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Abstract

We present an algorithm that partitions the objective space based on an analysis
of the conflict information obtained from the current Pareto front approxima-
tion. By partitioning the objectives in terms of the conflict among them, we aim
to separate the multiobjective optimization into several subproblems in such a
way that each of them contains the information to preserve as much as pos-
sible the structure of the original problem. We implement this framework by
performing ranking and parent selection independently in each subspace. Our
experimental results show that the proposed conflict-based partition strategy
outperforms a similar algorithm in a test problem with independent groups of
objectives. In addition, the new strategy achieves a better convergence and dis-
tribution than that produced by a strategy that creates subspaces at random.
In problems in which the degree of conflict among the objectives is significantly
different, the conflict-based strategy presents a better performance.

Keywords: Multiobjective optimization, Many-objective optimization, Space
Partitioning, Objective Conflict, Objective Correlation.

1. Introduction

Since the first implementation of a Multiobjective Evolutionary Algorithm
(MOEA) in the mid 1980s [37], a wide variety of new MOEAs have been pro-
posed, gradually improving in both their effectiveness and efficiency to solve
Multiobjetive Optimization Problems (MOPs) [9]. However, until recently, most
of these algorithms had been evaluated and applied to problems with only two
or three objectives, in spite of the fact that many real-world problems have more
than three objectives (e.g., see [18, 25, 39]).
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Recent experimental [23, 42, 32, 34] and analytical [40, 27] studies have
shown that MOEAs based on Pareto optimality [31] scale poorly when the
number of objectives is increased. Although some scalability issues are known
to mainly affect Pareto-based MOEAs (see e.g., [27, 16, 26]), optimization prob-
lems with a high number of objectives (also known as many-objective problems)
introduce some difficulties common to any other multiobjective optimizer (e.g.,
visualization of the Pareto front). Three of the most serious difficulties are
the following: i) Deterioration of the search ability because the proportion of
nondominated solutions in a population increases rapidly with the number of
objectives [16]. As a consequence, in many-objective problems, the selection
of solutions is carried out almost at random or guided by diversity criteria
only. ii) The number of points required to achieve a representative sample of
a Pareto front increases exponentially with the number of objectives. iii) The
visualization of the Pareto front is more complicated since with more than three
objectives it is not possible to plot the Pareto front as usual. This is a serious
problem since visualization plays a key role for a proper decision making.

Currently, there are three main approaches to solve many-objective prob-
lems, namely:

1. Adopt or propose an optimality relation that yields a solution ordering
finer than that yielded by Pareto optimality. Among these alternative
relations we can find k-optimality [16], preference order ranking [14], and
a method that controls the dominance area [35]. Besides providing a richer
ordering of the solutions, these relations obtain an optimal set which is
a subset of the Pareto optimal set. Therefore, these techniques can be
used as a partial remedy for the first and second issues of the previous
enumeration.

2. Reduce the number of objectives of the problem during the search pro-
cess [6, 30] or, a posteriori, in the decision making process [36, 4, 29]. The
main goal of this kind of reduction techniques is to identify the redun-
dant objectives (or redundant to some degree) in order to discard them.
A redundant objective is one that can be removed without changing the
dominance relation1 induced by the original objective set.

3. Incorporation of preference information interactively throughout the
course of the optimization process [11, 41, 17]. By incorporating prefer-
ences, the search can be focused on the decision maker’s region of interest,
avoiding this way, the evaluation of a huge number of solutions.

A general scheme for partitioning the objective space into several subspaces
in order to deal with many-objective problems was introduced in [3, 2]. In that
study we investigated the following three strategies to partition the objective
space in equally sized subspaces: random (objectives for each subspace are as-
signed at random), fixed (objectives for each subspace are assigned sequentially),

1The dominance relation induced by a given set F of objectives is defined by �F=
{(x,y)|∀fi ∈ F : fi(x) ≤ fi(y)}.
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and shift (at each generation, objectives in the partition are shifted one position
to the right). Here, we propose a new partition strategy that creates objective
subspaces based on the analysis of the conflict information obtained from the
Pareto front approximation found by the underlying MOEA. Additionally, we
introduce a new version of the general partitioning scheme in order to improve
the distribution along the Pareto front. By grouping objectives in terms of the
conflict among them, we aim to separate the MOP into several subproblems in
such a way that the union of these independent subproblems contains the infor-
mation to preserve as much as possible the structure of the original problem.

In order to evaluate the effectiveness of the new conflict-based partition
strategy, we compare its performance against different strategies. First, against
a similar partition strategy proposed by Purshouse and Fleming [33] which is
based on the Kendall correlation. We also compared the new partitioning ap-
proach with the random strategy and the original Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II). The experimental results show that the conflict-
based strategy outperform the Kendall-based partitioning method. Addition-
ally, the conflict-based and random partition strategies outperform NSGA-II in
all the test problems considered in this study. Regarding these two partition
strategies, the conflict-based partition strategy achieves a better distribution
of solutions than that achieved by the random strategy. In problems in which
the degree of conflict among pairs of objectives is different, the conflict-based
strategy presents a better performance.

The remainder of this paper is structured in the following manner. The next
section presents some basic concepts and the notation adopted throughout the
paper. Section 3 briefly describes the relevant research related to our work.
Section 4 introduces the new partition strategy based on conflict information.
Section 5 presents an experimental analysis to evaluate the effectiveness of the
new partition strategy. Finally, we present our conclusions in Section 6.

2. Basic Concepts and Notation

Definition 1 (Multiobjective optimization problem). A Multiobjective
Optimization Problem (MOP) is defined as:

Minimize f(x) = [f1(x), f2(x), . . . , fM (x)]T

subject to x ∈ X .
(1)

The vector x ∈ Rn is formed by n decision variables representing the quanti-
ties for which values are to be chosen in the optimization problem. The feasible
set X ⊆ Rn is implicitly determined by a set of equality and inequality con-
straints. The vector function f : X → RM is composed ofM ≥ 2 scalar objective
functions fi : Rn → R (i = 1, . . . ,M). In multiobjective optimization, the sets
Rn and RM are known as decision variable space and objective function space,
respectively. The image of X under the function f is a subset of the objective
function space denoted by Z = f(X ) and referred to as the feasible set in the
objective function space.
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Definition 2 (Objective set Φ). The objective set of a MOP is determined
by the set Φ = {f1, f2, . . . , fM} containing the M objective functions to be opti-
mized.

Definition 3 (Subspace ψ). A subspace ψ of Φ is a lower-dimensional space
that includes some of the objective functions in Φ, i.e. ψ ⊂ Φ.

Definition 4 (Non-overlapping subspaces). Two subspaces ψ1 ⊂ Φ and
ψ2 ⊂ Φ are said to be non-overlapping if they have no common objectives, i.e.
ψ1 ∩ ψ2 = ∅.

Definition 5 (Space partition Ψ). A space Φ is said to be partitioned into
NS subspaces, denoted as Ψ, if Ψ = {ψ1, . . . , ψNS | ∪

NS
i=1 ψi = Φ ∧ ∩NSi=1ψi = ∅}.

In multiobjective optimization, the Pareto dominance relation originally pro-
posed by Edgeworth in 1881 [15], and generalized by Vilfredo Pareto in 1896 [31]
is usually adopted.

Definition 6 (Pareto dominance relation). A solution x1 is said to Pareto
dominate another solution x2 in the objective space formed by Φ, denoted by
x1 ≺ x2, if and only if: ∀fi ∈ Φ : fi(x

1) ≤ fi(x
2) ∧ ∃fi ∈ Φ : fi(x

1) < fi(x
2).

Thus, to solve a MOP we have to find those solutions x ∈ X which are not
Pareto dominated by any other solution with respect to objectives in Φ.

Definition 7 (Pareto optimality). A solution x∗ ∈ X is Pareto optimal if
there does not exist another solution x ∈ X such that x ≺ x∗.

