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Abstract 

This paper proposes a novel bicriteria assisted adaptive operator selection (B-AOS) strategy for 

decomposition-based multiobjective evolutionary algorithms (MOEA/Ds). In this approach, two operator 

pools are employed to focus on exploitation and exploration, each of which includes two DE operators 

with distinct search patterns. Then, two criteria, one (called the Pareto criterion) emphasizing 

convergence and the other (called the crowding criterion) focusing on diversity, are collaboratively used 

to assist the selection of a suitable DE operator for the current solution, which aims to obtain a good 

balance between exploitation and exploration during the evolutionary search of each solution. Specifically, 

the Pareto criterion is used to decide whether exploration or exploitation is preferred for the current 

solution, which will help to select an operator pool. After that, from the selected operator pool, the 

crowding criterion is used to further assist the selection of the DE operator based on a binary tournament 

strategy. The experimental results show that our proposed B-AOS performs better than other existing 

state-of-the-art adaptive operator selection methods, and several MOEA/Ds embedded with B-AOS can 

significantly improve their performance on most of the benchmark problems adopted. 
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1. Introduction 

Many real-world engineering applications need to find the optimality of several (often conflicting) 

objectives simultaneously [1-4], which are often termed multiobjective optimization problems (MOPs). In 

general, an MOP is defined mathematically as follows: 

1min ( ) ( ( ),..., ( ))T
m

x
F x f x f x


 ,                                (1) 

where n �  is the n-dimensional decision (variable) space (n is the number of decision variables) and 

1( ,..., )T
nx x x  is a decision vector in  . An objective vector F(x) defines m objective functions 

1( ),..., ( )mf x f x , which are used to obtain m objective values after inputting a decision vector x. Due to the 

conflict among the objectives, there exists a set of equally optimal solutions termed the Pareto-optimal set 

(PS), and the mapping of PS in the objective space is termed the Pareto-optimal front (PF). The PF can 

help decision makers perform the final selection based on their preference for the objectives [5-6]. During 

recent decades, multiobjective evolutionary algorithms (MOEAs) have been regarded as a popular and 

effective approach to solve MOPs, as their population-based nature can obtain a set of solutions in a 

single run [7-10]. Most MOEAs can be classified into three main types according to their environmental 

selection mechanisms, i.e., Pareto-based MOEAs [11-14], indicator-based MOEAs [15-18] and 

decomposition-based MOEAs (MOEA/Ds) [19-22]. In particular, MOEA/Ds have become very popular 



 

 

in recent years due to their promising performance in various complicated MOPs. In MOEA/Ds, MOPs 

are decomposed into multiple single-objective optimization subproblems by a set of uniformly distributed 

weight vectors. Then, all the subproblems are simultaneously optimized in a collaborative manner [19]. 

Generally, MOEA/Ds [21-22] contain several components in their algorithmic design, including the 

decomposition approaches (defined by the used aggregation function and weight vectors), the selection of 

evolved subproblems, the recombination operators, and the solution update methods for each subproblem. 

Recent studies of MOEA/Ds have been conducted to improve the above components to further enhance 

the optimization performance, which are briefly introduced below. 

Regarding decomposition approaches, two relevant schemes are those adopted in MOEA/D-UDM 

[23] and UMOEA/D [24] to generate uniform weight vectors for subproblems. In MOEA/D-ACD [25], 

some constraints are embedded into the decomposition functions, which reduces the improvement regions 

for subproblems. In MOEA/D-M2M [26], the decomposition approach is modified by transforming an 

MOP into a set of simple MOPs, which simplifies the solution of the original MOP. Moreover, a 

hierarchical decomposition approach is presented in MOEA/HD [27] to address ill-defined MOPs with 

pointed, long-tailed, disconnected, or degenerate PFs, and an adversarial decomposition method is 

proposed in MOEA/AD [28] to exploit the complementary characteristics of different subproblems. 

On the selection of evolved subproblems, a dynamic resource allocation strategy is introduced in 

MOEA/D-DRA [29], which selects the subproblems to be evolved based on the improvements for these 

subproblems. Its more generalized version is presented in MOEA/D-GRA [30], which uses a probability 

vector of improvements to assign computational resources. In MOEA/D-IRA [31], the diversity status of 

subproblems is further considered in order to attain a more reasonable allocation. Moreover, the 

computational resources to each subspace are allocated by measuring the subspace contributions to the 

population convergence in OPE-MOEA [32].Regarding the recombination operators, many studies have 

been conducted in MOEA/Ds [33-39], which exploit the genetic information of parent solutions to 

produce a better offspring solution. In the original MOEA/D [19], simulated binary crossover (SBX) [33] 

was first studied for a continuous search space. In [40], another commonly used crossover operator, i.e., 

differential evolution [34] (DE), is used to address some complicated MOPs, showing a strong global 

search ability. In AHX [39], a hybrid crossover operator was designed to combine the advantages of the 

local search ability in SBX and the strong global search capability in DE. 

Finally, for the subproblem solution update methods, the largest number of subproblems that can be 

replaced is constrained as nc in MOEA/D-DE [40] (nc is a preset integer value). Then, a stable matching 

model is designed in MOEA/D-STM [41] to associate solutions for subproblems, aiming to balance the 

convergence (measured by the aggregated function values of solutions for subproblems) and the diversity 

(reflected by the distances between solutions and the subproblem direction vectors). Furthermore, an 

interrelationship-based selection mechanism is proposed in MOEA/D-IR [42] based on the mutual 

preference of solutions and subproblems, which follows the principle of diversity first and convergence 

second. In ENS-MOEA/D [43], different neighborhood settings are adaptively selected for solution 

selection and update. In MOEA/D-AGR [38], an adaptive global replacement scheme studies the effect of 



 

 

replacement neighborhoods, which concludes that the sigmoid function-based adaptive scheme is the best 

choice to control replacement neighborhoods. More recently, the concept of incomplete preference lists 

was introduced in [44], which can be used in the stable matching model [41] to remedy its loss of 

population diversity. 

This paper mainly focuses on the recombination operators of MOEA/Ds. As reflected by the studies 

reported in [36, 45, 46], the use of a single DE operator may show some shortcomings in solving MOPs 

with certain complicated features; thus, multiple DE operators are suggested for MOEA/Ds. There are 

few research studies that exploit the convergence and diversity status of each solution in recombination 

operators of MOEA/Ds, which may be a promising path to combine their advantages. Thus, this paper 

designs a novel bicriteria assisted adaptive operator selection (B-AOS) strategy for MOEA/Ds, aiming to 

further improve their search capability. Two operator pools are used in the B-AOS to focus on 

exploitation and exploration. Then, in each operator pool, two DE operators with distinct search patterns 

are included to compete for computational resources. Two criteria, i.e., the Pareto criterion and crowding 

criterion, are employed to adaptively select DE operators. The Pareto dominance status of the selected 

solutions (called the Pareto criterion) is exploited to assist the selection of an operator pool in B-AOS, 

which is used to reflect whether exploration or exploitation is preferred for the solution at the current 

evolutionary stage. After that, a crowding-based binary tournament competition strategy (called the 

crowding criterion) is used to further assist the DE operator selection from the above operator pool, which 

aims to strike a good balance between exploration and exploitation. To conclude, our proposed B-AOS 

consists of the following contributions: 

1) Based on the distinct search characteristics of four common DE operators, two operator pools are 

adopted to focus on exploitation and exploration, each of which includes two DE operators with distinct 

search patterns. 

2) Different from the existing AOS methods, a new bicriteria method is proposed. One (Pareto-based 

criterion) emphasizes convergence, and the other (called crowding criterion) focuses on diversity. Both 

criteria are collaboratively used to assist AOS in selecting a DE operator for the current solution, with the 

aim of obtaining a good balance between exploitation and exploration during the evolutionary search of 

each solution. 

The rest of this paper is organized as follows. Section 2 introduces the related background, including 

different types of DE operators, related works about AOS, and an analysis of their search characteristics. 

The details of B-AOS are described in Section 3, including a Pareto-assisted operator pool selection and a 

crowding-assisted operator selection used in each pool. In Section 4, the experimental settings are 

provided, including the used parameter settings and performance indicators. All the experimental results 

are summarized and discussed in Section 5. Finally, this study is concluded, and some paths for future 

research are provided in Section 6. 

2. Preliminaries 

2.1 Different Types of DE Operators 

Recombination is an important operator in MOEAs, as it allows inheritance of the genetic information 



 

 

of the parents to their offspring with the aim of improving their quality. In general, SBX [33] and DE [34] 

are two popular recombination operators used in MOEAs. Specifically, the DE operator has a strong global 

search ability, which is commonly used in MOEA/Ds [40]. Several DE operators have been proposed, and 

each of them is advantageous for solving certain types of MOPs [36, 45]. 

As suggested in recent studies of AOS in MOEA/D-FRRMAB [36] and MOEA/D-CDE [45], four 

popular DE mutation strategies with distinct search characteristics (DE/rand/1, DE/current-to-rand/1, 

DE/rand/2 and DE/current-to-rand/2) are used in this paper and are defined in Eqs. (2)-(5), as follows: 
1 2( )r ri iv x F x x                                             (2) 

31 2( ) ( )rr ri i iv x K x x F x x       ,                               (3) 
31 2 4( ) ( )rr r ri iv x F x x F x x       ,                               (4) 

3 51 2 4( ) ( ) ( )r rr r ri i iv x K x x F x x F x x          ,                   (5) 

where ix  is called the target vector, usually set as each individual in the current population, and iv  

denotes the mutant vector. 1rx , 2rx , 3rx , 4rx , 5rx  are five distinct solutions randomly selected from the 

population, which are different from ix . The scaling factors [0,1]F  and [0,1]K   are positive real 

values to control the weighting of difference vectors. 

After producing the above mutant vectors in DE, a crossover strategy is run in DE to generate each 

dimension of offspring iu  from the current individual ix  or the mutant vector iv . Here, the binomial 

crossover commonly used in DE is given by 

,    if    or  
,    otherwise

i
j randi
ij
j

v rand CR j j
u x

  


                              (6) 

where {1,..., }i N  is the index of an individual (N is the population size), {1,..., }j n  is the dimension 

index of solutions (n is the dimension of the decision variable space), rand is a uniformly distributed 

random number in [0, 1], the crossover rate CR is a user-defined control parameter in [0, 1], and randj  is a 

random index selected from {1,..., }n  to ensure that at least one variable is inherited from iv . When i
ju  is 

beyond its allowable bounds, it will be randomly initialized within the feasible range. Thus, the generated 

offspring can simultaneously inherit parts of the information from the original and mutant vectors. 

Based on the above DE mutation strategies in Eqs. (2)-(5), it is easy to find that the difference vectors 

are composed of two random individuals, which provide a wide range of exploration. With the increase in 

difference vectors, the exploration range increases. As the DE/rand/2 and DE/current-to-rand/2 strategies 

contain two difference vectors with four random individuals, they provide more extensive exploration 

capabilities than the strategies of DE/rand/1 and DE/current-to-rand/1. However, the DE/rand/1 and 

DE/current-to-rand/1 strategies show stronger exploitation abilities. To demonstrate their different 

exploitation abilities, assume that the target vector ix  is a constant, and the values of K and F are set the 

same in Eqs. (2)-(5), while other vectors ( 1rx , 2rx , 3rx , 4rx , 5rx ) are uniformly and randomly selected from [0, 

1]. Then, according to the property of uniform distribution, it is easily concluded that the expectations of 
1rx , 2rx , 3rx , 4rx , 5rx  will be 0.5 with variances of 1/12. Thus, it is easy to obtain that the expectations of iv  

are equal to the expectations of their corresponding target vector ix  for Eqs. (2)-(5), while the variances of 
iv  are given below: 



 

 

1 22( ) ( ( ) ( ))r riD v F D x D x  ,                                        (7) 

31 22( ) ( ( ) ( )+ ( ))rr riD v F D x D x D x  ,                                  (8) 

31 2 42( ) ( ( ) ( )+ ( ) ( ))rr r riD v F D x D x D x D x   ,                           (9) 

3 51 2 42( ) ( ( ) ( )+ ( ) ( ) ( ))r rr r riD v F D x D x D x D x D x    ,                  (10) 

where 3 51 2 4( )= ( )= ( )= ( )= ( )=1/12r rr r rD x D x D x D x D x  is the variance in random difference vectors. For clarity, the 

statistical experiments are performed 200,000 times for four DE mutation strategies, which visually show 

their exploration capabilities during the evolutionary search. Assuming that the target vector ix  is set to 

0.5, the values of F and K are all set to 0.5, and other vectors ( 1rx , 2rx , 3rx , 4rx , 5rx ) are uniformly and 

randomly selected from [0, 1], the probability distributions of iv  using different DE mutation strategies 

are plotted in Fig. (1). Thus, with the increase in their variances, the exploration capabilities will become 

stronger from DE/rand/1, DE/current-to-rand/1, DE/rand/2, to DE/current-to-rand/2, which can be used in 

different evolutionary stages. 
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Fig. 1: The exploration capabilities of the four different DE mutation strategies 

2.2 Related Works of Adaptive Operator Selection 

In recent studies of MOEA/Ds [36, 45], some AOS strategies have been employed to adaptively 

select recombination operators for generating new solutions during the evolutionary search, which can 

significantly improve their performance when compared with a single recombination operator. In general, 

AOS involves two main components: credit assignment and operator selection. The first defines how to 

reward an operator based on its recent performance in the search process, while the second uses these 

rewards to decide which operator should be selected. 

