 1.008E-01 - 1.331E-01 - 1.370E-01 - 8.021E-02 + 9.101E-02 
Std 7.77E-02 1.96E-02 1.54E-02 2.22E-02 4.11E-03 2.73E-02 

UF6 
Mean 2.395E-01 - 6.334E-02 - 6.980E-02 - 6.537E-02 - 6.077E-02 - 5.903E-02 
Std 1.67E-01 6.66E-03 3.18E-02 1.98E-03 4.09E-03 6.39E-03 

UF7 
Mean 6.881E-02 - 2.062E-03 - 2.700E-03 - 4.125E-03 - 2.596E-03 - 8.006E-04 
Std 1.21E-01 1.44E-04 3.99E-04 6.05E-04 2.69E-04 1.66E-04 

UF8 
Mean 4.713E-02 - 3.498E-02 - 3.590E-02 - 3.898E-02 - 4.156E-02 - 2.908E-02 
Std 2.13E-02 4.62E-03 5.62E-03 2.82E-03 8.66E-03 2.53E-03 

UF9 
Mean 6.311E-02 - 4.303E-02 - 4.000E-02 - 4.923E-02 - 4.475E-02 - 2.154E-02 
Std 4.39E-02 1.96E-02 5.28E-03 2.81E-03 3.47E-02 5.66E-02 

UF10 
Mean 1.795E-01 + 3.852E-01 - 1.769E-01 + 1.650E-01 + 1.853E-01 + 2.168E-01 
Std 3.48E-02 8.17E-02 2.14E-02 3.23E-02 2.58E-02 4.31E-02 

-/+/≈ 8/2/0 10/0/0 8/1/1 8/1/1 7/3/0  
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
 

Table 11 
Comparative results of the MOEA/D-CDE variants using different parameters settings on the UF test problems 

regarding HV 
Algorithms 

Problems 
CDE-1 CDE-2 CDE-3 CDE-4 CDE-5 

MOEA/
D-CDE 

UF1 
Mean 3.6005 - 3.6606 - 3.6616 - 3.6585 - 3.6631 ≈ 3.6645 
Std 7.64E-02 6.07E-04 1.26E-03 7.43E-04 1.41E-03 8.54E-04

UF2 
Mean 3.6466 - 3.6558 - 3.6521 - 3.6576 - 3.6512 - 3.6643 
Std 1.74E-02 6.76E-03 1.56E-02 1.12E-02 2.17E-02 5.42E-03

UF3 
Mean 2.8714 - 3.6532 - 3.4821 - 3.4907 - 3.6241 ≈ 3.6636
Std 1.39E-01 1.03E-02 9.70E-02 5.98E-02 5.82E-02 4.57E-03 

UF4 
Mean 3.2495 ≈ 3.2302 - 3.2163 - 3.2206 - 3.2338 - 3.2438
Std 2.51E-02 1.01E-02 2.89E-02 2.66E-02 2.77E-02 2.14E-02 

UF5 
Mean 2.7593 - 3.2684 ≈ 3.0032 - 3.1719 - 3.3122 + 3.2631
Std 3.11E-01 7.25E-02 1.22E-01 1.51E-01 3.53E-02 3.28E-01

UF6 
Mean 2.7693 - 3.2166 ≈ 3.0877 - 3.1462 - 3.1947 - 3.2465 
Std 3.35E-01 2.11E-02 1.19E-01 1.03E-01 7.92E-02 1.38E-01

UF7 
Mean 3.2831 - 3.4938 ≈ 3.4946 ≈ 3.4921 - 3.4943 - 3.4968 
Std 3.70E-01 1.20E-03 1.25E-03 1.20E-03 1.07E-03 3.25E-03

UF8 
Mean 7.3082 - 7.2947 - 7.3214 - 7.3123 - 7.3536 - 7.3927 
Std 1.70E-01 7.03E-03 1.40E-02 7.13E-03 1.82E-02 2.02E-02

UF9 
Mean 7.5286 - 7.6461 - 7.6982 + 7.6741 - 7.6521 - 7.6828
Std 2.16E-01 9.18E-02 2.51E-02 2.28E-02 1.73E-01 1.41E-01

UF10 
Mean 6.2047 + 4.7846 + 6.3321 + 6.4348 + 6.2039 + 3.8237
Std 5.50E-01 4.89E-01 1.61E-01 3.75E-01 4.07E-01 2.51E-01

