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The design of bar structures in civil engineering is a complex problem when
dealing with real-world structures. An approach to deal with these problems
is to apply metaheuristics, which are stochastic methods based on iteratively
producing and evaluating tentative solutions. In particular, we focus on multi-
objective metaheuristics, as we consider two goals to be minimized: the weight
and the deflection of the structure. When applying these techniques to real-
world problems, running a metaheuristic for several thousands of evaluations
may require many days on a single processor. In this paper, we develop
distributed master/slave versions of four multi-objective metaheuristics which are
representative of the state-of-the-art and apply them to optimize the design of two
instances of a cable-strayed bridge. Our study reveals that our parallel proposals
are able to effectively use up to 450 cores, providing accurate solutions in a short

time.
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1. INTRODUCTION

In the process of designing civil structures, engineers
have frequently to face very hard optimization problems
before the infrastructure becomes a reality. The
hardness of these optimization problems emerges from
different sources such as their inherent complexity, the
presence of multiple conflicting design objectives, or
the computational cost required for their resolution [1].
Of course, this kind of optimization problems are not
specific to civil engineering and they also appear in
many other disciplines such as telecommunications,
biology, finance, chemistry, etc. [2, 3].

The aim is this paper is to address two instances
of a real-world structural design problem, namely, the
design of a cable-strayed bridge. The complexity of the
problem lies mainly in the number of components to
optimize (the dimensions of hundreds of bars) and on
the number of side-constraints that feasible solutions
must fulfill. The design problem is stated as that
of optimizing two conflicting criteria: minimizing the

financial cost of the structure and maximizing its
safety. It is therefore a multi-objective optimization
problem (MOP), in which the goal is to find a set of
compromise solutions with different trade-offs among
different criteria. This set of compromise solutions
is known as Pareto optimal set, and its projection in
objective function space is called Pareto front.

Many techniques have been proposed in the multi-
objective research community to address the resolu-
tion of these problems. Unlike classical mathematical
programming approaches, metaheuristics [4] in general,
and Evolutionary Algorithms (Multi-Objective Evolu-
tionary Algorithms or MOEAs, in the multi-objective
domain) [5] in particular, have been widely used in the
last decade because of two main facts. First, they have
the ability to approximate the entire Pareto optimal set
in one single run, as opposed to classical multi-criteria
decision making techniques. They are also less sensi-
tive to the shape of the Pareto front and, therefore, can
deal with a large variety of multi-objective optimization
problems. Second, as randomized black-box algorithms,
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MOEAs can address optimization problems with non-
linear, non-differentiable, or noisy objective functions.

In spite of these advantages, multi-objective meta-
heuristics might demand high computational resources
because, on the one hand, they need to approximate
a set of solutions rather a single one (i.e., the Pareto
optimal set); on the other hand, and even more impor-
tantly, many real-world multi-objective problems typi-
cally use computationally expensive methods for com-
puting the objective functions and constraints. As the
working principle of MOEAs is based on generating and
evaluating thousands of tentative solutions, the running
time of the optimizer can become a challenge when the
instance size increases. This last fact is precisely the fo-
cus in this work, because computing the objective func-
tions requires applying a matrix stiffness method [6],
and making this iteratively can lead easily to weeks and
months of computing time.

The main goal of this work is to address this issue
by using parallel computing platforms to speedup the
search of several multi-objective metaheuristics [7]. We
have developed distributed master/worker versions of
four multi-objective solvers, namely NSGA-II [8], SMS-
EMOA [9], MOCell [10], and SMPSO [11]. These
algorithms are a representative sample of the state-
of-the-art that includes classical algorithms (NSGA-
II), plus recent proposals with different enhanced
search features: SMS-EMOA is an indicator-based
MOEA, MOCell is a cellular MOEA with a structured
population, and SMPSO is a swarm-based multi-
objective metaheuristic. They have been engineered for
evaluating in parallel the objective functions of two real-
world structural design problems. The parallelization
devised is aimed at taking full advantage of a massive
parallel computing platform but without setting the
algorithms with non-customary operating conditions
(e.g., extremely large populations for using a large
number of workers). The idea is to break down
the synchronism induced by the metaheuristic search
loop and the configured population size to incorporate
a many workers as possible. The experimentation
conducted is in the line of showing that the proposed
parallelization can incorporate hundreds of processing
elements (workers) without relevant impact on the
final solution quality. The two real-world problems
addressed model two variants of a cable-strayed bridge,
which is characterized by having two towers from
which steel cables hold the bridge deck. These
problem instances have been named 133N 221B and
837N 1584B, reflecting the number of nodes (133 and
837, respectively) and bars (221 and 1584, respectively)
of the structure. For the former instance, which
is considerably smaller than the latter, an extensive
and thorough experimentation with different parallel
settings has been conducted to assess our working
hypothesis; the latter is then used as a case study using
the obtained findings.

Thanks to the adopted parallel approaches, we have

been able to optimize the 837N 1584B instance in
around 10 hours using more than 400 workers. This
paper is an extension of [12], which was presented at
the Second International Workshop on Soft Computing
Techniques in Cluster and Grid Computing Systems
(SCCG 2013). That conference paper introduced
the distributed versions of SMS-EMOA and NSGA-
II, and tackled the 837N 1584B instance. The novel
scientific contributions of this extension, built upon
such conference paper, are:

• To the best of our knowledge, it is the first
master/worker parallelization of MOCell and
SMPSO capable to incorporating hundreds of
processing nodes.

• The solution of two real-world structural design
problems with up to 450 processors.

• A detailed analysis of the quality of the solutions
reached by the parallel algorithms when using an
increasing number of workers.

In the survey of multi-objective metaheuristics
applied to structural problems carried out by Zavala et
al. [13] some of the final conclusions were that the most
widely used algorithm was NSGA-II and that applying
parallelism was an open issue; furthermore, most of
the addressed problems in the works reviewed in that
survey were academic. In this paper, we make progress
in these open research lines, by considering modern
algorithms (SMS-EMOA, SMPSO, and MOCell), which
are parallelized to solve two real-world structural design
problems.

The rest of this paper is structured as follows. Sec-
tion 2 and 3 are devoted to introduce background con-
cepts related to multi-objective optimization, paral-
lelism and multi-objective metaheuristics, respectively.
The structural design problems we are dealing with are
detailed in Section 4. Section 5 presents both the four
algorithms and their parallelization. The obtained re-
sults are analyzed in Section 6. Finally, Section 7 sum-
marizes the paper and outlines some lines of further
research.

