
1

SNEGAN: Signed Network Embedding by Using
Generative Adversarial Nets

Lijia Ma, Yuchun Ma, Qiuzhen Lin, Member, IEEE, Junkai Ji, Carlos A. Coello Coello, Fellow, IEEE,
and Maoguo Gong, Senior Member, IEEE

Abstract—Network embedding (NE) aims to learn low-
dimensional node representations of networks while preserving
essential node structures and properties. Existing NE methods
mainly preserve simple link structures in unsigned networks,
neglecting conflicting relationships that widely exist in social
media and Internet of things. In this paper, we propose a
novel generative adversarial nets learning framework (called
SNEGAN) for signed network embedding, which tries to preserve
link structures signed by positive or negative labels. SNEGAN
combines a generator with a signed random walker technique and
a graph softmax function to generate fake links that are used to
deceive discriminator. Moreover, it combines a discriminator with
a tanh function to discriminate truths and signs of links sampled
from the generator and real network structures. The generator
and discriminator play a two-player minimax game, and they
will eventually generate low-dimensional node representations of
signed networks. Extensive experiments on both LFR benchmark
and real-world signed networks show the superiority of SNEGAN
over the state-of-the-art NE methods in tackling both link (sign)
prediction and reconstruction tasks.

Index Terms—Network embedding, Generative Adversarial
Nets, Signed networks, Link prediction

I. INTRODUCTION

W ITH the advance of graph signal processing, networks

have become the most popular models to represent var-

ious complex systems in the fields of society, biology, ecology

and economic [1]. In networks, nodes denote entities while

links represent communications between entities. However,

the rapid developments of Internet make it more difficult for

networks to represent features of real-world biological and

social systems due to exponentially increased data. Network

embedding (NE) is devoted to revealing these features by

learning low-dimensional node representations of networks

[2]. Studies on NE have received much attention due to wide

applications in graph tasks such as link prediction, network

This work was supported by the National Natural Science Foundation
of China under Grants 61803269, 61672358, 61572330, 61772393 and
61836009, in part by the Natural Science Foundation of Guangdong Province
under Grant 2020A1515010790, and in part by the Technology Research
Project of Shenzhen City under Grant by JCYJ20190808174801673. The work
of C. A. Coello Coello was supported in part by CONACyT under Project
1920 (Fronteras de la Ciencia) and in part by SEP-Cinvestav 2018 Project
(application no. 4).

L. Ma, Y. Ma, Q. Lin and J. Ji are with the School of Computer Science
and Software Engineering, Shenzhen University, Shenzhen 518060, China.

C. A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN, México, D.F., 07360, México.

M. Gong is with the School of Electronic Engineering, the Key Laboratory
of Intelligent Perception and Image Understanding of Ministry of Education,
Xidian University, Xi’an 710071, China.

*Corresponding authors: M. Gong (E-mail: gong@ieee.org).

reconstruction, community detection, robustness optimization,

node ranking, privacy protection and item recommendation

[3]–[7].

Previous NE methods mainly work on unsigned networks

that have simple links. These methods try to preserve essential

network structures such as link and community structures

using a dimensionality reduction learning architecture (RLA)

[2], [3], [8]–[11]. Generally, RLA first embeds network struc-

tures A into low-dimensional representations Θ, and then

transforms geometric relations in Θ into high-dimensional

network structures Ã. The embedding performance of RLA

is usually determined by the Euclidean distance between A
and Ã. Classical NE methods include matrix factorization

(DNR [8]), random walk (DeepWalk [12] and Node2vec [2]),

and deep learning (SDNE [13] and Line [14]). Moreover,

several representative methods such as inductive and dynamic

representation learning [15]–[17] were proposed to embed

hierarchal, uncertain and dynamic link structures. A systematic

review of RLA for NEs of unsigned networks could be

found in [3], [4], and related works for the applications of

learning methods on data representation, extensive objective

optimization, classification, approximation, reconstruction and

prediction could be found in [18]–[20].

In recent years, generative adversarial nets (GANs) have

quickly attracted much attention in NEs of unsigned networks

due to their good performance in learning potential link

distribution of the networks [21]. GANs mainly consist of two

components: a generator (G) that tries to approximate under-

lying prior link distribution of networks and a discriminator

(D) that tries to discriminate whether tested data are generated

from real link structures or the generator. G and D play a two-

player minimax game, and their learning performance will be

iteratively improved by using a competitive learning. GANs

have been successfully applied to many real-world applications

[22], such as image generation [23], target intrusion sens-

ing [24], representation disentanglement [25], evolutionary

optimization [26], multiobjective optimization [27] and 3D

objects generation [28]. One representative work of GANs

for NEs is GraphGAN [21]. GraphGAN uses G to learn

potential link distribution of unsigned networks, and adopts

D to discriminate the truths of links generated by G and

real network structures. GraphGAN was further generalized

by CommunityGAN [29], MEGAN [30], GraphSGAN [31],

HeGAN [32] and DynGraphGAN [33] to learn communities,

biased random walks, dense subgraphs, heterogeneous infor-

mation and dynamic links in unsigned networks, respectively.

However, these aforementioned NE methods are hardly

2

applied to signed networks, as they neglect conflicting re-

lationships that widely exist in social media and Internet

of things, such as friend/enemy, cooperation/competition and

supporter/opponent [1], [34]. To preserve these conflicting

relationships, some signed NE methods have been proposed

by using a deep learning framework. One representative work

is SiNE [35] which tries to preserve the structural balance of

sampled triplets. The main idea behind SiNE is that a node

is closer to its positively linked nodes than negatively linked

nodes in the embedded space. Moreover, SIGNET [36] and

DNE-SBP [37] were proposed to learn low-dimensional node

vector representations, while preserving structural balance

of signed networks. In addition, SNEA [38] was proposed

to preserve node properties of signed networks. Note that,

these aforementioned signed NE methods [35]–[38] generally

have many hyper-parameters that need to be manually set in

advance. Accordingly, they may obtain unsatisfactory perfor-

mance for NEs of signed networks in a limited number of

experimental trials.

Inspired by the two-player minimax game of GANs, in

this paper, we propose a novel GAN framework (called

SNEGAN) that unifies a generator and discriminator to learn

low-dimensional node representation of signed networks while

preserving both link structures and signs. More specifically,

SNEGAN uses a generator to generate fake links that are used

to deceive discriminator, while it adopts a discriminator to find

truths and signs of these generated links and real ones. The

generator and discriminator are gradually and iteratively op-

timized by minimaxing the representation difference between

fake and real links, and they will eventually generate low-

dimensional node representations of signed networks by using

their potential model parameters. The main contributions of

this paper are shown as follows:

• We proposes a novel GAN framework (SNEGAN) to

learn low-dimensional node representations of signed

networks while preserving both link structures and signs.

• In SNEGAN, we combine a generator with a graph

softmax function and signed random walker technique

to approximate underlying true connectivity distribution

of signed networks. The generator enables to generate

fake links and low-dimensional node representations to

deceive discriminator and predict missing links, respec-

tively. Moreover, the signed graph softmax function and

random walk technique enable the generator to approxi-

mate real link distribution.

• We combine a discriminator with a tanh function to

discriminate truths and signs of links sampled from the

generator and real network structures. The discriminator

enables to discriminate fake and real links and generate

low-dimensional node representations to predict missing

signs.

• Systematic experiments on nine LFR benchmark and

six real-world signed networks show the superiority of

the proposed SNEGAN over several state-of-the-art NE

methods in embedding signed networks for tackling link

(sign) prediction and reconstruction tasks.

The rest of the paper is organized as follows. Section II

gives the preliminaries of signed NEs and GANs. Section III

provides the proposed SNEGAN for NEs in signed networks.

Experimental analyses are given in Section IV, and concluding

remarks and possible future work are given in Section V.

II. PRELIMINARIES

A. Signed network embedding
A signed network G is used to represent complex systems

in social media and Internet of things that have conflicting

relationships, where nodes denote entities of systems while

positive/negative links represent friendly/hostile relationships

between entities. G can be mathematically expressed as fol-

lows:

G = {V, E ,S},
where V and E denote sets of nodes and links, respectively,

while S represents signs of E . We let n = |V| and m = |E| be

the numbers of nodes and links of G, respectively, and let the

operator |V| denote the number of elements in V . Moreover,

we let Sij ∈ {+,−, 0} denote the sign of a link eij , where

Sij = + (Sij = −) denotes a positive (negative) link between

nodes i and j (i.e., eij ∈ E) while Sij = 0 represents a fake

link (i.e., eij /∈ E). In addition, we use a symmetric adjacency

matrix A = [Aij] ∈ R
n×n to mathematically express E and S

of G, where each element Aij ∈ {+1,−1, 0} represents link

and sign states of eij . More specifically, Aij is expressed as

follows:

Aij =

⎧⎪⎨
⎪⎩
+1 if eij ∈ E and Sij = +

−1 if eij ∈ E and Sij = −
0 otherwise

.