Definition 8 (Pareto optimal set). The Pareto optimal set, Popt, is defined
as: Popt = {x ∈ X | ∄y ∈ X : y ≺ x}.

Definition 9 (Pareto front). For the Pareto optimal set Popt, the Pareto
front, PFopt, is defined as: PFopt = {z = (f1(x), . . . , fM (x)) | x ∈ Popt}.

In practice, the goal of the optimization process is finding the “best” approx-
imation set of the Pareto optimal front. An approximation set is a finite subset
of Z composed of mutually nondominated vectors and denoted by PFapprox.
Currently, it is well accepted that the best approximation set is determined by
the closeness to the Pareto optimal front, and the spread over the entire Pareto
optimal front [13, 45, 9].

Definition 10 (Pearson Correlation coefficient). This correlation coeffi-
cient measures the linear relationship between two observed data sets. Let X
and Y be two data sets with ℓ elements each, and let sX > 0 and sY > 0 de-
note their respective sample standard deviations. Then, the sample correlation
coefficient, rXY , of the data pairs (xi, yi), i = 1, . . . , ℓ is defined by

rXY =

∑ℓ

i=1(xi − X̄)(yi − Ȳ )

(ℓ− 1)sXsY
. (2)

If sX = 0 or sY = 0, then rXY = 0. By definition, −1 ≤ rXY ≤ 1.
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When rXY > 0 it is said that the sample data pairs are positively correlated,
and when, rXY < 0 it is said that they are negatively correlated. If rXY = 0
the data pairs are not correlated. In other words, if rXY > 0 (rXY < 0, resp.)
the data points tend to fall along a line of positive slope (negative slope, resp.).

Definition 11 (Correlation matrix). The main diagonal elements of this
q × q matrix are unity and the off diagonal elements rij are the correlation
between data sets Xi and Xj for i, j ∈ {1, . . . , q}.

2.1. Conflict Among Objectives
In the current literature it is possible to find several definitions of conflict

among objectives (see e.g., [20, 1, 34, 4]). However, we used the definition
proposed by Carlsson and Fullér [8] since it is intuitive and, as we explain in
Section 4, it can be estimated using a low time complexity algorithm. Let SX

be a subset of X , then, according to Carlsson and Fullér, two objectives can be
related in the following ways (assuming minimization):

1. fi is in conflict with fj on SX if fi(x
1) ≤ fi(x

2) implies fj(x
1) ≥ fj(x

2)
for all x1,x2 ∈ SX .

2. fi supports fj on SX if fi(x
1) ≥ fi(x

2) implies fj(x
1) ≥ fj(x

2) for all
x1,x2 ∈ SX .

3. fi and fj are independent on SX , otherwise.

When SX = X , it is said that fi is in conflict with (or supports) fj globally.
However, in many MOPs the relation among the objectives changes for different
subsets of X . Figure 1 shows an example in which two functions are in conflict
in some subsets of X , while in others, they support each other.

Figure 1: Two objective functions can be in conflict in some subsets of the feasible space, and
can be supportive in other subsets.

In the relation of the case 2, those objectives are also called non-conflicting,
nonessential or redundant objectives (see e.g.,[19, 4, 36]) because, as pointed
out by Gal and Hanne [19], when a nonessential objective is removed from the
original set of objectives, the resulting Pareto front does not change. Based
on this notion of nonessential objectives, Brockhoff and Zitzler [5] proposed
a conflict definition that defines degrees of conflict according to the extent to
which the Pareto front changes when some objectives are removed.
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3. Related Work

In this section we describe two kinds of methods that incorporate concepts
related to the objective partitioning algorithm proposed in this paper. The first
kind of methods are closely related to our approach since they divide the original
problem into subproblems. However, as detailed below, the main difference is
the problem domain for which these methods were designed and therefore, the
criteria adopted to divide the problem. Objective reduction methods need to
be mentioned in this section as well since, as one of the elements of our method,
they define a mechanism to measure conflict among objectives.

3.1. Objective Partitioning Methods

The Divide and Conquer MOEA proposed by Purshouse and Fleming [33]
was designed for MOPs composed of subproblems (with their own group of
objectives and variables) that can be solved independently from each other.
That is, objectives of different subproblems are neither related by conflict or by a
supporting relation. This algorithm divides the population into subpopulations
according to an objective partition created using the Kendall rank correlation
among the objectives. Specifically, a subpopulation is assigned to each objective
subset and each subpopulation evolves totally independent of the others. A
new objective partition is created at each generation according to the following
procedure. First, a correlation test is applied on each pair of objectives to
determine if they are independent or not. Using this information, a dependent
subset is formed by objectives that are significantly correlated (either by conflict
or by a supporting relation) with at least one of the other elements of the subset.

Unlike Purshouse and Fleming’s approach, the goal of the partitioning tech-
nique proposed in this paper is to deal with problems where all the objectives
might be correlated, some of them by conflict and others by a supporting rela-
tion. Besides, as we indicate in Section 4.2, our approach takes into account the
degree of conflict in order to partition the objective set. This way, our method
is useful both in separable problems and in cases where all the objectives are
dependent.

Another partitioning approach is the multi-level multiobjective genetic algo-
rithm proposed by Gunawan et al. [21]. In this method the problem is divided
into subproblems which in turn can be further decomposed in more levels. In
this scheme the objectives are classified in exclusive and functionally separa-
ble. An objective of the first class does not need to be combined with others
to form a subproblem. In the second class, the objectives are a combination
of others (e.g., a linear aggregation), and thus, they can be separated to form
subproblems. Unlike our approach, in this method the division of the problem
is performed by the user before the search. This way, the user needs to know
the nature of the problem in order to identify which objectives are exclusive or
functionally separable.
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3.2. Conflict Estimation Methods

Our approach is also related to techniques that reduce the number of ob-
jectives based on redundancy, especially those applied throughout the course of
the search. Nevertheless, unlike objective reduction techniques, our approach
integrates all the objectives (including those with low conflict) in order to cover
the entire Pareto front.

Deb and Saxena [36] proposed a method for reducing the number of objec-
tives based on principal component analysis. The main assumption is that if two
objectives are negatively correlated (taking the generated Pareto front as the
data set), then these objectives are in conflict with each other. This method was
implemented using an iterative scheme in which a principal component analy-
sis is applied on the PFapprox achieved by NSGA-II [10] in order to gradually
discard the less conflicting objectives.

Brockhoff and Zitzler [4] proposed two greedy algorithms to reduce the num-
ber of objectives. Both algorithms use the ǫ-dominance relation to measure the
change of PFapprox using the reduced and the original objective set. Objec-
tives whose remotion does not change PFapprox are considered non-conflicting
objectives. In [6] these algorithms were incorporated into a MOEA to reduce
the number of objectives during the search. Since the goal in this work was to
improve the efficiency of hypervolume-based MOEAs, the non-conflicting objec-
tives were discarded or aggregated to form a unique objective.

Similar to the previous approach, López Jaimes et al. [29] proposed two
schemes to reduce the number of objectives. These algorithms are based on a
feature selection technique which uses correlation between nondominated vec-
tors to estimate the conflict between each pair of objectives. The complexity of
both algorithms is O(NM2), where N is the size of the nondominated set and
M is the number of objectives. Later, in [30] these schemes were used to reduce
the objectives during the search.

4. Description of the Conflict-Based Partitioning Framework

In this section we describe the main idea of the partitioning framework which
was introduced by Aguirre and Tanaka [2, 3]. A modification to this scheme is
also explained. Then, the new partition strategy based on conflict information
is introduced.

