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Abstract—Many real systems are represented in form of
multiplex networks composed of a set of nodes, multiple layers
of links and coupling node relationships across all layers. These
systems are very vulnerable to damages during both attacks
and recoveries due to potential node cascading failures (NCFs).
Although some progress has recently been made in studying
network robustness and resilience, the comprehensive impacts of
coupling node relationships and community structures on NCFs
remain unclear. Accordingly, in this paper, we study the robust-
ness and resilience of multiplex networks in the presence of NCFs
caused by coupling node relationships and community structures.
We first model the failure processes of multiplex networks during
both attacks and recoveries as node-community cascading failures
(called NCCFs), and then theoretically demonstrate the fragility
of multiplex networks to random node damages under NCCFs.
Subsequently, to improve network robustness and resilience,
we adopt a node protection strategy and propose a cost-aware
constrained optimization problem. Finally, we devise a degree-
based simulated annealing algorithm for solving this optimization
problem. Extensive experiments on both simulated and real
multiplex networks show that NCCFs make networks more
vulnerable to unpredictable damage than classical NCFs. The
results also show the superiority of the proposed algorithm over
the state-of-the-art algorithms in improving network robustness
and resilience.

Index Terms—Multiplex networks, robustness and resilience,
cascading failures, community structures, simulated annealing.

I. INTRODUCTION

W ITH the rapid development of information technology,
many real systems have become more complex due

to the existence of multiple types (or layers) of communi-
cations between entities [1]–[5]. These systems can be well
represented by multiplex networks with multiple layers, where
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the nodes and links of each layer represent the entities and
communications of a particular system platform, respectively
[6], [7]. For example, the air transportation system in Europe
can be modeled by a multiplex network with thirty-seven
layers, where the nodes and links of each layer represent the
airports and flights respectively of a particular commercial
airline in the system.

Recent studies have demonstrated that multiplex networks
are very vulnerable to node damages during both attacks
and recoveries [8]–[11]. This is because damage to a node
may induce node cascading failures (NCFs) caused by node
coupling relationships [12]. More specifically, a node damage
in a layer may first cause intra-layer node failures (i.e., failures
of nodes in the same layer), and then the failed nodes further
trigger inter-layer node failures (i.e., failures of nodes in the
other layers). These failures occur recursively until there are no
further node failures [8]–[10]. For example, in transportation
systems, damage to ground traffic first leads to severe road
congestion, and then triggers underground traffic failures due
to increased passenger flows. These failures may lead to
severe congestion in both ground and underground traffic.
Such cascading failures are ubiquitous in real systems and
cause destructive damage to our daily life. Examples include
power system blackouts in Italy [13], [14], virus outbreak
in spreading systems [15], traffic congestion in transportation
systems [16], mission failures in multi-fleet systems perform-
ing tasks on the sea [17], synchronization perturbance in
nonlinear systems [18]–[20], etc.

Network robustness evaluates the ability of a system to with-
stand node damages during attacks, while network resilience
measures the ability of a system to repair its functionality
during recoveries when failures. The robustness and resilience
improvement have been attracting much attention due to their
applicability in mitigating system failures and resisting target-
ed attacks [8], [13], [21]–[24]. In recent years, many effective
methods have been proposed for improving network robustness
and resilience by decreasing NCFs, including link exchange
[13], [25]–[27], coupling reduction, [28] and entity protection
[11], [29] of influential nodes. Although the influential nodes
of complex networks are generally unknown a priori, they
can be approximately detected using certain classical heuris-
tic algorithms, such as the greedy-based Betweenness [30],
Degree [30], PageRank [31], [32] and Collective Influence
(CI) [33]. However, these greedy algorithms are easy to get
trapped into local optima. These aforementioned methods are
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further generalized through the use of various strategies, such
as the selective removal of nodes [29], defensive islanding
[34], spontaneous and optimal recovery [35], [36], self-healing
[37], preferential and optimal repairing [38], system parameter
monitoring [39], etc.

Although some progress has recently been made in studying
network robustness and resilience, the impacts of coupling
node relationships and community structures on the robustness
and resilience of multiplex networks remain to be analyzed.
Community structures, which are ubiquitous in real systems
[40], [41], consist of a set of nodes with similar functional-
ity. Studies on communities are important for analyzing the
robustness and resilience of networks, as these community
structures may affect NCFs [25], [38], [42]–[44]. Recent stud-
ies [25], [38], [42]–[44] have shown that network robustness
and resilience can be significantly improved by increasing
links across different communities. However, these approaches
neglect some potential community failures. In many real-world
applications, the functionality of a system is distributed over
communities, and each of which will lose its functionality
if the number of failed nodes in the community exceeds a
certain threshold. For example, transportation in a city will
be destroyed by the failure of certain public traffic systems,
while the website system in a university will be paralyzed
if parts of its websites are subjected to access attacks. A
representative contemporary example is the closing of some
social community systems (like schools and factories) due to
individuals being infected by novel coronavirus (COVID-19).
These community failures may subsequently give rise to a
new iteration of cascading failures on nodes and communities,
which will further destroy the functionality of systems.