2. BACKGROUND ON MULTI-OBJECTIVE
OPTIMIZATION

In this section, we provide some basic background
on fundamentals of multi-objective optimization. We
start by defining key concepts, such as multi-
objective optimization problem, Pareto optimality,
Pareto dominance, Pareto optimal set, and Pareto front,
followed by a discussion of the goals of multi-objective
optimization. It is assumed in the following, without
loss of generality, that all the objective functions are to
be minimized.

The definition of a general multi-objective optimiza-
tion problem (MOP) can be formally formulated as:

Definition 2.1. (MOP) Find a vector ~x∗ =
[x∗1, x

∗
2, . . . , x

∗
n] which satisfies the m inequality con-
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straints gi (~x) ≥ 0, i = 1, 2, . . . ,m, the p equality con-
straints hi (~x) = 0, i = 1, 2, . . . , p, and minimizes the

vector function ~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]
T

, where

~x = [x1, x2, . . . , xn]
T

is the vector of decision variables.

Those values satisfying the constraints define the
feasible region Ω and any point ~x ∈ Ω is a feasible
solution. To determine those points that are the
optimal solutions to a given MOP, the concept of Pareto
optimality has is introduced:

Definition 2.2. (Pareto Optimality) A point ~x∗ ∈
Ω is Pareto Optimal if for every ~x ∈ Ω and I =
{1, 2, . . . , k} either ∀i∈I (fi (~x) = fi(~x

∗)) or there is at
least one i ∈ I such that fi (~x) > fi (~x∗).

This definition states that ~x∗ is Pareto optimal if
no feasible vector ~x exists which would improve some
criteria without causing a simultaneous worsening in at
least one other criterion.

Pareto optimality can be expressed in terms of the
concept of Pareto dominance:

Definition 2.3. (Pareto Dominance) A vector ~u =
(u1, . . . , uk) is said to dominate ~v=(v1, . . . , vk) (denoted
by ~u 4 ~v) if and only if ~u is partially less than ~v, i.e.,
∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Thus, a Pareto optimal point is that which is not
dominated by any other point in Ω. Pareto dominance
allows to compare two solutions, allowing to know if one
solution dominates another or that both solutions do
not dominate each other (i.e., they are non-dominated
solutions). Many multi-objective algorithms are based
on Pareto dominance.

Therefore, the optimization of a MOP involves
finding the set of all (or as many as possible) the Pareto
optimal solutions. This is the so-called Pareto optimal
set, or simply Pareto set, and it is defined as follows:

Definition 2.4. (Pareto Optimal Set) For a given

MOP ~f(~x), the Pareto optimal set is defined as P∗ =

{~x ∈ Ω|¬∃~x′ ∈ Ω, ~f(~x′) 4 ~f(~x)}.

Each vector in the Pareto optimal set has a
correspondence in objective function space, leading to
the so-called Pareto front:

Definition 2.5. (Pareto Front) For a given MOP
~f(~x) and its Pareto optimal set P∗, the Pareto front is

defined as PF∗ = {~f(~x)|~x ∈ P∗}.

The main goal of multi-objective optimization
algorithms is to obtain the Pareto front of a given MOP.
In general, multi-objective optimization problems can
have a Pareto front composed by a huge (possibly
infinite) number of solutions. When using stochastic
techniques, such as metaheuristics, the goal is thus
to obtain a Pareto front approximation (also called
approximation set), i.e., a subset of solutions that
represents the optimal Pareto front. The size of

this subset (a typical value is 100) has to be large
enough to allow the expert to have an accurate set of
solutions to choose from. This implies that a Pareto
front approximation has to fulfill two properties: (1)
convergence (i.e., the solutions must be as close as
possible to the optimal Pareto front) and (2) diversity
(i.e., the solutions are uniformly spread along the entire
Pareto set, and not only clustered around a few specific
parts of it).

Although obtaining Pareto front approximations with
good convergence and diversity is important, there is
also a very important goal in practice, which is to
obtain these approximations in a reasonable amount
of time. This issue is tackled in this paper, and it
has to do with the fact that running a metaheuristic
to solve a real-world optimization problem can take
several days (or even weeks or months), making its
use impractical. A way to deal with this drawback is
to design parallel metaheuristics that are able to take
advantage of hundreds of processors/cores.

3. MULTI-OBJECTIVE METAHEURISTICS
AND PARALLELISM

Due to their population-based approach, EAs are
very suitable for parallelization because their main
operations (i.e., crossover, mutation, and, in particular,
function evaluation) can be independently performed
on different individuals. There is a vast amount of
literature on how to parallelize EAs (e.g., see the
surveys [14, 15, 16]). However, parallelism here is not
only a way to solve problems in shorter times, but also
to engineer new and more effective search models: a
parallel EA can be more effective than a sequential
one, even when executed on a single processor. The
advantages that parallelism offers to single objective
optimization also hold in multi-objective optimization.

The most well-known models for parallel MOEAs
have been directly inherited from the single-objective
parallel EA community, where two parallelizing
strategies are defined for population-based algorithms:
(1) parallelization of computation (Figure 1a), in
which the operations commonly applied to each
individual are performed in parallel, resulting in
the well-known Master/Slave or global parallelization
algorithms; and (2) parallelization of population, in
which the population is split into different parts,
each one evolving in semi-isolation (individuals can be
exchanged between subpopulations). Two main models
emerge from this latter parallelization strategy: the
distributed EA (dEA, or coarse-grain) and cellular EA
(cEA, fine-grain or diffusion). In dEAs (Figure 1b),
the population is partitioned into a set of islands in
which isolated EAs run in parallel. Sparse individual
exchanges are performed among these islands, aiming
at inserting genetic diversity into the subpopulations,
thus avoiding them getting stuck in local optima.
In the case of cEAs (Figure 1c), subpopulations are
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(a) (b) (c)

FIGURE 1. Different models of parallel EAs: (a) global
parallelization, (b) distributed EAs, and (c) cellular EAs.

typically composed of one individual, which may only
interact with its nearby neighbors in the breeding
loop as they are arranged in a toroidal grid, i.e.,
the concept of neighborhood is introduced. These
neighborhoods are overlapped, which implicitly defines
a migration mechanism and allows a smooth diffusion
of the solutions throughout the population.