4.1. General Idea of the Partitioning Framework

The basic idea of the partitioning framework is to divide the objective space
into several subspaces so that a different portion of the population focuses the
search on a different subspace. By partitioning the objective space into sub-
spaces, we aim to emphasize the search within smaller regions of objective space.
In other words, this framework divides the original optimization problem into
several small subproblems. Recently, Schütze et al. [38] have provided evidence
that partitioning the space can improve the performance of a MOEA. In a
multiobjective problem a descent cone is defined as the set of all directions in
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which dominating solutions can be found. Thus, a large descent cone increases
the probability of improving a previous solution. Regarding the partitioning
method, the descent cone generated in each of their subproblems is larger than in
the original problem and therefore the speed of convergence might be improved.

In our approach, instead of dividing the population into independent sub-
populations, a fraction of the pool of parents for the next generation is selected
based on a different subspace. This way, the pool of parents will be composed
of individuals having a good performance in each subspace. Then, the crossover
and mutation operators are applied as usual.

In our approach, we partition the objective set Φ = {f1, f2, . . . , fM} into
NS non-overlapping and pairwise disjoint subspaces Ψ = {ψ1, ψ2, . . . , ψNS} (see
Definition 5). Thus, the nondominated sorting and truncation procedures of
NSGA-II are modified in the following way. For each subspace, the mixed
population, R, composed of parents, P, and offspring, Q, is ranked using non-
dominated sorting, as Figure 2 shows. That is, only the objectives of the given
subspace are considered to rank the population. Then, from each sorted popula-
tion, the best |P|/NS solutions are selected to form a new parent population of
size |P|. After this, the new population is generated by means of recombination
and mutation using binary tournaments.

Space

Partitioning

Select the best |P|/NS solutions

of each ranked population wrt ψi

Nondominated Sorting

according to each ψi

Rt = Pt ∪ Qt Pt+1

ψNS

ψ1

Pt

Qt

Ψ = {ψ1, ψ2, . . . , ψNS }

P
ψ1

t

P
ψNS
t

F
ψNS
2

F
ψNS
1

F
ψNS
3

F
ψNS
4

F
ψ1

5

F
ψ1

3

F
ψ1

2

F
ψ1

1

F
ψ1

4

Figure 2: Nondominated sorting and truncation based on different subspaces of a partition
Ψ = {ψ1, ψ2, . . . , ψNS}.

The number of all possible ways to partition Φ into NS subspaces is given
by the Stirling number of the second kind (see e.g., [7]), which grows rapidly
with the size of Φ. If the subspaces of the partition have the same size, the
number of all possible partitions of Φ is given by M !

(k!)NS
1
NS !

, where M = |Φ|

and k is the size of each subspace. Therefore, it is not feasible searching in all
possible subspaces. Instead, we can determine suitable subspaces using a par-
tition strategy. In [2] we investigated three strategies to partition Φ: random,
fixed, and shift partition strategy. In these strategies all the subspaces have
the same number of objectives. In the random strategy a partition is uniformly
chosen at random among all possible partitions of size NS with equally sized
subsets. The fixed strategy deterministically assigns objectives fi ∈ Φ to sub-
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spaces ψs ∈ Ψ and keeps the same assignment throughout the generations. The
shift strategy, at the first generation, assigns objectives in such a way that ob-
jectives assigned to a given ψs are ordered by their index i. Then, in subsequent
generations, the objective with highest index in the s-th subspace is shifted to
the ((s+ 1) mod NS)-th subspace, ∀ψs ∈ Ψ.

4.2. A New Partition Strategy

In this paper we investigate a new partition strategy using the conflict infor-
mation among objectives. More specifically, the first partition would contain the
least conflicting objectives, the second one the next least conflicting objectives,
and so forth. In previous studies [29, 30], the conflict information among objec-
tives has been used to remove objectives after, and during the search. However,
instead of removing the least conflicting objectives, here we propose to integrate
those objectives to form other subspaces. This way, compromise solutions from
objectives with small conflict, but no zero, can be also found.

By grouping objectives in terms of the conflict among them, we are trying to
separate the MOP into subproblems in such a way that the union of these inde-
pendent subproblems contains the information to preserve most of the structure
of the original problem. In other words, the goal is minimizing the difference
between the original Pareto front and the one obtained by independently search-
ing in different subspaces. However, in most real-world optimization problems,
none or very few objectives are completely redundant. Therefore, in such cases,
preserving completely the original structure of the problem is only possible when
objectives in different subspaces are not in conflict at all.

In the following we present the details for measuring conflict among ob-
jectives and how to deal with two important difficulties previously outlined,
namely: i) local conflict and ii) how to approximate the entire Pareto front
when conflicting objectives are located in different subspaces.

In this paper we suggest using the correlation (see Def. 10) among the solu-
tions in PFapprox to estimate the conflict among objectives in the sense defined
by Carlsson and Fullér (Section 2.1). In this approach, each solution in PFapprox

is an observation. A negative correlation between a pair of objectives means that
one objective increases while the other decreases and vice versa. Thus, a nega-
tive correlation estimates the conflict between a pair of objectives. On the other
hand, if the correlation is positive, then both objectives increase or decrease at
the same time. That is, the objectives support each other. Furthermore, since
the correlation coefficient values are in the range [−1, 1], it is possible to define a
measure of the degree of conflict between objectives. Therefore, in our approach
we interpret that the more negative the correlation between two objectives, the
more the conflict between them.

Although this approach only takes into account linear correlation among
objectives, in [29] it was shown that this method produces similar results than
those obtained by the methods proposed both in [4] and [36] (described in
Section 3). In addition, using the correlation between objectives to estimate
conflict has a low time complexity (as shown in Section 3) which makes this
method suitable to be applied several times during the search of a MOEA.
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Next, we will introduce a new version of the basic partitioning framework.
In order to implement the new partition strategy we should consider that the
conflict relation among the objectives might change during the search (local
conflict). Besides, the conflict relation among the solutions in PFopt might differ
from that observed in the current PFapprox found during the search. Thus, to
deal with this situation we suggest a new partitioning framework in which the
search is divided into several cycles. In turn, each of these cycles is divided
into two phases, namely, an approximation phase followed by a partitioning
phase. In the approximation phase all the objectives are used as usual to select
the new parent population. The goal of this phase is twofold: i) to update
the current PFapprox in order to deal with local conflict and potential poor
representations of PFopt previously generated; and ii) to generate solutions
representing the tradeoffs between conflicting objectives assigned to different
subspaces. In turn, at the beginning of the partitioning phase, the current
PFapprox is used to compute the correlation matrix for creating a new partition
of the objective space. In each cycle, the approximation phase is carried out
during GΦ generations, whereas the partitioning phase is carried out during GΨ

generations using the partition created at the beginning of the cycle. This idea
is graphically explained in Figure 3.

Figure 3: Alternation between entire objective space, Φ, and the partitioned space, Ψi.

The pseudocode of the entire proposed algorithm is given in Algorithm 1.
The selection, crossover and mutation are carried out as usual to generate the
offspring population, Qt, from the current population, Pt (Alg. 1, line 9). The
essential part of Algorithm 1 is the special way in which the nondominated sort-
ing and truncation procedures are performed (Alg. 1, line 13). This procedure
is described in Algorithm 2. The basic idea of this procedure was explained at
the beginning of this section. In order to switch between the approximation and
partitioning phases, we only need to change the kind of partition, Ψ, used in
procedure sort&Truncation. For the approximation phase a special partition
containing a single subspace is used (Alg. 1, line 4), while for the partitioning
phase, a partition with NS subspaces is employed. The method to create a
partition is detailed in the next section.

4.3. Partitioning Using Conflict Information

The correlation matrix is computed using equation (2) on the current parent
population. Since we are interested in measuring the negative correlation be-
tween objectives, the correlation matrix was modified so that each entry, rfi,fj ,
contains the value 1 − rfi,fj . Thus each value of this new “conflict matrix” is
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Algorithm 1 Pseudocode of our proposed partitioning MOEA.