In this paper, we study the robustness and resilience of mul-
tiplex networks in the presence of cascading failures caused
by coupling node relationships and community structures.
More specifically, when a multiplex network suffers from
node damage, the coupling node relationships can trigger
NCFs, while the node failures in community structures can
further cause community failures. The cascading of NCFs and
community failures makes the network more vulnerable to
unpredictable damage. To understand the ability of a mul-
tiplex network to resist damage, we evaluate its robustness
and resilience during attacks and recoveries, respectively, and
further provide some theoretical analyses of the fragility of
multiplex networks. Moreover, to improve network robustness
and resilience, we first model the situation as a cost-aware ro-
bustness (or resilience) optimization problem, and then adopt
a node protection strategy to protect a set of influential nodes
from damages and failures. However, identifying influential
nodes in this context is a challenging task as the number of
possible solutions increases exponentially with the node and
layer sizes of networks. Simulated annealing algorithm (SA)
is an adaptation of the Metropolis-Hastings Monte Carlo algo-
rithm, and it has been widely utilized to solve combinational
optimization problems [45] (like node robustness optimization
[25], network alignment [46] and 3D structural transition [47])
in complex networks. Hence, we devise a degree-based SA in
order to find an optimal set of influential nodes. The main
contributions of this paper are as follows:

1) We propose the concept of novel node-community cas-
cading failures (NCCFs) in multiplex networks, which
consists of the NCFs and community failures caused by
both coupling node relationships and community struc-
tures. Compared with classical NCFs [8], NCCFs make
a multiplex network more vulnerable to unpredictable
node damage.

2) We further propose a system model for evaluating the
robustness and resilience of multiplex networks, and
theoretically analyze the fragility of multiplex networks
to NCCFs.

3) We model the improvement of network robustness and
resilience using a node protection strategy as a cost-
aware combinational optimization problem, and then
devise a degree-based SA algorithm for solving this
problem.

4) Extensive experiments on simulated and real multi-
plex networks validate that NCCFs outperform classical
NCFs in triggering node failures. The results also show
the superiority of the proposed SA algorithm over the
state-of-the-art algorithms in improving network robust-
ness and resilience.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model for evaluating the robustness
and resilience of multiplex networks. Section III introduces
the problem formulation and the proposed SA algorithm for
improving the robustness of multiplex networks. The experi-
mental results are analyzed in Section IV, and the concluding
remarks and some future work are given in Section V.

II. SYSTEM MODEL

We consider the functional robustness and resilience of a
complex system with n entities and q types of communications
against cascading failures under all possible entity attacks (or
recoveries). There are at most n attacks (or recoveries), and
each attack (or recovery) will directly cause the functional
damage (or recovery) of an entity. After all attacks (or recover-
ies) are occurred, the system’s functionality will be completely
destroyed (or recovered).

This system can be modeled as a multiplex network G =
{V, E [1], E [2], . . . , E [q],D} with |V| = n nodes, q layers of
edges and interdependency relationships D, in which every
layer α ∈ {1, 2, ..., q} represents a simple network G[α] =
{V, E [α]} with |E [α]| = m[α] edges. In the multiplex network,
every layer contains all n nodes in V , and every node with the
same label appears in every layer (see Fig. 1). Moreover, the
nodes in various layers that have the same label are actually the
same one (i.e., these nodes are the replicas of an entity across
q layers, and they are used to represent the relationships with
other entities in various layers), and they are considered to be
interdependent on each other.

The edges E [α] of each layer α ∈ {1, 2, . . . , q} of G can be
expressed as an adjacent matrix A[α], in which each element
A

[α]
ij ∈ {0, 1} represents the link state between the nodes i and

j in layer α. More specifically, A[α]
ij is represented as follows:

A
[α]
ij =

{
1 if nodes i and j are linked in the layer α
0 otherwise.
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Fig. 1. Framework of the system model for evaluating the robustness and
resilience of a multiplex network with n = 9 nodes and q = 3 layers of
links. Full lines represent edges while dotted lines denote interdependency
relationships. Nodes in various layers that have the same label denote the
same entity.

We use A = [A
[α]
ij ]n·n·q to represent the edges

{E [1], E [2], . . . , E [q]} of G in all layers. The interdependency
relationships D between replica nodes can also be expressed
as an adjacent matrix D, in which each element D[dα]

ij ∈ {0, 1}
represents the interdependency relationship of nodes i and j in
different layers d and α. More specifically, D[dα]

ij is represented
as follows:

D
[dα]
ij =

{
1 if i = j and d ̸= α

0 otherwise.

We use D = [D
[dα]
ij ]n·n·q·q to represent the interdependency

relationships D of G.
Fig. 1 illustrates the framework of the system model used to

evaluate the robustness and resilience of a toy multiplex net-
work with 9 nodes and 3 layers of links. The key aspects of this
system model, such as the functionality, attack and recovery
models, cascading failures, and robustness (or resilience), are
given next.

A. Functionality of multiplex networks

When a system suffers from unpredictable attacks, its func-
tionality may fail or may even be damaged. The damage
(or failure) of a system means that all entities (or a part of
entities) lose their functionality. The functionality of a network
is usually reflected by its largest connected component (LCC)
[13], namely the maximum set of nodes that have at least
one link path among these nodes. Nodes of a network are
functional if and only if they are contained in the LCC [13].

Note that, the functionality of many systems is determined
not only by the LCC, but also by structural properties such
as community structures [38]. A community in a network is
composed of a group of nodes that are connected densely
with each other, but sparsely linked with the others [40], [48]
(see Fig. 1 for an illustration). Moreover, nodes within the
same community generally have similar functionality [40],
[41]. Accordingly, when a community loses its functionality
due to an attack, the nodes in this community will become

non-functional. For example, in transportation systems, traffic
congestion on the roads of a specific area will cause the
congestion of nearby roads in this area.