We let Ai. denote all elements of A at i-th row.
Signed network embedding aims to learn a mapping func-

tion F : A �→ Θ ∈ R
n×d, which embeds A of G into low-

dimensional node representations Θ in R
n×d, while preserving

both link structures E and signs S of G, where d � n is the

number of node representation dimensions.
Unlike unsigned networks, signed networks have conflicting

links and structural balance properties. To obtain the underly-

ing features of signed networks, certain signed NE methods

such as SiNE [35], SIGNET [36], SNEA [38] and DNE-SBP

[37] have been proposed. These methods try to obtain low-

dimensional node representations of signed networks while

preserving structural balance properties or node attributes.

More specifically, SiNE and SIGNET try to preserve structural

balance properties of triplets and paths, respectively, while

DNE-SBP aims to preserve structural link balance properties.

Moreover, SNEA mainly preserves both node attributes and

link balance properties. However, these methods generally

have many hyper-parameters that need to be manually set in

advance. Accordingly, they may obtain unsatisfactory perfor-

mance for NEs of signed networks in a limited number of

experimental trials.

B. Generative Adversarial Nets
GANs [39] play a two-player minimax game between a

generator G and a discriminator D. G learns a data gen-

eration model G(z; ΘG) to approximate the underlying true

3

Fig. 1. Framework of SNEGAN. The solid edges are positive links and the dashed edges are negative links. The green vertices are sampled from the underlying
true connectivity distribution Pt (·|vc), while the blue vertices are generated by G (·|vc; ΘG).

distributions Pt of data, and generates fake samples z to

deceive D, where ΘG is the parameters of G. D learns a

discrimination model D(x; ΘD) to discriminate real data x
from fake samples, where ΘD is the parameters of D. G and

D compete with each other, and they will be gradually evolved

by playing a two-player minimax game with an objective

O(G,D). This minimax game is mathematically expressed

as follows:

min
ΘG

max
ΘD

O (G,D) = Ex∼Pt

[
logD

(
x; ΘD

)]
+ Ez∼Pz

[
log

(
1−D(G(z; ΘG); ΘD)

)]
,

(1)

where Pz denotes the input data distribution for G and E

denotes an operator of mathematical expectation.

Inspired by GANs, many NE methods have been proposed

for unsigned networks, such as GraphGAN [21], Community-

GAN [29], MEGAN [30], GraphSGAN [31], HeGAN [32] and

DynGraphGAN [33], and they have been successfully applied

to various graph tasks such as link prediction, community

detection and node classification.

III. THE PROPOSED METHOD: SNEGAN

In this section, we first introduce the framework and opti-

mization model of SNEGAN for NEs in signed networks, and

then give the implementation and optimization of the designed

generator and discriminator.

A. Framework and optimization model in SNEGAN

Given a signed network G = {V, E ,S}, SNEGAN tries

to learn the low-dimensional representation of nodes V while

preserving both link structures E and signs S . For a node vc,

we define its neighbors Lc as a set of nodes that have a positive

or negative link with vc. Moreover, we let Pt (v|vc) denote the

underlying true connectivity distribution of vc. In this case, Lc

can be considered as a set of real neighbor samples extracted

from G under Pt (v|vc). In addition, we let P p
t (v|vc) and

Pn
t (v|vc) denote the true positive and negative connectivity

distribution of vc, respectively.

SNEGAN adopts a GAN framework that has a generator

G and a discriminator D. G tries to learn a data generation

model G (v|vc; ΘG) to approximate Pt (v|vc) for each node

vc ∈ V , and attempts to generate (or select) sets of nodes

from V as fake neighbors L̃c of vc, where ΘG is the learned

low-dimensional node representations in G. D aims to learn

a discrimination model D (v, vc; ΘD) for each node vc ∈ V
to detect whether a node v ∈ {Lc

⋃ L̃c} is sampled from real

neighbors Lc or fake neighbors L̃c of vc, where ΘD is the

learned low-dimensional node representations in D. Moreover,

D (v, vc; ΘD) tries to detect link signs (i.e., positive, negative,

or unobserved) for each tested pair of nodes.

In SNEGAN, G and D play a two-player minimax game.

More specifically, for each node vc ∈ V , G generates fake

neighbors L̃c based on G (v|vc; ΘG) to deceive D, while D
finds the truths and signs of links sampled from L̃c and Lc by

using D (v, vc; ΘD). For each test fake or real neighbor sample

v, D will return a discrimination value D (v, vc; ΘD) ∈ [−1 1]
which determines the probability of positive and negative link

existence between v and vc, and discriminates the truths and

signs of evc as follows:

evc =

⎧⎪⎨
⎪⎩

real positive if D (v, vc; ΘD) > ξp > 0

real negative if D (v, vc; ΘD) < ξn < 0

fake if 0 > ξn ≤ D (v, vc; ΘD) ≤ ξp > 0

,

(2)

where ξp and ξn are probability thresholds of a positive and

negative link, respectively. In SNEGAN, we need not set ξp
and ξn values in advance as the optimization of D is to

maximize the log-probability of assigning correct labels {+1,

-1, 0} to both real and fake samples (see Section III. C and

Section III. D).

The optimization model of SNEGAN for the two-player

minimax game with a value function O(G,D) can be mathe-

4

matically formulated as follows:

min
ΘG

max
ΘD

O (G,D)

=
n∑

c=1

(
Ev∼Pp

t (·|vc) [logmax (τ,D(v, vc; ΘD))]

+ Ev∼Pn
t (·|vc) [logmax (τ,−D(v, vc; ΘD))]

+ Ev∼G(·|vc;ΘG)

[
log

(
1− ||D (v, vc; ΘD) ||

)])
,

(3)

where τ is a small positive constant value (we set it as 10−6).

Moreover, ||D (v, vc; ΘD) || evaluates the absolute value of

D (v, vc; ΘD) while
∑n

c=1(·) enables to tackle link structures

of all nodes in signed networks. As known from (3), O(G,D)
mainly consists of three parts. The first and second parts

are mainly used for D to discriminate truths of positive and

negative link samples, respectively, while the final part is

mainly used for G to generate fake neighbors to deceive D.

The optimal G and D can be learned by alternately and

iteratively minimizing and maximizing O (G,D). The main

framework of SNEGAN is given as follows:

Step 1: G optimization: G (·|vc; ΘG) is optimized to deceive

D by minimizing the difference between sampled real and

fake neighbors.

Step 2: D optimization: D (v, vc; ΘD) is trained with sampled

real neighbors from Pt (·|vc) and sampled fake neighbors from

G (·|vc; ΘG), which tries to maximize the log-probability of

assigning correct labels {+1, -1, 0} to both real and fake

samples.

Step 3: Step 1 and Step 2 are alternately and iteratively

executed until estimated ΘG and ΘD converge or the current

iteration reaches the preset maximum number of generations

tmax. The competition between G and D would drive them

to improve their performance.

Step 4: The optimal G and D return d-dimensional node

representations ΘG and ΘD in the embedding space, respec-

tively. ΘG and ΘD can be used for link and sign prediction

(or reconstruction) tasks, respectively.

Fig. 1 shows the framework of SNEGAN. In the following,

the details of the designed G and D and their optimization at

each iteration are given.

B. The designed generator G

The generator G aims to learn G (v|vc; ΘG) to approximate

the underlying true connectivity distribution Pt (v|vc), and

attempts to generate fake neighbors L̃c for each node vc ∈ V
in signed networks. Given the low-dimensional node represen-

tations ΘG in a signed network G, a straightforward way for

learning G (v|vc; ΘG) is to compute the conventional softmax

function over all other nodes [40] which evaluates the rele-

vance probability between v and vc. Formally, G (v|vc; ΘG)
is computed as follows:

G (v|vc; ΘG) =
exp

(
Θv.

G · (Θc.
G)

T
)

∑
v∈V exp (Θv.

G · (Θc.
G)

T)
, (4)

where Θc.
G denotes all elements of c-th row in ΘG and (Θc.

G)
T

is the transposition of Θc.
G. In this case, fake neighbors L̃c

for vc are generated by choosing the nodes with the kc top

G (v|vc; ΘG) values, where kc is the degree of node vc in G.