This taxonomy holds as well for parallel MOEAs [17,
18, 19], so we can consider Master/Worker MOEAs
(mwMOEAs), distributed MOEAs (dMOEAs), and
cellular MOEAs (cMOEAs). Nevertheless, these two
decentralized population approaches need a further
particularization for MOPs [20]. As we stated before,
the main goal of any multi-objective optimization
algorithm is to find the optimal Pareto front for
a given MOP. It is clear that in msMOEAs, the
management of this Pareto front is done by the
master processor. But, when the search process is
distributed among different subalgorithms, as happens
in dMOEAs and cMOEAs, the management of the
nondominated set of solutions during the optimization
procedure becomes a capital issue. Hence, it can
be distinguished when the Pareto front is distributed
and locally managed by each subEA during the
computation, or it is a centralized element of the
algorithm. They have been called Centralized Pareto
Front (CPF) structured MOEAs and Distributed Pareto
Front (DPF) structured MOEAs, respectively [7]. A
detailed review or parallel MOEAs is outside the scope
of this paper, but interested readers are referred to [21].

After providing the reader with a short overview
of parallel evolutionary multi-objective optimization,
we will now focus on the work that is closely related
to the algorithmic proposals presented here. Because
of the computationally expensive cost of running a
MOEA over thousands of evaluations on the considered
target problems, the approach used here is to propose
and analyze several master/worker parallelizations of
several state-of-the-art MOEAs for which, to the
best of our knowledge, such parallel versions do
not exist. Indeed, this work introduces the first
master/worker parallelization of MOCell and SMPSO
(the contribution in the conference paper was the
master/slave parallelization of SMS-EMOA). From the
point of view of parallelism, we have modified the
evolutionary loop of these MOEAs so that they are
capable of incorporating as many workers as possible in

the computation. In the experiments performed, up to
450 cores from a heterogeneous distributed computing
platform successfully evaluate the fitness function in
parallel. In order for the workers to be deployed, we
have relied on the Condor high throughput computing
system [22].

4. STRUCTURAL DESIGN PROBLEM:
CABLE-STRAYED 3D BRIDGES

The target problem of our work is the design of
two cable-strayed 3D bridges, formed by spatial bars
having different cross-section shapes and sizes. The
bridge design problem is formulated as a bi-objective
optimization problem. The first objective is to minimize
the total weight of the structure; the second objective
is to minimize the summation of the deformations in
some selected nodes. Each bar can have one out of three
different cross-sections: hollowed rectangle, I-beam, or
circular. Each kind of bar is featured by a set of
measurements, which lead to the encoding that will be
used by the metaheuristic algorithms. In particular, a
solution to the problem is an array of values (one per
bar) featuring a concrete instance of the bridge (see
Section 6.2).

FIGURE 2. Bridge 133N 221B.

We detail next the features of the two bridges
considered in our study. The smallest bridge, the
133N 221B instance, has two independent pillars that
support part of the weight of the deck, two independent
pillars that support part of the weight of the board, and
the rest of the board weight of the board is supported
by the parallel tension of the cables. It has a one-
way roadway and a pedestrian circulation lane which
is illustrated in Fig. 2. The bridge has a total length of
44.00m and the deck length and width are 32.00m and
6.40m, respectively. In addition, the bridge contains
two pillars (towers) of 6.00m height anchored by four
cables with an upper beam. The main longitudinal
beam, made of malleable steel, is suspended using
ten high resistant tensioners; therefore, two materials
having different elastic properties are used. From a
mechanical point of view we only consider one half of the
bridge and symmetric loads. The bridge is composed of
133 nodes and 221 bars. For the sake of simplifying the
construction, we have congured groups of bars, in such
a way that the elements composing the groups have
the same shape, same material, equivalent position in
the structure, and taking into account the inner forces
that might appear in the structure must keep smooth
transitions between groups in the geometric continuity
of the structure; the 133N 221B bride has 33 groups of
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Shape Bars Groups Variables Geometric Mechanic Deflection
(gr) (var) constraints constraints constraints

Circle 46 8 1var/gr x 8gr = 8 3const/gr x 8gr = 24
68I-beam 39 4 4var/gr x 4gr = 16 4const/gr x 4gr = 16 3const/gr x 4gr = 12

Hollowed rectangle 136 21 4var/gr x 21gr = 84 4const/gr x 21gr = 84 3cont/gr x 21gr = 63
Total 221 33 108 267

F1 = Σb
i=1γiliΩi , F2 = Σn

j=1δj

TABLE 1. Variables and constraints of the 133N 221B bridge.

bars. After applying this grouping strategy, the total
number of decision variables is 108, the total number of
geometric constraints is 100, and the sum of mechanical
and deflection constraints are 99 and 68, respectively
(see Table 1).

Fixed and variable loads

Gravitational and

lateral wind
Truck

Circular I beam Hollowed

rectangle

Shape cross-section type

FIGURE 3. Bridge 837N 1584B.

The second problem, referred to as 837N 1584B, has
two pillars standing together in the middle, and the
tension cables are arranged diagonally. It has a two-
way roadway and a pedestrian circulation lane which is
illustrated in Fig. 3. The bridge has a total length of
162.00m and the deck length and width are 90.00m and
9.00m, respectively. In addition, the bridge contains
two pillars of 23.00m of height joined in the top and
anchored by cables. The main longitudinal beam,
made of malleable steel, is suspended using ten high
resistant tensioners; therefore, two materials having
different elastic properties are used. From a mechanical
point of view, we consider the complete bridge and
asymmetric loads. The 837N 1584B bridge is composed
of 837 nodes, 1 584 bars, and 60 groups of bars. After
applying the grouping strategy, the total number of
decision variables is 207, the total number of geometric
constraints is 392, and the sum of mechanical and
deflection constraints are 180 and 16, respectively (see
Table 2).

In both problem instances, the two objectives are
to minimize the total weight of the structure (in
meganewtons or MN) and the sum of deformations of
selected nodes (in meters). The formulation of these
objectives is as follows:

• F1 = Σbi=1γiliΩi.
• F2 = Σnj=1δj .

where:

- σi: stress calculation for ith bar.

- γi: specific weight of the material for ith bar.
- li: bar length.
- Ωi: optimized cross-section of the ith bar.
- δj : deflection in selected node j.

5. PARALLEL PROPOSALS

In this section, we first introduce briefly the four state-
of-the art solvers, NSGA-II, SMS-EMOA, MOCell, and
SMSPO. Then, the common parallelization framework
used to engineer the parallel versions of these algorithms
is described. Finally, we describe how the parallel
algorithms are designed within such framework.