Some studies [46-49] have been performed to design credit assignment schemes. For example, in 

[46], the improvement of the average fitness was regarded as the reward amount. However, in [47], each 

recombination operator was rewarded based on its maximal fitness improvement recently achieved. 

Moreover, both diversity and fitness improvements were considered in [48] to reward operators, and two 

rank-based credit assignment schemes were designed in [49] to better estimate the performance of 

operators during the evolutionary search. 

Regarding operator selection, some related studies can be found in [36, 45, 50-52]. For example, the 

probability matching method [50] was designed to give high probabilities for selecting the operators with 



 

 

average performance, while the adaptive pursuit method [51] adopts a winner-take-all strategy to increase 

the probability for selecting the best operator. In ADEMO/D [52], both probability matching and adaptive 

pursuit methods are combined with four credit assignment schemes based on the improvements of the 

relative fitness. Moreover, four different DE mutation strategies with a sliding window are employed in 

MOEA/D-FRRMAB [36] to select operators based on their enhancements on subproblems. Similarly, 

four DE operator pools are organized in MOEA/D-CDE [45], which includes two DE mutation strategies 

with complementary search patterns in each pool to provide an enhanced search capability. In addition, a 

hybrid control strategy of parameters and mutation operators was reported in AMODE-RAVM [53], 

which combined a reference axis vicinity mechanism to speed up convergence by using both randomness 

and guided information derived from the evolutionary search. 

2.3 Motivations 

As introduced in Section 2.2, most of the existing AOS methods [36, 45, 50-52] adaptively select 

recombination operators based on the current performance of the operators during the evolutionary search 

process. In fact, due to the uncertainty and randomness during the evolutionary search, it is not always 

effective to predict which operator is more suitable for recombination. In this paper, the characteristics of 

four commonly used DE mutation strategies are first specifically analyzed and redefined in a statistical 

sense, as introduced in Section 2.1. Considering the advantages of DE mutation strategies in exploitation 

and exploration, the convergence and diversity status of each solution during the current evolutionary 

stage is used to assist the selection of an appropriate operator for their recombination. In general, when 

the status of solutions is far from convergence, MOEAs often need to enhance their exploration capabilities, 

attempting to expand their diversity. Otherwise, MOEAs should emphasize their exploitation abilities to 

speed up convergence. Therefore, the Pareto dominance status and the crowding status are used as two 

different criteria in this paper to assist the selection of recombination operators in MOEA/Ds; it is helpful to 

exert their advantages, especially when exploration or exploitation is preferred during the current 

evolutionary process of each solution. 

Inspired by the above analyses and discussions, two operator pools are used in the proposed B-AOS, 

which focus on exploitation and exploration according to the Pareto criterion. In each of the two pools, 

two DE mutation strategies with distinct search patterns are used to allow the computational resources to 

compete according to the crowding criterion. It can be easily found that the obvious distinction between 

the proposed B-AOS and the existing AOS methods is that the status of each solution during the current 

evolutionary stage is employed to select suitable operators in B-AOS, rather than considering the recent 

operators’ performance. 

3. Bicriteria Assisted Adaptive Operator Selection 

In this section, the details of the proposed B-AOS are introduced, which helps to select a suitable DE 

strategy for each solution during the evolutionary search. First, a Pareto-assisted operator pool selection in 

B-AOS is presented, which estimates the Pareto dominance status of the current solution to decide which 

operator pool is better for recombination at the current evolutionary stage. Then, a crowding-assisted 

operator selection is introduced to further select a DE strategy for the current solution, which evaluates the 



 

 

crowding status of solutions in the neighborhood to assist the selection of a DE strategy from each operator 

pool. Finally, the proposed B-AOS is embedded into a simple MOEA/D variant (i.e., MOEA/D-DE [40]), 

which is used as an example to illustrate how to embed B-AOS into other MOEA/Ds, and the 

corresponding pseudocode is provided to facilitate the implementation of MOEA/D-BAOS. 

3.1 Pareto-Assisted Operator Pool Selection 

Based on the characteristics of the four different DE mutation strategies described in Section 2.1, they 

are classified into two different operator pools, which focus on exploitation and exploration as follows: 

Pool-I = {DE/rand/1 ( I
1DE ), DE/current-to-rand/1 ( I

2DE )}            (11) 

Pool-II = {DE/rand/2 ( II
1DE ), DE/current-to-rand/2 ( II

2DE )}           (12) 

Each operator pool includes two different DE mutation strategies with distinct search patterns. The DE 

mutation strategies of Pool-I emphasize exploitation, while the DE mutation strategies of Pool-II focus on 

exploration. To be more detailed, a parameter type is used to indicate which operator pool will be used as a 

candidate pool, which depends on the status of the selected solution. If exploitation is needed for the 

selected solution in the evolutionary stage, Pool-I should be used, which helps to inherit the advantages of 

parents due to the relatively smaller disturbance. In B-AOS, the Pareto-assisted operator pool selection is 

first used to determine the setting of the type based on the Pareto dominance status of the currently selected 

solution x, as follows: 

I , if  is non dominated solution

II otherwise

     x -
type

    


 
 ,

                      (13) 

The settings of type = I and type = II indicate the use of Pool-I and Pool-II, respectively. In (13), the 

Pareto dominance status of x is used to indicate whether exploitation or exploration is preferred for 

recombination at the current evolutionary stage of x. If x is a nondominated solution, exploitation should be 

needed to find more superior solutions near x. Otherwise, the status of x is far from convergence, and thus, 

more exploration should be required to search for more nondominated solutions in uncovered areas. In this 

way, this strategy can select DE strategies to adaptively focus on exploitation and exploration based on the 

Pareto dominance status of different solutions. 

For clarity, the pseudocode of B-AOS is presented in Algorithm 1 with the inputs x (the selected 

solution), P (the population), B (the index sets of the neighbors of all solutions) and an operator pool (four 

distinct DE mutation strategies in Eqs. (2)-(5)). In line 1, the solution x is checked to determine whether it 

is nondominated in P. Then, as shown in line 2, if x is a nondominated solution, type = I in line 3 indicates 

that Pool-I = { I
1DE , I

2DE } will be used as the candidate pool. Otherwise, type = II in line 6 indicates that 

Pool-II = { II
1DE , II

2DE } will be used as the candidate pool. After that, crowding-assisted operator selection 

(Algorithm 2) will be further used to adaptively select one DE mutation strategy from the candidate pool, 

i.e., Pool-I = { I
1DE , I

2DE } as shown in line 4 or Pool-II = { II
1DE , II

2DE } as shown in line 7. Finally, in line 9, 

the operator selected by B-AOS is returned as the recombination operator for the solution x. 

 

 

 



 

 

Algorithm 1: Bi-criteria Assisted Adaptive Operator Selection (x, P, B, Operator Pool)

Input: 
x: the current selected solution 
P: the population 
B: the index sets of the neighbors of all solutions 
Operator Pool={ I

1DE , I
2DE , II

1DE , II
2DE } 

Output: operator 

1. calculate the Pareto dominance status of x in P; 
2. if x is a non-dominated solution 

    // exploitation abilities are needed for recombination 
3.     type = I    //Pool-I = { I

1DE , I
2DE } will be used as candidate pool ; 

4.     operator = Crowding-Assisted Operator Selection (x, P, B, Pool-I); 
5. else 

    // exploration abilities are needed for recombination 
6.     type = II    //Pool-II = { II

1DE , II
2DE } will be used as candidate pool; 

7.     operator = Crowding-Assisted Operator Selection (x, P, B, Pool-II); 
8. End 
9.  return operator 

3.2 Crowding-Assisted Operator Selection 

In this crowding-assisted operator selection, a binary tournament competition strategy is used to select 

one DE strategy from each candidate pool according to the crowding status of two selected solutions. Here, 

the HAD method [54] is used to reflect the crowding status of solutions in their neighborhoods. Given the 

neighbor of one solution xi, i.e., B(xi), the HAD value of xi can be computed as follows: 

( ),

( ) 1
( ) ,

1/ ( , )j i j i

i

i
i j

x B x x x

B x
HAD x

d x x
 





                               (14) 

where d(xi, xj) denotes the Euclidean distance between solutions xi and xj in objective space. Note that B(xi) 

is formed by these solutions 1 ,..., Ti ix x  associated with their corresponding weight vector 1 ,..., Ti iw w  

(where 1 ,..., Ti iw w  are the T closest weight vectors to wi) in MOEA/Ds, which is introduced in Section 

3.3. This HAD approach considers the Euclidean distances to other solutions’ neighbors, which is more 

accurate in reflecting the crowding status of each solution in the local search space. To visually show the 

calculation of the HAD value, one simple example is provided in Fig. 2, where a solution x1 is assumed to 

have three neighboring solutions (i.e., x2, x3 and x4). Then, HAD(x1) is computed as follows: 

1
1 2 3

3
( ) ,

1/ 1/ 1/
HAD x

d d d


 
                               (15) 

where d1, d2 and d3 represent the Euclidean distance between x1 and its neighboring solutions (x2, x3 and 
x4) in objective space. 
 
 

 

  
       

 
Fig. 2: An example of HAD approach 
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The pseudocode of crowding-assisted operator selection is introduced in Algorithm 2 with the inputs x 

(the currently selected solution), P (the population), B (the sets of the neighbors of all solutions) and a 

candidate pool (such as Pool-I or Pool-II, each of which contains two distinct DE mutation strategies). In 

line 1, a solution y is randomly selected from P, which is used to compare with the selected solution x. After 

that, the crowding status of the two solutions is estimated by Eq. (14) in line 2. As shown in lines 3-13, the 

binary tournament competition strategy is used to decide whether to adopt 1DEtype  or 2DEtype  as the 

recombination operator for x. As shown in line 3, if the crowding distance of x is larger than that of y, one 

DE mutation strategy (i.e., 1DEtype ) with more emphasis on exploitation is selected as the recombination 

operator for x in line 4, which helps to exploit the local area. As shown in line 5, if the crowding distance 

of x is smaller than that of y, due to the similarity among these neighborhood solutions of x, then one DE 

mutation strategy (i.e., 2DEtype ) is selected as the recombination operator for x in line 6, which could 

extend the exploration on this crowded area. Otherwise, as shown in lines 8-12, if the crowding distances 

of x and y are equal, one DE mutation strategy will be randomly selected from the candidate pool. Finally, 

the operator chosen from the candidate pool is returned in line 14. 

Algorithm 2: Crowding-Assisted Operator Selection (x, P, B, Candidate Pool) 

Input: 
x: the current selected solution 
P: the population 
B: the sets of the neighbors of all solutions 
Candidate Pool={ 1DEtype , 2DEtype } 

Output: operator 
1. Randomly select one solution y from P; 
2. Estimate the crowding status of x and y using their respective neighbors by (14); 
3. if ( ) ( )HAD x HAD y  
4.     operator = 1DEtype ; 
5. else if ( ) ( )HAD x HAD y  
6.     operator = 2DEtype ; 
7. Else 
8.     if random < 0.5 
9.         operator = 1DEtype ; 
10.     Else 
11.         operator = 2DEtype ; 
12.     End 
13. End 
14. return operator 

3.3 Incorporation with MOEA/D 

In this subsection, the proposed B-AOS is embedded into MOEA/D as shown by the pseudocode in 

Algorithm 3 with the inputs MOP (the target MOP), N (the population size), T (the neighborhood size),   

(the probability of local mating) and operator pool (including four DE mutation strategies). First, as shown 

in line 1, the population P is initialized by randomly sampling N solutions from the decision space of the 

MOP. In line 2, a set of weight vectors, i.e., W, is generated, which consists of N uniformly distributed 

weight vectors in objective space. Then, in lines 3-6, for the weight vector wi ( {1,..., }i N ), the indexes of 



 

 

its T closest weight vectors are saved into the set   1 2{ , ,..., }Ti iB ii  , and then the solutions 1 ,..., Ti ix x  

associated with the weight vectors 1 ,..., Ti iw w are also saved into the neighbor of xi, i.e., B(xi). In line 7, the 

ideal point idez  is initialized by finding the current best value of each objective. After that, as shown in 

lines 9-14, for each solution x P , its neighbor B(i) is selected as candidate set E with a high probability 

  in line 11. Otherwise, the whole population P is selected as candidate set E with a lower probability 1-  

in line 13. Then, as shown in line 15, the bicriteria assisted adaptive operator selection (Algorithm 1) is 

used to select one DE mutation strategy from the operator pool, which is used for recombination of x. 