To comprehensively represent the functionality of multiplex
networks, we introduce a community-aware LCC. Here, nodes
and links are normally functional for the systems if and only
if they are in the LCC and their community is functional. In
addition to functional nodes, a failed multiplex network also
contains two other types of nodes, namely damaged nodes
and failed nodes. Damaged nodes are attacked ones that have
lost their functionality. Moreover, failed nodes are unattacked
ones that are not in the community-aware LCC. They will also
lose their functionality. Unlike the damaged nodes, the failed
nodes will automatically become functional after they are put
into the recovered community-aware LCC during the recovery
process.

To simplify notation, we use parameters with a superscript
a and r to denote the variables in attacks and recoveries,
respectively. For each node i, b ∈ {a, r}, we let zbip ∈ {0, 1}
denote the functional state of node i in our system model after
the p-th attack (b = a) or recovery (b = r). More specifically,
zbip is represented as follows:

zbip =

{
1 if i is functional
0 if i is failed or damaged.

(1)

Moreover, we let Vb
p = {i ∈ V : zbip = 1} be the set of

functional nodes after the p-th operation.

B. Attacks and recoveries in multiplex networks

1) Attacks: In real-world applications, entities of a system
will fail when they are subjected to attacks such as func-
tional decline, volcanic eruptions, hurricanes, earthquakes and
tsunamis. Most of these attacks are unpredictable a priori. In
order to model these attacks, we adopt a random node attack
model [8], [11], [13].

The random node attack model executes a set of at-
tacks {Ta(Va

p−1, p)}n in order, and each of those attacks
Ta(Va

p−1, p) will directly damage one node, which is ran-
domly chosen from the set of functional nodes Va

p−1. Recall
that n is the number of nodes, while Va

p−1 denotes the set of
functional nodes of the test network after the (p−1)-th attack.
This attack model is described in more detail below.
Initialization: Set p = 1 and Va

0 = V;
Step 1): Find the functional nodes Va

p−1 of the network G;
Step 2): If the set Va

p−1 is not empty, execute Ta(Va
p−1, p),

p = p + 1, and go to Step 1). Otherwise, the attack is
terminated.

2) Recoveries: In real-world applications, many systems
such as transportation and power systems need to be recovered
after catastrophic damage. Thus, similar to the attack model,
a random recovery strategy [11], [35] is adopted to model the
recovery of a damaged real-world system.

The random node recovery model executes a set of re-
coveries {Tr(Vd

p−1, p)}n in order, in which each recovery
Tr(Vd

p−1, p) will recover one damaged node, randomly chosen
from the set of damaged nodes Vd

p−1 remaining after the
previous (p− 1) recoveries. This recovery model is described
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Fig. 2. Flowchart of NCCFs in multiplex networks.

in more detail below.
Initialization: Set p = 1 and Vd

0 = V;
Step 1): Find the set of damaged nodes Vd

p−1 of the network
G before the p-th recovery;
Step 2): If the set Vd

p−1 is not empty, execute Tr(Vd
p−1, p),

p = p+1, and go to Step 1). Otherwise, the recovery process
is terminated.

Note that, in this recovery model, the recovered nodes
will become failed nodes when they are not contained within
the community-aware LCC. Moreover, failed nodes will au-
tomatically become functional when they are located in the
community-aware LCC of the recovered network during the
recovery processes.

C. Cascading failures of multiplex networks during both at-
tacks and recoveries

Compared with a single-layered network, a multiplex net-
work is more vulnerable to node damage as the failures in
its topological and coupling structures will cause both intra-
layer and inter-layer node failures. Moreover, these failures
in turn affect each other, causing a cascade of node failures.
These types of cascading failures have been widely verified in
a number of real systems, e.g., the cascading failures between
a power system and its centralized control system in Italy that
resulted in the catastrophic blackout on 28/9/2003.

Classical models [8]–[11], [29], [34], [35], [49] focus
primarily on NCFs in multiplex networks. Under these cir-
cumstances, some node damages first cause intra-layer node
failures in the same layers, and then trigger inter-layer node
failures in the other layers. Next, these failures further trigger
a new iteration of intra-layer and inter-layer node failures. The
above-mentioned failures occur recursively until the network
falls into a stable state (i.e., there are no further node failures).
Note that, in reality, an attack can begin from a different layer
while the final state of a multiplex network under an attack
is irrelevant to the order in which intra-layer and inter-layer
node failures occur. For better presentation, we try to illustrate
the cascading failures caused by the damage to nodes at the
first layer.

Unlike the classical models [8]–[11], [29], [34], [35], [49],
our system model considers NCFs together with community
failures. The community structure is ubiquitous in networks,
and nodes within the same community usually have similar
functionality. In many real-world applications, the functional-
ity of a system is distributed throughout its communities, and
each community has a minimum threshold λ below which
node failures within the community can be tolerated. More
specifically, when the proportion of failed nodes and damaged
nodes in a community after attacks (recoveries) exceeds the
minimum threshold λ, the community’s functionality will fail,
resulting in the failure of all nodes in the community. The
community failure will break the original stable state and
trigger a new iteration of node cascading failures. We refer
to the cascade of node and community failures as NCCFs.

A flowchart of NCCFs is presented in Fig. 2, which
consists of the following steps:
Step 1) Cascading failures of nodes. The failures of nodes
trigger a cascade of node failures (intra-layer and inter-layer
node failures).
Step 2) Failures of communities. The failures of nodes
cause the failures of communities, which results in further
failures of the communities’ nodes.
Step 3) Cascading failures of nodes and communities. The
steps above occur recursively until there are no further node
failures and community failures.