Input:

Evolutionary operators values,
Gmax, maximum number of generations,
NS , num. of subspaces,
GΦ, num. of generations using all the objectives as usual in each cycle,
GΨ, num. of generations using the current partition, Ψ, in each cycle.

Output:

Pareto front approximation.

1: P1 ← randomPopulation()
2: evaluate(P1)
3: crowding(P1) // Compute crowding distance for each solution.

4: Ψ← {{f1, . . . , fM}} // All the objectives in a single subspace.

5: phase← APPROXIMATION // Flag that indicates the current phase.

6: Gchange ← GΦ

7: g ← 0
8: for t← 1 until Gmax do

9: Qt ← newPop(Pt) // selection, crossover and mutation.

10: evaluate(Qt)
11: Rt ← Pt ∪Qt
12: // Sort and truncate population using objective partition Ψ.

13: Pt+1 ← sort&Truncation(Rt, |Pt|,Ψ)
14: if g = Gchange then

15: g ← 0
16: if phase = APPROXIMATION then

17: // Generate a new partition using the current population.

18: Ψ ← conflictPartition(Pt+1,Φ, NS)
19: Gchange ← GΨ

20: phase← PARTITIONING

21: else

22: Ψ← {{f1, . . . , fM}}
23: Gchange ← GΦ

24: phase← APPROXIMATION

25: end if

26: end if

27: g ← g + 1
28: end for

in the range [0, 2]. A result of zero indicates that objectives fi and fj com-
pletely support each other, and a value of 2 indicates that they are completely
in conflict.

Then, the subspaces are created from the least conflicting subspace to the
most conflicting subspace. The procedure to create subspaces of size k is the
following:

1. Create q-sized neighborhoods around each objective fi, where q = k − 1.
The conflict between objectives takes the role of the distance. That is,
the more the conflict between two objectives, the more distant they are
in the “conflict” space. Figure 4(a) shows two of these neighborhoods of
a hypothetical situation to form subspaces of size k = 3.

2. Select the most compact neighborhood, i.e., the neighborhood with the
smallest distance to its q-th neighbor (farthest neighbor). Figure 4(b)
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Algorithm 2 Procedure of nondominated sorting and truncation.

Input:

R: Initial population.
Psize: Size of the final population.
Ψ: Partition to be used.

Output:

A final population P∗ with size Psize.

procedure sort&Truncation(R, Psize,Ψ)
P∗ ← ∅ // Initialize the truncated population.

for i← 1 until |Ψ| do

// Nondominated sort R considering only the objectives in ψi.
Fψi ← nonDominatedSort(R, ψi)

// Compute crowding dist. considering only the objectives in ψi.
crowding(Fψi , ψi)

// Keep the best Psize/|Ψ| solutions for each subset ψi.
Pψi ← truncation(Fψi , Psize/|Ψ|) // |Pψi | = Psize/|Ψ|
P∗ ← P∗ ∪ Pψi

end for

return P∗

end procedure

shows the farthest neighbor for each of the two neighborhoods. In the
example, the neighborhood on the left is the most compact one.

3. Finally, the objectives in the most compact neighborhood, including ob-
jective fi, form a new subspace, and these objectives are removed from
the conflict matrix.

This process is repeated until all objectives are assigned to a subspace.
Therefore, the first subspace created contains the least conflicting objectives,
and the last subspace is formed by the most conflicting objectives. Algorithm 3
shows the pseudocode of this process. In that algorithm, the neighborhood
of objective fi is denoted by the ordered list Lfi , in which the element Lfi [j]
represents the conflict value between the j-th neighbor and objective fi.

In the current implementation all subspaces have the same dimensionM/NS
in case r = (M mod NS) is zero. Otherwise, r of the NS subspaces have
dimension M/NS + 1 and the rest M/NS .

This algorithm can be classified as a greedy approach since in order to add a
new subspace to the partition, it always selects the most compact neighborhood
from the remaining objective set. Nonetheless, some other approaches to create
the objective subspaces are also possible. An example is creating a partition
that maximizes the sum of the average conflict among objectives in each sub-
space. This way, we could avoid allocating the same proportion of individuals
to subspaces with a very low contribution to the search. Unfortunately, to find
this partition a large number of candidate partitions needs to be explored (see
a bound for this number at the end of Section 4.1). Therefore, in this study, for
efficiency reasons, we have chosen a greedy approach to create partitions.
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(a) Divide the objective set into neighbor-
hoods around each objective.

(b) Find the most compact neighbor-
hood.

(c) The neighbors of the
most compact neigh-
borhood form a new
subspace.

Figure 4: Basic strategy to create subspaces using conflict information.

Algorithm 3 Partitioning Using Conflict Information.
Input:

P, population to compute the conflict matrix;
Φ, set of objectives to be partitioned;
NS , number of subsets of the partition.

Output:

A partition, Ψ, of the set of objectives Φ.

procedure conflictPartition(P,Φ, NS)
cMatrix← computeConflictMatrix(P)
adjustMatrix(cMatrix)
k ← (|Φ|/NS)− 1 // Num. of neighbors around each objective.

Φ′ ← Φ = {f1, . . . , fM} // Set of remaining objectives.

for s← 1 until NS − 1 do

// Create the neighbor list, Lfi , for each objective fi, where Lfi [j]
// is the conflict value between fi and the j-th objective in the list.

for each objective fi in Φ′ do

Lfi ← Ascending ordered list of the k-nearest neighbors
of fi wrt the conflict using cMatrix.

end for

// Create a new subspace with the objectives of the most compact neighborhood.

ψs ← Lfi ∪ {fi} : Lfi [k] ≤ Lfj [k], ∀fj ∈ Φ′

Ψ← Ψ ∪ ψs // Add the recently created subspace.

Φ′ ← Φ′ − ψs // Update the set of remaining objectives.

end for

Ψ← Ψ ∪ Φ′ // All the remaining objectives form the last subspace.

return Ψ
end procedure
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Finally, we have to explain some necessary modifications to the correlation
matrix in order to use it to select the most conflicting objectives properly. These
modifications are carried out by the procedure adjustMatrix in Algorithm 3.
If we used the original correlation matrix, it would be possible that some highly
conflicting objectives might be placed in a subspace with a low conflict. For
instance, if objective f2 is in conflict with f3 but not with f1, then f2 would
be very close to f1 and, thus f2 would be placed in a low conflicting subspace
even if it is one of the most conflicting objectives. To overcome this problem we
carried out the following process to the correlation matrix:

• Find the maximum conflict value ci,max of each row i in the matrix (i.e.,
the maximum negative correlation value for each objective).

• Add the value ci,max to the column i. This means that we are assuming
that if objective fi is in conflict with some objectives, then it is in conflict
with all the objectives.

5. Experimental Results

5.1. Algorithms and Parameter Settings Employed

As mentioned before, we used NSGA-II’s framework to study the conflict-
based partitioning strategy. In the first part of the experimental results we
compare the conflict-based partitioning method and the Kendall-based strategy
proposed by Purshouse and Fleming [33]. We implemented this strategy into
NSGA-II following the description in [33]. Here we computed the Kendall coef-
ficient taking care of tied data and we also carried out two-tailed tests at 99%
level of confidence for determining independence between each pair of objec-
tives. Additionally, we wanted to investigate the advantages or disadvantages
of the conflict-based strategy with respect to the random strategy. Therefore, we
compare the original NSGA-II, and the NSGA-II using the conflict and random
partition strategies.

In the experiments we used the parameter values presented in Table 1. The
number of generations, Gc, for each cycle (approximation + partition) is deter-
mined by the number of generations and cycles, that isGc = Gmax/(Num. cycles).
Thus, for setting GΦ and GΨ, we only have to set one of them. Here we used
GΦ = Gc − GΨ. In the present study we adopted 70% of Gc for GΨ in order
to emphasize the search on the subspaces and using only a few generations to
approximate the entire Pareto front. For all the cases we carried out 30 runs
for each MOEA. The results presented were averaged over the total number of
executions.