Next, two indexes are randomly selected from E to form parent solutions in line 16, and then a new 

offspring y is generated by using the selected DE mutation strategy (one of Eqs. (2)-(5)) and the binomial 

crossover (Eq. (6)) in line 17. Then, the polynomial mutation operator is run in line 18. Then, y is used to 

update the ideal point idez  and replace its neighboring solutions in lines 19 and 20. As shown in line 8, 

while the stopping criterion is not satisfied, the above steps in lines 9-21 are run iteratively. Finally, the final 

population P is returned in line 23. 

Algorithm 3: The framework of MOEA/D with B-AOS method 

Input: 
MOP: the multiobjective optimization problem 
N: the population size 
T: the neighborhood size 
 : the probability of local mating 
Operator Pool={ I

1DE , I
2DE , II

1DE , II
2DE }

Output: a set of solutions 
1. Initialize a set of solutions 1{ ,..., }NP x x ; 
2. Generate a set of uniformly distributed weight vectors 1{ ,..., }NW w w ; 
3. for 1:i N  do 
4.    1( ) { ,..., }TB i i i , where 1 ,..., Ti iw w  are T closest weight vectors to wi 
5.    1( ) { ,..., }Ti iiB x x x , where 1 ,..., Ti ix x  are solutions associated with 1 ,..., Ti iw w  
6. End 
7. Initialize the ideal point idez ; 
8. while stopping criterion is not satisfied do 
9.    for 1:i N  do 
10.       if rand   then 
11.         ( )E B i ; 
12.       Else 
13.         {1,..., }E N ; 
14.       End 
15.       op=Bi-criteria Assisted Adaptive Operator Selection (xi, P, B, Operator Pool); //Algorithm 1 
16.       Randomly select two index r1 and r2 from E; 
17.       Generate candidate y  by DE mutation strategy op and the binomial crossover over xi, xr1, xr2;
18.       Apply polynomial mutation operator on y  with probability pm to produce the offspring y ; 
19.       Update the ideal reference point idez ; 
20.       Update the neighboring solutions; 
21.    end; 
22.  End 
23.  return P 

From the above pseudocode in Algorithm 3, it can be found that the difference between MOEA/D 



 

 

embedded with B-AOS (termed MOEA/D-BAOS) and the original MOEA/D [40] is that four distinct DE 

mutation strategies can be adaptively selected for each solution by B-AOS (i.e., Algorithm 1). Thus, it is 

very easy to incorporate the proposed B-AOS into various MOEA/Ds. 

4. Experimental Settings 

4.1 Test Problems and Parameter Settings 

In this study, 19 unconstrained test MOPs (ten UF instances (UF1-UF10) from the CEC2009 MOEA 

competition [55] and nine F instances (F1-F9) [40]) are used to evaluate the performance of our proposed 

B-AOS. These test problems have been widely adopted to validate the performance of many MOEA/D 

variants, such as MOEA/D-DE [40], MOEA/D-DRA [29], MOEA/D-IR [42], and MOEA/D-IRA [31]. It 

is worth noting that UF1-UF7, F1-F5, and F7-F9 are biobjective problems, while UF8-UF10 and F6 are 

three-objective problems. The number of decision variables is set to 30 for F1-F5 and F9 and all UF test 

problems. The number of decision variables is set to 10 for F6-F8. 
Table 1 

Parameters settings of all the compared algorithms 

Algorithms Parameters settings 
FRRMAB T=20, δ=0.9, nr=2,C=5, W=0.5*N, D=1.0, CR=1.0, F=0.5 and K=0.5

ACOS T=20, δ=0.9, nr=2, C=5, W=0.5*N 
Uniform T=20, δ=0.9, nr=2, p=0.25, CR=1.0, F=0.5 and K=0.5 
BAOS T=20, δ=0.9, nr=2 

MOEA/D-DE T=20, δ=0.9, nr=2 
MOEA/D-IR T=20, δ=0.9, dK =2, =8 

MOEA/D-IRA T=20, δ=0.8, t� =20,  =8, minpn =0.05 

As suggested in [36, 45], the parameters settings in the compared AOS methods (FRRMAB and 

ACOS) are listed in Table 1. Because MOEA/D-DRA is used as the baseline algorithm in FRRMAB [36] 

and ACOS [45], uniform and B-AOS are also embedded into MOEAD/DRA to have a fair comparison. 

Thus, their common parameters are set as follows: T (the neighborhood size) is set to 20,   (the 

probability of selecting the neighbors as the candidate set for evolution) is set to 0.9 and nr (the maximum 

number of solutions replaced by each new solution) is set to 2. As suggested in [36], the control 

parameters for FRRMAB are set as follows: C (scaling factor) is set to 5.0, W (size of sliding window) is 

set to 0.5*N (N is the population size), and D (decaying factor) is set to 1.0. As suggested in [45], C 

(scaling factor) is set to 5.0 and W (size of sliding window) is set to 0.5*N in ACOS. In uniform, each DE 

operator is randomly selected from the operator pool with the same probability (p=0.25). For the 

crossover operator, as suggested in [36], the control parameters CR, F and K are set to 1.0, 0.5 and 0.5, 

respectively, for all DE operators in FRRMAB, uniform and B-AOS. However, in ACOS, the settings of 

the control parameters CR, F and K in the four operator pools adopted were suggested in [48] as follows. 

In the operator pool op1, F uses an adaptive parameter control strategy, and CR is set to 1 for DE/rand/1, 

while the parameters F and CR are set to 0.2 and 0.8, respectively, and K is a uniformly distributed 

random value generated in [0, 1] for DE/rand/2. In operator pool op2, F uses an adaptive parameter 

control strategy, and CR is set to 1 for DE/rand/2, while the parameters F and CR are all set to 1 for 

DE/current-to-rand/1. In operator pool op3, F uses an adaptive parameter control strategy, CR is set to 1 



 

 

and K is a uniformly distributed random value in [0, 1] for DE/current-to-rand/2. In operator pool op4, F 

uses an adaptive parameter control strategy, and CR is set to 1 for DE/current-to-rand/1. In addition, for 

the polynomial-based mutation operator, as suggested in [36], the distribution index   is set to 20 and 

the mutation probability mp  is set to 1/n (n is the number of decision variables). In addition, for 

MOEA/D-DE [40], MOEA/D-IR [42], MOEA/D-IRA [31], and their corresponding improved versions 

(called MOEA/D-DE-BAOS, MOEA/D-IR-BAOS and MOEA/D-IRA-BAOS), all parameters settings 

are kept the same as those in their original papers. In MOEA/D-DE, T is set to 20,   is set to 0.9 and nr 

is set to 2. In MOEA/D-IR, T is set to 20,   is set to 0.9, Kd (the number of subproblems selected for a 

solution) is set to 2, and   (the number of subproblems selected for a subproblem) is set to 8. In 

MOEA/D-IRA, T is set to 20,   is set to 0.8, t�  (the updating period) is set to 20,   (the weight 

parameter) is set to 0.98, and minpn  (the minimal selection probability) is set to 0.05. 

The population size N is set to 600 for all the biobjective UF and F test problems and to 1,000 for all 

of the three-objective problems. The maximum number of function evaluations is set to 150,000 for 

F1-F5 and F7-F9 and to 300,000 for F6 and UF1-UF10. All the compared algorithms performed 51 

independent runs on each benchmark problem. 

4.2 Performance Measures 

In this paper, to assess the performance of B-AOS, the following two widely used performance 

indicators are adopted: 

1) Inverted generational distance (IGD) indicator [56]: Let us assume that a subset of the true PF is 

represented by P and the final solution set obtained by an MOEA is A. The IGD indicator is computed as 

follows: 

| |

1
( , )

( , ) ,
| |

P

ii
d P A

IGD P A
P

                                (15) 

where | |P  represents the size of P and ( , )id P A  denotes the minimum Euclidean distance between iP  

and the solutions of A in objective space. When calculating this indicator, 1,000 and 10,000 samples are 

uniformly sampled from the true PFs for the biobjective and three-objective UF instances, respectively, 

while 5,000 samples are used for all the F instances. A lower value of IGD suggests that the obtained set 

is closer to the true PF and more uniformly distributed along the true PF. 

2) Hypervolume (HV) indicator [57]: Let 1( ,..., , )r r r T
mz z z  be a set of reference points in objective 

space that is dominated by all the Pareto-optimal solutions. The HV indicator calculates the objective 

space size, which is dominated by the solutions in S and bounded by rz , as follows: 

    1 1( , ) ( ), ... ( ), ,r r r
m m

x S
HV S z VOL f x z f x z


                               (16) 

where ( )VOL   represents the Lebesgue measure. When computing the HV indicator, it is suggested to set 

a reference point slightly larger than the worst value of each objective on the true PF, which can obtain a 

better balance for convergence and diversity of the approximation set. Thus, the reference point is set to 

(1.1,...,1.1)T  for all the test problems. A larger value of HV is preferred, which indicates a better quality 

of S to approximate all of the true PF. 



 

 

5. Experimental Studies 

In this section, some experimental results are provided to validate the superiority of B-AOS. First, the 

comparison results of B-AOS with other state-of-the-art AOS methods are given, i.e., FRRMAB [36], 

ACOS [45] and uniform (a uniformly random AOS method). Then, the proposed B-AOS is embedded in 

MOEA/D-DE [40], MOEA/D-IR [42] and MOEA/D-IRA [31], which is used to further confirm the 

effectiveness of B-AOS in other MOEA/D variants. Moreover, B-AOS is further compared with each 

single operator based on the baseline algorithm (MOEA/D-DRA [29]), which aims to show the rationality 

and effectiveness of the operator selection mechanism in B-AOS. 

5.1. Comparing B-AOS with Other AOS Methods 

In our experiments, FRRMAB, ACOS and uniform are compared with our proposed B-AOS. For a 

fair comparison, as suggested in [36], all AOS methods are embedded into the same baseline algorithm, 

i.e., MOEA/D-DRA. The parameters of the AOS methods are set the same as those in their original 

papers [36, 45], as listed in Table 1. The experimental results of the four different AOS methods in terms 

of IGD and HV are listed in Tables 2-3. With respect to IGD, as summarized in the second to last row of 

Table 2, B-AOS obtained the best results in 8 out of 19 cases, while FRRMAB, ACOS, and uniform 

performed best in 4, 5, and 2 out of 19 cases, respectively. With respect to HV, as shown in the second to 

last row of Table 3, B-AOS obtained the best results in 6 out of 19 cases, while FRRMAB, ACOS, and 

uniform performed best in 4, 6, and 3 out of 19 cases, respectively. 
Table 2 

Mean and standard deviation of IGD values obtained by MOEA/D-DRA with different AOS 

Problem FRRMAB ACOS Uniform B-AOS 

UF1 9.763e-04(8.21e-05)- 1.036e-03(7.32e-05)- 9.674e-04(7.25e-05)~ 9.423e-04(9.23e-05) 

UF2 2.030e-03(7.51e-04)~ 2.033e-03(9.57e-04)~ 2.161e-03(8.26e-04)~ 2.034e-03(7.81e-04) 

UF3 4.641e-03(5.54e-03)~ 5.661e-03(3.52e-03)- 3.447e-03(3.00e-03)~ 3.537e-03(2.55e-03) 

UF4 5.435e-02(4.14e-03)~ 3.532e-02(4.94e-04)+ 5.317e-02(3.74e-03)~ 5.388e-02(3.02e-03) 

UF5 3.176e-01(8.00e-02)- 1.920e-01(3.44e-02)+ 3.038e-01(4.84e-02)~ 2.888e-01(4.41e-02) 

UF6 8.399e-02(5.31e-02)~ 1.152e-01(1.70e-01)- 9.440e-02(1.01e-01)~ 6.710e-02(2.67e-02) 

UF7 1.132e-03(1.23e-04)- 1.169e-03(1.36e-04)- 1.133e-03(2.02e-04)- 1.005e-03(1.05e-04) 

UF8 3.013e-02(6.26e-03)+ 7.859e-02(1.75e-02)- 2.861e-02(5.99e-03)+ 3.414e-02(7.13e-03) 

UF9 4.766e-02(4.58e-02)~ 5.701e-02(4.74e-02)- 4.869e-02(4.63e-02)~ 5.681e-02(5.14e-02) 

UF10 4.980e-01(6.65e-02)~ 3.823e-01(5.51e-02)+ 4.826e-01(6.43e-02)~ 4.933e-01(5.92e-02) 

F1 7.318e-04(1.24e-05)- 7.178e-04(7.25e-06)~ 7.350e-04(1.79e-05)- 7.177e-04(1.36e-05) 

F2 3.621e-02(2.49e-02)- 3.707e-02(2.22e-02)- 3.830e-02(2.72e-02)- 2.490e-02(1.19e-02) 

F3 7.659e-03(3.02e-03)~ 6.455e-03(2.93e-03)+ 7.444e-03(2.45e-03)~ 7.466e-03(2.31e-03) 

F4 8.123e-03(4.50e-03)- 1.210e-02(5.51e-03)- 5.554e-03(2.44e-03)- 3.898e-03(1.79e-03) 

F5 1.108e-02(3.47e-03)~ 9.486e-03(3.71e-03)+ 1.165e-02(3.09e-03)~ 1.239e-02(4.19e-03) 

F6 2.583e-02(1.43e-03)- 3.746e-02(2.25e-03)- 2.558e-02(1.18e-03)- 2.482e-02(1.97e-03) 

F7 2.859e-01(4.47e-02)+ 3.077e-01(5.70e-02)~ 3.164e-01(4.10e-02)~ 3.150e-01(5.36e-02) 

F8 4.875e-02(1.53e-02)~ 6.396e-02(1.22e-02)- 5.538e-02(1.97e-02)~ 5.297e-02(1.83e-02) 

F9 3.554e-02(1.01e-02)- 2.514e-02(1.77e-02)- 3.406e-02(1.00e-02)- 1.761e-02(1.33e-02) 

Best/All 4/19 5/19 2/19 8/19 

+/–/~ 2/8/9 5/11//3 1/6/12 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that 
the results of the compared AOS methods are significantly better than, worse than or similar to that of 
B-AOS, respectively. The best results are highlighted in boldface. 