Fig. 3 presents schematic illustrations of NCFs (see Figs.
3(a)-3(d)) and NCCFs (see Figs. 3(a)-3(f)) on a toy multiplex
network under an attack. For the NCFs, the initial node attack
(see Fig. 3(a)) first causes intra-layer node failures (see Fig.
3(b)), and then triggers inter-layer node failures (see Fig. 3(c)).
Next, the node failures cause a further cascade of intra-layer
and inter-layer node failures until there are no further node
failures (see Fig. 3(d)). In this case, the toy multiplex network
under the NCFs has five functional nodes after the initial
attack. For the NCCFs, the initial node attack (see Fig. 3(a))
first causes the node cascading failures (see Figs. 3(b-d)), and
then triggers the failure of the community as indicated by the
circles (see Fig. 3(e)). Next, the community failure causes new
iterations of node-community cascading failures until there
are no further node failures (see Fig. 3(f)). In this case, all
nodes of the toy multiplex network are failed after the initial
attack. Therefore, compared with NCFs, NCCFs make the toy
multiplex network more vulnerable to initial node damage.

Fig. 4 presents schematic illustrations of NCFs (see Figs.
4(a)-4(d)) and NCCFs (see Figs. 4(a)-4(f)) on a toy multiplex
network under a recovery state with five recovered nodes. We
can make similar observations regarding cascading failures
between the recovery of Fig. 4 and the attack of Fig. 3.
Moreover, compared with NCFs, NCCFs make it more difficult
for the toy multiplex network to recover its functionality. In
particular, in this recovery state, the toy multiplex network
recovers the functionality of three and zero nodes under NCFs
and NCCFs, respectively.

When a fraction p/n of nodes are attacked (or recovered),
for b ∈ {a, r}, the mathematical expression of NCCFs in a
multiplex network is as follows:
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Fig. 3. Schematic illustrations of NCFs ((a)-(d)) and NCCFs ((a)-(f)) on
a toy three-layered multiplex network under attacks with community failure
threshold λ = 0.7. (a) an initial attack that directly causes the failures of the
replica nodes of attacked entities at all layers, (b) intra-layer node failures, (c)
inter-layer node failures, (d) cascading node failures, (e) community failures,
and (f) new iterations of node-community cascading failures until there are no
further node failures. The functional, damaged and failed nodes are marked
in green, black and gray, respectively, while an arrow indicates a node under
attack. Nodes with different shapes belong to different communities. There
are five and zero functional nodes after NCFs and NCCFs occur, respectively.

{
ϕb,l+1
α (p) = Fb

n(ϕ
b,l
α (p))

ϕb,l+1
α (p) = Fb

c(ϕ
b,l+1
α (p)),

(2)

where Fb
n(.) and Fb

c(.) are functions that describe the pro-
cesses of the node cascading failures and community failures,
respectively. Moreover, ϕb,l+1

α (p) denotes the fraction of func-
tional nodes of the multiplex network at the α-th layer after
the l-th iteration of node and community cascading failures
caused by the p-th attack (b = a) or recovery (b = r). The
cascading failures in (2) are iterated until there are no further
node failures.

Here, Fb
n(ϕ

b,l
α (p)) can be calcluated as follows:

ϕb,l,0
q (p) = ϕb,l

α (p)

ϕb,l,t+1
1 (p) = Sb,l,t

q (ϕb,l,t
q (p)) · ϕb,l,t

q (p)

ϕb,l,t+1
α (p) = Sb,l,t+1

α−1 (ϕb,l,t+1
α−1 (p)) · ϕb,l,t+1

α−1 (p), α = 2, ..., q
(3)

where ϕb,l,t
α (p) represents the fraction of functional nodes in

the multiplex network at the α-th layer following the t-th
iteration of node cascading failures at the l-th iteration of
node-community cascading failures caused by the p-th attack
or recovery. Sb,l,t

α (ϕb,l,t
α (p)) is the fraction of the functional

nodes in the remaining ϕb,l,t
α (p) parts of the network that are

in the LCC. When t = 0 and l = 1, ϕa,l,t
1 (p) = 1− p/n and
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Fig. 4. Schematic illustrations of NCFs ((a)-(d)) and NCCFs ((a)-(f)) on
a toy three-layered multiplex network under recoveries with community
failure threshold λ = 0.7. (a) an initial recovery that directly causes the
recovery of the replica nodes of recovered entities at all layers, (b) intra-
layer node failures, (c) inter-layer node failures, (d) node cascading failures,
(e) community failures, and (f) new iterations of node-community cascading
failures until there are no further node failures. The recovered, damaged and
failed nodes are marked in cyan, black and gray, respectively. Nodes with
different shapes belong to different communities. There are three and zero
functional nodes after NCFs and NCCFs occur, respectively.

ϕr,l,t
1 (p) = p/n. The cascading failures in (3) are iterated until

there are no further node failures caused by the node cascading
failures. In this case, we obtain ϕb,l+1

α (p) of the network after
l-th node cascading failures.

Moreover, Fb
c(ϕ

b,l+1
α (p)) can be mathematically expressed

as follows:

ϕb,l+1,t+1
α (p) = T b,l,t+1(ϕb,l+1,t

α (p))·ϕb,l+1,t
α (p), α = 1, . . . , q,

(4)
where T b,l,t(ϕb,l+1,t

α (p)) is the fraction of the functional nodes
in the remaining ϕb,l+1,t

α (p) parts of the network that are
in the community-aware LCC following the t-th iteration of
l-th community failures. The cascading failures in (4) are
iterated until there are no further node failures caused by
the community failures. In this case, we get ϕb,l+1

α (p) of the
network after l-th node and community cascading failures.