The main idea behind this generation way is that two linked

nodes generally have similar properties, and therefore they

should be close to each other in the embedding space.

This softmax function provides a possibly effective way to

compute G (v|vc; ΘG). However, its computation and updating

are time-consuming as they should compute the gradients of

G (v|vc; ΘG) to ΘG and update G (v|vc; ΘG) for all nodes

in G (see (4)). Moreover, it neglects the link structures of G.

Accordingly, it is difficult to reveal the potential link proximity

of nodes.

To solve these above-mentioned issues, we propose a signed

graph softmax function for computing G (·|vc; ΘG). This

signed graph softmax function, which is an extended version of

the graph softmax function [21], enables to efficiently compute

G (·|vc; ΘG) by taking links and signs of G into consideration.

It has certain desirable properties such as signed structure

awareness, computational efficiency and normalization.

The signed graph softmax function works as follows. For

each node vc, we first construct a BFS-tree Tc rooted at vc
on G by using a breadth first search (BFS) algorithm, and

then compute the relevance probability pc(vi|vc) between vc
and vi by using a softmax function multiplied by a signed

transition probability coefficient Hic over all vc’ neighbors in

Tc. Formally, pc(vi|vc) is evaluated as follows:

pc (vi|vc) =
Hic · exp

(
Θi.

G · (Θc.
G)

T
)

∑
vi∈Tc

Hic · exp
(
Θi.

G · (Θc.
G)

T
) . (5)

Here, Hic records the probability of a walk from vc to vi on

G, and it is computed as follows:

Hic =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k2c − 1

k2c
· 1

k+c
Aic = +1

0 Aic = 0
1

k2c
· 1

k−c
Aic = −1

, (6)

where kc denotes the degree of vc, while k+c and k−c represent

the numbers of positive and negative edges linked with vc
in Tc, respectively. From (6), we can see that this transition

probability setting allows to walk along negative links with a

smaller probability than positive links, and
∑

i Hic = 1. The

intuition behind this setting is to proximate the distribution

of potential balanced clusters of signed networks, where

a balanced cluster is composed of nodes that have more

positive links than negative links. In signed networks, the

balance properties of clusters will affect link distributions.

More specifically, nodes in the same clusters have many links

while those in different clusters have few links.

For a special case that vc has only positive or negative links,

we set its signed transition probability Hic as follows:

Hic =
1

kc
. (7)

Fig. 2 shows the difference of Hic evaluation under the signed

and regular random walks.

Next, given a BFS tree Tc rooted at vc, each node v ∈ Tc
has a unique path Pvc→v = (vc, vr1 , vr2 , . . . , vrlc−1

, v) from

vc to v, where lc is the length of the path. Moreover, any two

5

=

=

=

=

(a)

−

= ⋅ =

−

= ⋅ =

−

= ⋅ =

= =

(b)

Fig. 2. Different random walks on signed networks. The solid and dashed
edges are positive and negative links, respectively. (a) unsigned random walk:
it evenly walks along positive links, and (b) signed random walk: it can walk
along a negative link with a smaller probability than a positive link.

Algorithm 1 Signed random walk sampling technique on vc
for the generator

1: Input: Signed BFS tree Tc and representation vectors ΘG

in G.

2: Output: Fake neighbors L̃c.

3: while (|T̃c| < kc) do
4: Set Vc ← ∅ and v ← vc.

5: while (v /∈ Vc) do
6: Set vt ← v.

7: Set Vc ← Vc

⋃{v}.

8: Randomly choose a node vi proportionally to

pc(vi|v) from the nodes linked with v in Tc .

9: Set v ← vi.
10: end while
11: Set L̃c ← L̃c

⋃{vt}.

12: end while

adjacent nodes in Tc have a tree link (i.e., a direct path with

lc = 1). Accordingly, the probability of a link from vc to v is

approximated as follows:

G (v|vc; ΘG) = pc (vr1 |vc) ·
lc−1∏
i=2

pc
(
vri |vri−1

)
·pc

(
v|vrlc−1

)
.

(8)

We refer to this approximation probability index G as the

signed graph softmax function.

Based on (8), we can approximate the connectivity probabil-

ity of vc by computing G (v|vc; ΘG) over all v ∈ V . However,

computing G (v|vc; ΘG) is time-consuming as all nodes in G
should be traversed for evaluating pc.

To reduce the computational complexity, for each node vc,

we choose kc nodes by using a signed random walk sampling

technique as fake neighbors L̃c. The signed random walk

sampling technique independently executes kc samplings, each

of which tries to choose a node as a fake neighbor of vc.

More specifically, for each sampling, a random walker starts

at vc, and then randomly walks on Tc based on pc(·|vc).
Subsequently, a node is chosen as the neighbor of vc when its

previous visited node has been walked two times. Algorithm

1 gives the details of this signed random walk sampling

technique on vc. Fig. 3 gives an illustration example of a

sampling process for generating a fake neighbor of vc.

C. The designed discriminator D

The discriminator D aims to learn D (v, vc; ΘD) for each

node vc ∈ V to maximally detect the truths and signs of links

between vc and all nodes in Lc

⋃ L̃c. More specifically, it tries

to discriminate whether a node v ∈ {Lc

⋃ L̃c} is sampled

from real neighbors Lc or fake neighbors L̃c, and detect the

signs (i.e., positive, negative, or unobserved) of true links.

Given the low-dimensional representations ΘD of nodes

in D, a straightforward way for learning D (v|vc; ΘD) is to

compute the sigmoid function [21] under the inner product

between Θv.
D and (Θc.

D)T. However, this sigmoid function only

predicts the connectivity between v and vc, while neglecting

the sign of the connectivity. To solve this issue, in SNEGAN,

we adopt a tanh function to define D, which evaluates the

similarity scores between predicted and real relationships and

signs. More specifically, for each pair of nodes v and vc, the

tanh function returns a value Âvc in the range of [-1 1]. In

this case, we can use the absolute value and sign of Âvc to

predict the connectivity and sign of a possible link between v
and vc, respectively. Formally, the tanh function is computed

as follows:

D (v, vc; ΘD) = tanh
(
Θv.

D · (Θc.
D)T

)
= Âvc

=
exp

(
Θv.

D · (Θc.
D)T

)
− exp

(
−Θv.

D · (Θc.
D)T

)
exp (Θv.

D · (Θc.
D)T) + exp (−Θv.

D · (Θc.
D)T)

,

(9)

where Θv.
D is the d-dimensional representation vectors of node

v and vc in D while ΘD is the union of all d-dimensional node

representations in D.

Subsequently, the truths and signs of tested links can be

discriminated by (2). Note that, during the training of D,

the aim of D is to maximize the log-probability of assigning

correct labels {+1, -1, 0} to both real and fake samples.

D iteratively evolves the node representations until Â is

obviously distinguishable from A.

D. Optimization of the generator G and the discriminator D

As known from (3), G tries to minimize the statistical

probability that the given discriminator D correctly detects

the truths and signs of links sampled from Pt (·|vc) and

G (·|vc; ΘG). Here, when considering the discreteness of the

sampling of v, we adopt the policy gradient [21], [41], [42]

to compute the gradient of O(G,D) under a given D with

respect to the parameters ΘG in G. Formally,

∇ΘGO (G,D)

=∇ΘG

n∑
c=1

Ev∼G(·|vc)

[
log

(
1− ||D (v, vc) ||

)]

=

n∑
c=1

Ev∼G(·|vc)
[
∇ΘG logG (v|vc) log

(
1− ||D (v, vc) ||

)]
.

(10)

Similarly, as known from (3), D aims to maximize the

statistical probability of discriminating true labels of links

sampled from Pt (·|vc) and G (·|vc; ΘG). Here, when con-

sidering a good tradeoff between efficiency and performance,

we adopt a well-known stochastic gradient ascent method to

6

⋅

⋅

⋅ ⋅

⋅ ⋅

Fig. 3. Sampling process of generator G for generating a possible neighbor of vc.

solve the maximization problem. More specifically, for each

iteration, we update D by ascending the gradient of O (G,D)
with respect to its parameters ΘD. Formally,

∇ΘDO (G,D) =
n∑

c=1

(
Ev∼Pp

t (·|vc) [∇ΘD
logmax (τ,D(v, vc; ΘD))]

+ Ev∼Pn
t (·|vc) [∇ΘD

logmax (τ,−D(v, vc; ΘD))]

+ Ev∼G(·|vc;ΘG)

[
∇ΘD

log
(
1− ||D (v, vc; ΘD) ||

)])
.