 

 

Table 3 
Mean and standard deviation of HV values obtained by MOEA/D-DRA with different AOS 

Problem FRRMAB ACOS Uniform B-AOS 

UF1 8.746e-01(2.47e-04)- 8.745e-01(1.86e-04)- 8.746e-01(2.03e-04)~ 8.747e-01(2.29e-04) 

UF2 8.729e-01(1.48e-03)~ 8.730e-01(1.57e-03)~ 8.727e-01(1.68e-03)~ 8.727e-01(1.79e-03) 

UF3 8.688e-01(8.55e-03)~ 8.666e-01(6.53e-03)- 8.706e-01(4.50e-03)~ 8.703e-01(4.30e-03) 

UF4 4.499e-01(6.47e-03)~ 4.837e-01(1.10e-03)+ 4.520e-01(6.43e-03)~ 4.509e-01(5.04e-03) 

UF5 1.474e-01(8.28e-02)~ 3.135e-01(8.15e-02)+ 1.576e-01(6.96e-02)~ 1.503e-01(7.21e-02) 

UF6 4.371e-01(5.83e-02)~ 4.097e-01(8.34e-02)- 4.268e-01(6.73e-02)~ 4.425e-01(3.50e-02) 

UF7 7.074e-01(4.82e-04)- 7.075e-01(3.64e-04)- 7.074e-01(7.95e-04)- 7.078e-01(3.26e-04) 

UF8 7.516e-01(1.30e-02)+ 6.758e-01(1.91e-02)- 7.535e-01(1.33e-02)+ 7.449e-01(1.64e-02) 

UF9 1.047e+00(7.25e-02)~ 1.009e+00(7.05e-02)- 1.045e+00(7.66e-02)~ 1.031e+00(8.20e-02) 

UF10 6.992e-02(3.50e-02)~ 1.748e-01(2.74e-02)+ 7.957e-02(3.87e-02)+ 6.295e-02(3.79e-02) 

F1 8.753e-01(6.28e-05)~ 8.754e-01(2.52e-05)+ 8.753e-01(6.36e-05)~ 8.753e-01(6.78e-05) 

F2 7.921e-01(3.79e-02)- 7.953e-01(4.04e-02)- 7.873e-01(4.77e-02)- 8.182e-01(3.01e-02) 

F3 8.639e-01(5.39e-03)~ 8.661e-01(4.63e-03)+ 8.644e-01(4.11e-03)~ 8.628e-01(4.67e-03) 

F4 8.611e-01(7.53e-03)- 8.550e-01(8.96e-03)- 8.654e-01(4.57e-03)- 8.684e-01(3.61e-03) 

F5 8.587e-01(5.09e-03)~ 8.616e-01(5.62e-03)+ 8.578e-01(5.52e-03)~ 8.558e-01(7.23e-03) 

F6 7.533e-01(3.58e-03)- 7.254e-01(4.14e-03)- 7.535e-01(3.08e-03)- 7.558e-01(3.76e-03) 

F7 4.569e-01(4.48e-02)+ 4.052e-01(6.75e-02)+ 4.352e-01(4.37e-02)+ 3.367e-01(9.14e-02) 

F8 7.824e-01(2.55e-02)~ 7.595e-01(2.01e-02)- 7.718e-01(3.34e-02)~ 7.732e-01(3.16e-02) 

F9 4.674e-01(2.21e-02)- 4.924e-01(3.88e-02)- 4.708e-01(2.25e-02)- 5.068e-01(2.96e-02) 

Best/All 4/19 6/19 3/19 6/19 

+/–/~ 2/6/11 7/11/1 3/5/11 \ 

According to Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that the 
results of the compared AOS methods are significantly better than, worse than or similar to that of 
B-AOS, respectively. The best results are highlighted in boldface. 

Moreover, in the last row of Table 2 and Table 3, the one-by-one comparisons of B-AOS with the 

other three competitors are summarized. “+/–/~” indicate the numbers of problems in which the 

competitors performed better than, worse than and similarly to B-AOS, respectively. In terms of IGD, 

B-AOS performed significantly better than FRRMAB, ACOS, and uniform in 8, 11, and 6 out of 19 cases, 

while it performed significantly worse than FRRMAB, ACOS, and uniform in 2, 5, and 1 out of 19 cases. 

Compared with FRRMAB, B-AOS obtained significantly better or similar results on most problems 

except for UF8 and F7. Compared with ACOS, B-AOS obtained significantly better or similar results on 

most problems except for UF4, UF5, UF10, F3 and F5. Compared with uniform, B-AOS only obtained a 

significantly worse result on UF8. Similarly, in terms of HV, as shown in Table 3, B-AOS achieved 

significantly better or similar results than FRRMAB, ACOS, and uniform in 17 (6 better and 11 similar), 

12 (11 better and 1 similar), and 16 (5 better and 11 similar) out of 19 cases, respectively, while it was 

worse than FRRMAB, ACOS, and uniform in 2, 7, and 3 out of 19 cases. Based on the above analysis and 

discussions, it is reasonable to conclude that B-AOS showed superior performance over its three 

competitors when dealing with most of these used test problems. 

Moreover, to quantify the overall performance of each algorithm, Friedman’s test from the software 

tool KEEL [51] was used to show the average performance ranks of other AOS methods and B-AOS for 

solving all the test problems, which are plotted in Fig. 3. Obviously, the average performance ranks 

(2.0526 on IGD and 2.3947 on HV) of B-AOS are smaller than those of other competitors, which 

confirms our advantages when considering all the test problems. 



 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Average ranking of Friedman’s test for other AOS methods and B-AOS 

Furthermore, to illustrate the performance of B-AOS, the final solution sets with the median IGD 

values from 51 independent runs were plotted. Due to page limitations, only F4 and F9 are used to show 

the superiority of B-AOS with respect to other AOS methods. As shown in Figs. 4 (a)-(d), B-AOS was 

able to obtain a better approximation of the true PF on F4, while FRRMAB, ACOS, and uniform could 

not find the lower boundary part of the true PF. Similarly, as shown in Figs. 5 (a)-(d), it is obvious that the 

approximation solutions obtained by FRRMAB, ACOS, and uniform failed to cover the whole true PF on 

F9, while the final solutions obtained by B-AOS could better converge to the true PF. Therefore, it can be 

concluded that B-AOS showed superiority over other AOS approaches on the test problems used. 
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Fig. 4: Final solutions obtained by different AOS methods on F4 
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Fig. 5: Final solutions obtained by different AOS methods on F9 

5.2. Performance of B-AOS on Existing MOEA/Ds 

To further verify the effectiveness of the proposed B-AOS in other MOEA/Ds, it was embedded into 

MOEA/D-DE [40], MOEA/D-IR [42] and MOEA/D-IRA [31] and then compared with the original 

versions of three MOEA/Ds. Table 4 and Table 5 give the comparison results between the original 

algorithms and their variants with B-AOS in terms of IGD and HV, respectively. As shown in the second 

to last row of Table 4 and Table 5, the best results obtained by the original MOEA/Ds and their variants 

with B-AOS are summarized. With respect to IGD, as shown in the second to last row of Table 4, the 

improvement of B-AOS based on MOEA/D-DE, MOEA/D-IR and MOEA/D-IRA can be found on 15, 15 

and 16 out of 19 test instances, respectively. With respect to HV, as shown in the second to last row of 

Table 5, the improvement of B-AOS based on MOEA/D-DE, MOEA/D-IR and MOEA/D-IRA can be 

found on 14, 14 and 16 out of 19 test instances, respectively. Moreover, in the last row of Table 4 and 

Table 5, the one-by-one comparisons of the original MOEA/Ds and their corresponding variants with 

B-AOS are summarized. “+/–/~” indicate the numbers of problems in which the competitors performed 

better than, worse than and similar to MOEA/Ds with B-AOS, respectively. As shown in Table 4 and 

Table 5, MOEA/D-DE-AOS obtained significantly better or similar results than MOEA/D-DE on 17 (11 

better and 6 similar results) out of 19 test instances in terms of IGD and 16 (11 better and 5 similar results) 

out of 19 test instances in terms of HV, respectively. MOEA/D-IR-AOS obtained significantly better or 



 

 

similar results than MOEA/D-IR on 15 (11 better and 4 similar results) out of 19 test instances in terms of 

IGD and 16 (12 better and 4 similar results) out of 19 test instances in terms of HV. MOEA/D-IRA-AOS 

obtained significantly better or similar results than MOEA/D-IRA on 16 (13 better and 3 similar results) 

out of 19 test instances in terms of IGD and 16 (14 better and 2 similar results) out of 19 test instances in 

terms of HV, respectively. However, for some three-objective problems, as more nondominated solutions 

exist during the evolutionary process, B-AOS failed to show its superiority. As shown in Table 4 and 

Table 5, in terms of IGD and HV, MOEA/D-DE-AOS was significantly worse than MOEA/D-DE on UF8 

and UF10. For UF8-UF10, MOEA/D-IR achieved better results than MOEA/D-IR-AOS in IGD and HV. 

For UF8, UF10 and F6, MOEA/D-IRA achieved better results than MOEA/D-IRA-AOS in IGD and HV. 

In these cases, most individuals were nondominated solutions during the evolutionary process, which 

caused little usage of Pool-II. Thus, B-AOS only focuses on exploitation in some cases. From the above 

analysis and discussions, it is evident that B-AOS is a very promising AOS, which helps to obtain a good 

balance of exploitation and exploration for recombination when solving most of the test problems, even 

though it failed to show its superiority on some three-objective problems. 