-/+/≈ 8/1/1 6/1/3 7/2/1 9/1/0 6/2/2  
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
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Table 12 

Comparative results of the MOEA/D-CDE variants using different parameters settings on the WFG test problems 
regarding IGD 

Algorithms 
Problems 

CDE-1 CDE-2 CDE-3 CDE-4 CDE-5 
MOEA/
D-CDE 

WFG1 
Mean 2.486E-02 ≈ 5.215E-02 - 2.543E-02 ≈ 6.847E-02 - 2.264E-02 + 2.482E-02 
Std 1.06E-01 9.29E-02 9.11E-02 1.41E-01 2.31E-04 6.11E-03

WFG2 
Mean 2.448E-01 - 3.878E-02 + 1.038E-01 - 7.718E-02 ≈ 8.375E-02 - 7.596E-02 
Std 8.58E-04 8.61E-03 5.71E-02 2.33E-02 1.41E-04 5.11E-02

WFG3 
Mean 1.321E-02 ≈ 1.329E-02 - 1.316E-02 ≈ 1.315E-02 ≈ 1.319E-02 ≈ 1.314E-02 
Std 1.52E-04 6.72E-05 4.89E-05 4.69E-05 7.42E-05 2.25E-05

WFG4 
Mean 1.551E-02 + 2.227E-02 - 1.609E-02 - 1.569E-02 + 1.587E-02 ≈ 1.574E-02 
Std 4.80E-04 3.98E-03 5.11E-04 6.87E-04 4.62E-04 4.87E-04

WFG5 
Mean 6.698E-02 ≈ 6.687E-02 ≈ 6.612E-02 + 6.718E-02 ≈ 6.700E-02 ≈ 6.714E-02 
Std 5.56E-03 5.92E-03 7.55E-03 3.21E-03 5.45E-03 9.54E-05

WFG6 
Mean 2.726E-02 - 1.412E-02 + 2.618E-02 - 1.906E-02 - 1.536E-02 ≈ 1.551E-02 
Std 8.53E-03 8.59E-05 1.59E-02 1.93E-02 5.70E-03 4.20E-03

WFG7 
Mean 1.631E-02 ≈ 1.683E-02 - 1.633E-02 ≈ 1.680E-02 - 1.671E-02 - 1.635E-02 
Std 8.57E-04 2.29E-05 4.06E-03 3.14E-03 1.38E-04 2.36E-04

WFG8 
Mean 6.964E-02 - 4.559E-02 - 4.784E-02 - 4.772E-02 - 5.452E-02 - 3.994E-02 
Std 4.05E-02 5.36E-03 4.32E-03 4.82E-03 4.36E-02 4.67E-02

WFG9 
Mean 1.486E-02 ≈ 1.702E-02 - 1.488E-02 ≈ 1.481E-02 ≈ 1.483E-02 ≈ 1.480E-02 
Std 8.94E-04 1.20E-03 7.33E-04 1.26E-04 1.51E-04 2.38E-04

-/+/≈ 3/1/5 6/2/1 4/1/4 4/1/4 3/1/5  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 

 
Table 13 

Comparative results of the MOEA/D-CDE variants using different parameters settings on the WFG test problems 
regarding HV 

Algorithms 
Problems 

CDE-1 CDE-2 CDE-3 CDE-4 CDE-5 
MOEA/
D-CDE 

WFG1 
Mean 8.7402 + 8.2016 - 9.0058 + 8.4113 - 9.0455 + 8.5524 
Std 7.35E-01 1.01E+00 2.93E-01 4.57E-01 6.55E-02 8.12E-02 

WFG2 
Mean 7.8163 - 8.3885 + 8.2961 - 8.3649 ≈ 8.3528 - 8.3756 
Std 3.59E-02 5.69E-02 1.86E-01 1.40E-02 1.48E-02 2.99E-02 

WFG3 
Mean 7.9512 ≈ 7.9501 - 7.9518 ≈ 7.9518 ≈ 7.9520 ≈ 7.9520 
Std 8.57E-04 1.48E-03 4.17E-04 4.32E-04 4.69E-04 6.73E-04 

WFG4 
Mean 5.6239 + 5.0949 - 5.4484 - 5.5873 + 5.6096 + 5.4941 
Std 2.09E-02 1.45E-01 4.64E-02 3.19E-02 2.61E-02 6.27E-02 