(11)

E. Algorithm Framework and Computational Complexity of
SNEGAN

Given the aforementioned optimization model in (3), G and

D, Algorithm 2 gives the algorithm framework of SNEGAN

for NEs. Subsequently, the computational complexity of SNE-

GAN in Algorithm 2 is analyzed.

Initialization and pre-train (line 3): SNEGAN adopts a

random strategy to initialize ΘG and ΘD. Specifically, n · d
values within [-1 1] are randomly generated for ΘG and ΘD.

Therefore, this step has a computational complexity O(n · d).
Construct signed BFS tree (line 4): The complexity of

constructing signed BFS trees for all nodes is O(n ·m) [43].

G optimization (lines 6-12): SNEGAN executes the loop

tg · n times in lines 8-10. Within this loop,

• Line 8: It executes Algorithm 1 k̄ times, where k̄ is the

averaged node degree of the network. Algorithm 1 takes

(log n+1) steps at most to visit a node two times on Tc,

each of which takes O(d · k̄) to compute pc(vi|vc) for all

vi ∈ Lc.

• Line 9: It evaluates G (v|vc; Θt
G) for each node v ∈ Tc,

and each evaluation has a computational complexity d ·
k̄ · log n.

• Line 10: It takes O(k̄2 · d · log n) to update ΘG.

Therefore, G optimization has an overall computational com-

plexity O(tg · n · k̄2 · d · logn).
D optimization (lines 13-19): SNEGAN executes the loop

tg · n times in lines 15-17. Within this loop,

• Line 15: It constructs test samples for node vc, which has

a computational complexity O(1).
• Line 16: It computes D (v, vc; Θ

t
D) 2 · k̄ times, and each

computation takes d basic operations.

• Line 17: It takes O(n · k̄ · d) to update Θt
D.

Therefore, D optimization has an overall computational com-

plexity O(tg · n · k̄ · d).

Algorithm 2 Signed SNEGAN framework

1: Input: A signed graph G = {V , E}, dimension of embed-

ding d, number of training tg for G (D) at each iteration,

and maximum number of iterations tmax.

2: Output: The low-dimensional representations ΘG and ΘD

of nodes in G and D, respectively.

3: Initialization and pre-train G (v|vc; ΘG) and

D (v, vc; ΘD).
4: Construct signed BFS-tree Tc for all vc ∈ V .

5: for (t = 1 : tmax) do
6: for q = 1 : tg do // G optimization
7: for (Each node vc ∈ V) do
8: Generate kc nodes from Tc as the neighbors L̃c

of vc by using Algorithm 1.

9: Compute G (v|vc; Θt
G) for each node v ∈ Tc

by using (5), (6), (7) and (8)

10: Update Θt
G to Θt+1

G by using (10).

11: end for
12: end for
13: for q = 1 : tg do // D optimization
14: for (Each node vc ∈ V) do
15: Set test samples ← {real neighbor samples Lc⋃

fake neighbor samples L̃c}.

16: Compute D (v, vc; Θ
t
D) for each node v ∈

test samples by using (9).

17: Update Θt
D to Θt+1

D by using (11).

18: end for
19: end for
20: end for

In Algorithm 2, SNEGAN executes steps 6-19 with tmax

times. Therefore, SNEGAN has a computational complexity

O
(
tmax · tg · n · k̄2 · d · log n

)
. Generally, k̄ and d are small

constant values.

IV. EXPERIMENTAL RESULTS

In this section, we test SNEGAN on nine simulated LFR

and six real-world signed networks, and compare it with

four classical NE methods in tackling link (sign) prediction

and reconstruction tasks. In the following, the experimental

settings are first given, and then the experimental results are

analyzed. Finally, the sensitivity of some vital parameters in

SNEGAN is analyzed.

7

TABLE I
BASIC PROPERTIES OF THE TESTED REAL-WORLD NETWORKS. m+ AND

m− DENOTE THE NUMBERS OF POSITIVE AND NEGATIVE LINKS,
RESPECTIVELY.

Networks n m m+ m− Fields
GGS 16 58 29 29 Social
War 166 1,433 1,295 138 Social

Yeast 690 1,080 860 220 Biological
E.coli 1,461 3,215 1,879 1,336 Biological

Soc-alpha 3,783 21,486 22,650 1,536 Social
Wiki 7,115 100,693 78,603 22,090 Social

A. Experimental Settings

1) Experimental Networks: LFR benchmark signed net-
works [44], [45]: They are generalized from LFR benchmark

networks [44], which considers conflicting, scale-free and

clustering properties of signed networks. They use a mixing

parameter r to control the ratio of positive links within

communities, and adopt mixing parameters γ and β to control

power-law distribution of node degrees and cluster sizes,

respectively. Here, nine LFR benchmark undirected signed

networks are tested with r ranging from 0.1 to 0.5 in an

interval 0.05, n = 500, β = 1, γ = 2 and k̄ = 10.

These networks are tested to validate the performance of

SNEGAN on signed networks with heterogeneous clusters and

conflicting link distribution.

Real-world signed networks: Six real-world undirected

signed networks (see Table I) are tested, including two small-

scale social networks, two medium-scale biological networks

and two large-scale social networks.

GGS network: It depicts alliances/opponents of 16 Gahuku-

Gama subtribes in the cultures of highland New Guinea [46]

(http://mrvar.fdv.uni-lj.si/sola/info4/andrej/prpart5.htm).

War network: It shows alliances/opponents of 166 countries

in the period from 2000 to 2010. It was extracted from the

Correlates of War project [47] that contain datasets “Formal

Alliances (v4.1)” and “Militarized Interstate Disputes (v4.01)”

(http://www.correlatesofwar.org/datasets.htm).

Yeast network: It represents 1,080 binding site inter-actions

of 690 transcription factors in the gene regulatory network of

S.cerevisiae [48].

E.coli network: It is the gene regulatory network of Es-

cherichia coli [7] with 1,461 operon and 3,215 transcriptional

interactions. It can be downloaded from RegulonDB database

(http://regulondb.ccg.unam.mx).

Soc-alpha network: It describes trust/distrust relationships

among the anonymous people who use Bitcoin for trade on

the Bitcoin Alpha platform. Here, the unweighted version of

the network in http://snap.standord.edu/data is chosen.

Wiki network: It describes support/opponent votes from

electors to candidates. It is composed of 7,115 electors and

100,693 candidates. A detailed description of this network is

given in [1], [49].

2) Baseline Algorithms: Four classical NE algorithms are

chosen as baseline methods, including DeepWalk [12], N-

ode2vec [2], GraphGAN [21] and DNE-SBP [37]. The reason

for choosing DeepWalk and Node2vec as baseline methods is

to show the limitation of classical NE algorithms for signed

TABLE II
PARAMETER SETTINGS OF ALL TEST ALGORITHMS.

Algorithm Parameter Meaning Setting

SNEGAN

d Embedding dimension 20
lr Learning rate 1E−3

tmax
Maximum number of

iterations
15 or 20

tg Number of training 5 or 20

DNE-SBP

d Embedding dimension 20
nl Number of layers 3

α1, . . . , αnl Constraint weights Setting as [37]
λ1, . . . , λnl Regularization weights Setting as [37]

β Reconstruction weight 25
lr Learning rate 1E−4

tmax
Maximum number of

iterations
100

GraphGAN

d Embedding dimension 20
lr Learning rate 1E−3

tmax
Maximum number of

iterations
15 or 20

tg Number of training 5 or 20

Node2vec

d Embedding dimension 20
k Size of window 5
ζ Number of walk 5
l Length of walk 10
lp Enter parameter 1
lq In-out parameter 0.5

DeepWalk

d Embedding dimension 20
k Size of window 5
ζ Number of walk 5
l Length of walk 10

networks. A comparison of SNEGAN with GraphGAN is

made to illustrate the effectiveness of SNEGAN in solving

NEs for signed networks, while a comparison of SNEGAN

with DNE-SBP tries to validate the superiority of the GAN-

based NE framework over dimensional reduction frameworks.

DeepWalk [12]: It uses a random walk to sample nodes in

graphs, and employs a Skip-Gram model for node embeddings.

Node2vec [2]: It extends the idea of DeepWalk by using

a biased random walk for node embeddings of unsigned

networks.

GraphGAN [21]: It first unifies a generative and discrimi-

native model for node embedding of unsigned networks.

DNE-SBP [37]: It employs a deep autoencoder to learn low-

dimensional node vector representations while preserving the

structural balance of signed networks.