 
Table 4 

Mean and standard deviation of IGD values obtained by the three original MOEA/Ds and their variants with B-AOS 

Problem MOEA/D-DE MOEA/D-DE-BAOS MOEA/D-IR MOEA/D-IR-BAOS MOEA/D-IRA MOEA/D-IRA-BAOS

UF1 9.634e-04(9.90e-05)- 9.055e-04(7.28e-05) 1.048e-03(1.05e-04)- 9.506e-04(7.34e-05) 8.335e-04(3.78e-05)- 7.915e-04(3.85e-05) 

UF2 5.617e-03(1.72e-03)~ 5.340e-03(1.88e-03) 2.928e-03(1.53e-03)~ 2.657e-03(1.50e-03) 1.250e-03(2.07e-04)- 1.160e-03(9.77e-05) 

UF3 1.654e-02(1.62e-02)- 5.115e-03(6.19e-03) 1.593e-02(1.67e-02)- 5.590e-03(9.01e-03) 4.398e-03(3.56e-03)- 2.478e-03(3.17e-03) 

UF4 5.544e-02(3.16e-03)~ 5.672e-02(3.92e-03) 5.208e-02(2.95e-03)~ 5.100e-02(3.19e-03) 4.891e-02(3.25e-03)~ 4.792e-02(2.46e-03) 

UF5 3.112e-01(6.76e-02)~ 3.070e-01(5.16e-02) 2.691e-01(6.97e-02)~ 2.617e-01(3.65e-02) 2.442e-01(1.72e-02)~ 2.361e-01(3.20e-02) 

UF6 9.493e-02(8.36e-02)~ 7.506e-02(3.50e-02) 6.863e-02(2.82e-02)- 6.086e-02(2.38e-02) 7.039e-02(2.75e-02)- 6.686e-02(3.62e-02) 

UF7 1.553e-03(4.88e-04)~ 1.533e-03(2.55e-04) 1.099e-03(9.96e-05)~ 1.074e-03(8.67e-05) 8.788e-04(3.40e-05)~ 8.669e-04(4.50e-05) 

UF8 5.408e-02(8.74e-03)+ 6.596e-02(1.08e-02) 2.368e-02(2.39e-03)+ 2.953e-02(6.96e-03) 2.967e-02(5.77e-03)+ 5.839e-02(2.27e-02) 

UF9 5.302e-02(3.89e-02)- 4.702e-02(3.74e-02) 3.257e-02(3.54e-02)+ 4.692e-02(5.46e-02) 2.806e-02(2.90e-02)- 2.057e-02(1.93e-02) 

UF10 5.246e-01(6.44e-02)+ 5.613e-01(7.83e-02) 7.508e-01(2.23e-01)+ 1.233e+00(6.90e-01) 4.832e-01(8.45e-02)+ 2.133e+00(1.58e-01) 

F1 7.804e-04(2.09e-05)- 7.174e-04(1.23e-05) 8.698e-04(4.05e-05)- 7.743e-04(2.35e-05) 7.282e-04(1.29e-05)- 6.920e-04(6.12e-06) 

F2 6.155e-02(4.48e-02)- 2.358e-02(1.05e-02) 5.866e-02(4.54e-02)- 1.128e-02(9.55e-03) 5.706e-03(4.79e-03)- 2.456e-03(5.18e-04) 

F3 2.773e-02(2.67e-02)- 9.774e-03(4.09e-03) 1.759e-02(2.79e-02)- 3.431e-03(2.07e-03) 3.582e-03(1.65e-03)- 2.154e-03(1.05e-03) 

F4 2.592e-02(6.88e-03)- 1.964e-02(1.01e-02) 2.218e-02(7.06e-03)- 1.676e-02(5.94e-03) 2.064e-03(1.57e-04)- 1.606e-03(9.78e-05) 

F5 1.907e-02(1.27e-02)- 1.233e-02(3.88e-03) 1.557e-02(1.92e-02)- 1.000e-02(4.76e-03) 9.936e-03(2.63e-03)- 7.026e-03(1.96e-03) 

F6 3.991e-02(4.21e-03)- 3.677e-02(2.38e-03) 2.560e-02(1.51e-03)- 2.383e-02(2.20e-03) 2.868e-02(2.04e-03)+ 3.623e-02(9.43e-03) 

F7 2.911e-01(5.08e-02)~ 3.099e-01(6.09e-02) 4.239e-01(7.57e-02)+ 5.723e-01(2.01e-01) 2.717e-01(6.20e-02)- 2.220e-01(6.48e-02) 

F8 8.055e-02(1.89e-02)- 5.741e-02(1.52e-02) 1.043e-01(5.29e-02)- 9.811e-02(6.79e-02) 6.746e-02(1.95e-02)- 5.515e-02(2.04e-02) 

F9 4.366e-02(2.76e-02)- 1.766e-02(1.30e-02) 3.074e-02(1.70e-02)- 1.265e-02(8.71e-03) 3.384e-03(8.93e-04)- 2.780e-03(6.73e-04) 

Best/All 4/19 15/19 4/19 15/19 3/19 16/19 

+/–/~ 2/11/6 \ 4/11/4 \ 3/13/3 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that original MOEA/Ds 
are significantly better than, worse than or similar to their respective MOEA/Ds with B-AOS. The best results are 
highlighted in boldface. 



 

 

Table 5 
Mean and standard deviation of HV values obtained by three original MOEA/Ds and their variants with B-AOS 

Problem MOEA/D-DE MOEA/D-DE-BAOS MOEA/D-IR MOEA/D-IR-BAOS MOEA/D-IRA MOEA/D-IRA-BAOS

UF1 8.746e-01(2.62e-04)- 8.747e-01(1.82e-04) 8.744e-01(3.40e-04)- 8.746e-01(2.42e-04) 8.750e-01(1.25e-04)- 8.751e-01(1.12e-04) 

UF2 8.673e-01(2.60e-03)~ 8.680e-01(2.93e-03) 8.713e-01(2.34e-03)- 8.718e-01(2.34e-03) 8.741e-01(6.46e-04)~ 8.744e-01(2.30e-04) 

UF3 8.498e-01(2.36e-02)- 8.679e-01(9.59e-03) 8.493e-01(2.40e-02)- 8.670e-01(1.34e-02) 8.682e-01(6.46e-03)- 8.717e-01(6.56e-03) 

UF4 4.478e-01(5.22e-03)~ 4.459e-01(6.24e-03) 4.549e-01(5.06e-03)~ 4.566e-01(5.54e-03) 4.594e-01(5.14e-03)- 4.617e-01(4.09e-03) 

UF5 1.632e-01(6.12e-02)~ 1.459e-01(7.51e-02) 1.865e-01(5.11e-02)~ 1.825e-01(5.97e-02) 2.015e-01(3.58e-02)~ 2.185e-01(6.94e-02) 

UF6 4.178e-01(8.18e-02)~ 4.261e-01(5.83e-02) 4.383e-01(5.16e-02)- 4.595e-01(3.80e-02) 4.320e-01(5.75e-02)- 4.453e-01(5.47e-02) 

UF7 7.066e-01(1.09e-03)~ 7.067e-01(7.00e-04) 7.075e-01(2.95e-04)- 7.076e-01(2.21e-04) 7.082e-01(1.36e-04)- 7.082e-01(1.23e-04) 

UF8 6.882e-01(1.90e-02)+ 6.720e-01(1.64e-02) 7.633e-01(3.90e-03)~ 7.607e-01(8.65e-03) 7.511e-01(1.12e-02)+ 7.136e-01(3.37e-02) 

UF9 1.012e+00(6.04e-02)- 1.023e+00(5.81e-02) 1.077e+00(5.98e-02)+ 1.057e+00(8.36e-02) 1.086e+00(4.80e-02)- 1.098e+00(2.84e-02) 

UF10 7.349e-02(3.19e-02)+ 4.150e-02(2.72e-02) 3.598e-02(3.46e-02)+ 1.282e-02(2.50e-02) 2.820e-02(3.42e-02)+ 0.000e+00(0.00e+00) 

F1 8.751e-01(8.39e-05)- 8.753e-01(7.40e-05) 8.751e-01(7.11e-05)- 8.753e-01(5.50e-05) 8.753e-01(6.78e-05)- 8.754e-01(6.50e-05) 

F2 7.636e-01(6.07e-02)- 8.224e-01(2.83e-02) 7.906e-01(4.26e-02)- 8.542e-01(2.12e-02) 8.664e-01(8.69e-03)- 8.719e-01(7.93e-04) 

F3 8.381e-01(2.84e-02)- 8.599e-01(6.97e-03) 8.543e-01(2.34e-02)- 8.707e-01(3.00e-03) 8.703e-01(2.89e-03)- 8.725e-01(2.18e-03) 

F4 8.345e-01(9.89e-03)- 8.439e-01(1.53e-02) 8.399e-01(1.03e-02)- 8.475e-01(8.96e-03) 8.728e-01(2.80e-04)- 8.736e-01(1.81e-04) 

F5 8.473e-01(1.57e-02)- 8.564e-01(6.24e-03) 8.547e-01(1.43e-02)- 8.613e-01(5.25e-03) 8.607e-01(4.02e-03)- 8.650e-01(3.02e-03) 

F6 7.113e-01(9.25e-03)- 7.202e-01(5.95e-03) 7.543e-01(2.91e-03)- 7.597e-01(4.78e-03) 7.467e-01(4.12e-03)+ 7.274e-01(2.38e-02) 

F7 4.363e-01(4.50e-02)+ 3.254e-01(9.84e-02) 2.581e-01(8.84e-02)+ 1.303e-01(1.27e-01) 3.956e-01(7.09e-02)- 4.523e-01(9.21e-02) 

F8 7.312e-01(2.85e-02)- 7.656e-01(2.51e-02) 7.142e-01(5.09e-02)~ 7.212e-01(6.99e-02) 7.507e-01(3.36e-02)- 7.731e-01(3.36e-02) 

F9 4.609e-01(3.13e-02)- 5.062e-01(2.98e-02) 4.788e-01(2.68e-02)- 5.172e-01(2.05e-02) 5.373e-01(1.47e-03)- 5.383e-01(1.03e-03) 

Best/All 5/19 14/19 5/19 14/19 3/19 16/19 

+/–/~ 3/11/5 \ 3/12/4 \ 3/14/2 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that original MOEA/Ds 
are significantly better than, worse than or similar to their respective MOEA/Ds with B-AOS. The best results are 
highlighted in boldface. 

In addition, to show the performance improvement of B-AOS in MOEA/Ds during the evolutionary 

process more clearly, the curves of the mean IGD values from 20 runs versus the number of function 

evaluations on the benchmark problems are plotted in Fig. 6 and Fig. 7, where the blue curves represent 

the original MOEA/Ds while the red curves represent their variants with B-AOS. Note that curves with 

different shapes indicate different MOEA/D variants, i.e., MOEA/D-DE, MOEA/D-IR and MOEA/D-IRA. 

Due to page limitations, some of the test instances, i.e., UF1-UF3, UF6, F2-F3, F5, and F9, are selected to 

show the significant improvement of MOEA/Ds by using B-AOS to replace the single recombination 

operator. As shown in Figs. 6 (a)-(d), for the UF test problems, i.e., UF1, UF2, UF3 and UF6, replacing 

the original recombination operator with B-AOS can improve the performance of MOEA/Ds during the 

evolutionary process. Similarly, when dealing with the F test instances, i.e., F2, F3, F5, and F9, as plotted 

in Figs. 7 (a)-(d), MOEA/Ds embedded with B-AOS also achieve better results during the evolutionary 

process when compared to their original MOEA/Ds. To summarize, B-AOS can improve the performance 

of these original MOEA/Ds on most of the test problems used because the proposed B-AOS can 

adaptively select DE mutation strategies to balance exploitation and exploration during the evolutionary 

search. 
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Fig. 6: Convergence curves of three original MOEA/Ds and their variants with B-AOS on UF test instances 
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                           (c)                                         (d)              

Fig. 7: Convergence curves of three original MOEA/Ds and their variants with B-AOS on F test instances 



 

 

5.3. Operator Pool versus a Single Operator 

In this subsection, the effectiveness of using a pool of operators in MOEA/Ds is studied and analyzed. 

In experiments, the classical MOEA/D-DRA is used as the baseline algorithm for the operator pool or a 

single operator. In this case, MOEA/D-DRA-BAOS is compared against four variants (i.e., Variants I-IV), 

each of which adopts a single DE operator from the operator pool, i.e., DE/rand/1, DE/current-to-rand/1, 

DE/rand/2, and DE/current-to-rand/2. To allow a fair comparison, all the parameter settings in Variants 

I-IV are kept the same as those in MOEAD-DRA-BAOS, except that MOEAD-DRA-BAOS uses an 

operator pool while each of Variants I-IV only employs a single DE operator. 
Table 6 

Mean and standard deviation of IGD values obtained by four single DE variants and B-AOS under MOEA/D-DRA 

Problem Variant I Variant II Variant III Variant IV B-AOS 

UF1 9.853e-04(7.69e-05)- 1.172e-03(4.59e-04)- 1.250e-03(8.29e-05)- 1.067e-03(8.12e-05)- 9.423e-04(9.23e-05) 

UF2 2.390e-03(1.04e-03)- 1.105e-02(1.59e-02)- 2.426e-03(3.01e-04)- 2.404e-03(9.93e-04)- 2.034e-03(7.81e-04) 

UF3 8.325e-03(1.01e-02)- 4.998e-02(2.72e-02)- 5.440e-03(4.65e-03)- 2.042e-03(1.83e-03)+ 3.537e-03(2.55e-03) 

UF4 5.569e-02(3.75e-03)- 6.038e-02(4.41e-03)- 4.895e-02(2.31e-03)+ 5.489e-02(3.92e-03)~ 5.388e-02(3.02e-03) 

UF5 2.981e-01(4.94e-02)~ 4.676e-01(8.97e-02)- 3.044e-01(4.81e-02)~ 3.039e-01(5.59e-02)~ 2.888e-01(4.41e-02) 

UF6 9.138e-02(7.09e-02)- 1.725e-01(8.96e-02)- 8.267e-02(8.76e-02)~ 9.057e-02(1.35e-01)- 6.710e-02(2.67e-02) 

UF7 1.099e-03(2.24e-04)- 2.644e-03(2.17e-03)- 1.398e-03(7.75e-05)- 1.292e-03(1.39e-04)- 1.005e-03(1.05e-04) 