5.1. Sequential MO solvers

In this section, we briefly describe the four metaheuris-
tics used in this study, namely NSGA-II, SMS-EMOA,
MOCell, and SMPSO. They all are population-based
metaheuristics [4], i.e., they operate on a set of solu-
tions at each iteration. A general template for a multi-
objective metaheuristic is displayed in Algorithm 1.
The general operation of these algorithms begins by
generating a set of initial solutions, S (which is referred
to as population in EAs and as swarm in PSO algo-
rithms), and creating a set A to store non-dominated
solutions which, at the beginning of the execution, is
empty (lines 1 and 2). This set can be used in an im-
plicit way (as in NSGA-II and SMS-EMOA) or explic-
itly (as in MOCell and SMPSO); in the latter case, it is
usually referred to as an external archive. The solutions
in S are evaluated and the set A is updated (lines 3 and
4). Then, the search loop starts. The loops involves a
stochastic variation of the solutions included in S and

Algorithm 1 Template of a generic multi-objective
metaheuristic.
1: S(0)← GenerateInitialSolutions()
2: A(0)← ∅
3: Evaluation(S)
4: A(0)← Update(A(0), S(0))
5: t← 0
6: while not StoppingCriterion( ) do
7: t← t+ 1
8: S(t) ← Variation(A(t− 1), S(t− 1))
9: Evaluate(S(t))

10: A(t) ← Update(A(t), S(t))
11: end while
12: Output: A
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Shape Bars Groups Variables Geometric Mechanic Deflection
(gr) (var) constraints constraints constraints

Circle 42 11 1var/gr x 11gr = 11 3const/gr x 11gr = 33
16I-beam 252 41 4var/gr x 41gr = 164 4const/gr x 41gr = 164 3const/gr x 41gr = 123

Hollowed rectangle 1 280 8 4var/gr x 8gr = 32 4const/gr x 8gr = 32 3cont/gr x 8gr = 24
Total 1 584 23 207 392

F1 = Σb
i=1γiliΩi , F2 = Σn

j=1δj

TABLE 2. Variables and constraints of the 837N 1584B bridge.

A, and the generation of a new set of solutions (line 8)
from which those that are non-dominated are retrieved
(line 10). The matching of this general scheme on the
four algorithms used in this work is briefly presented in
the following subsections (for a detailed description, in-
terested readers are referred to the references provided
for each one).

5.1.1. NSGA-II
The Non-Dominated Sorting Genetic Algorithm II,
NSGA-II, was proposed by Deb et al. [8]. It is a
genetic algorithm based on generating a new population
from the original one by applying the typical genetic
operators (selection, crossover, and mutation); then, the
individuals in the new and old population are sorted
according to their rank, and the best solutions are
chosen to create a new population. In case of having to
select some individuals with the same rank, a density
estimation based on measuring the crowding distance
to the surrounding individuals belonging to the same
rank is used to get the most promising solutions. From
Algorithm 1, S and A are considered to be one single
set P = S ∪ A so that, at each iteration, the non-
dominated solutions found are used to generate new
solutions within the evolutionary loop.

5.1.2. SMS-EMOA
The general idea of SMS-EMOA is to use a quality
indicator to guide the search of the algorithm [9]. In
other words, the algorithm aims to compute a Pareto
front optimizing the value of that quality indicator.
SMS-EMOA makes use of the Hypervolume, IHV ,
which is the only unary performance measure that
is known to be Pareto-compliant [23]. It calculates
the volume, in objective function space, covered
by members of a non-dominated set of solutions.
Therefore, the higher the value of IHV , the better will
be our approximation of the Pareto front.

SMS-EMOA is based on the NSGA-II algorithm, but
introduces two main modifications: firstly, SMS-EMOA
is a steady-state evolutionary algorithm, while NSGA-
II is a generational one; secondly, instead of using the
crowding distance as density estimator, SMS-EMOA
considers the contribution of the solutions to IHV in the
current approximation of the Pareto front. This way,
in every iteration the algorithm discards the solution
contributing the least to the hypervolume.

FIGURE 4. Underlying parallel software architecture for
both SMS-EMOA and NSGA-II

5.1.3. MOCell

The Multi-Objective Cellular Genetic Algorithm,
MOCell, is a cellular genetic algorithm (cGA) [10].
Like many multi-objective metaheuristics, it includes
an external archive to store the nondominated solutions
found so far. The matching with Algorithm 1 is
therefore straightforward. The archive is bounded and
uses the crowding distance of NSGA-II to maintain
diversity in the Pareto Front. We have used here
an asynchronous version of MOCell, called aMOCell4
in [24], in which the cells are explored sequentially
(asynchronously). The selection is based on taking
an individual from the neighborhood of the current
solution (called cell in cGAs) and another one randomly
chosen from the archive. After applying the genetic
crossover and mutation operators, the new offspring is
compared with the current one, replacing it if better; if
both solutions are non-dominated, the worst individual
in the neighborhood is replaced by the current one. In
these two cases, the new individual is inserted into the
archive.
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5.1.4. SMPSO
SMPSO (Speed-constrained Multi-Objective PSO algo-
rithm) is a particle swarm optimization algorithm for
solving MOPs [11]. From a high level of abstraction,
in a PSO algorithm, a set (swarm) of candidate solu-
tions (particles) to the problem navigate through the
search space of an optimization problem. This naviga-
tion takes place attending to a velocity equation, which
rules the way in which particles change their position.
Among the factors that govern that velocity equation,
two of them can be highlighted: the current position of
the particle and the best positions visited so far, also
referred to as leaders. Usually, the best position visited
by a particle (local leader) and the best particle visited
by any particle in the swarm (global leader) are consid-
ered. The main innovation of SMPSO is the incorpo-
ration of a constraining mechanism already applied in
single-objective PSO algorithms, which modulates the
speed at which particles fly [25]. SMPSO uses an exter-
nal archive to store the non-dominated solutions, so it
fits into the template described in Algorithm 1.

5.2. Parallelization framework

The general architecture used for parallelizing the four
MOEAs is outlined in Fig. 4. The idea is to follow a
master/worker distributed scheme. As can be seen, a
multi-threaded master has been devised where there is
a talker thread handling the communication with each
worker. Talkers and workers communicate via tasks,
which are just containers of tentative solutions to be
evaluated remotely. Tasks are stored in a shared FIFO
list which is accessed concurrently by all the talkers (in
mutual exclusion). A talker can both, remove and add,
tasks to this list. If this list gets empty it means that
all the tasks have been processed, i.e., all the solutions
have been evaluated by the workers, so the master stops
(as well as all the workers) because the algorithm has
finished.