The key difference between NCCFs expressed in (2-4) and
the standard cascading failure model (NCFs) is as follows: in
addition to the node cascading failures in NCFs, NCCFs also
consider community failures (see (4)) and a cascade of node
and community failures (see (2)).

Under the aforementioned NCCFs, we let P∞
c (p) be the

final fraction of the community-aware LCC of G after p
operations (whether attacks or recoveries). The theoretical and
experimental analyses of P∞

c with a fraction p/n of removed



6

nodes can be found in the supplementary document. These
analyses show that the simulated results can approximate
the theoretical results well, and that multiplex networks with
higher node degrees are more robust to attacks.

D. Functional robustness and resilience of multiplex networks

Similar to [8], [11], the functional attack robustness (or
recovery resilience) of a multiplex network used here evaluates
the fraction of functional nodes during all possible attacks (or
recoveries). Unlike [8], [11], the functionality of a multiplex
network in our robustness (or resilience) measure is reflected
by the community-aware LCC model rather than the LCC
model. Moreover, our functional attack robustness (or recovery
resilience) is evaluated under cascading failures, modeled as
NCCFs different from the use of NCFs in [8], [11].

Following the community-aware LCC model, the random
attack (or recovery) model and the NCCFs in (2), for each b ∈
{a, r}, we evaluate the functional attack (b = a) robustness or
recovery (b = r) resilience Rb(G,Tb) of a multiplex network
G as follows:

Rb(G,Tb) =
1

n

n∑
p=1

|Vb
p|
n

=
1

n

n∑
p=1

P∞
c (p)

=
1

n

n∑
p=1

n∑
i=1

zbip
n

, (5)

where the operator |.| evaluates the number of elements in
the set, while |Vb

p|/n and
∑n

i=1 z
b
ip/n compute the fraction

of functional nodes in G after p attacks (b = a) or recoveries
(b = r). Moreover,

∑n
p=1(.) reflects all possible attacks (or

recoveries). Recall that P∞
c (p) is the final fraction of the

community-aware LCC after p operations (whether attacks or
recoveries), and Tb is the attack (b = a) or recovery (b = r)
strategy. In (5), 1/n is a normalization factor, which enables
fair comparison of the robustness (or resilience) of networks
with different scales. Generally, the Rb value is in the range
of [0, 1], and networks with a higher Rb are more robust to
failures during attacks (or recoveries).

In some real-world cases, a mix of attacks and recoveries
may occur simultaneously, and the mixing weight is controlled
by a recovery rate. In the supplementary document, we present
some theoretical and experimental analyses of the resilience
of the ER-ER multiplex networks under different recovery
rates. The results demonstrate that the resilience of the ER-
ER multiplex increases with the recovery rate. This is to be
expected that the number of damaged nodes and intra-layer
node failures decrease as an increasing number of damaged
nodes recover.

III. PROBLEM FORMULATION AND OUR SOLUTION

A. Scope of Problem

The main context of this work is as follows. A complex
system acquires a specific configuration (entities, links and
layers) following years of development. Nevertheless, small
parts of such a configuration could be modified when consid-
ering the system’s function and the limited cost. While the
function of a system under the original layer configuration is

very vulnerable to unpredictable damages, its robustness and
resilience can be greatly improved by changing small parts of
the configuration.

To evaluate system robustness and resilience, we first use
a multiplex network with multiple layers to represent this
system, and then model the failure propagations in a real
scenario as cascades of node and community failures (NCCFs).
Next, we study the robustness and resilience of the modeled
multiplex network to damage under NCCFs. A representative
example of NCCFs is failures in the functionality of social
systems (like schools, factories, etc.) due to COVID-19. An
infected person may first infect people within their own sys-
tem, resulting in a failure of functionality within this specific
system. Then, the movement of infected people results in
failures of functionality across all social systems. Moreover,
when the infected people exceed the tolerance threshold of a
social system, the social system will fail or even be closed
down. In fact, in the situation unfolding today, some schools
or factories are being closed down after a number of students
or workers have become infected by the node-community
cascading propagation of COVID-19.

The multiplex networks are vulnerable to unpredictable
attacks as nodes in different layers work collaboratively to per-
form their intractable functionality. Many strategies have been
proposed for enhancing network robustness and resilience,
including exchanging links [13], [25], [26], reducing coupling
[28], constructing autonomous nodes [29], self-healing [37],
and protecting influential nodes [11]. However, in real-world
applications, all strategies have costs in terms of resources
(e.g., money, time, bandwidth, place, material, etc.), meaning
that the network improvement budget is generally limited.
For example, constructing a financial regulatory agency and
a backup power station requires time and money to establish
trade systems and power systems, respectively, while monitor-
ing virtual machines of cloud networks in data centers requires
bandwidth and energy for allocation and consolidation.

In this work, we try to enhance the robustness and resilience
of multiplex networks for resisting NCCFs by protecting a
small number of influential nodes at a limited cost. In real-
world applications, this protection strategy has been widely
used to protect systems’ function from unpredictable damages.
For example, during the COVID-19 outbreak, susceptible peo-
ple are asked to stay at home, while some cities that typically
experience heavy traffic have protected themselves by closing
the air, sea and land transportation routes with other cites.
In hospitals, there are backup power generations that enable
severely ill patients to continue to receive treatment during
power cuts. In financial systems, certain security strategies
(encryption, blockchain, etc.) are utilized to protect sensitive
data from attacks.