UF8 2.917e-02(4.61e-03)+ 2.865e-02(4.38e-03)+ 4.018e-02(9.38e-03)- 2.989e-02(4.56e-03)+ 3.414e-02(7.13e-03) 

UF9 5.384e-02(4.65e-02)~ 6.994e-02(4.66e-02)- 3.513e-02(2.66e-02)~ 3.411e-02(3.09e-02)+ 5.681e-02(5.14e-02) 

UF10 4.949e-01(6.64e-02)~ 4.329e-01(5.11e-02)+ 1.005e+00(1.73e-01)- 7.589e-01(1.45e-01)- 4.933e-01(5.92e-02) 

F1 7.695e-04(1.95e-05)- 7.028e-04(1.16e-05)+ 1.018e-03(3.77e-05)- 7.784e-04(2.21e-05)- 7.177e-04(1.36e-05) 

F2 5.152e-02(2.56e-02)- 1.029e-01(5.82e-02)- 1.994e-02(1.05e-02)+ 3.274e-02(6.62e-03)- 2.490e-02(1.19e-02) 

F3 2.232e-02(2.00e-02)- 3.028e-02(2.52e-02)- 6.301e-03(2.73e-03)+ 5.573e-03(2.59e-03)+ 7.466e-03(2.31e-03) 

F4 4.444e-03(2.15e-03)~ 2.001e-02(6.30e-03)- 4.987e-03(2.37e-03)- 6.553e-03(3.88e-03)- 3.898e-03(1.79e-03) 

F5 1.691e-02(8.77e-03)- 3.657e-02(2.23e-02)- 1.044e-02(2.96e-03)+ 1.136e-02(3.17e-03)~ 1.239e-02(4.19e-03) 

F6 2.707e-02(1.66e-03)- 2.657e-02(1.48e-03)- 3.141e-02(1.99e-03)- 2.616e-02(1.27e-03)- 2.482e-02(1.97e-03) 

F7 3.063e-01(4.10e-02)~ 3.041e-01(2.61e-02)~ 3.112e-01(4.11e-02)~ 3.057e-01(6.22e-02)~ 3.150e-01(5.36e-02) 

F8 7.111e-02(1.56e-02)- 9.540e-02(5.82e-02)- 7.733e-02(1.02e-02)- 4.835e-02(1.56e-02)~ 5.297e-02(1.83e-02) 

F9 5.560e-02(3.86e-02)- 8.772e-02(5.81e-02)- 1.647e-02(1.17e-02)~ 2.906e-02(1.05e-02)- 1.761e-02(1.33e-02) 

Best/Second/All 0/6/19 4/0/19 4/3/19 4/3/19 7/7/19 

+/–/~ 1/13/5 3/15/1 4/10/5 4/10/5 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that the performances 
of Variants I-IV are significantly better than, worse than or similar to those of B-AOS, respectively. The best and 
second-best results are highlighted in boldface and gray background, respectively. 

The experimental results obtained by Variants I-IV and B-AOS under MOEA/D-DRA are given in 

Table 6 and Table 7, respectively, showing the mean IGD and HV values. With respect to IGD, as 

summarized in the second to last row of Table 6, B-AOS obtained the best or second-best results in 14 (7 

best and 7 second-best) out of 19 cases, while Variants I-IV performed best or second-best in 6 (0 best and 

6 second-best), 4 (4 best and 0 second-best), 7 (4 best and 3 second-best), and 7 (4 best and 3 second-best) 

out of 19 cases. With respect to HV, as shown in the second to last row of Table 3, B-AOS obtained the 

best or second-best results in 13 (6 best and 7 second-best) out of 19 cases, while Variants I-IV performed 



 

 

best or second-best in 7 (1 best and 6 second-best), 5 (4 best and 1 second-best), 7 (4 best and 3 

second-best), and 6 (4 best and 2 second-best) out of 19 cases, respectively. From the above-summarized 

comparison results, it is obvious that B-AOS achieves superior performance on most of the test problems 

adopted. Moreover, the one-by-one comparisons of B-AOS and Variants I-IV under MOEA/D-DRA are 

summarized in the last rows of Table 6 and Table 7, where “+/–/~” indicate the numbers of problems that 

the competitors are significantly better than, worse than and similar to B-AOS, respectively. In terms of 

IGD, B-AOS was better than Variants I-IV in 13, 15, 10 and 10 out of 19 cases, respectively, while it was 

worse than Variants I-IV in 1, 3, 4 and 4 out of 19 cases, respectively. In addition, when compared with 

Variants I-IV, B-AOS obtained better HV results on 11, 15, 9 and 9 out of 19 cases, while it only showed 

poor performance on 3, 4, 4 and 4 out of 19 cases. 
Table 7 

Mean and standard deviation of HV values obtained by four single DE variants and B-AOS under MOEA/D-DRA 

Problem Variant I Variant II Variant III Variant IV B-AOS 

UF1 8.746e-01(2.22e-04)- 8.738e-01(1.21e-03)- 8.741e-01(2.14e-04)- 8.745e-01(1.82e-04)- 8.747e-01(2.29e-04) 

UF2 8.723e-01(2.04e-03)~ 8.620e-01(1.47e-02)- 8.724e-01(8.75e-04)- 8.724e-01(1.82e-03)~ 8.727e-01(1.79e-03) 

UF3 8.620e-01(1.56e-02)- 7.674e-01(5.78e-02)- 8.674e-01(6.94e-03)- 8.729e-01(2.64e-03)+ 8.703e-01(4.30e-03) 

UF4 4.476e-01(6.01e-03)- 4.393e-01(6.27e-03)- 4.592e-01(4.23e-03)+ 4.488e-01(6.57e-03)- 4.509e-01(5.04e-03) 

UF5 1.629e-01(6.64e-02)~ 8.617e-02(5.61e-02)- 1.414e-01(7.82e-02)~ 1.447e-01(8.43e-02)~ 1.503e-01(7.21e-02) 

UF6 4.192e-01(8.27e-02)~ 4.305e-01(4.98e-02)- 4.297e-01(7.40e-02)~ 4.357e-01(7.04e-02)~ 4.425e-01(3.50e-02) 

UF7 7.076e-01(5.77e-04)- 7.032e-01(4.83e-03)- 7.071e-01(2.99e-04)- 7.070e-01(5.91e-04)- 7.078e-01(3.26e-04) 

UF8 7.521e-01(9.89e-03)+ 7.571e-01(9.66e-03)+ 7.211e-01(2.40e-02)- 7.482e-01(1.11e-02)~ 7.449e-01(1.64e-02) 

UF9 1.035e+00(7.59e-02)~ 9.984e-01(6.63e-02)- 1.069e+00(4.62e-02)~ 1.072e+00(5.34e-02)+ 1.031e+00(8.20e-02) 

UF10 9.411e-02(3.35e-02)+ 1.401e-01(2.79e-02)+ 4.126e-04(2.33e-03)- 6.850e-03(1.82e-02)- 6.295e-02(3.79e-02) 

F1 8.752e-01(8.37e-05)- 8.754e-01(8.01e-05)+ 8.747e-01(8.83e-05)- 8.752e-01(6.10e-05)- 8.753e-01(6.78e-05) 

F2 7.676e-01(4.29e-02)- 7.138e-01(7.37e-02)- 8.358e-01(2.70e-02)+ 7.983e-01(1.46e-02)- 8.182e-01(3.01e-02) 

F3 8.417e-01(2.70e-02)- 8.381e-01(2.68e-02)- 8.657e-01(4.91e-03)+ 8.670e-01(4.42e-03)+ 8.628e-01(4.67e-03) 

F4 8.676e-01(3.94e-03)~ 8.422e-01(1.02e-02)- 8.673e-01(4.20e-03)~ 8.635e-01(6.60e-03)- 8.684e-01(3.61e-03) 

F5 8.489e-01(1.45e-02)- 8.311e-01(2.41e-02)- 8.593e-01(5.31e-03)+ 8.581e-01(4.95e-03)~ 8.558e-01(7.23e-03) 

F6 7.488e-01(4.02e-03)- 7.533e-01(3.28e-03)- 7.350e-01(4.90e-03)- 7.505e-01(3.03e-03)- 7.558e-01(3.76e-03) 

F7 4.312e-01(3.81e-02)+ 4.605e-01(2.75e-02)+ 3.251e-01(5.64e-02)~ 3.950e-01(8.23e-02)+ 3.367e-01(9.14e-02) 

F8 7.441e-01(2.67e-02)- 7.283e-01(6.12e-02)- 7.306e-01(1.87e-02)- 7.827e-01(2.54e-02)~ 7.732e-01(3.16e-02) 

F9 4.478e-01(3.94e-02)- 4.116e-01(5.27e-02)- 5.113e-01(2.48e-02)~ 4.810e-01(2.36e-02)- 5.068e-01(2.96e-02) 

Best/Second/All 1/6/19 4/1/19 4/3/19 4/2/19 6/7/19 

+/–/~ 3/11/5 4/15/0 4/9/6 4/9/6 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that the performances 
of Variants I-IV are significantly better than, worse than or similar to those of B-AOS, respectively. The best and 
second-best results are highlighted in boldface and gray background, respectively. 

Moreover, to quantify the overall performance of each algorithm, Friedman’s test from the software 

tool KEEL [51] was used to show the average performance ranks of Variants I-IV and B-AOS for solving 

all the test problems, which are plotted in Fig. 8. The average performance ranks (2.1053 on IGD and 

2.1579 on HV) of B-AOS are obviously much smaller than those of Variants I-IV, which confirms our 

advantages when considering all the test problems. 



 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8: Average ranking of Friedman’s test for the compared variants and B-AOS 

According to the above-summarized comparison results, we can conclude that B-AOS was able to 

obtain better results on most of the test problems adopted, which suggests that adopting B-AOS to 

manage an operator pool is better than only employing a single operator in balancing exploitation and 

exploration during the evolutionary search. 

5.4. Further Analysis of Crowding-Assisted Operator Selection 

In this subsection, we further analyze and discuss crowding-assisted operator selection in B-AOS, 

aiming to demonstrate its effective mechanism. 
Table 8 

Mean and standard deviation of IGD values obtained by MOEA/D-DRA with B-AOS and their variants 

Problem B-AOS_S-I B-AOS_S-II B-AOS_S-III B-AOS_neighbor B-AOS_average B-AOS 

UF1 9.688e-04(6.82e-05)- 9.445e-04(1.92e-04)~ 9.674e-04(7.25e-05)~ 9.599e-04(7.21e-05)~ 9.116e-04(6.42e-05)~ 9.423e-04(9.23e-05) 

UF2 2.158e-03(6.58e-04)~ 2.966e-03(2.05e-03)~ 2.161e-03(8.26e-04)~ 2.123e-03(6.73e-04)~ 2.280e-03(1.29e-03)~ 2.034e-03(7.81e-04) 

UF3 9.418e-03(9.72e-03)- 6.363e-03(9.64e-03)~ 3.447e-03(3.00e-03)~ 3.039e-03(2.22e-03)~ 4.010e-03(8.11e-03)- 3.537e-03(2.55e-03) 

UF4 5.278e-02(3.00e-03)~ 5.873e-02(3.89e-03)- 5.317e-02(3.74e-03)~ 5.415e-02(3.82e-03)~ 5.665e-02(4.47e-03)- 5.388e-02(3.02e-03) 

UF5 2.920e-01(4.66e-02)~ 3.132e-01(4.55e-02)- 3.038e-01(4.84e-02)~ 3.178e-01(5.05e-02)- 3.095e-01(5.12e-02)- 2.888e-01(4.41e-02) 

UF6 8.276e-02(8.46e-02)~ 7.186e-02(4.75e-02)~ 9.440e-02(1.01e-01)~ 8.055e-02(8.64e-02)~ 6.374e-02(1.72e-02)~ 6.710e-02(2.67e-02) 

UF7 1.009e-03(5.59e-05)~ 1.246e-03(3.77e-04)- 1.133e-03(2.02e-04)- 1.014e-03(6.78e-05)~ 1.014e-03(9.38e-05)~ 1.005e-03(1.05e-04) 

UF8 3.619e-02(1.02e-02)~ 3.865e-02(1.11e-02)- 2.861e-02(5.99e-03)+ 3.711e-02(1.00e-02)~ 3.536e-02(9.65e-03)~ 3.414e-02(7.13e-03) 

UF9 4.417e-02(4.25e-02)~ 5.933e-02(4.76e-02)- 4.869e-02(4.63e-02)~ 4.529e-02(4.15e-02)~ 4.874e-02(4.23e-02)~ 5.681e-02(5.14e-02) 

UF10 5.261e-01(6.73e-02)- 4.474e-01(5.83e-02)+ 4.826e-01(6.43e-02)~ 5.061e-01(7.13e-02)~ 4.849e-01(6.46e-02)~ 4.933e-01(5.92e-02) 