Algorithm 2 Pseudo-code of the master thread

1: population ← GenerateInitialPopulation()
2: taskList ← addTasks(population)
3: threads ← runTalkerThreads(population, taskList)
4: waitForAllThreadsToComplete(threads)

The mapping strategy of NSGA-II, SMS-EMOA,
MOCell, and SMPSO follows common guidelines
which are described next, and the particular design
decisions adopted for each algorithm are detailed in the
corresponding subsections. Initially, the master thread
randomly generates as many parallel tasks (enclosing
the initial solutions of the algorithm) as the population
(or swarm) size, aiming at evaluating the initial set of
solutions in parallel (lines 1 and 2 in Algorithm 2).
That is, this set of tasks are inserted into the task list,
which means that are ready to be remotely evaluated
by a worker. The processing is then delegated to the

talker threads, which handle the communication with
the workers concurrently (thus, the master can profit
from multi-core computers). Talkers pick up tasks from
the list, send them to the workers, and wait for the
evaluated individual to be returned. The operation
in the workers is fairly simple: upon reception of a
task, the enclosed solution is retrieved, evaluated, and
sent back to the master (a pseudo-code is shown in
Algorithm 3).

Algorithm 3 Pseudo-code of a worker

1: while (not receive finalization notification) do
2: task ← receiveFromTalker()
3: solution ← task.solution
4: evaluate(solution)
5: newTask ← new Task(solution)
6: sendToTalker(newTask)
7: end while

The cornerstone of the parallel implementation relies
on breaking down the synchronization requirements
imposed by the evolutionary loop of the sequential
algorithms, which are determined by two main
factors: the number of solutions manipulated (i.e.,
the population size) and the selection scheme (either
generational or steady-state) [26]. Let’s assume that
the corresponding sequential MOEA has a population
size of P . In the generational selection scheme, P new
solutions are generated within the evolutionary loop
(by means of the genetic operators). This means that,
at most, P solutions have to be evaluated in parallel
at each iteration, so only P workers are required. In
the steady-state case, the scenario is even worse for an
efficient parallelization, as only one single solution is
generated at each iteration. Then a hard sync point is
reached: the evolutionary loop does not proceed to the
next generation until all the P solutions are evaluated.
In a parallel master/worker setting this means that the
master has to wait for the slower worker to start sending
the newly generated individuals of the next generation
for remote evaluation, leaving the faster ones idle. In
case of parallel heterogeneous platforms, this issue has a
deep impact on the parallel performance of the resulting
algorithm.

The proposed parallelization deals with these two
previous issues in such a way that its efficiency does not
depend either on the population size or on the selection
scheme. It is based on relaxing two main operational
aspects within the evolutionary loop: on the one
hand, the population incorporates any newly incoming
solution evaluated remotely, regardless of when it was
generated, i.e., at iteration t, the evolutionary loop
could be receiving solutions generated at iteration
t − k, k > 1 (e.g., by very slow workers); on the
other hand, it generates more solutions than the
value imposed by the population size or the selection
scheme. All this is done in the talker threads as
shown in Algorithm 4. In order to deal with the first
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relaxation, talkers extract the first task of the master’s
task list (line 3), send it out to its corresponding
worker for remote evaluation (line 4), and wait for
the evaluated solution (line 5). This newly incoming
solution is inserted into an auxiliary population (no
matter when it was added to the tasklist). The size
of this auxiliary population, auxS, allows to define
the selection strategy: if maxAuxSize = 1 (line
8), a steady-state scheme is adopted; on the other
hand, if maxAuxSize = auxS.size(), a generational
selection scheme emerges. When auxS is filled (i.e.,
the algorithm already has enough solutions evaluated to
proceed with a new iteration), the archive with the non-
dominated solutions is updated by using the previous
contents of the archive, the current MOEA population,
and the auxiliary population recently evaluated by the
workers (line 10). Then, the talker threads deal with
the second relaxation: talker threads will be generating
solutions, and packaging them into tasks for remote
evaluation by a worker, while the size of the task list
is lower than the number of workers involved in the
parallel computation (lines 11 to 15). The aim is to
generate enough workload to keep the workers busy,
thus increasing the parallel performance.

Algorithm 4 Pseudo-code of a talker thread

Require: S // the current MOEA population
Require: A // the current MOEA archive
Require: taskList // the tasks to be remotely executed
1: auxS ← ∅
2: while (not stopping condition is met) do
3: task ← getTask(taskList)
4: sendToWorker(task)
5: processedTask ← receiveFromWorker()
6: s ← processedTaks.solution
7: auxS ← auxS.add(s)
8: if (auxS.size() == maxAuxSize) then
9: t← t+ 1

10: A(t) ← Update(A(t− 1), S(t− 1), auxS)
11: if (taskList.size ≤ numWorkers) then
12: S(t) ← Variation(A(t), S(t− 1))
13: newTasks ← generateTasks(S(t))
14: taksList.add(newTasks)
15: end if
16: auxS ← ∅
17: end if
18: end while

5.3. Parallel algorithms

The next subsections describe the way in which the four
MOEAs used in this work are mapped on a generic
parallel framework. The parallel versions are named by
adding the prefix “mw” to the names of the algorithms.

5.3.1. mwNSGA-II
This algorithm fits perfectly on the general outline
presented in Algorithm 4 by just making maxAuxSize
equals to the population size of the population. Indeed,

NSGA-II is a generational MOEA. The external archive
A and the population S merge into a single population
of solutions that is handled by the Update() function.
The NSGA-II parallelization developed here follows
the same structure as the asynchronous generational
NSGA-II version presented in [27].

5.3.2. mwSMS-EMOA
SMS-EMOA is a steady-state algorithm. Within the
general framework presented above, this can be mapped
by just making maxAuxSize = 1. Then, whenever a
newly evaluated solution arrives, auxS is completed,
and the algorithm starts processing it further by
measuring its contribution to the hypervolumen
indicator and re-computing the contributions of the
solutions already in the population. A ranking
procedure is applied to S ∪ auxS and the solution that
contribute the least to the hypervolume is removed so
as to keep the population size constant.

5.3.3. mwMOCell
The parallelization of MOCell has required several
tricky steps as the population of the algorithm is
structured. That is, newly incoming solutions must
be inserted in the corresponding grid position so as
to maintain the smooth diffusion of genetic material
throughout the grid as similar as possible to that of
the sequential MOCell. The extra workload to keep
workers busy is generated by traversing the structured
population randomly, trying to avoid evaluating more
solutions from specific areas that may lead to very
different evolved solutions.

5.3.4. mwSMPSO
In mwSMPSO, we may just rename “population”
with “swarm” and “archive” with “leaders”, and the
mapping onto the general parallel framework is direct as
SMPSO does have an external archive, and the swarm
uses a generational scheme. As such, whenever the
auxiliary swarm is filled, the new particle speeds and
positions are computed. The mutated particles are
then packaged into a task for remote evaluation in the
workers.