B. Problem formulation

Given a multiplex network G = {V, E [1], E [2], . . . , E [q]}, a
random attack strategy Ta (or a random recovery strategy Tr),
the cost C of protecting a node, and the limited cost C∗, our
problem is to discover a minimum set S of influential nodes,
which will be protected with a maximum cost C∗ to resist
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NCCFs during attacks (or recoveries), so as to maximize the
attack robustness Ra (or the recovery resilience Rr) of the
multiplex network. This problem can be formulated as follows:

max Ra(G,Ta) or Rr(G,Tr)

s.t. C · |S| ≤ C∗,
(6)

where |S| denotes the number of nodes in S. Here, C∗ and
C determine the number of protected nodes.

C. Our Solution

Many centrality-based greedy algorithms have been pro-
posed to find a minimum set S of influential nodes, including
Degree [30], Betweenness [30], Pagerank [31], [32], Collective
Influence [33], H-index [50], etc. They normally begin with
an empty set, followed by adding the nodes with a high
centrality to the dominant set iteratively. Their performance
has been widely verified, especially in terms of convergence
and effectiveness. However, it is easy for these algorithms to
get trapped in local optima due to their greedy strategies.

Here, we present a degree-based SA algorithm for improv-
ing the robustness and resilience of multiplex networks with
a cost constraint. The SA algorithm first chooses a minimum
number nβ of nodes with high degrees as the initial influential
nodes S, and then iteratively replaces a node i ∈ S with
another node j ∈ V − S at a probability pt(i, j), where
t denotes the current index of iterations. This probability
pt(i, j) allows the algorithm to accept a worse solution, which
can effectively avoid getting trapped into local optima. The
swapping step is executed until the current iteration reaches a
predefined maximum number tm (e.g., here, we set it to 103).

For each b ∈ {a, r}, let ∆Rb denote the difference of Rb

between the current solution and the refined solution. The
probability pt(i, j) is generally computed as follows:

pt(i, j) = exp∆Rb/T , (7)

where T is a control parameter used to determine the decline
probability of accepting a worse solution and the convergence
rate of the SA algorithm to an optimal solution. Generally, an
SA algorithm with a smaller T value can more easily converge
to a good solution (here, we set it to 10−4). As known from
(7), pt(i, j) is larger than 1 when the refined solution has a
larger objective value than the current solution. In this case, the
refined solution will replace the current solution. Moreover,
pt(i, j) is smaller than 1 when the refined solution has a
smaller objective value than the current solution. In this case,
the refined solution will replace the current solution with a
probability pt(i, j) ≤ 1.

As known from the model of NCCFs in Section II-C, the
computation of the objective Rb needs to have some a priori
knowledge of the communities of multiplex networks. How-
ever, in reality, the community structures of most multiplex
networks are unknown a priori, but they can be well reflected
by the networks’ link structures [40].

Many clustering algorithms can be used for community
detection in single-layered networks. Most of them can be
found in the toolbox “Matlab Tools for Network Analysis”
constructed by the MIT Strategic Engineering Research Group

Algorithm 1 Framework of the SA algorithm for improving
attack robustness (or recovery resilience)

1: Input: multiplex network: G, minimum cost: C∗, and
maximum number of generations: tm.

2: S ← Select a minimum number nβ of nodes with high
degrees under the cost constraint C∗.

3: Detect communities of G using Genlouvin [40], and
compute Ra (or Rr) based on (5).

4: for (t = 1 to tm) do
5: Select a node i from S randomly, and choose a node

j from V − S randomly.
6: Replace i ∈ S by j, thus generating a refined set S ′

.
Then, compute (Ra)

′
(or (Rr)

′
) based on (5).

7: Compute pt(i, j) based on (7), and generate a random
value µ in [0, 1].

8: if µ ≤ pt(i, j) then
9: S ← S ′

and Ra ← (Ra)
′

(or Rr ← (Rr)
′
).

10: end if
11: end for

(SERG, http://strategic.mit.edu/downloads.php?page=matlab
networks). However, the heterogenous link structures of mul-
tiplex networks make it difficult to detect their community
structures. In recent years, many community detection algo-
rithms for multiplex networks have been proposed, and their
performance has been verified, especially regarding Genlouvin
[40]. The Genlouvin algorithm first models the community de-
tection in multiplex networks as the optimization of multiplex
modularity Q, and then uses a multilevel community grouping
technique together with a community division technique to
solve this optimization problem.

Genlouvin is selected for community detection in multiplex
networks for the following reasons. Firstly, Genlouvin is
effective at uncovering the community structures of multiplex
networks. Moreover, it can automatically detect the number of
communities without knowing the real number of communities
a priori. In addition, it has low computational complexity,
and it is also able to tackle multiplex networks with hundreds
of nodes and dozens of layers. Finally, extensive experiments
in [40] have demonstrated the effectiveness of Genlouvin on
community detection in multiplex networks.