F1 7.672e-04(2.12e-05)- 7.032e-04(1.37e-05)+ 7.350e-04(1.79e-05)- 7.582e-04(2.20e-05)- 7.135e-04(1.55e-05)~ 7.177e-04(1.36e-05) 

F2 1.687e-02(1.12e-02)+ 3.306e-02(2.37e-02)- 3.830e-02(2.72e-02)- 2.497e-02(1.13e-02)~ 2.809e-02(9.06e-03)~ 2.490e-02(1.19e-02) 

F3 6.914e-03(2.75e-03)~ 1.291e-02(1.11e-02)- 7.444e-03(2.45e-03)~ 7.752e-03(2.70e-03)~ 8.397e-03(2.88e-03)~ 7.466e-03(2.31e-03) 

F4 3.724e-03(1.60e-03)~ 1.696e-02(5.91e-03)- 5.554e-03(2.44e-03)- 5.512e-03(3.24e-03)- 7.576e-03(3.81e-03)- 3.898e-03(1.79e-03) 

F5 1.162e-02(2.91e-03)~ 1.505e-02(5.65e-03)- 1.165e-02(3.09e-03)~ 1.163e-02(3.07e-03)~ 1.267e-02(3.52e-03)~ 1.239e-02(4.19e-03) 

F6 2.653e-02(1.59e-03)- 2.487e-02(1.69e-03)~ 2.558e-02(1.18e-03)- 2.532e-02(1.42e-03)- 2.475e-02(1.19e-03)~ 2.482e-02(1.97e-03) 

F7 3.535e-01(6.47e-02)- 2.971e-01(4.99e-02)~ 3.164e-01(4.10e-02)~ 3.230e-01(5.26e-02)~ 3.174e-01(5.69e-02)~ 3.150e-01(5.36e-02) 

F8 6.698e-02(1.20e-02)- 4.714e-02(1.91e-02)~ 5.538e-02(1.97e-02)~ 5.456e-02(1.59e-02)~ 4.929e-02(1.68e-02)~ 5.297e-02(1.83e-02) 

F9 1.434e-02(1.33e-02)~ 3.127e-02(1.02e-02)- 3.406e-02(1.00e-02)- 2.033e-02(1.33e-02)~ 2.677e-02(1.42e-02)- 1.761e-02(1.33e-02) 

+/–/~ 1/7/11 2/10/7 1/6/12 0/4/15 0/5/14 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that other variants 
are significantly better than, worse than or similar to MOEA/D-DRA with B-AOS. 

 



 

 

Table 9 
Mean and standard deviation of HV values obtained by MOEA/D-DRA with B-AOS and their variants  

Problem B-AOS_S-I B-AOS_S-II B-AOS_S-III B-AOS_neighbor B-AOS_average B-AOS 

UF1 8.746e-01(2.00e-04)~ 8.745e-01(4.04e-04)- 8.746e-01(2.03e-04)~ 8.746e-01(2.29e-04)~ 8.747e-01(2.42e-04)~ 8.747e-01(2.29e-04) 

UF2 8.725e-01(1.69e-03)~ 8.712e-01(3.73e-03)~ 8.727e-01(1.68e-03)~ 8.728e-01(1.29e-03)~ 8.723e-01(2.54e-03)~ 8.727e-01(1.79e-03) 

UF3 8.599e-01(1.63e-02)- 8.654e-01(1.69e-02)~ 8.706e-01(4.50e-03)~ 8.712e-01(4.04e-03)~ 8.701e-01(1.15e-02)- 8.703e-01(4.30e-03) 

UF4 4.529e-01(4.70e-03)~ 4.421e-01(6.44e-03)- 4.520e-01(6.43e-03)~ 4.503e-01(6.59e-03)~ 4.458e-01(7.07e-03)- 4.509e-01(5.04e-03) 

UF5 1.420e-01(7.21e-02)~ 1.339e-01(6.79e-02)~ 1.576e-01(6.96e-02)~ 1.223e-01(6.36e-02)- 1.398e-01(7.63e-02)~ 1.503e-01(7.21e-02) 

UF6 4.184e-01(7.46e-02)- 4.443e-01(4.52e-02)~ 4.268e-01(6.73e-02)~ 4.367e-01(5.51e-02)~ 4.467e-01(3.24e-02)~ 4.425e-01(3.50e-02) 

UF7 7.078e-01(2.07e-04)~ 7.070e-01(1.03e-03)- 7.074e-01(7.95e-04)- 7.078e-01(2.91e-04)~ 7.077e-01(3.57e-04)~ 7.078e-01(3.26e-04) 

UF8 7.383e-01(2.20e-02)- 7.391e-01(2.33e-02)~ 7.535e-01(1.33e-02)+ 7.365e-01(2.26e-02)- 7.434e-01(1.95e-02)~ 7.449e-01(1.64e-02) 

UF9 1.053e+00(7.02e-02)~ 1.020e+00(6.93e-02)- 1.045e+00(7.66e-02)~ 1.048e+00(6.86e-02)~ 1.040e+00(6.61e-02)~ 1.031e+00(8.20e-02) 

UF10 5.202e-02(3.35e-02)~ 7.567e-02(4.78e-02)~ 7.957e-02(3.87e-02)+ 4.898e-02(3.52e-02)~ 4.841e-02(3.64e-02)- 6.295e-02(3.79e-02) 

F1 8.752e-01(9.33e-05)- 8.754e-01(5.92e-05)+ 8.753e-01(6.36e-05)~ 8.752e-01(7.74e-05)- 8.754e-01(6.66e-05)+ 8.753e-01(6.78e-05) 

F2 8.398e-01(2.92e-02)+ 8.024e-01(4.11e-02)~ 7.873e-01(4.77e-02)- 8.186e-01(2.94e-02)~ 8.093e-01(2.36e-02)~ 8.182e-01(3.01e-02) 

F3 8.645e-01(5.22e-03)+ 8.569e-01(1.07e-02)- 8.644e-01(4.11e-03)~ 8.630e-01(4.80e-03)~ 8.621e-01(4.96e-03)~ 8.628e-01(4.67e-03) 

F4 8.692e-01(3.17e-03)~ 8.471e-01(8.58e-03)- 8.654e-01(4.57e-03)- 8.656e-01(5.83e-03)- 8.616e-01(6.37e-03)- 8.684e-01(3.61e-03) 

F5 8.575e-01(5.44e-03)~ 8.536e-01(6.22e-03)~ 8.578e-01(5.52e-03)~ 8.575e-01(5.09e-03)~ 8.561e-01(6.39e-03)~ 8.558e-01(7.23e-03) 

F6 7.496e-01(3.43e-03)- 7.570e-01(3.59e-03)~ 7.535e-01(3.08e-03)- 7.532e-01(3.32e-03)- 7.566e-01(2.47e-03)~ 7.558e-01(3.76e-03) 

F7 2.601e-01(8.75e-02)- 4.003e-01(8.32e-02)+ 4.352e-01(4.37e-02)+ 3.247e-01(7.83e-02)~ 3.439e-01(9.94e-02)~ 3.367e-01(9.14e-02) 

F8 7.481e-01(2.19e-02)- 7.861e-01(3.14e-02)~ 7.718e-01(3.34e-02)~ 7.710e-01(2.79e-02)~ 7.815e-01(2.84e-02)~ 7.732e-01(3.16e-02) 

F9 5.140e-01(2.92e-02)~ 4.757e-01(2.29e-02)- 4.708e-01(2.25e-02)- 4.998e-01(3.05e-02)~ 4.861e-01(3.18e-02)- 5.068e-01(2.96e-02) 

+/–/~ 2/7/10 2/7/10 3/5/11 0/5/14 1/5/13 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that other variants are 
significantly better than, worse than or similar to MOEA/D-DRA with B-AOS. 

First, to validate its effectiveness in B-AOS, some experiments are conducted. For a fair comparison, 

the classical MOEA/D-DRA is used as the baseline algorithm. One variant (i.e., B-AOS_V-I) always 

selects 1DEtype from the candidate pool in the crowding-assisted operator selection. However, another 

variant (i.e., B-AOS_V-II) always selects 2DEtype from the candidate pool in the crowding-assisted operator 

selection. In addition, the variant (i.e., B-AOS_V-III) randomly selects one DE mutation strategy from the 

operator pool. The experimental results obtained by B-AOS_V-I, B-AOS_V-II, B-AOS_V-III and B-AOS 

under MOEA/D-DRA are given in Table 8 and Table 9, respectively, showing the mean IGD and HV 

values. With respect to IGD, as summarized in the last row of Table 8, B-AOS obtained better results than 

B-AOS_V-I, B-AOS_V-II, B-AOS_V-III in 7, 10, and 6 cases out of 19 cases and achieved similar results 

with these variants in 11, 7, and 12 cases out of 19 cases. B-AOS was only worse than these variants in 1, 

2, and 1 case(s) out of 19 cases. From the above-summarized results, it is obvious that crowding-assisted 

operator selection contributes to improving the performance of B-AOS on these test problems. 

In addition, we also use different crowding-assisted operator selections for comparison. For example, 

one solution is selected from the neighborhood of the current solution to compute the crowding status in 

Algorithm 4, and the average crowding status of all solutions in the population is computed in 

Algorithm 5. Note that Algorithms 4-5 can be used as the crowding-assisted operator selection. The 

compared experiments are run by using the classical MOEA/D-DRA as the baseline algorithm. Tables 8-9 

compare the results of the original B-AOS in Algorithm 2, B-AOS_neighbor in Algorithm 4, and 

B-AOS_average in Algorithm 5. With respect to IGD, as shown in the second to last row of Table 8, 



 

 

B-AOS performed better than B-AOS_neighbor and B-AOS_average on 4 and 5 cases, and similarly to 

B-AOS_neighbor and B-AOS_average on 15 and 14 cases. B-AOS_neighbor and B-AOS_average could 

not perform better than B-AOS in any case. With respect to HV, as shown in the last row of Table 9, 

B-AOS was better than, worse than, and similar to B-AOS_neighbor on 5, 14 and 0 case(s). B-AOS was 

better than, worse than, and similar to B-AOS_neighbor in 5, 13 and 1 case(s). The above-summarized 

results validate the effectiveness of the crowding-assisted operator selection (Algorithm 2) in B-AOS. 
 

Algorithm 4: B-AOS_neighbor (x, P, B, Candidate Pool) 
Input: x (the current selected solution) 

P (the population) 
B (the index sets of the neighbors of all solutions) 
Candidate Pool={ 1DEtype , 2DEtype } 

Output: operator 
1. randomly select one solution y from B(x); 
2. estimate the crowding status of x and y in their respective neighbors using (14); 
3. if ( ) ( )HAD x HAD y  
4.     operator = 1DEtype ; 
5. else if ( ) ( )HAD x HAD y  
6.     operator = 2DEtype ; 
7. Else 
8.     if random < 0.5 
9.         operator = 1DEtype ; 
10.     Else 
11.         operator = 2DEtype ; 
12.     End 
13. End 
14. return operator 

 
Algorithm 5: B-AOS_average (x, P, B, Candidate Pool) 
Input: x (the current selected solution) 

P (the population) 
B (the index sets of the neighbors of all solutions) 
Candidate Pool={ 1DEtype , 2DEtype } 

Output: operator 
1. for each solution x in P 
2.     estimate the crowding status of x in their respective neighbors using (14); 
3. End 
4. compute the average crowding distance (HAD_mean) of all solutions in population; 
5. if ( ) _HAD x HAD mean  
6.     operator = 1DEtype ; 
7. else if ( ) _HAD x HAD mean  
8.     operator = 2DEtype ; 
9. Else 
10.     if random < 0.5 
11.         operator = 1DEtype ; 
12.     Else 
13.         operator = 2DEtype ; 
14.     End 
15. End 
16. return operator 



 

 

5.5. Competition with Some Other Recent MOEAs 

In this subsection, four popular or recently proposed MOEAs (i.e., ISDE
+ [16], MOEA/AD [28], 

MOEA/D-MUP [58] and MOEA/D-DDS [59]) are used for performance comparison in our experimental 
studies. Please note that the settings of the four compared MOEAs are suggested in their references and 
B-AOS is embedded into MOEA/D-IRA for comparison. IGD and HV are used as the performance 
indicators for evaluating the performance of the compared algorithms. Table 10 and Table 11 give the 
experimental results of MOEA/D-IRA-BAOS with the other four MOEAs regarding IGD and HV, 
respectively. “+/–/~” indicate that the competitors performed better than, worse than and similar to 
MOEA/D-IRA-BAOS, respectively. MOEA/D-IRA-BAOS obtained the best results on 14 cases on both 
IGD and HV. Considering IGD, ISDE

+, MOEA/AD and MOEA/D-DDS only achieved the best results in 1, 
1 and 3 cases, respectively. MOEA/D-MUP failed to obtain the best result. For HV, MOEA/AD, 
MOEA/D-MUP and MOEA/D-DDS only achieved the best results in 2, 1 and 2 cases, respectively. ISDE

+ 
failed to obtain the best result. Using one-by-one comparisons on IGD, MOEA/D-IRA-BAOS achieved 
significantly better or similar results than ISDE

+, MOEA/AD, MOEA/D-MUP and MOEA/D-DDS in 16 
(16 better and 0 similar), 17 (17 better and 0 similar), 18 (17 better and 1 similar), and 15 (15 better and 0 
similar) out of 19 cases, respectively, while it was worse than these compared MOEAs in 3, 2, 1 and 4 out 
of 19 cases. Considering HV, MOEA/D-IRA-BAOS was better than or similar to ISDE

+, MOEA/AD, 
MOEA/D-MUP and MOEA/D-DDS in 17 (17 better and 0 similar), 17 (16 better and 1 similar), 16 (16 
better and 0 similar), and 17 (15 better and 2 similar) out of 19 cases. ISDE

+, MOEA/AD, MOEA/D-MUP 
and MOEA/D-DDS were better than MOEA/D-IRA-BAOS in 2, 2, 3 and 2 out of 19 cases, respectively. 
From the above comparison results, the advantages of B-AOS embedded into MOEA/D-IRA are 
confirmed when solving the adopted test problems. 