5.4. Parallel Computing Platform

All the algorithms and the distributed computing
platform have been developed in Java. In particular,
the jMetal framework for multi-objective optimization
with metaheuristics [28] has been used to provide the
sequential versions of the four selected metaheuristics.
These algorithms have been adapted to use the
master/worker architecture. For the deployment of the
workers we have used the Condor system [22], which
helps in simplifying the finding of idle computers.

The parallel computing system we have used is
composed by the computers of the teaching labs of the
Department of Computer Science at the University of

The Computer Journal, Vol. ??, No. ??, ????



Distributed multi-objective metaheuristics for real-world structural optimization problems 9

Málaga. We have been able to use up to 192 machines
with two cores, 8157 of RAM, Windows 7 (64 bits),
which are only available from 10:00PM to 8:00AM
during the working days, and the entire weekends. The
interconnection network is a 10GB ethernet.

6. EXPERIMENTATION

6.1. Methodology

We are evaluating the proposed parallel MOEAs in two
separate dimensions: their parallel performance and the
quality of the approximated Pareto fronts that they
produce. The former is basically achieved by looking
at the execution time when an increasing number
of workers are involved in the parallel computation,
whereas the latter is assessed by measuring two
quality indicators: the hypervolume (HV) [23] and the
attainment surfaces [29].

The HV is considered as one of the more
suitable performance indicators in the multi-objective
community since it provides a measure that takes into
account both the convergence and the maximum spread
of the obtained approximation set. Higher values of
the hypervolume are desirable. Since this indicator is
not free from an arbitrary scaling of the objectives, we
have built up a reference Pareto front (RPF) for each
problem composed of all the nondominated solutions
found for each problem instance by all the algorithms.
Then, the RPF is used to normalize each approximation
prior to computing the HV value by mapping all
the nondominated solutions to [0, 1]. This way, the
reference point to compute the HV values is (1,1), which
results from the mapping of the extreme solutions of the
RPF.

While the HV allows one to numerically compare
different algorithms, from the point of view of a decision
maker, knowing about the HV value might not be
enough, because it gives no information about the
shape of the front. The empirical attainment function
(EAF) [29] has been defined to do this. EAF graphically
displays the expected performance and its variability
over multiple runs of a multi-objective algorithm. In
short, the EAF is a function α from the objective
space Rn to the interval [0, 1] that estimates for each
vector in the objective space the probability of being
dominated by the approximated Pareto front of one
single run of the multi-objective algorithm. Given the
r approximated Pareto fronts obtained in the different
runs, the EAF is defined as:

α(z) =
1

r

r∑
i=1

I(Ai 4 {z}) (1)

where Ai is the i-th approximated Pareto front obtained
with the multi-objective algorithm and I is an indicator
function that takes a value of 1 when the predicate
inside it is true, and of zero, otherwise. The predicate
Ai 4 {z} means that Ai dominates solution z. Thanks

to the attainment function, it is possible to define the
concept of k%-attainment surface [29]. The attainment
function α is a scalar field in Rn and the k%-attainment
surface is the level curve with value k/100 for α.
Informally, the 50%-attainment surface in the multi-
objective domain is analogous to the median in the
single-objective one and it is the default value used in
the following sections.

As metaheuristics are stochastic algorithms, their re-
sults must be provided with statistical confidence ([30]).
To cope with this matter, 30 independent runs have
been carried out. Then, a Kolmogorov-Smirnov test
is performed in order to check whether the samples
are distributed according to a normal distribution or
not. If so, an ANOVA I test is performed; otherwise a
Kruskal-Wallis test is performed. Since more than two
algorithms are involved in the study, a post-hoc testing
phase which allows for multiple comparisons of samples
(multicompare) has been conducted. All the statistical
tests are performed with a confidence level of 95%.

6.2. Solution encoding, genetic operators, and
parameterization
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FIGURE 5. Encoding of solutions.

The encoding used to represent the solutions is
depicted in Fig. 5. Each bar, depending on their
cross-section shape, has a number of parameters to
be optimized; they are then grouped as detailed in
Tables 1 and 2 and, finally, the parameters for each
group (diameter, height, etc,.), which are real-valued
numbers, are all arranged in a vector. With such a
representation, we adopted simulated binary crossover
(SBX) and polynomial-based mutation, which have
been frequently used in the multi-objective optimization
community.

The detailed settings for each of the four algorithms
are included in Table 3. All of them are configured
to obtain 100 non-dominated feasible solutions at most
(those solutions not fulfilling the problem constraints
are discarded). Finally, we want to clarify two relevant
points. On the one hand, we have not paid attention
to the particular parameterization of the algorithms as
we have used the standard values given in the seminal
works in which they were presented. On the other hand,
we want to remark again that the comparison is fair in
terms of both the numerical performance (i.e., the size
of the sampling in the search space) and the maximum
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TABLE 3. Parameterization of the algorithms. L is the
individual length.

Parameterization used in mwNSGA-II
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in mwSMS-EMOA
Population Size 100 individual
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100

Parameterization used in mwMOCell
Population Size 100 individuals (10× 10)
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in mwSMPSO
Swarm Size 100 individuals
Leaders Size 100 individuals
Mutation polynomial, pm = 1.0/L

TABLE 4. Mean and standard deviation of the execution
time for the four MOEAs and the 133N 221B instance when
using 100, 200, and 300 workers.

Number of workers
100 200 300

MOEA µ±sigman µ±sigman µ±sigman

mwNSGAII 1015.57±10.30 943.32±7.22 946.23±23.77

mwSMSEMOA 1030.29±24.73 952.15±12.68 948.10±24.44

mwMOCell 1017.90±5.64 948.64±19.66 940.24±6.37

mwSMPSO 1019.69±11.25 942.80±8.11 941.07±7.40

size of the approximated fronts (i.e., no algorithm is
given more chance to cover regions of the Pareto front
by using non-dominated sets of unbounded size).

6.3. Scalability analysis

This section discusses the scalability of the paralleliza-
tion proposed for the four MOEAs in terms of the num-
ber of workers that may be involved in the parallel com-
putation at the same time. The experimental conditions
vary depending on the instance considered: 150,000
function evaluations are performed for 133N 221B (the
smaller one), and only 1,000 for 837N 1584B (the larger
one). We were forced to reduce drastically the explo-
ration of the search space in the latter, because of the
extremely long time required to evaluate one single so-
lution and the intermittent availability of the comput-
ing platform (only during nights and weekends), which
would have make the experiments to be unaffordable
for the given timeframe. The aim is just to illustrate
the parallel performance that can be reached.

Table 4 shows the mean, µ, and standard deviation,
σn, of the runtime of the four MOEAs for the
133N 221B instance when using 100, 200, and 300

TABLE 5. Mean and standard deviation of the execution
time for the four MOEAs and the 837N 1584B instance
when using 100, 200, and 300 workers.