The framework of the SA algorithm for improving the
robustness and resilience of multiplex networks is shown in
Algorithm 1. In line 2 of Algorithm 1, the nodes are sorted
based on their degrees, which has a computational complexity
O(n · log n). Moreover, in line 3, the Genlouvin algorithm has
a computational complexity O(n · log2 n) (shown in [40]) for
community detection. Finally, the loop in lines 4-11 is execut-
ed tm times at most. In this loop, the objective computation
in (5) is the most time-consuming part, with a computational
complexity O(q · n2 · logn). Therefore, the SA algorithm has
a total computational complexity of O(tm · n2 · log n).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the robustness and resilience
of synthetic scale-free multiplex networks and three real
multiplex networks during both attacks and recoveries under



8

NCCFs, aiming to demonstrate that NCCFs make networks
more vulnerable to unpredictable damage than classical NCFs.
Moreover, we test the proposed SA algorithm on the tested
networks, and further compare it with six classical algorithms
to demonstrate the superiority of the proposed SA algorith-
m in enhancing the functional robustness and resilience of
networks. The experimental settings are first provided, after
which the comparison results are analyzed. Finally, the effects
of some parameters on the performance of the SA algorithm
are discussed.

A. Experimental Settings
1) Experimental networks: Synthetic multiplex networks:

Many traditional systems are modeled as Erdős-Rényi (ER)
networks [51], in which two entities are connected with a
probability pr and the average degree of the systems is
pr · n, where n is the number of entities. Moreover, many
real systems (such as wireless sensor networks, power grid
systems, economic systems, etc. [39], [47]) show a scale-
free property, i.e., the distribution P (k) = k−γ of the nodes’
degree k follows a power law k−γ , where γ is the exponent of
the power law distribution within the range [2, 2.6] generally.
In these systems, their functionality is often controlled by a
few nodes with a high degree. These systems can be well
modeled using scale-free (SF) networks [52]. In addition,
some modern systems (like the World Wide Web and the
metabolic networks of cells) exhibit a small-world property, in
which two arbitrary entities are linked by only six degrees of
separation. These systems are represented by the small-world
(SW) networks [53].

To achieve more reliable statistical results, we test our
method on four types of multiplex networks (ER-SF, SW-SF,
SF-SF, ER-SW-SF). Moreover, we test all algorithms on the
modeled networks using various settings. More specifically,
we take the numbers of nodes as n = 200 and n = 500, the
numbers of layers as ranging from 1 to 10 with an interval
of 1, the average degree pr · n as 4 for ER networks, and
the exponent γ as 2.2 for SF networks. In addition, for each
network type, we independently generate 100 networks and
achieve statistical results over them.

All synthetic and real networks have no prior knowledge
about the real community structures. In this case, the Genlou-
vin algorithm is used for detecting communities of all these
networks, and it will return a non-overlapping community
division. More specifically, every node in a multiplex network
is divided into a set (or) cluster, and the nodes in the same set
(or cluster) are divided into the same community. The statistics
of communities for these synthetic networks such as average
modularity and average number of communities can be found
in the supplementary document.
Real multiplex networks: The real CKM physicians inno-
vation (CKM) [54], Celegans (Celegans) [55] and Food and
Agriculture Organization (FAO) [56] multiplex networks are
selected as the test networks. These networks are derived from
various complex systems (e.g., social, genetic and economic
systems). Some basic structural information regarding these
networks is provided in Table I, while more detailed descrip-
tions are provided below.

TABLE I
BASIC INFORMATION OF THREE REAL-WORLD MULTIPLEX NETWORKS. Q

IS THE MULTIPLEX MODULARITY, AND nc IS THE NUMBER OF
COMMUNITIES DETECTED BY GENLOUVIN [40].

Networks n q m Q nc

CKM 246 2 921 0.7549 12
Celegans 279 3 3105 0.4864 5

FAO 183 4 706 0.5414 54

TABLE II
PARAMETER SETTINGS OF ALL TEST ALGORITHMS.

Algorithm Parameter Meaning Setting

SA T Control parameter 10−4

tm Maximum number of iterations 103

PA ra Fraction of autonomous nodes 0.10
PageRank 1− ξ Transition probability 0.15

CI ς Radius 1

GA

np Population size 50
nm Size of mating pool 20
pc Crossover probability 0.9
pm Mutation probability 0.15
tm Maximum number of iterations 50

Betweenness No parameter
Degree No parameter

CKM: This network was constructed by Coleman et al. [54]
as a medical innovation to analyze the effect of network links
on the adoption of a new drug (tetracycline) by physicians. In
CKM, nodes denote physicians in five towns (i.e., Illinois,
Peoria, Bloomington, Quincy and Galesburg), while edges
at different layers are constructed based on certain common
questions (e.g., what advice you would give about the therapy,
who do you usually have discussions with among the three
or four physicians, etc.) [54]. Here, two layers of the CKM
network are generated, containing 246 nodes and 921 edges.

Celegans: This network was generalized from the genet-
ic interactions of certain organisms (Caenorhabditis Elegans
[55]) collected from a famous and public database (BioGRID
3.2.108). This network consists of 279 nodes and 8,181 edges
with 6 layers, and the network at each layer represents a certain
association. Here, the test Celegans network consists of 279
organisms and 3,105 links on three layers (i.e., the layers of
direct interaction, physical association, and additive genetic
interaction defined by inequality).

FAO: This network was collected from the FAO (Food and
Agriculture Organization) in 2010 [56]. The FAO network
depicts various trade relationships among multiple countries
on the conducts of the United Nations. In this network,
nodes represent the countries, while edges in different layers
represent the trade relationships among countries on different
conducts. The test FAO multiplex network contains 706 trade
relationships of 183 countries on the 4 conducts with the
maximum trade.