3) Criteria: To validate the performance of all algorithms,

the learned low-dimensional node representations are used

for sign (link) prediction and reconstruction tasks in signed

networks.

Sign Prediction and Reconstruction: These tasks reflect the

performance of all algorithms in predicting and reconstructing

link signs (positive and negative) of signed networks. For the

sign prediction task, we first hide 10% of link signs, and

then use the rest of link signs to train a logistic regression

model for predicting link signs. For the sign reconstruction

task, we use all link signs to train a logistic regression model

for reconstructing link signs. Then, we built the Had feature

vector representations for each tested link based on ΘD of

D. More specifically, the Had feature vector representation

of an link eij is evaluated as Θi.
D 	Θj.

D, where 	 represents

the hadamard product operator. To evaluate an overall sign

8

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.4

0.5

0.6

0.7

0.8

0.9

1
St

at
is

tic
al

 v
al

ue
s o

f a
up

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(a)

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.5

0.52

0.54

0.56

0.58

0.6

St
at

is
tic

al
 v

al
ue

s o
f a

pp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(b)

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.4

0.5

0.6

0.7

0.8

0.9

St
at

is
tic

al
 v

al
ue

s o
f a

cp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(c)

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.5

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f a

ur

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(d)

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.5

0.55

0.6

0.65

St
at

is
tic

al
 v

al
ue

s o
f a

pr
SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(e)

0.1 0.2 0.3 0.4 0.5
Mixing parameter: r

0.4

0.5

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f a

cr

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(f)

Fig. 4. Statistical results of all algorithms on the nine LFR benchmark signed networks with different mixing parameters r. (a) apu, (b) app, (c) apc , (d) aru,
(e) arp and (f) arc .

prediction and reconstruction performance, we adopt the area

under a ROC curve (abu, b ∈ {p, r}) and average precision (abp,

b ∈ {p, r}) as metrics, where the superscript letters p and r
correspond to the criteria for sign prediction and reconstruction

tasks, respectively. Here, abu evaluates the probability that a

real neighbor sample has a higher ranking than a fake neighbor

sample [50], and it is computed as follows:

abu =
ns − n0(n0 + 1)/2

n0 · n1
, (12)

where n0 and n1 are the numbers of tested real and fake

neighbor samples, respectively. Here, ns =
∑

ri, where ri
is the ranking of the i-th real neighbor sample in the list. A

higher abu denotes a better performance in sign prediction or

reconstruction. For each b ∈ {p, r}, abp evaluates the sum of a

precision-recall curve as the weighted mean of precision under

each threshold q ∈ Q [51], and it is computed as follows:

abp =

|Q|∑
q=1

(aqr − a(q−1)
r)aqp/|Q|, (13)

where aqr and aqp are the evaluated recall and precision under

threshold q, respectively.

Link Prediction and Reconstruction: These tasks evaluate

the accuracy of all algorithms in predicting and reconstructing

links. For the link prediction task, we first randomly hide 10%

of links, and then generate 10% of links on the disconnected

node pairs. Next, we learn node representations based on the

rest of the network and adopt the inner product representation

to predict the probability of the existence of the tested edges.

For the link reconstruction task, we use all links to learn node

representations for reconstructing links. The inner product

presentation of an link eij is evaluated as Θi.
G ·Θj.

G. To evaluate

an overall performance in link prediction and reconstruction,

we adopt the prediction accuracy (abc, b ∈ {p, r}) as a criterion.

For each b ∈ {p, r}, abc evaluates the probability that a

predicted link is the same as the real one [21], [51], and it

is computed as follows:

abc =
mp

t +mn
t

mp
t +mp

f +mn
f +mn

t

, (14)

where mp
t and mp

f denote the numbers of true and false real

samples, respectively, while mn
f and mn

t represent the numbers

of true and false fake samples, respectively.

4) Simulation Settings: GraphGAN, SNEGAN, DeepWalk

and Node2vec are simulated by Python on a PC with Intel

(R), Core (TM), i7-6700 CPU and 3.41 GHZ, while DNE-

SBP is coded by Matlab. For each network, all algorithms are

independently tested for 30 trials with key parameter settings

in Table II.

B. Experimental Results on Signed LFR Benchmark Networks

In this part, SNEGAN and all baseline algorithms are tested

on nine LFR benchmark signed networks, and their statistical

performance in prediction and reconstruction tasks over 30

independent trials is recorded in Fig. 4.

9

TABLE III
STATISTICS PERFORMANCE OF ALL ALGORITHM ON THE REAL-WORLD SIGNED NETWORKS. THE BEST PERFORMANCE IS MARKED IN BOLDFACE.

Algorithms Criteria GGS War Yeast E. coli Soc-alpha Wiki best/all

DeepWalk

apu 0.8414 0.9245 0.7414 0.6794 0.6789 0.6073

0/36

app 0.5000 0.5044 0.5010 0.5086 0.5000 0.5000

apc 0.5480 0.8723 0.6052 0.5862 0.6390 0.6195

aru 0.7412 0.9571 0.8307 0.6728 0.6783 0.6036

arp 0.5000 0.5151 0.5130 0.5068 0.5000 0.5000

arc 0.5360 0.8775 0.8515 0.7229 0.6660 0.6484

Node2vec

apu 0.9000 0.9024 0.7662 0.6797 0.6644 0.5985

0/36

app 0.5000 0.5048 0.5022 0.5074 0.5000 0.5000

apc 0.5520 0.8620 0.6034 0.5841 0.6352 0.6128

aru 0.7268 0.9171 0.8539 0.6542 0.6692 0.5988

arp 0.5000 0.5103 0.5147 0.5058 0.5000 0.5000

arc 0.5200 0.8624 0.8378 0.7112 0.6617 0.6402

GraphGAN

apu 0.7167 0.8459 0.6335 0.5665 0.6416 0.5345

1/36

app 0.6361 0.5203 0.5235 0.5096 0.6416 0.50122

apc 0.5600 0.7636 0.6055 0.6061 0.6533 0.5871

aru 0.5000 0.8381 0.7380 0.5880 0.6199 0.5603

arp 0.6472 0.5213 0.5312 0.5148 0.5026 0.5021

arc 0.4400 0.7902 0.9093 0.7726 0.7207 0.6983

SNEGAN

apu 1 0.9655 0.7975 0.8188 0.8613 0.8022

27/36

app 0.6833 0.5259 0.5355 0.5672 0.5107 0.5316

apc 0.6000 0.8797 0.6204 0.6181 0.7093 0.6779

aru 0.9333 0.9554 0.9731 0.9933 0.9445 0.9096
arp 0.7083 0.5288 0.5537 0.6221 0.5143 0.5453
arc 0.6400 0.8895 0.9037 0.7782 0.7212 0.7118

DNE-SBP

apu 1 0.9645 0.8550 0.7878 0.8099 0.8583

10/36

app 0.6833 0.5244 0.5299 0.5508 0.5083 0.5391
apc 0.6400 0.8322 0.4833 0.5162 0.5490 0.7001
aru 0.9218 0.9744 0.9449 0.9629 0.9054 0.8740

arp 0.7236 0.5275 0.5492 0.6099 0.5125 0.5408

arc 0.3600 0.8517 0.4759 0.5969 0.6031 0.7157

SNEGAN DNE-SBP GraphGAN Node2vec DeepWalk
0

1

2

3

4

5

A
ve

ra
ge

 p
er

fo
rm

an
ce

 ra
nk

in
g

1.574

2.870

4.185

3.426
2.982

Fig. 5. Average performance ranking of the criteria for all baseline algorithms
on the nine LFR benchmark signed networks.

From Fig. 4, we can see that SNEGAN obtains the highest

apc , aru and arp for all LFR benchmark signed networks.

This validates the superiority of SNEGAN over all baseline

algorithms in the link prediction and sign reconstruction for

the LFR benchmark signed networks. Moreover, for most

networks, SNEGAN only has lower apu and app values than

DNE-SBP, and only has lower arc values than Node2vec and

DeepWalk. This demonstrates the competitive performance of

SNEGAN DNE-SBP GraphGAN Node2vec DeepWalk
0

1

2

3

4

5

A
ve

ra
ge

 p
er

fo
rm

an
ce

 ra
nk

in
g

1.306

2.389

3.778 3.861
3.528

Fig. 6. Average performance ranking of the criteria for all baseline algorithms
on the six real-world signed networks.

SNEGAN in sign prediction and link reconstruction.

Fig. 4 presents that the signed NE method (DNE-SBP) has

a good performance in sign prediction and reconstruction.