5.2. Test Problems Employed

In order to show how the conflict-based strategy works, we used a test
problem in which the conflicting objectives can be defined a priori by the
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Common Values

Crossover rate 0.9

Mutation rate 1/n

Crossover index 15

Mutation index 20

Generations 200

GΨ 70% of Gc

Per Experiment Values

vs Kendall vs Random

Population size 240 200

Cycles 20 10

Objectives 6 4-9 10-15

Subspaces 2 and 3 2 3

Table 1: Parameter values employed in the computational experiments, where n is the number
of variables and Gc the generations per cycle.

user. Namely, the problem DTLZ5(I,M) which is a variant proposed by Sax-
ena and Deb [12] based on the original DTLZ5. In this problem, from a to-
tal of M objectives, only I of them are required to completely generate the
Pareto front. The objectives of this problem can be classified in two sub-
sets, the redundant subset FR = {f1, . . . , fM−I}, and the necessary subset
FN = {fM−(I−1), fM−(I−2), . . . , fM}, composed of the last I − 1 objectives.
The Pareto front can be generated using only one objective from FR and all the
elements in FN . Another feature of this problem is that all the objective are
correlated in some way. There is conflict among every objective in FN , but no
conflict among elements in FR. Nonetheless, there is conflict from elements in
FR to objectives in FN . We also have used the problem WFG3(I,M) proposed
by Huband et al. [22] which, as in the previous problem, the user can define the
number of essential objectives. Since the obtained results are similar to those
achieved using DTLZ5(I,M) and due to space constraints we do not show their
results in this paper.

In order to compare the conflict-based strategy against the Kendall-based
strategy we employed a problem, proposed by Purshouse and Fleming [33], in
which an instance of the bi-objective ZDT1 problem (variables and objectives)
is concatenated m times to create a MOP with 2m objectives. As result, only
objectives in each pair (f2i−1, f2i), for i = 1, . . . ,m, are correlated, while there
is no correlation between objectives in different pairs. This variant is denoted
by c-ZDT1(m). For the computation results we adopted 30m variables for each
instance of this problem.

Additionally, we employed three test problems in which the conflicting rela-
tion among the objectives is not known a priori. One of them is the problem
DTLZ2BZ proposed by Brockhoff and Zitzler [6] based on the original DTLZ2.
When any of the objectives is removed from the original DTLZ2, the resulting
Pareto front is reduced to a single nondominated solution. The DTLZ2BZ vari-
ant avoids this problem, but it preserves the property that

∑M

i=1(zi)
2 = 1, for

all z ∈ PFopt. The second problem is the multiobjective 0/1 Knapsack problem
as formulated in [44]. For this problem we also varied the number of objectives
from 4 to 15, and for all the instances, 300 items were adopted. Finally, we also
adopted the problem WFG1 [22] which is a hard problem presenting a strong
bias towards solutions away from the Pareto optimal set.

In problems DTLZ5(I,M), DTLZ2BZ , WFG1 and WFG3(I,M) we em-
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ployed a similar configuration in order to maintain test problem’s complexity
for every number of objectives. Specifically, we fixed the number of distance-
related variables2 to 20. The number of position-related variables3 was set to
M − 1 in DTLZ5(I,M) and DTLZ2BZ , whereas for WFG1 and WFG3(I,M)
we used 2(M − 1), which is the number of variables recommended in [22].

5.3. Quality Indicators Employed

Since in many-objective problems it is not possible to use 3D plots to help
in the interpretation of results, we have to rely on the results obtained by the
quality indicators. For this reason, we used several indicators, and in some
cases, we resort to parallel coordinates plots to interpret the results.

In order to evaluate the convergence achieved by the MOEAs we used the
generational distance (GD). Since DTLZ2BZ and DTLZ5(I,M) have the prop-

erty
∑M

i=1(zi)
2 = 1 for all z ∈ PFopt the generational distance was computed

using GD = (
∑M

i=1(zi)
2/|PFapprox|)− 1. In the case of the Knapsack problem,

the usual definition of generational distance was adopted, using as reference
Pareto front, the resulting nondominated individuals of the union of PFapprox

obtained by the three algorithms in all the runs for a given test problem. As for
WFG1, we compared the output of the algorithms against a sample of 100000
well distributed points of the optimal Pareto front for any number of objectives.

Additionally, to directly compare the convergence of the MOEAs in all the
test problems, we utilized the additive ǫ-indicator [45]. This indicator is defined
as Iǫ+(A,B) = infǫ∈R{∀z

2 ∈ B ∃z1 ∈ A : z1 �ǫ+ z2} for two nondominated
sets A and B, where z1 �ǫ+ z2 iff ∀i : z1i ≤ ǫ + z2i , for a given ǫ. In gen-
eral, Iǫ+(A,B) 6= Iǫ+(B,A) so we have to compute both values. The smaller
Iǫ+(A,B) and larger Iǫ+(B,A), the better A over B.

In order to evaluate diversity, we used the inverted generational distance
(IGD). Similarly to GD, for this indicator we used the nondominated solutions
of all the PFapprox generated for a given test problem as reference Pareto front.
In the case of WFG1 we used the sample of the PFopt described above.

Besides IGD, another often used indicator to assess both convergence and
diversity is the hypervolume indicator (HV). For DTLZ2BZ , DTLZ5(I,M) the
reference point was zref = 1.5M . The results presented correspond to the nor-
malized hypervolume using the enclosed hypervolume between the ideal point
z∗ = 0M and the reference point. For the knapsack problem, the reference point
was formed using the worst value in each objective of all the PFapprox generated
for all the algorithms. In this case, the hypervolume was normalized using the
hypervolume yielded by NSGA-II. Due to the high computational complexity of
the hypervolume with respect to number of objectives, we only computed this
indicator for 4 to 10 objectives.

2Distance-related variables control the progress towards the Pareto optimal front.
3Position-related variables generate solutions in the same local Pareto front.
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5.4. Comparison Against the Kendall-based Strategy

Since the Kendall-based strategy is intended for MOPs in which there are
groups of independent objectives, in problems where all the objectives are cor-
related (either by conflict or non-conflict), they are grouped together. As a
consequence, from the adopted test problems in this study, the Kendall-based
strategy can be successfully applied only on c-ZDT1(m). In the other problems,
even in DTLZ5(I,M) or WFG3(I,M), this strategy has no effect in the search
of NSGA-II. Therefore, in this section we compare both approaches only on
c-ZDT1(m).

In this problem the ideal partition groups the objectives into pairs. There-
fore, the performance of the conflict-based strategy depends on the number of
subspaces provided by the user. In order to make a fair comparison, two con-
figurations were tested for the conflict-based strategy: one with subspaces of
size 2 (the best case), and another one in which a pair of correlated objectives
will always be separated (the worst case). For this purpose we used an instance
of c-ZDT1(m) with m = 3 (i.e., 6 objectives) to create configurations with 3
subspaces and 2 subspaces.

Like in the study presented in [33], here the objective partition is updated
at every generation. On the other hand, since the alternation between the par-
titioning and approximation phases is a key element in the conflict-based strat-
egy, for this method the partition is updated every 10 generations (i.e., 20 cycles
of the partitioning/approximation phase). In preliminary experiments we also
tested the Kendall-based strategy revising the partitions every 10 generations.
However, updating at every generation provided better results.

In Table 2 we present the performance results using hypervolume, gener-
ational distance and inverted generational distance. As it can be seen, the
conflict-based method outperformed the Kendall-based strategy with respect to
the three indicators. As expected, the configuration with 3 subspaces achieves
the best results. However, the performance using 2 subspaces has the second
best performance. This is interesting since despite the fact that with 2 sub-
spaces at least a pair of correlated objectives is divided, this configuration also
outperforms the Kendall strategy.