Table 10 
Mean and standard deviation of IGD values obtained by the recent MOEAs and MOEA/D-IRA with B-AOS 

Problem ISDE
+ MOEA/AD MOEA/D-MUP MOEA/D-DDS MOEA/D-IRA-BAOS

UF1 8.468e-02(1.38e-02)- 1.296e-01(6.60e-02)- 1.816e-03(1.51e-04)- 9.836e-04(9.81e-05)- 7.915e-04(3.85e-05) 

UF2 3.233e-02(6.92e-03)- 6.157e-02(4.46e-02)- 6.368e-03(1.50e-03)- 5.395e-03(2.36e-03)- 1.160e-03(9.77e-05) 

UF3 1.785e-01(2.14e-02)- 3.116e-01(2.49e-02)- 8.671e-03(9.86e-03)- 1.713e-02(1.09e-02)- 2.478e-03(3.17e-03) 

UF4 4.017e-02(7.41e-04)+ 3.679e-02(1.19e-03)+ 6.892e-02(5.74e-03)- 5.388e-02(3.26e-03)- 4.792e-02(2.46e-03) 

UF5 3.772e-01(1.06e-01)- 4.656e-01(1.17e-01)- 3.339e-01(1.32e-01)- 2.667e-01(2.05e-02)- 2.361e-01(3.20e-02) 

UF6 2.312e-01(8.70e-02)- 4.505e-01(1.27e-01)- 3.509e-01(2.08e-01)- 7.860e-02(2.82e-02)- 6.686e-02(3.62e-02) 

UF7 4.615e-02(9.48e-03)- 3.660e-01(1.72e-01)- 3.529e-03(1.93e-03)- 3.070e-03(1.05e-03)- 8.669e-04(4.50e-05) 

UF8 3.431e-01(9.04e-02)- 1.409e-01(4.23e-02)- 8.251e-02(1.77e-02)- 4.542e-02(7.54e-03)+ 5.839e-02(2.27e-02) 

UF9 1.833e-01(6.89e-02)- 9.283e-02(5.20e-02)- 1.209e-01(4.00e-02)- 3.429e-02(6.12e-03)- 2.057e-02(1.93e-02) 

UF10 3.307e-01(6.60e-02)+ 3.339e-01(1.50e-01)+4.648e-01(6.07e-02)+ 1.793e+00(2.65e-01)+ 2.133e+00(1.58e-01) 

F1 1.434e-02(2.67e-03)- 8.753e-04(3.12e-04)- 9.258e-04(3.42e-05)- 8.759e-04(2.50e-05)- 6.920e-04(6.12e-06) 

F2 7.678e-02(1.29e-02)- 1.617e-01(7.88e-02)- 1.577e-02(2.14e-02)- 5.255e-03(4.01e-03)- 2.456e-03(5.18e-04) 

F3 5.583e-02(6.24e-03)- 1.049e-01(5.50e-02)- 5.031e-03(1.61e-03)- 4.700e-03(2.00e-03)- 2.154e-03(1.05e-03) 

F4 6.157e-02(8.91e-03)- 7.523e-02(8.30e-03)- 3.051e-03(3.07e-04)- 5.792e-03(2.30e-03)- 1.606e-03(9.78e-05) 

F5 3.809e-02(3.88e-03)- 8.683e-02(5.18e-02)- 1.321e-02(4.13e-03)- 9.297e-03(3.16e-03)- 7.026e-03(1.96e-03) 

F6 9.084e-02(1.60e-02)- 5.303e-02(7.99e-03)- 5.064e-02(8.47e-03)- 1.765e-02(7.93e-05)+ 3.623e-02(9.43e-03) 

F7 1.174e-01(2.39e-02)+ 3.780e-01(1.19e-01)- 2.369e-01(6.57e-02)~ 9.429e-02(4.68e-02)+ 2.220e-01(6.48e-02) 

F8 1.848e-01(2.09e-02)- 3.139e-01(1.04e-01)- 1.510e-01(1.02e-01)- 2.511e-01(3.64e-02)- 5.515e-02(2.04e-02) 

F9 8.164e-02(1.97e-02)- 1.092e-01(6.45e-02)- 1.303e-02(2.87e-02)- 2.152e-02(6.76e-03)- 2.780e-03(6.73e-04) 

Best/All 1/19 1/19 0/18 3/19 14/19 

+/–/~ 3/16/0 2/17/0 1/17/1 4/15/0 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that MOEAs are better 
than, worse than or similar to their respective MOEA/D-IRA-BAOS. The best results are highlighted in boldface. 



 

 

Table 11 
Mean and standard deviation of HV values obtained by the recent MOEAs and MOEA/D-IRA with B-AOS 

Problem ISDE
+ MOEA/AD MOEA/D-MUP MOEA/D-DDS MOEA/D-IRA-BAOS

UF1 6.150e-01(1.55e-02)- 6.039e-01(1.18e-01)- 8.737e-01(2.31e-04)- 8.745e-01(2.32e-04)- 8.751e-01(1.12e-04) 

UF2 6.853e-01(5.66e-03)- 8.203e-01(2.98e-02)- 8.671e-01(2.08e-03)- 8.677e-01(3.48e-03)- 8.744e-01(2.30e-04) 

UF3 4.597e-01(2.64e-02)- 4.241e-01(7.09e-02)- 8.619e-01(1.81e-02)- 8.447e-01(2.02e-02)- 8.717e-01(6.56e-03) 

UF4 3.952e-01(8.67e-04)- 4.689e-01(8.30e-03)+ 4.260e-01(8.54e-03)- 4.517e-01(5.38e-03)- 4.617e-01(4.09e-03) 

UF5 1.235e-01(8.20e-02)- 1.839e-01(8.85e-02)~ 2.971e-01(8.03e-02)+ 1.794e-01(3.34e-02)- 2.185e-01(6.94e-02) 

UF6 2.321e-01(7.82e-02)- 2.614e-01(8.94e-02)- 3.401e-01(1.19e-01)- 4.184e-01(5.72e-02)- 4.453e-01(5.47e-02) 

UF7 5.228e-01(1.11e-02)- 3.064e-01(1.72e-01)- 7.032e-01(3.96e-03)- 7.039e-01(2.06e-03)- 7.082e-01(1.23e-04) 

UF8 3.767e-01(2.88e-02)- 5.118e-01(8.07e-02)- 6.697e-01(2.09e-02)- 7.055e-01(1.87e-02)~ 7.136e-01(3.37e-02) 

UF9 6.169e-01(5.10e-02)- 9.423e-01(8.37e-02)- 9.246e-01(6.99e-02)- 1.046e+00(1.45e-02)- 1.098e+00(2.84e-02) 

UF10 2.061e-01(8.75e-02)+ 2.456e-01(1.26e-01)+ 1.370e-01(4.00e-02)+ 0.000e+00(0.00e+00)~ 0.000e+00(0.00e+00)

F1 7.017e-01(3.26e-03)- 8.749e-01(1.47e-03)- 8.751e-01(8.14e-05)- 8.747e-01(1.06e-04)- 8.754e-01(6.50e-05) 

F2 6.061e-01(1.65e-02)- 5.404e-01(1.39e-01)- 8.531e-01(2.62e-02)- 8.672e-01(6.77e-03)- 8.719e-01(7.93e-04) 

F3 6.551e-01(5.79e-03)- 7.903e-01(3.27e-02)- 8.690e-01(2.42e-03)- 8.686e-01(2.90e-03)- 8.725e-01(2.18e-03) 

F4 6.541e-01(5.71e-03)- 8.135e-01(5.92e-03)- 8.719e-01(4.33e-04)- 8.674e-01(3.28e-03)- 8.736e-01(1.81e-04) 

F5 6.767e-01(4.14e-03)- 8.017e-01(3.08e-02)- 8.561e-01(8.17e-03)- 8.618e-01(4.73e-03)- 8.650e-01(3.02e-03) 

F6 5.239e-01(1.44e-02)- 6.828e-01(2.42e-02)- 7.126e-01(1.94e-02)- 7.830e-01(7.39e-04)+ 7.274e-01(2.38e-02) 

F7 5.338e-01(3.33e-02)+ 3.777e-01(1.11e-01)- 5.446e-01(7.55e-02)+ 6.966e-01(8.40e-02)+ 4.523e-01(9.21e-02) 

F8 4.479e-01(2.72e-02)- 3.790e-01(1.11e-01)- 6.647e-01(8.99e-02)- 4.386e-01(5.57e-02)- 7.731e-01(3.36e-02) 

F9 3.329e-01(1.88e-02)- 3.178e-01(5.68e-02)- 5.243e-01(3.44e-02)- 5.055e-01(1.27e-02)- 5.383e-01(1.03e-03) 

Best/All 0/19 2/19 1/19 2/19 14/19 

+/–/~ 2/17/0 2/16/1 3/16/0 2/15/2 \ 

According to the Wilcoxon’s rank sum test with a significant level 0.05  , +, − and ~ indicate that MOEAs are better 
than, worse than or similar to their respective MOEA/D-IRA-BAOS. The best results are highlighted in boldface. 

6. Conclusions 

In this paper, a novel bicriteria assisted adaptive operator selection (B-AOS) strategy is proposed, in 

which one criterion (i.e., the Pareto criterion) reflecting convergence and another criterion (i.e., the 

crowding criterion) reflecting diversity are used to adaptively select DE mutation strategies. First, two 

operator pools are designed in our algorithm, which focus on exploitation and exploration. Each operator 

pool consists of two complementary DE mutation strategies. In addition, the selection of two operator 

pools is adaptively adjusted for each solution during different evolutionary search stages according to the 

convergence status of solutions, in which the Pareto dominance relationship is used to judge which pool is 

preferred for the current solution. After that, the crowding criterion is further used to assist the selection 

of DE mutation strategies from the pool. In the proposed B-AOS strategy, the Pareto criterion shows its 

effectiveness in two cases: 1) the solutions that are far away from the convergence status can help to 

promote the exploration capabilities of the population during the evolutionary search process, which aims 

to find more uncovered areas; 2) the solutions having better convergence aim to emphasize their 

exploitation abilities to speed up convergence. Another crowding criterion is used based on the binary 

tournament selection strategy to provide a competitive mechanism for the operators within the same pool, 

which aims to exploit their relative advantages in exploration and exploitation. In our experimental 

studies, 19 complicated test MOPs are used for performance comparison, and the proposed B-AOS shows 

superior performance over other existing AOS methods, i.e., FRRMAB ACOS and uniform. Moreover, 

our experimental results also validated that B-AOS can further improve the performance of MOEA/Ds 



 

 

with a single DE operator (MOEA/D-DE, MOEA/D-DRA, MOEA/D-IR, and MOEA/D-IRA) and that 

B-AOS embedded into MOEA/D-IR performs better than four recently proposed MOEAs (ISDE
+, 

MOEA/AD, MOEA/D-MUP and MOEA/D-DDS) when dealing with most of the benchmark problems 

adopted. The advantages of B-AOS are also confirmed when compared to the static method with only one 

single DE mutation strategy. 

In our future work, other evolutionary operators, such as SBX, other DE mutation strategies (e.g., 

DE/current-to-best), or some other recombination operators used in particle swarm optimization and ant 

colony optimization, will be further studied in B-AOS. How to effectively utilize and combine these 

recombination operators will also be an interesting research direction, especially for tackling various 

novel many and multi-objective benchmark problems with challenging difficulties [60]. 
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