This is because DNE-SBP uses a structural balance theory

with some control parameters to further increase the distance

heterogeneity between positively and negatively linked nodes.

However, DNE-SBP has a worse performance in link pre-

diction and reconstruction than unsigned NE methods (Deep-

10

0.5 0.6 0.7 0.8 0.9
Training rate

0.7

0.75

0.8

0.85

0.9

0.95

1
St

at
is

tic
al

 v
al

ue
s o

f a
up

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(a)

0.5 0.6 0.7 0.8 0.9
Training rate

0.5

0.51

0.52

0.53

0.54

0.55

St
at

is
tic

al
 v

al
ue

s o
f a

pp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(b)

0.5 0.6 0.7 0.8 0.9
Training rate

0.7

0.75

0.8

0.85

0.9

St
at

is
tic

al
 v

al
ue

s o
f a

cp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(c)

0.5 0.6 0.7 0.8 0.9
Training rate

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f a

ur

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(d)

0.5 0.6 0.7 0.8 0.9
Training rate

0.5

0.51

0.52

0.53

0.54

0.55
St

at
is

tic
al

 v
al

ue
s o

f a
pr

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(e)

0.5 0.6 0.7 0.8 0.9
Training rate

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

St
at

is
tic

al
 v

al
ue

s o
f a

cr

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(f)

Fig. 7. Statistical results of all algorithms on the real-world War networks VS. different training ratios. (a) apu, (b) app, (c) apc , (d) aru, (e) arp and (f) arc
.

Walk, Node2vec and GraphGAN). The proposed NE method

(SNEGAN) performs well in both link (sign) prediction and

reconstruction.

Fig. 4 also shows that all unsigned NE methods (DeepWalk,

Node2vec and GraphGAN) have low values of apu, app, aru and

arp for all LFR benchmark signed networks. This validates that

when neglecting conflicting relationships, classical unsigned

NE methods (DeepWalk, Node2vec and GraphGAN) are d-

ifficult to tackle sign prediction and reconstruction in signed

networks.

As known from Fig. 4, apu, app, aru and arp values of the

signed NE methods (SNEGAN and DNE-SBP) increase with

the increase of r. This is because the number of positive (or

negative) links decreases (or increases) with the increase of r,

and positively linked nodes are generally closer than negatively

linked nodes in the embedded low-dimensional space. In this

case, a link sign Sij is easily predicted and reconstructed based

on the distance between nodes vi and vj in the learned low-

dimensional space.

Fig. 5 shows the overall performance ranks of all algorithms

on the LFR benchmark signed networks in terms of all criteria.

For each network, all algorithms are ranked from 1 to 5 based

on their performance, and the algorithm with the best perfor-

mance is ranked as 1. The results show that SNEGAN has

an overall performance rank (1.574) much smaller than that

of DNE-SBP (2.870), GrapGAN (4.185), Node2vec (3.426)

and DeepWalk (2.982). This further validates the superiority

of SNEGAN over the other baseline methods when we com-

prehensively consider all criteria for link (sign) prediction and

reconstruction tasks.

C. Experimental Results on Real-world Signed Networks

To validate the performance of SNEGAN for real systems,

we test all methods on six real-world signed networks, and

record their statistical results over 30 independent trials into

Table III. For each network and criterion, the best result of

all algorithms is marked in boldface. The results show that

SNEGAN obtains the best results in 27 out of all 36 statistical

values (75.00%), while DNE-SBP, GrapGAN, Node2vec and

DeepWalk perform best in 10, 1, 0 and 0 cases, respectively.

To quantitatively show the overall performance of SNEGAN,

we also record the average performance ranks (see Fig. 6) of

all algorithms in terms of apu, app, apc , aru, arp and arc over all the

real-world networks, in which a lower rank value corresponds

to a better overall performance. The results in Fig. 6 show

that the average performance rank value (1.306) of SNEGAN

is much smaller than that of DNE-SBP (2.389), GrapGAN

(3.778), Node2vec (3.861) and DeepWalk (3.528). Those com-

parisons validate the superiority of SNEGAN over all baseline

methods in solving both prediction and reconstruction tasks,

especially for sign prediction and reconstruction.

From Table III, we can see that for most networks, the

signed NE method (DNE-SBP) and the unsigned NE methods

11

0.5 0.6 0.7 0.8 0.9
Training rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
St

at
is

tic
al

 v
al

ue
s o

f a
up

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(a)

0.5 0.6 0.7 0.8 0.9
Training rate

0.5

0.52

0.54

0.56

0.58

St
at

is
tic

al
 v

al
ue

s o
f a

pp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(b)

0.5 0.6 0.7 0.8 0.9
Training rate

0.4

0.45

0.5

0.55

0.6

0.65

St
at

is
tic

al
 v

al
ue

s o
f a

cp

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(c)

0.5 0.6 0.7 0.8 0.9
Training rate

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f a

ur

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(d)

0.5 0.6 0.7 0.8 0.9
Training rate

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64
St

at
is

tic
al

 v
al

ue
s o

f a
pr

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(e)

0.5 0.6 0.7 0.8 0.9
Training rate

0.55

0.6

0.65

0.7

0.75

0.8

St
at

is
tic

al
 v

al
ue

s o
f a

cr

SNEGAN
DNE-SBP
GraphGAN
Node2vec
DeepWalk

(f)

Fig. 8. Statistical results of all algorithms on the real-world E. coli network VS. different training ratios. (a) apu, (b) app, (c) apc , (d) aru, (e) arp and (f) arc
.

(GraphGAN, Node2vec and DeepWalk) are hard to obtain a

good performance tradeoff between sign and link prediction.

More specifically, DNE-SBP facilitates sign prediction, but it

has a poor performance in link prediction. Although Graph-

GAN, Node2vec and DeepWalk show a competitive perfor-

mance in link prediction, they cannot tackle sign prediction.

By combining conflicting properties with a GAN framework,

SNEGAN has a good performance in sign and link prediction.

Table III also shows some similar results as Fig. 4. For

the GGS, War, Yeast, Ecoli and Soc-alpha signed networks,

SNEGAN outperforms DNE-SBP for sign prediction and

reconstruction. This further validates the superiority of the

adversarial training process of GANs over the classical dimen-

sionality reduction techniques. For the large-scale networks,

SNEGAN has a slightly worse performance than DNE-SBP

for sign prediction. This is probably because DNE-SBP avoids

reconstruction of many useless unlinked edges in large-scale

networks by adding penalties on the reconstruction errors

of nonzero elements whereas SNEGAN needs to take extra

resources to detect whether there exist unlinked edges.

The results in Table III present that although they extract

high-level node proximity information, the dimensionality

reduction based methods (Node2vec and DeepWalk) have

a worse performance than SNEGAN. This further validates

the effectiveness of the GAN framework based NE methods

for link prediction and reconstruction. Note that, for most

networks, GraphGAN has a low perform for link prediction

and reconstruction. This is because GraphGAN is sensitive to

its parameter settings, and its performance will degrade after

a certain number of iterations.

To further validate the performance of all algorithms, Figs. 7

and 8 record the performance of all algorithm on the real-world

War and E. coli singed networks with varied training percent-

ages. The results in Figs. 7 and 8 show that for most cases,

SNEGAN obtains the best performance. Moreover, DNE-

SBP facilitates sign prediction and reconstruction, but it is

difficult to tackle link prediction and reconstruction. Node2vec

and DeepWalk show a good performance for link prediction

and reconstruction, but they have a poor performance for

sign prediction and reconstruction. GraphGAN shows a poor

performance for both prediction and reconstruction tasks.

Figs. 7 and 8 also shows that the sign prediction perfor-

mance of SNEGAN and DNE-SBP increases with the increase

of training ratios, while the link prediction of SNEGAN, N-

ode2vec and DeepWalk increases with the increase of training

ratios. The sign and link reconstruction performance of all

algorithms are robust to the training ratios. This is to be

expected for the reconstruction tasks, all signs and links are

used for training logistic regression models that are used for

reconstructing and predicting links (signs).

12

5 10 15 20 25 30
Embedding dimension: d

0.5

0.6

0.7

0.8

0.9

1
St

at
is

tic
al

 v
al

ue
s o

f c
rit

er
ia

a
u

p

a
p

p

a
c

p

a
u

r

a
p

r

a
c

r

(a)

10-6 10-4 10-2

Learning rate: l
r

0.4

0.5

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f c

rit
er

ia

a
u

p

a
p

p

a
c

p

a
u

r

a
p

r

a
c

r

(b)

0 10 20 30 40 50
Number of iterations: t

0.4

0.5

0.6

0.7

0.8

0.9

1

St
at

is
tic

al
 v

al
ue

s o
f c

rit
er

ia

a
u

p

a
p

p

a
c

p

a
u

r

a
p

r

a
c

r

(c)

Fig. 9. Statistic values of all criteria obtained by SNEGAN on the real-world Yeast network VS. The settings of different parameters. (a) the number of
embedding dimension d, (b) the learning rate lr , and (c) the number of iterations t.