WFG5 
Mean 5.1696 ≈ 5.1653 ≈ 5.1706 ≈ 5.1687 ≈ 5.1707 ≈ 5.1691 
Std 1.22E-02 1.31E-02 1.67E-02 9.30E-03 1.28E-02 1.45E-02 

WFG6 
Mean 4.8897 - 5.6731 + 5.0745 - 5.5389 - 5.6081 ≈ 5.5996 
Std 2.75E-01 6.43E-04 5.35E-01 5.20E-01 2.64E-01 2.33E-01 

WFG7 
Mean 5.9101 + 5.6736 - 5.8005 + 5.6743 - 5.6703 - 5.7693 
Std 2.52E-01 3.39E-04 2.66E-01 7.85E-03 4.44E-01 1.35E-01 

WFG8 
Mean 4.7221 - 4.9414 ≈ 4.9132 - 4.9397 - 4.8268 - 4.9429 
Std 2.39E-01 2.22E-01 1.42E-01 1.37E-01 1.44E-01 1.23E-01 

WFG9 
Mean 5.5915 ≈ 5.5897 - 5.6042 ≈ 5.6041 ≈ 5.6042 ≈ 5.6044 
Std 9.78E-02 6.13E-03 1.87E-03 1.35E-03 1.05E-03 2.93E-03 

-/+/≈ 3/3/3 5/2/2 4/2/3 4/1/4 3/2/4  

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to 
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level 
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From Table 12, it is observed that our algorithm obtains the best results on WFG3, WFG8 and 

WFG9. The Wilcoxon’s rank sum test shows that our algorithm performs similarly to CDE-1, CDE-2, 

CDE-3, CDE-4 and CDE-5 on 5, 1, 4, 4, 5 out of 9 WFG test problems, which indicates that the 

performance of our algorithm is insensitive to the parameters settings of F and CR when solving most 

of the WFG test problems. The final results in the last row of Table 12 show that our algorithm 

outperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 3, 6, 4, 4 and 3 WFG test problems, but 

only underperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 1, 2, 1, 1 and 1 WFG test problems, 

respectively. Therefore, our algorithm still performs better when considering all the WFG test problems. 

Table 13 further provides comparative results of MOEA/D-CDE on the WFG test problems using HV 

when compared to all the MOEA/D-CDE variants. As observed from Table 13, our algorithm also 

achieves the best results on WFG3, WFG8 and WFG9. one difference with the above IGD results is 

that MOEA/D-CDE only obtains comparable results with CDE-1 as MOEA/D-CDE performs better 

than, similar to, and worse than CDE-1 on 3, 3 and 3 WFG test problems, respectively. For the 

remaining MOEA/D-CDE variants (i.e., CDE-2, CDE-3, CDE-4 and CDE-5), similar conclusions with 

that of the above IGD results can be found that MOEA/D-CDE performs better than CDE-2, CDE-3, 

CDE-4, and CDE-5. Therefore, these experimental results on WFG test problems further confirm the 

effectiveness of the adaptive parameter control strategy adopted in MOEA-D/CDE. 

 

4.6 Time Complexity Analysis 

In this subsection, the worst time complexity analysis of MOEA/D-CDE is provided and compared 

to that of other algorithms. Based on the pseudo-code of MOEA/D-CDE in Algorithm 4, the worst 

time complexity of MOEA/D-CDE is mainly determined by the evolutionary loop in lines 5-47 of 

Algorithm 4. It is noted that when calculating the worst time complexity, the number of decision 

variables n and the number of objectives m are ignored as they are much smaller than the population 

size N. In line 5, the worst time complexity to perform 10-tournament selection is ( )O N . For the 

evolutionary loop in lines 6-42, it will take the worst time complexity which is ( )O W N  to select an 

operator pool in lines 8-12, and is ( )O N  to choose a parent set in lines 13-17; the new offspring are 

generated using the new scaling factor F in lines 18-19 with the worst time complexity ( )O N . Then, 

the reference point is updated in lines 23-27 with the worst time complexity ( )O m N , and at most 

rn  parents in set E are replaced in lines 28-37 with the worst time complexity 2( )O N  as the size of E 

may be N with a probability (1  ). In lines 39-40, the worst time complexity to update the 

performance array (2)( )Array W  is ( )O N . At last, the F  , g and the utility values i  (i=1, 2,..., N) 

are renewed in lines 43-47 with the worst time complexity ( )O N . In summary, the worst time 

complexity of MOEA/D-CDE can be simplified to 2( )O N , which has a worst time complexity 

comparable with that of MOEA/D-DE [36], MOEA/D-DRA [55], and MOEA/D-FRRMAB [29], while 

the worst time complexity of MOEA/D-STM is higher due to the use of a stable matching model [28]. 