This result can be explained by monitoring the percentage of times over the
30 runs that the ideal objective partition, {{f1, f2}, {f3, f4}, {f5, f6}}, is iden-
tified. Figure 5 shows this percentage at each generation for each partitioning
method. Since the conflict-based strategy with 2 subspaces always separates a
pair of correlated objectives, it can not generate the ideal partition. However,
for comparison purposes, we plot the percentage of partitions where, excluding
a single separated pair, the other objectives are correctly grouped in the same
subset. The figure shows that the percentage of ideal partitions generated by
the Kendall-based strategy is considerably low compared with the conflict-based
method with 3 subspaces. This is an advantage of the conflict-based method
with 3 subspaces because during a larger number of generations the search is
focused in the correct objective subsets. Regarding the configuration with 2
subspaces, although there is always a broken pair of correlated objectives, the
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others are correctly grouped nearly 100% of the times. In addition, as shown
in Figure 6, the separated pair of objectives is not the same at each generation,
and therefore, a missing part of the Pareto front can be covered in following gen-
erations. Also note that the figure shows a case (the sixth partition) in which
all the objectives were incorrectly grouped.

Kendall Conflict 2s Conflict 3s

HV

Min 5.6673 6.5374 6.5362
Max 6.6144 6.6841 6.6928

Mean 6.2436 6.6122 6.6251

Std 0.2592 0.0398 0.0343

GD

Min 0.1771 0.1220 0.1213

Max 1.3417 0.2487 0.2267

Mean 0.5433 0.1805 0.1596

Std 0.3030 0.0360 0.0242

IGD

(×10−2)

Min 1.0770 0.2590 0.0670

Max 13.7710 4.5000 3.4390

Mean 4.6692 1.1051 1.0875

Std 2.9982 0.7245 0.7396

Table 2: Performance comparison between the Kendall-based and the Conflict-based strategies
(2 and 3 subspaces).
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Figure 5: Percentage of correct partitions using the Kendall and Conflict strategies with 2
and 3 subspaces. For the configuration with 2 subspaces the separation of one correlated pair
of objectives is not taken into account.

In order to investigate why the Kendall method fail so often to generate
the ideal partition we can analyze the typical Kendall correlation coefficients
among the objectives in c-ZDT1(m). Here, we used m = 2 so that the related
objectives are the pairs (f1, f2) and (f3, f4). In Figure 7 we show a typical
approximation of c-ZDT1(4) in different subspaces. The figure also shows the
computed Kendall correlation coefficient τ and the p-value used to determine
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Figure 6: Partitions generated by the conflict strategy using 2 subspaces on the problem c-
ZDT1(6). The cross symbol indicates objectives assigned to a wrong subspace (i.e., separated
from its pair).

independence4.

f1, f2: Kendall τ = −0.85,

p-value=6.9e-23

f3, f4: Kendall τ = −0.81,

p-value=1.4e-23

f1, f3: Kendall τ = −0.03,

p-value=0.1

f2, f4: Kendall τ = −0.12,

p-value=3.5e-06

Figure 7: Approximation of c-ZDT1(4) projected on different subspaces.

Using a significance level α = 0.01, as expected, the objectives in each pair
(f1, f2) and (f3, f4) are dependent since p-value < α. However, for (f2, f4) also

4If p-value < significance level, the objectives are considered dependent.
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p-value < α. Thus, f4 would be included in the set {f1, f2}, and since f3 is
related to f4, it is also included. As result, all the objectives are grouped in the
same subset. Here, the problem is that the extent of correlation between the
objectives pairs is not considered. For example, the magnitude of the correla-
tion between (f1, f2) (-0.85) is considerably higher than that of (f2, f4) (-0.12).
However, since both p-values are below the significance level, the objectives in
each pair are classified as dependent.

5.5. Problems With A Priori Known Conflict

In this section we present the experimental results using the problem
DTLZ5(I,M). In these experiments, we used I = 4 conflicting objectives from
a total of M = 4, . . . , 15 objectives. For 4 to 9 objectives, 2 subspaces were
used, whereas for 10 to 15 objectives, we employed 3 subspaces.

First, we want to show that the conflict-based strategy was able to correctly
identify the conflicting objectives in most of the partitions generated during the
search process. Figure 8 shows the subspaces generated by the conflict-based
and random partition strategies during the search process. In this example,
there is a total of M = 8 objectives. The conflicting objectives are objectives
6 to 8 and any of the other objectives. The objectives in the most conflicting
subspace are denoted by crosses, and the other subspace is denoted by circles.
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(a) Conflict-based partitions. (b) Random partitions.

Figure 8: Subspaces generated using the conflict and random partition strategies on problem
DTLZ5(I = 4,M = 8). Objectives 6 to 8 and any of the other objectives are the conflicting
objectives.

In Figure 8(a) we can see that in the first partitions generated, some of the
objectives were assigned to the wrong subspace. The reason of this behavior is
that in the first generations the current population does not yet represent an
accurate sample of the real shape of the Pareto front. However, as the search
progresses, the input PFapprox used to estimate the conflict approaches the true
Pareto front. Therefore, in the last stages of the search, the conflict-based
strategy was able to create the correct partition. On the other hand, by using
the random strategy, the chances that the correct partition is created are very
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low. In the example shown in Figure 8(b), only the fourth partition generated
contains the correct subspaces. Consequently, in most of the generations of the
search, the selected parents emphasize objective subspaces that do not maximize
the contribution to form the true Pareto front.

Figure 9 shows the results for the generational distance. The most evident
fact in that plot is that the convergence of NSGA-II degrades dramatically when
the number of objectives is more than 6. In fact, the convergence in terms of
GD tends to diverge. A possible reason of this behavior is the generation of
dominance resistant solutions5 (DRSs) in DTLZ5(I,M). These solutions are
far from the true Pareto front, however, since they are nondominated solutions,
they are candidates to form the new parent population. Since DRSs are bound-
ary solutions, most of them will have the best crowding value. Therefore, these
solutions will always be included in the new parent population. As mentioned
in the introduction, the proportion of nondominated solutions in a population
increases exponentially with respect to the number of objectives. As a result,
this problem gets more difficult when the number of objectives grows. In con-
trast, it seems that the GD values using any of the partition strategies, are not
affected by the number of objectives. In particular, we can see that the conver-
gence obtained by using the conflict-based partition strategy is better than the
one achieved by the random strategy.
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Figure 9: Generational distance (left) and inverted generational distance (right) results in
problem DTLZ5(I = 4,M). From 4 to 9 objectives a partition with 2 subspaces was generated,
while for 10 to 15 objectives one with 3 subspaces.

Nonetheless, this difference is only marginal. By inspecting the parallel co-
ordinate plot presented in Figure 10 we realized that NSGA-II with the random
strategy converges to the extremes of the Pareto front. That is, most of the so-
lutions are close to 0 or 1 in one objective, but very few solutions are generated
in between. Within the context of the objective space, that would mean that
solutions in the middle region of the Pareto front are not yielded. In contrast, as

5Dominance resistant solutions are those with a poor value in at least one of the objectives,
but with near optimal values in the others.
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shown in Figure 10, the conflict-based strategy covers a wide range of trade-offs
between the objectives. Solutions in the middle region represent a range of trade-
offs in which one objective gradually improves while other gradually gets worse.
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Figure 10: DTLZ5(I = 4,M = 8): Parallel coordinate plot of the Pareto front approximations
obtained with the random and the conflict partition strategies.

In order to measure this situation, we compute the inverted generational
distance. Figure 9 shows that the conflict-based partition strategy achieves
better values in terms of the inverted generational distance. This indicates a
better distribution using the conflict-based partition strategy.