D. Effects of Parameter Settings

In this part, effects of certain parameter settings (d, lr and

tmax) on prediction and reconstruction performance of SNE-

GAN are analyzed. To show these effects, we test SNEGAN

on the medium-scale biological network (Yeast) with different

d, lr and tmax values, and record the statistical results of all

criteria over 30 independent trials in Fig. 9.

d denotes the number of embedding dimensions in the low-

dimensional space, which affects the search space, conver-

gence speed and potentially learned features of SNEGAN. Fig.

9(a) shows the variations of the prediction and reconstruction

performance of SNEGAN with different d values. The results

illustrate that SNEGAN obtains the best performance in both

sign (link) prediction and reconstruction when d = 20. This

is reasonable a small d setting would result in the loss of

features while a large d setting would cause a huge search

space. A proper d setting (d = 20) can facilitate both feature

preservation and search space reduction.

lr is the learning rate of the stochastic gradient ascen-

t optimization method for the generator and discriminator,

which affects both the convergence and exploration of SNE-

GAN. Fig. 9(b) records the performance of SNEGAN varying

with different lr ∈ {0.01, 0.001, 0.0001, 0.00001, 0.000001}
values. The results show that a proper lr setting such as

lr = 0.001, 0.0001 and 0.00001 makes SNEGAN quickly

converge to a good solution, whereas a small or large lr setting

such as lr = 0.01 and 0.000001 makes SNEGAN converge to

a poor solution.

To show the convergence, Fig. 9(c) records the prediction

and reconstruction performance obtained by SNEGAN varying

with number t of iterations. The results show that SNEGAN

can quickly converge to a good solution with high values of apu,

app, apc , aru, arp and arc for the Yeast network in 20 iterations.

This validates the convergence of SNEGAN and the proper

setting tmax = 20.

V. CONCLUSIONS

In this paper, we have studied the embedding of signed

networks, and have proposed a novel generative adversarial

nets learning framework (called SNEGAN) for learning low-

dimensional node representations and preserving links and

signs of signed networks. SNEGAN first models the embed-

ding problem in signed networks as a two-player minimax

game, and then uses a generative adversarial net framework

with a generator and discriminator to find an optimal solution

for the game. The generator plays a minimization game, which

tries to generate fake links to deceive the discriminator by

using a signed random walker technique and graph softmax

function, while the discriminator plays a maximization game,

which aims to discriminates the truths and signs of generated

links by using a tanh function. The generator and discriminator

are gradually and iteratively evolved by the adversarial training

with a stochastic gradient ascent optimization. Experimental

results on nine LFR benchmark and six real-world signed net-

works have shown that SNEGAN outperforms several state-of-

the-art NE algorithms (DNE-SBP, GraphGAN, Node2vec and

DeepWalk) in learning low-dimensional node representations

for link (sign) prediction and reconstruction tasks.

In the future, we will study NEs of signed networks with

element properties such as node, edge, dynamic attributes.

Moreover, inspired by the work [18]–[20], [52], [53], we will

consider an evolutionary multitasking of GANs for learning

low-dimensional node representations under multiple dimen-

sions, and study the applications of SNEGAN to data represen-

tation, extensive objective optimization, classification, approx-

imation, reconstruction and prediction. In addition, inspired by

the works in [54]–[56], we will extend the proposed SNEGAN

for node embeddings of sparse, noise and directed signed

networks. Finally, we will consider the balance heterogeneity

of the minimax game in SNEGAN.

REFERENCES

[1] G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural
balance in large-scale signed social networks,” Proceedings of the
National Academy of Sciences, vol. 108, no. 52, pp. 20 953–20 958,
2011.

[2] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–
864.

13

[3] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[4] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Transactions on Big Data, vol. 6, no. 1, pp.
3–28, 2018.

[5] A. Chaturvedi and A. Tiwari, “System network complexity: Network
evolution subgraphs of system state series,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 4, no. 2, pp. 130–
139, 2018.

[6] S. Wang, J. Liu, and Y. Jin, “Surrogate-assisted robust optimization of
large-scale networks based on graph embedding,” IEEE Transactions
on Evolutionary Computation, vol. doi:10.1109/TEVC.2019.2950935,
2019.

[7] L. Ma, X. Huang, J. Li, Q. Lin, Z. You, M. Gong, and V. C. Leung,
“Privacy-preserving global structural balance computation in signed
networks,” IEEE Transactions on Computational Social Systems, vol. 7,
no. 1, pp. 164–177, 2019.

[8] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang, “Modularity
based community detection with deep learning.” in Twenty-fivth Interna-
tional Joint Conference on Artificial Intelligence, 2016, pp. 2252–2258.

[9] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Thirty-first AAAI Conference on
Artificial Intelligence, 2017, pp. 203–209.

[10] M. Gong, C. Chen, Y. Xie, and S. Wang, “Community preserving
network embedding based on memetic algorithm,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 4, no. 2, pp.
108–118, 2018.

[11] M. Li, J. Liu, P. Wu, and X. Teng, “Evolutionary network embedding
preserving both local proximity and community structure,” IEEE Trans-
actions on Evolutionary Computation, vol. 24, no. 3, pp. 523–535, 2020.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[13] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1225–1234.

[14] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 1067–1077.

[15] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2017, pp. 1024–
1034.

[16] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order proximity
preserved embedding for dynamic networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 11, pp. 2134–2144, 2018.

[17] L. Ma, Y. Zhang, J. Li, Q. Lin, Q. Bao, S. Wang, and M. Gong,
“Community-aware dynamic network embedding by using deep autoen-
coder,” Information Sciences, vol. 519, pp. 22–42, 2020.

[18] C. Leng, H. Zhang, G. Cai, I. Cheng, and A. Basu, “Graph regularized
lp smooth non-negative matrix factorization for data representation,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 584–595,
2019.

[19] Z. Lv, L. Wang, Z. Han, J. Zhao, and W. Wang, “Surrogate-assisted
particle swarm optimization algorithm with pareto active learning for ex-
pensive multi-objective optimization,” IEEE/CAA Journal of Automatica
Sinica, vol. 6, no. 3, pp. 838–849, 2019.

[20] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Den-
dritic neuron model with effective learning algorithms for classification,
approximation, and prediction,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 2, pp. 601–614, 2018.

[21] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with genera-
tive adversarial nets,” in Thirty-second AAAI Conference on Artificial
Intelligence, 2018, pp. 2508–2515.

[22] Z. Pan, W. Yu, B. Wang, H. Xie, V. S. Sheng, J. Lei, and S. Kwong,
“Loss functions of generative adversarial networks (gans): Opportunities
and challenges,” IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, vol. doi:10.1109/TETCI.2020.2991774, 2020.

[23] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image mod-
els using a laplacian pyramid of adversarial networks,” in Proceedings
of the 29th International Conference on Neural Information Processing
Systems, 2015, pp. 1486–1494.

[24] M. Zhou, Y. Lin, N. Zhao, Q. Jiang, X. Yang, and Z. Tian, “Indoor wlan
intelligent target intrusion sensing using ray-aided generative adversarial

network,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 4, pp. 61–73, 2020.

[25] W.-C. Huang, H. Luo, H.-T. Hwang, C.-C. Lo, Y.-H. Peng, Y. Tsao,
and H.-M. Wang, “Unsupervised representation disentanglement using
cross domain features and adversarial learning in variational autoen-
coder based voice conversion,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. doi:10.1109/TETCI.2020.2977678,
2020.

[26] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative adversar-
ial networks,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 6, pp. 921–934, 2019.

[27] C. He, S. Huang, R. Cheng, K. C. Tan, and Y. Jin, “Evo-
lutionary multiobjective optimization driven by generative adver-
sarial networks (gans),” IEEE Transactions on Cybernetics, vol.
doi:10.1109/TCYB.2020.2985081, 2020.

[28] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a
probabilistic latent space of object shapes via 3d generative-adversarial
modeling,” in Proceedings of the 29th International Conference on
Neural Information Processing Systems, 2016, pp. 82–90.