Number of workers
100 200 300

MOEA µ±sigman µ±sigman µ±sigman

mwNSGA-II 863.00±39.69 492.60±10.07 313.50±6.69

mwSMS-EMOA 874.60±12.04 488.40±9.83 320.40±9.24

mwMOCell 894.60±43.78 496.00±6.26 320.60±9.24

mwSMPSO 881.20±18.60 447.50±40.50 316.66±8.01

workers in the computation. The results show that
the size of this instance is not large enough to make
the ratio computation/communication favorable and, as
a consequence, the runtime is slightly reduced when
using more workers. Indeed, the algorithms take
1020.86 seconds on average when using 100 workers,
and 946.72 and 943.91 seconds with 200 and 300
workers, respectively. This means a reduction of
7.26% and 7.54% in spite of using twice and three
times more computational power. These are, however,
expected results. We will provide this fact with a
concise explanation below, using the stats reported
by the Condor system. But let us now illustrate
the benefits of the parallelization proposed for four
MOEAs by analyzing the results of the 837N 1584B
instance, which are displayed in Table 5. The parallel
performance has increased dramatically: from the
878.35 seconds required on average by the four MOEAs
with 100 workers, the runtime has been reduced to
481.12 and 317.79 seconds when using 200 and 300
workers, respectively. That is, doubling and tripling
the computational resources has allowed the parallel
algorithms to reduce the computational time to almost
to a half (45.22%) and a third (63.82%). We can claim
that the proposed parallel MOEAs can therefore take
full advantage of an increasing number of workers if
computing the fitness function takes long enough.

Table 6, which includes the average utility of the
workers reported by the Condor system, may help
to better explain the previous claims. The utility is
computed as the time the workers have been evaluating
solutions for the master divided by the total time they
have been involved in the computation (i.e., allocated
by Condor). In other words, it is the percentage of
time they have not been idle. It can be seen that
the average utility of the workers for the 133N 221B
instance (upper part of the table) is, at most, 72.81%
(averaging over the four MOEAs) when using 100
workers, and decreases rapidly to 32.79% and 19.63%
for 200 and 300 workers, respectively. That is, the
master is not able to provide such a number of workers
with enough workload because solutions are arriving
very quickly and the network bandwidth is limited (10
GB Ethernet). For the 837N 1584B instance, the utility
values are always over 81%, even when the parallel
MOEA uses 300 workers, reaching a 96.62% on average
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TABLE 6. Average utility reported by the Condor system
for the two instances when using 100, 200, and 300 workers.

Number of workers
Instance MOEA 100 200 300

133N 221B

msNSGA-II 72.84% 32.09% 19.61%
msSMS-EMOA 71.40% 32.92% 19.72%
msMOCell 73.24% 32.67% 19.62%
msSMPSO 73.76% 33.50% 19.60%

837N 1584B

msNSGA-II 95.96% 87.10% 82.17%
msSMS-EMOA 96.88% 87.57% 81.87%
msMOCell 96.80% 86.90% 81.55%
msSMPSO 96.86% 86.07% 81.72%

TABLE 7. Mean and standard deviation of the HV
indicator for the four parallel MOEAs when running with
100, 200, and 300 workers (133N 221B instance).

Number of workers
100 200 300

MOEA µ±sigman µ±sigman µ±sigman

mwNSGA-II 0.864±0.027 0.800±0.043 0.736±0.051

mwSMS-EMOA 0.792±0.049 0.746±0.066 0.708±0.045

mwMOCell 0.643±0.083 0.601±0.074 0.553±0.094

mwSMPSO 0.001±0.004 0.001±0.005 0.000±0.000

for 100 workers. We want to remark here that such
utility values have been reached by performing only
1,000 function evaluations, from which the very first
100 are computed to fill the initial population, and the
parallelization proposed only uses 100 workers. That is,
when using 200 and 300 workers, there are, respectively,
100 and 200 workers that remain idle until the initial
population is evaluated. As we will show below in
Section 6.5, where this instance is thoroughly analyzed,
longer runs improve this utility value.

6.4. Numerical results

This section analyzes the quality of the approximated
Pareto fronts reached by the four parallel MOEAs in
terms of the HV indicator, only for the 133N 221B
instance. We wanted to evaluate the impact of involving
a higher number of workers in the parallel computation.
The results are included in Table 7. Recall here that,
for the HV indicator, the higher the value, the better it
is.

The first clear conclusion is that using a lower
number of workers (100) has allowed all the four
MOEAs to reach approximated Pareto fronts with
higher HV values. The statistical analysis performed
(see Figure 6) confirms this claim with statistical
confidence in many cases. The stats output is shown
in tabular form, as a head-to-head comparison between
pairs of <Algorithm>.<Number of workers>; a black
upwards triangle states that the setting of the row
has statistically higher values than the configuration
of the column, a white downwards triangle states that
the configuration in the row has statistically lower
values than the configuration in the column. When no
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FIGURE 6. Result of the statistical test

statistically significant differences are found, the spot
is left empty. The 50%-attainment functions included
in Figure 7 illustrate this fact. It can be seen how
the average surface covered by the algorithms with 100
workers dominates both that of 200 and 300 workers,
specially in the left hand side of the approximated fronts
(lower values of F1). This behavior is specially relevant
in mwNSGA-II, which is the algorithm that better
explores this portion of the search space. We do have a
explanation for this issue. It has to do with the design
decisions adopted to improve the parallel performance
of the algorithms (see Section 5.2): a larger number of
workers has a direct impact on the solution diversity,
because the algorithms generate more solutions than
their sequential counterparts within the evolutionary
loop. This is specially critical at the beginning of the
execution, until enough workload is generated for all the
workers. As it occurs in the early stage of the search,
solutions have been scarcely evolved and their offspring
may not be of high quality either. This increased
diversity is clearly beneficial for longer runs.

Even though the HV is a highly reliable indicator,
the 50%-attainment surfaces allow us to extract further
advantages of the parallelization proposed. If the
decision maker is interested in those regions of the
Pareto front for which there are no differences in the
algorithms (larger values of F1), then all the algorithms
perform the same, regardless of the number of workers.
Therefore, massively parallel algorithms could be safely
used without compromising the solution quality.