Next, we present the convergence assessment using the additive ǫ-indicator.
To some degree, this indicator also takes into account the distribution of the
Pareto front approximations compared. For example, let A be a nondominated
set which is well-distributed along the entire Pareto front, and B a subset of A
concentrated on a small region of the Pareto front. A already weakly dominates
every solution in B, however some positive ǫ value must be added to A in such
a way that B weakly dominates every solution in A.

The results of the ǫ-indicator are presented in Figure 11. We can interpret
these results as follows. Iǫ+(A,B) is the subplot located in row A, and column
B of the matrix. The boxes in each subplot depict the results for each number
of objectives considered. As we can see, the results of the ǫ-indicator indicate
that NSGA-II is clearly outperformed by NSGA-II using either of the partition
strategies. With respect to the comparison of both partition strategies we can
observe that the average ǫ values using the conflict-based strategy are better
than those achieved by the random strategy, especially for 6 or more objec-
tives. That is, Iǫ+(Conflict,Random) < Iǫ+(Random,Conflict) for any number
of objectives.

Finally, we present the results of the hypervolume indicator. Since the hy-
pervolume considers both convergence and distribution to assess two nondom-
inated sets, as we can see in Figure 12, the conflict-based partition strategy
outperforms the random strategy.

Like in the previously analyzed indicators, the original NSGA-II achieved a
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Figure 12: Normalized Hypervolume results for DTLZ5(I = 4,M = 8).

poor performance in terms of the hypervolume indicator. However, it is worth
noting a recurrent behavior using the hypervolume and other indicators. That is,
for less than 5 or 6 objectives, NSGA-II presents a better or similar performance
than that achieved by using a partition strategy. There are two facts that explain
this behavior. Firstly, that the NSGA-II is still able to deal with that lower
number of objectives. Second, since there are 4 conflicting objectives for 4 to 6
objectives, using 2 subspaces it is not possible that all the conflicting objectives
are grouped into one subspace. Therefore, the trade-offs between objectives in
different subspaces are not well represented. This suggests that it is convenient
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to assign all the highly correlated objectives to a single subspace. However, a
large subspace might surpass the capacities of the underlying MOEA. In the next
section we will analyze the effect of the size of the subspaces in the partition.

5.6. Effect of the Size of the Subspaces

In this section we analyze if it is better to have all the conflicting objectives
together although in a large subspace, or small subspaces although the conflict-
ing objectives are in different subspaces. To this end, we used DTLZ5(I,M)
M = 24 objectives and I = 12 objectives in conflict. Then, we compare two
different partitions, namely, one with two subspaces with 12 objectives each,
and another one with 6 subspaces with 4 objectives each.

First, we want to show that both types of partitions are able to identify
the conflicting objectives. However, in most cases, the partition with two sub-
spaces achieved a better identification of the conflicting objectives. Figs. 13(a)
and 13(b) show an example of the partitions created using 2 and 6 subspaces,
respectively. In order to easily verify if the objectives in the partition with 6
subspaces were correctly identified, the objectives in subspaces 1 to 3 are marked
with a cross, and those in subspaces 4 to 6 (conflicting objectives) with circles.
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Figure 13: DTLZ5(I = 12,M = 24): Subspaces generated using 2 subspaces with 12 objectives
each, and 6 subspaces with 4 objectives each.

Figure 14 shows the progress of the generational distance indicator during
the search process. Similarly to previous experiments, due to the dominance
resistant solutions, NSGA-II diverges with respect to GD. However, what we
want to emphasize is the fact that each partition strategy achieved a better
convergence using 6 subspaces with 4 objectives. This suggests that it is prefer-
able to have subspaces of moderate size, even if highly conflicting objectives
have to be assigned to different subspaces. The optimal size of the subspaces
depends on the capacities of the underlying MOEA. For example, based on the
experimental results observed so far, an appropriate size of the subspaces for
NSGA-II would be between 4 and 6 objectives. However, for other MOEAs,
like the Strength Pareto Evolutionary Algorihtm 2 (SPEA2) [43] or the Pareto
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Archived Evolution Strategy (PAES) [28], the optimal subspace size might be
different.
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Figure 14: DTLZ5(I = 12,M = 24): Online Generational Distance using a partition with 2
subspaces and another one with 6 subspaces.

Regarding the conflict and random strategies, it can be seen that the conflict-
based strategy also diverges when using 2 subspaces. However, the random-
based strategy with the same number of subspaces obtains good results. In
order to find the reason for this behavior, we will analyze the performance
using other quality indicators and plots. The parallel coordinate plot shown
in Figure 15 indicates that by using a random strategy the solutions converge
to the extremes of only a pair of objectives. In this plot only the conflicting
objectives are plotted (from objective 13 to 24). In the ideal case, lines crossing
from objective 13 to 24 in the range [0, 1] should appear. In contrast to the
random strategy, the conflict-based strategy finds solutions that optimize more
objectives and cover the mid trade-off regions of the Pareto front.

In order to quantitatively assess the distribution, we compare the algorithms
using the inverted generational distance, whose results are shown in Table 3.
Although the obtained generational distance of the conflict and random strate-
gies are similar using 6 subspaces (see Figure 14), the results of the inverted
generational distance shown in Table 3 suggest that the conflict strategy with 6
subspaces achieved a better distribution of the solutions than the random strat-
egy with 6 subspaces. In fact, the random strategy with 2 subspaces achieved
a better IGD than the one yield using 6 objectives.

Based on the ǫ-indicator results shown in Table 4, we can confirm that both
partition strategies have a better performance using partitions with 6 subspaces.
In the same way, the conflict strategy outperformed the other algorithms in
terms of the ǫ-indicator. The negative results in the column of NSGA-II indi-
cate that, on average, the Pareto front approximations yielded by the conflict
strategy with 6 subspaces and by both random strategies, dominate the Pareto
front approximations obtained by NSGA-II.
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Figure 15: DTLZ5(I = 12,M = 24): Parallel coordinate plot of the Pareto front approxima-
tions obtained by the conflict-based strategy with 6 subspaces, and the random strategy with
2 subspaces.

NSGA-II Conflict Random

NS = 2 NS = 6 NS = 2 NS = 6

Mean 0.18005 0.00838 0.00570 0.00682 0.00769
Std. Dev. 0.04695 0.00010 0.00047 0.00092 0.00029

Worst 0.26993 0.00849 0.00758 0.00791 0.00819

Best 0.07868 0.00788 0.00454 0.00591 0.00716

Table 3: IGD values for DTLZ5(I = 12,M = 24) using 2 and 6 subspaces in each of the
partitioning strategies, namely, random- and conflict-based partitions.

5.7. Problems With A Priori Unknown Conflict

In this section, we analyze the performance of the conflict and random par-
tition strategies in problems in which the conflict relation among objectives is
not known a priori. That is, the DTLZ2BZ , WFG1 and Knapsack problems.

Based on the symmetrical geometry of DTLZ2BZ ’s Pareto front (which is
a sphere), it seems that the conflict between every pair of objectives is very
similar. Therefore, we would expect that both partition strategies present a
similar performance. Figure 16 shows the results for the generational distance
and the inverted generational distance obtained in problem DTLZ2BZ . As we
expected, the experimental results show that both partition strategies obtained
a similar performance in both indicators. However, the conflict-based strategy
achieved a slightly better performance.

In a similar way, both algorithms achieved similar results with respect to
the hypervolume and the ǫ-indicator (see Figs. 17 and 18).