[29] Y. Jia, Q. Zhang, W. Zhang, and X. Wang, “Communitygan: Community
detection with generative adversarial nets,” in proceedings of the 28th
International Conference on World Wide Web, 2019, pp. 784–794.

[30] Y. Sun, S. Wang, T.-Y. Hsieh, X. Tang, and V. Honavar, “Megan:
A generative adversarial network for multi-view network embedding,”
arXiv preprint arXiv:1909.01084, 2019.

[31] M. Ding, J. Tang, and J. Zhang, “Semi-supervised learning on graphs
with generative adversarial nets,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
2018, pp. 913–922.

[32] B. Hu, Y. Fang, and C. Shi, “Adversarial learning on heterogeneous
information networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 120–129.

[33] Y. Xiong, Y. Zhang, H. Fu, W. Wang, Y. Zhu, and S. Y. Philip,
“Dyngraphgan: Dynamic graph embedding via generative adversarial
networks,” in 24th International Conference on Database Systems for
Advanced Applications, 2019, pp. 536–552.

[34] L. Ma, J. Li, Q. Lin, M. Gong, C. A. C. Coello, and
Z. Ming, “Cost-aware robust control of signed networks by us-
ing a memetic algorithm,” IEEE Transactions on Cybernetics, vol.
doi:10.1109/TCYB.2019.2932996, 2020.

[35] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, “Signed
network embedding in social media,” in Proceedings of the 2017 SIAM
International Conference on Data Mining, 2017, pp. 327–335.

[36] M. R. Islam, B. A. Prakash, and N. Ramakrishnan, “Signet: Scalable em-
beddings for signed networks,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2018, pp. 157–169.

[37] X. Shen and F.-L. Chung, “Deep network embedding for graph represen-
tation learning in signed networks,” IEEE Transactions on Cybernetics,
vol. 50, no. 4, pp. 1556–1568, 2020.

[38] S. Wang, C. Aggarwal, J. Tang, and H. Liu, “Attributed signed network
embedding,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, 2017, pp. 137–146.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th International Conference on Neural Information
Processing Systems, 2014, pp. 2672–2680.

[40] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang,
and D. Zhang, “Irgan: A minimax game for unifying generative and
discriminative information retrieval models,” in Proceedings of the 40th
International ACM SIGIR conference on Research and Development in
Information Retrieval, 2017, pp. 515–524.

[41] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation
using stochastic computation graphs,” in Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems, 2015,
pp. 3528–3536.

[42] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017, pp. 2852–2858.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[44] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Physical Review E, vol. 80, no. 1, p. 016118, 2009.

[45] C. Liu, J. Liu, and Z. Jiang, “A multiobjective evolutionary algorithm
based on similarity for community detection from signed social network-

14

s,” IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2274–2287,
2014.

[46] K. E. Read, “Cultures of the central highlands, new guinea,” Southwest-
ern Journal of Anthropology, vol. 10, no. 1, pp. 1–43, 1954.

[47] F. Ghosn, G. Palmer, and S. A. Bremer, “The mid3 data set, 1993–
2001: Procedures, coding rules, and description,” Conflict Management
and Peace Science, vol. 21, no. 2, pp. 133–154, 2004.

[48] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[49] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2010, pp. 1361–1370.

[50] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
roc curve for multiple class classification problems,” Machine Learning,
vol. 45, no. 2, pp. 171–186, 2001.

[51] M. D. Power, “Evaluation: From precision, recall and f-measure to
roc, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[52] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: toward
evolutionary multitasking,” IEEE Transactions on Evolutionary Compu-
tation, vol. 20, no. 3, pp. 343–357, 2015.

[53] M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with
dynamic resource allocating strategy,” IEEE Transactions on Evolution-
ary Computation, vol. 23, no. 5, pp. 858–869, 2019.

[54] X. Luo, M. Zhou, Y. Xia, Q. Zhu, A. C. Ammari, and A. Alabdulwahab,
“Generating highly accurate predictions for missing qos data via aggre-
gating nonnegative latent factor models,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, no. 3, pp. 524–537, 2015.

[55] X. Shi, Q. He, X. Luo, Y. Bai, and M. Shang, “Large-scale and scal-
able latent factor analysis via distributed alternative stochastic gradient
descent for recommender systems,” IEEE Transactions on Big Data, p.
doi10.1109/TBDATA.2020.2973141, 2020.

[56] X. Luo, M. Zhou, S. Li, L. Hu, and M. Shang, “Non-negativity
constrained missing data estimation for high-dimensional and sparse ma-
trices from industrial applications,” IEEE Transactions on Cybernetics,
vol. 50, no. 5, pp. 1844–1855, 2019.

Lijia Ma received the B.S. degree in communication
engineering from Hunan Normal University, Chang-
sha, China, and the Ph.D. degree in electronic sci-
ence and technology from Xidian University, Xi’an,
China, in 2010 and 2015, respectively.

From 2015 to 2016, he was a Postdoctoral Fellow
with Hong Kong Baptist University, Hong Kong, and
with Nanyang Technological University, Singapore,
from 2016 to 2017. He is an assistant professor at
the College of Computer and Software Engineering

of Shenzhen University. His research interests mainly include evolutionary
computation, machine learning and complex networks.

Yuchun Ma received the B.S. degree in internet
of things engineering from Shenzhen University,
Shenzhen, China, in 2020. He is currently pursuing
the M.S. degree in information technology with the
Department of Computing, Hong Kong Polytechnic
University, Hong Kong.

His current research interests include graph rep-
resentation learning, machine learning and complex
networks.

Qiuzhen Lin (M’18) received the B.S. degree from
Zhaoqing University and the M.S. degree from Shen-
zhen University, China, in 2007 and 2010, respec-
tively. He received the Ph.D. degree from Depart-
ment of Electronic Engineering, City University of
Hong Kong, Kowloon, Hong Kong, in 2014.

He is currently an associate professor in College
of Computer Science and Software Engineering,
Shenzhen University. His current research interests
include artificial immune system, multi-objective
optimization and dynamic system.

Junkai received the B.S. degree from Hefei Uni-
versity of technology, Anhui, China, in 2013, and
an M.S. degree and a D.E. degree from University
of Toyama, Toyama, Japan, in 2016 and 2018, re-
spectively. In 2019, he joined Shenzhen University,
Shenzhen, China, where he is currently a Research
Associate in the College of Computer Science and
Software Engineering. His current research interests
include neural networks, evolutionary computation
and bioinformatics.

Carlos A. Coello Coello (M’98-SM’04-F’11) re-
ceived PhD degree in computer science from Tulane
University, USA, in 1996. He is currently Profes-
sor (CINVESTAV-3F Researcher) at the Computer
Science Department of CINVESTAV-IPN, in Mex-
ico City, Mxico. Dr. Coello has authored and co-
authored over 450 technical papers and book chap-
ters. He has also co-authored the book Evolutionary
Algorithms for Solving Multi-Objective Problems
(Second Edition, Springer, 2007). His publications
report over 52,000 citations in Google Scholar (his

h-index is 92). Currently, he is associate editor of the IEEE Transactions
on Evolutionary Computation and serves in the editorial board of 12 other
international journals. His major research interests are: evolutionary multi-
objective optimization and constraint-handling techniques for evolutionary
algorithms. He received the 2007 National Research Award from the Mexican
Academy of Sciences in the area of Exact Sciences, the 2013 IEEE Kiyo
Tomiyasu Award and the 2012 National Medal of Science and Arts in the
area of Physical, Mathematical and Natural Sciences. He is a Fellow of the
IEEE, and a member of the ACM, Sigma Xi, and the Mexican Academy of
Science.

Maoguo Gong (M’07-SM’14) received the B.S.
degree and Ph.D. degree in electronic science and
technology from Xidian University, Xi’an, China, in
2003 and 2009, respectively.

Since 2006, he has been a Teacher with Xidian
University. In 2008 and 2010, he was promoted as an
Associate Professor and as a Full Professor, respec-
tively, both with exceptive admission. His research
interests are in the area of computational intelligence
with applications to optimization, learning, data min-
ing and image understanding.

Dr. Gong received the prestigious National Program for the support of
Top-Notch Young Professionals from the Central Organization Department of
China, the Excellent Young Scientist Foundation from the National Natural
Science Foundation of China, and the New Century Excellent Talent in
University from the Ministry of Education of China. He is the Vice Chair
of the IEEE Computational Intelligence Society Task Force on Memetic
Computing, an Executive Committee Member of the Chinese Association
for Artificial Intelligence, and a Senior Member of the Chinese Computer
Federation. He is also the associate editor of IEEE Trans. Evolutionary
Computation.