The final analysis is devoted to compare the
four MOEAs when the same number of workers is
used (a by-column analysis of Table 7). The HV
indicator shows that mwNSGA-II is the best performing
algorithm for 100, 200, and 300 workers, but with
tight differences with respect to mwSMS-EMOA (no
statistical confidence exist in Figure 6). MOCell does
have competitive results and SMPSO is, clearly, the
worst performer. This latter fact has to do with the
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FIGURE 7. Three 50%-attainment surfaces (one for each number of workers) of the four algorithms for the 133N 221B
instance. Each subfigure also plots the reference Pareto front.

constrained features of the problem: it is fairly difficult
for all the algorithms to reach the feasible region and, in
general, PSO algorithms do not deal with this kind of
problems properly. We want to dive a little bit more
into these results, supported by the 50%-attainment
surfaces displayed in Figure 8 (SMPSO surfaces are not
shown due to their bad performance). As explained
above, mwNSGA-II has reported the best HV values as
it is able to better explore the region of solutions with
lower values of the F1 function (weight). However, the
central part of the approximated fronts is dominated,
specially, by that of mwSMS-EMOA, and in the three
parallel settings. An explanation of these differences is
that the solutions in the central regions of the fronts
usually have a higher contribution to the HV indicator
than those in the extreme regions, so SMS-EMOA tends
to promote solutions from this central part. The same
happens to MOCell, but to a lesser extent.

6.5. Case study: the bridge 837N 1584B

As explained before, the study of this instance has
been addressed in a separate section, as we have not
been able to provide the rigorous statistical study
required in an experimental work like this because
the parallel computing platform cannot be used in
exclusivity. Assuming this scenario, we decided to
increase the sample of the search space from 150000 to
300000 function evaluations so as to show the potential
benefits of the parallelization scheme proposed. We
have performed one single run for each of the four

mwMOEAs developed in this work.
The analysis of the runtime and the parallel

performance clearly motivates and supports this work:
on average over the four runs, and using up to 420 cores,
the wall clock time of the executions is 66112 seconds
(18.36 hours), and the accumulated time reported by
Condor is 8456 hours (more than 311 days). The utility
value reported is, on average, 98.75%, which supports
the claims stated above.

The approximated Pareto fronts obtained are
displayed in Figure 9 (only those of NSGA-II, SMS-
EMOA, and MOCell are included as SMPSO was not
able to reach the feasible region). It can be seen that
the same conclusions hold as when using the small
instance (133N 221B). NSGA-II better explores the
search space with lower values for F1 (weight), SMS-
EMOA finds solutions that dominate those from NSGA-
II and MOCell in the central part of the front and,
finally, MOCell seems to have performed better here as
it also dominates solutions from NSGA-II in this region.

6.6. Visualization of Solutions

After carrying out the experimental study, the last
step is to provide the Pareto fronts approximation to
an expert in order to choose some of the solutions.
From the point of view of the civil engineer, the
most attractive solutions are those having the less
weight, so the fronts returned by NSGA-II are the most
interesting.

Once a solution is selected, the concrete dimensions
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FIGURE 10. Visualization of the bar dimensions of a solution for the 133N 221B problem.

Longitudinal view

FIGURE 11. Visualization of the bar dimensions of a solution for the 837N 1584B problem.

of each bar can be obtained and visualized with a
structural design tool, as depicted in Figures 10 and 11.
We can observe the particular dimensions of the bars of
each bridge.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed four distributed multi-
objective metaheuristics to solve two instances of a real-
word structural problem: the design of a cable-strayed
bridge. The problem is formulated with two objectives
to be minimized at the same time: the total weight
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FIGURE 8. 50%-attainment surfaces that compare the
MOEAs when using (a) 100, (b) 200, and (c) 300 workers.
Each subfigure also plots the reference Pareto front.

and the deformation in concrete points. The two target
problems are named 133N 221B and 837N 1584B (i.e.,
133 and 837 nodes, 221 and 1584 bars), and they are
featured by having two towers supporting a deck, being
the total bridge length 44m and 162m, respectively.

Given the multi-objective nature of the bridge design
problem, we have addressed its optimization by using
four state-of-the-art multi-objective metaheuristics,
namely NSGA-II, SMPSO, MOCell, and SMS-EMOA.
The estimated time to run the algorithms during 150000
evaluations indicate that about 11 hours are needed in
the case of the bridge 133N 221B and more than 170
days in the case of 837N 1584B, so applying parallelism
arises as a natural way to reduce these computing times.
To take advantage of hundreds of processors/cores, we
have applied a master/slave scheme to the sequential
metaheuristics, yielding as a result four distributed
algorithms, where the master rules the logic of the
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FIGURE 9. Approximated fronts of NSGA-II, SMS-
EMOA, and MOCell for 837N 1584B.

metaheuristics and the workers perform the evaluations
in parallel. By using the Condor system to deploy the
workers, we have been able to use up to 450 cores, which
has allowed us to drastically reduce the computing time
of the algorithms.

We have made a rigorous experimental comparison of
the four distributed algorithms on the smallest bridge,
by making 30 independent runs per configuration.
Also, we adopted well-stablished quality indicators, and
applied tests to ensure the statistical significance of
the results. The study reveals that the distributed
version of NSGA-II is the best performing algorithm.
So, we have used this technique to solve the 837N 1584B
instance. The obtained Pareto front approximations
have been analyzed by an expert in the field, concluding
that the results provide accurate designs to the two
bridge design problems.

Future research works include developing distributed
versions of other state-of-the-art multi-objective algo-
rithms (e.g., MOEA/D) and applying these techniques
to other engineering optimization problems requiring of
parallel computing power so that they can be solved in
a reasonable amount of time.
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[26] Bäck, T., Fogel, D., and Michalewicz, Z. (eds.)
(1997) Handbook of evolutionary computation. Oxford
University Press and Institute of Physics, New York.

[27] Durillo, J. J., Nebro, A. J., Luna, F., and Alba,
E. (2008) A Study of Master-Slave Approaches to
Parallelize NSGA-II. IEEE Int. Symp. on Parallel and
Distributed Processing, 2008 - IPDPS 2008, Miami, FL,
USA, April, pp. 1–8. IEEE.

The Computer Journal, Vol. ??, No. ??, ????



16 F. Luna, G. R. Zavala, A. J. Nebro, J. J. Durillo. C. A. Coello Coello

[28] Durillo, J. J. and Nebro, A. J. (2011) jmetal: A java
framework for multi-objective optimization. Adv. Eng.
Softw., 42, 760–771.

[29] Knowles, J. (2005) A summary-attainment-surface
plotting method for visualizing the performance
of stochastic multiobjective optimizers. 5th Int.
Conf. on Intelligent Systems Design and Applications
(ISDA’05), Wroclaw, Poland, September, pp. 552 –
557. IEEE.

[30] Sheskin, D. (2007) Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman &
Hall/CRC, Boca Raton, FL, USA.

The Computer Journal, Vol. ??, No. ??, ????