To further study the extra computational burden induced by the adaptive composite operator 

selection and parameter control strategy, we have collected the actual CPU time cost of MOEA/D-CDE, 

MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM and MOEA/D-FRRMAB on UF1-UF10. Their 

average CPU times from 30 independent runs are listed in Table 14. It is noted that the lowest CPU 
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time is highlighted in boldface. The CPU time required by ENS-MOEA/D is not reported because it is 

implemented in MATLAB, which makes it very slow [29]. From Table 14, it is observed that 

MOEA/D-DE was the fastest in solving all the UF problems, while MOEA/D-DRA ranked second in 

terms of running speed as the dynamic resource assignment strategy designed in MOEA/D-DRA 

requires some extra computational cost. As MOEA/D-CDE and MOEA/D-FRRMAB are all designed 

by embedding the adaptive operator selection mechanism into the framework of MOEA/D-DRA, it is 

certain that they will have a higher computational cost than MOEA/D-DRA, as justified by our 

experimental results in Table 14. It is also observed that MOEA/D-CDE performed faster than 

MOEA/D-FRRMAB on all the UF test problems. For MOEA/D-CDE, it is worth consuming an 

additional 27% of CPU time with respect to MOEA/D-DRA on average for obtaining the performance 

improvement caused by the adaptive composite operator selection and parameter control strategy, as 

listed in Table 2. Moreover, it is worth noting that the CPU time of MOEA/D-STM is much longer than 

that of other MOEA/D variants. That is mainly due to the fact that the stable matching model is 

time-consuming in the selection process and the source code may not be fully optimized by the authors. 
 

Table 14 
Average CPU time (in seconds) cost by all the compared algorithms on the UF test problems 

   Algorithms 
Problems 

MOEA/D-
DE 

MOEA/D-
DRA 

MOEA/D-
STM 

MOEA/D-
FRRMAB 

MOEA/D-
CDE 

UF1 4.432 5.942 233 8.489 7.987 
UF2 4.764 6.544 224 8.520 8.072 
UF3 5.314 6.401 234 8.673 8.358 
UF4 4.656 6.057 224 8.413 7.583 
UF5 4.713 5.867 229 8.454 7.746 
UF6 4.927 6.095 228 8.522 7.856 
UF7 3.972 5.683 234 7.855 7.217 
UF8 6.476 9.419 419 12.588 11.268 
UF9 5.754 8.488 421 12.469 11.545 

UF10 6.397 9.351 456 13.193 11.453 
Average 4.764 6.441 263.909 8.925 8.190 

 

5. Conclusions 

In this paper, an adaptive composite operator selection and parameter control strategy for 

MOEA/D namely MOEA/D-CDE, was proposed. Four DE mutation strategies were used to build the 

composite operator pools, which can address the limitations of using a single DE mutation strategy 

when solving different types of MOPs. To adaptively determine the preferred DE operator pool during 

the evolutionary search, an adaptive composite operator selection mechanism was designed based on 

the previous search experience. Moreover, some parameters used in the composite operator pools were 

also automatically determined by using an adaptive parameter control scheme, which was shown to 

further enhance optimization performance. When embedding the proposed approach into the baseline 

algorithm MOEA/D-DRA, the optimization performance was substantially improved. Our 

experimental results validated that MOEA/D-CDE is able to outperform MOEA/D-DE, ENS-MOEA/D, 

MOEA/D-FRRMAB and MOEA/D-STM on most of the test problems adopted. The effectiveness of 
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the proposed adaptive composite operator selection and parameter control strategy was also 

experimentally studied. 

As part of our future work, we intend to extend our study to other nature-inspired algorithms for 

tackling more difficult optimization problems modeled from real-life engineering applications. It is 

interesting to study how to combine different evolutionary operators from EAs, DE, particle swarm 

optimization and ant colony optimization into our composite operator pools, so that each composite 

operator pool can be more effective and can overcome the natural shortcomings of each other. 
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