Although in DTLZ2BZ , the conflict information was not useful to create
the partitions, as we will see, in the Knapsack problem there is an interesting
conflict relation among the objectives that allows the conflict-based strategy
to perform better than the random strategy. Figure 19 shows the subspaces
generated by the conflict strategy on the Knapsack problem with 9 objectives.
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Iǫ+(A,B) NSGA-II
Cft Cft Rnd Rnd

NS = 2 NS = 6 NS = 2 NS = 6

NSGA-II x 14.4030 14.4030 14.4030 14.4030

Cft, NS = 2 0.1977 x 0.9644 0.9644 0.9623

Cft, NS = 6 -6.73e-6 0.0372 x 0.1974 0.1012

Rnd, NS = 2 -6.73e-6 0.0107 0.4845 x 0.1407

Rnd, NS = 6 -6.73e-6 0.6009 0.6010 0.6011 x

Table 4: Iǫ+ values for DTLZ5(I = 12,M = 24) using 2 and 6 subspaces in each of the
partitioning strategies, namely, random- and conflict-based partitions.
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Figure 16: Generational distance and inverted generational distance in problem DTLZ2BZ .

As can be seen, as the search progresses, a particular partition is formed re-
currently, namely Ψ3 = {{4, 5, 8}, {1, 3, 9}, {2, 6, 7}}, where {4, 5, 8} is the least
conflicting subspace, and {2, 6, 7} is the most conflicting one. This suggests that
the conflict between certain objectives is considerably larger than the conflict
between other objectives.

In order to measure the contribution of each subspace to the total conflict in
the problem, we compute the following measure. For each subspace we compute
the sum of the conflict between each pair of its objectives. We consider this sum
as the conflict degree of each subspace. The sum of the conflict degree of each
subspace is the total conflict of the problem. The ratio of the conflict degree
of each subspace and the total conflict is called the conflict contribution. In
Figure 20, we can clearly see that subspace 3 has a larger conflict contribution
with respect to the other subspaces.

From the results obtained in the generational distance and in the inverted
generational distance (see Figure 21) we can say that the conflict-based partition
strategy achieved better Pareto front approximations than the random-based
strategy in terms of both convergence and distribution.

The results obtained with the hypervolume indicator (see Figure 18) con-
firm that the conflict-based strategy outperformed the random strategy. We
can conclude that the differences in the degrees of conflict between each pair
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considered.

4 5 6 7 8 9 10
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Num. of objectives

N
o
rm

a
liz
e
d
H
y
p
e
rv
o
lu
m
e

DTLZ2
BZ

NSGA−II

NSGA−II−conflict

NSGA−II−random

4 5 6 7 8 9 10
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Num. of objectives

N
o
rm
a
liz
e
d
H
y
p
e
rv
o
lu
m
e

Knapsack, 300 items

NSGA−II

NSGA−II−conflict

NSGA−II−random

Figure 18: Normalized Hypervolume of DTLZ2BZ (left) and the Knapsack problem (right).
For the Knapsack problem the hypervolume values were normalized with respect to the hy-
pervolume achieved by the NSGA-II.

objectives was used by the conflict-based strategy to obtain better results than
those obtained using a random partition.

Finally, we present the results of the performance of the three variants of
NSGA-II on problem WFG1. This is a very hard problem since it presents a
strong bias towards a variable space’s region away from the Pareto optimal set.
Similarly to DTLZ2BZ , the symmetrical shape of WFG1’s Pareto front suggest
that objective conflict information will not represent a decisive advantage for
the conflict-based strategy. However, searching in different subspaces might still

28



1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Current partition

O
b
je
c
ti
v
e

Figure 19: Three generated subspaces by
the conflict-based partition strategy on the
Knapsack problem.

Figure 20: Conflict contribution of each of
the three subspaces generated using the con-
flict partition strategy.
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Figure 21: Generational distance and inverted generational distance in the Knapsack problem.

help NSGA-II to converge faster towards the Pareto front, especially when the
number of objective is high.

As expected, the generational distance shown in Figure 22 indicates that
the performance of both partitioning strategies is very similar for all the objec-
tives considered and considerably better than NSGA-II when the partitioning
scheme is not used. On the other hand, the results of the inverted generational
distance (see Figure 22) suggest that conflict-based strategy achieved a better
distribution over the Pareto front.

6. Conclusions and Future Work

In this paper, we have proposed a new strategy to partition the objective
space into small subproblems in order to deal with many-objective problems.
The new strategy creates objective subspaces based on the analysis of the conflict
information obtained from the Pareto front approximation. Additionally, we in-
troduced a new version of the general partitioning scheme in order to improve
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Figure 22: Generational distance and inverted generational distance in the WFG1 problem.

the distribution of the solution over the entire Pareto front. The general parti-
tioning scheme was implemented within NSGA-II’s framework. In order to eval-
uate the effectiveness of the new conflict-based partition strategy, we compared
its performance against three algorithms: a partitioning method based on the
Kendall correlation, a random partitioning strategy and the original NSGA-II.

The experimental results showed that both the conflict-based and random
partition strategies outperformed NSGA-II in all the test problems considered in
this study. While NSGA-II even diverged in some test problems, the NSGA-II
using any of the partition strategies maintained a good convergence regardless of
the number of objectives. Regarding the two partition strategies, the conflict-
based partition strategy achieved a better distribution of the solutions than
that achieved by the random strategy. In some problems, by using the random
strategy, convergence was concentrated on the extremes of the Pareto front.
Finally, the conflict-based strategy outperformed the Kendall-based method on
a separable problem.

In problems in which the degree of conflict between pairs of objectives was
different, the conflict-based strategy presented a better performance. It is im-
portant to note, that in the case of the Knapsack problem, in which the conflict
relation among the objectives is not known a priori, the conflict-based strategy
was able to detect important dependencies among the objectives in terms of the
conflict. The extracted conflict information allowed our proposed conflict-based
partition strategy to achieve better results than the other algorithms.

Initially, one may think that grouping all the highly conflicting objectives
in one subspace is a better choice. However, the experimental results showed
that the best size of the subspaces considerably depends on the scalability of the
underlying MOEA. For instance, if the underlying MOEA has good performance
up to 5 objectives, the size of each subspace should not exceed that limit.

From the experimental results we realized that in some problems the contri-
bution of some subspaces to the overall conflict of the problem was very small.
Therefore, an equal distribution of the resources (e.g., proportion of parents,
number of generations) to the subspaces might not be a good idea. In this
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sense, as part of our future work, we plan to exploit the conflict information
in order to automatically adapt the proportion of resources granted to each
subspace. Similarly, we want to use the conflict information to determine the
best size of each subspace in the objective partition. Although the proposed
partitioning framework achieved promising results, it would be interesting to
compare our approach against other algorithms that have also shown a good
performance on many-objective optimization problems (e.g. [24]).
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[23] Hughes, E.J., 2005. Evolutionary Many-Objective Optimisation: Many Once or
One Many?, in: CEC’2005, IEEE Press, Edinburgh, Scotland. pp. 222–227.

[24] Hughes, E.J., 2007a. MSOPS-II: A General-Purpose Many-Objective Optimiser,
in: CEC’2007, IEEE Press, Singapore. pp. 3944–3951.

[25] Hughes, E.J., 2007b. Radar Waveform Optimisation as a Many-Objective Appli-
cation Benchmark, in: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata,
T. (Eds.), EMO 2007, Springer, Matshushima, Japan. pp. 700–714.

32



[26] Ikeda, K., Kita, H., Kobayashi, S., 2001. Failure of Pareto-based MOEAs: Does
Non-dominated Really Mean Near to Optimal?, in: CEC’2001, IEEE Press, Pis-
cataway, New Jersey. pp. 957–962.

[27] Knowles, J., Corne, D., 2007. Quantifying the Effects of Objective Space Di-
mension in Evolutionary Multiobjective Optimization, in: Obayashi, S., Deb, K.,
Poloni, C., Hiroyasu, T., Murata, T. (Eds.), EMO 2007, Springer, Matshushima,
Japan. pp. 757–771.

[28] Knowles, J.D., Corne, D.W., 2000. Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8,
149–172.
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