The functional robustness and resilience of these system-
s can be improved by using certain protection strategies.
Generally speaking, for the CKM network, physicians with
many common questions are protected from false information
about tetracycline by their professional knowledge. For the
Celegans network, organisms with many genetic interactions
are protected from virus by some drugs. For the FAO network,
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TABLE III
COMPARISONS OF ALL ALGORITHMS IN IMPROVING THE ATTACK ROBUSTNESS AND RECOVERY RESILIENCE OF SYNTHETIC MULTIPLEX NETWORKS

UNDER λ = 0.3. THE BEST RESULT IS MARKED IN BOLDFACE FOR EACH NETWORK. ALL RESULTS ARE AVERAGED OVER 100 TRIALS.

Indexes Networks n q WC Origin Betweenness Degree PageRank CI PA GA SA

Ra

ER-SF 200 4 0.2182 0.1808 0.4373 0.4317 0.4405 0.1868 0.3519 0.4334 0.4734
ER-SF 500 4 0.3287 0.2789 0.4650 0.4646 0.4634 0.4655 0.2905 0.4152 0.4792
SW-SF 200 4 0.2795 0.2233 0.4408 0.4409 0.4473 0.4412 0.2779 0.4297 0.4682
SW-SF 500 4 0.2845 0.2571 0.4517 0.4482 0.4484 0.4525 0.2645 0.4343 0.4649
SF-SF 200 3 0.2931 0.2196 0.4665 0.4681 0.4661 0.4631 0.2336 0.4508 0.4826
SF-SF 500 3 0.3046 0.2300 0.4792 0.4792 0.2268 0.4792 0.2348 0.4385 0.4881

ER-SW-SF 200 3 0.2286 0.2175 0.4331 0.4321 0.4367 0.4391 0.2482 0.4473 0.4608
ER-SW-SF 500 3 0.2289 0.2003 0.4448 0.4459 0.4428 0.4429 0.2220 0.4515 0.4597

Rr

ER-SF 200 4 0.2432 0.2227 0.2575 0.2466 0.2555 0.2389 0.2276 0.3904 0.4053
ER-SF 500 4 0.2293 0.2006 0.2793 0.2177 0.2423 0.2559 0.2185 0.3712 0.3883
SW-SF 200 4 0.2960 0.2690 0.2733 0.2836 0.2818 0.2793 0.2819 0.4037 0.4145
SW-SF 500 4 0.2769 0.2486 0.2899 0.2582 0.2647 0.2707 0.2553 0.3860 0.3952
SF-SF 200 3 0.3158 0.2481 0.2805 0.2868 0.2779 0.2761 0.2588 0.4061 0.4235
SF-SF 500 3 0.2975 0.2196 0.2758 0.2554 0.2531 0.2566 0.2294 0.3916 0.4033

ER-SW-SF 200 3 0.2927 0.2760 0.2971 0.3048 0.2736 0.2770 0.2899 0.4076 0.4142
ER-SW-SF 500 3 0.3359 0.3052 0.3082 0.3104 0.3058 0.3128 0.2982 0.4079 0.4177

countries with many trade relationships are protected from a
trade war by certain economic terms.

2) Baseline algorithms: Firstly, to demonstrate the vulner-
able of tested networks, the Origin method [8] with NCCFs
is adopted to evaluate the robustness and resilience of tested
networks without adopting any improvement strategy.

Secondly, to validate the destructiveness of the proposed
cascading failures, a robustness and resilience comparison is
made between the multiplex networks under NCFs (referred
to as WC) and those under NCCFs.

Finally, to demonstrate the effectiveness of the proposed SA,
the construction of autonomous nodes (PA) [29], the protection
of influential nodes with different greedy rules [11] (like
Betweenness [11], [30], Degree [11], [30], PageRank [31],
[32] and Collective Influence (CI) [33]), and the protection
of influential nodes with a genetic algorithm (GA) [57], [58],
are chosen as the baseline algorithms for comparative studies.
Similar to the work in [11], 5% of influential nodes are
protected by all centrality-based greedy algorithms, the GA
algorithm and the proposed SA.

Due to the page limitation, the details of aforementioned
algorithms such as PA, Betweenness, Degree, PageRank, CI
and GA are given in the supplementary document. Note that,
due to the high computational complexity (O(q · n2 · log n))
of computing the objective Rb, b = a, r, our SA optimization
strategy can only be applicable to networks with n ≤ 5, 000
nodes, while the other optimization strategies (PA, Between-
ness, Degree, PageRank and CI) can be applicable to networks
with n ≥ 10, 000 nodes.

For the degree-based protection methods (Betweenness,
Degree, PageRank and CI), the nodes with high centrality
values are protected from damages and failures. For the GA
algorithm and the proposed SA, the nodes in the influential
set S are protected from failures.

For each network, all algorithms are tested over 100 trials,
with key parameter settings as outlined in Table II.

B. Experiments on synthetic multiplex networks

Firstly, all algorithms are tested on synthetic multiplex
networks (ER-SF, SW-SF, SF-SF and ER-SW-SF) with n =

200, 500, and the corresponding attack robustness Ra and
recovery resilience Rr under λ = 0.3 are recorded in Table
III. The results demonstrate that all networks under NCCFs
(Origin) have lower Ra and Rr values than those under NCFs
(WC). This validates the superiority of the proposed NCCFs
over NCFs in generating failures on multiplex networks. These
results also illustrate that the SF multiplex networks are
vulnerable to random attacks and recoveries, while SA can
significantly improve both their attack robustness and recovery
resilience. More specifically, the improvements of Ra and Rr

can reach 108.5% and 63.94%, respectively. This is reasonable
as the 5% of influential nodes protected by SA will not fail
directly by attacks and cascading failures, thus suppressing
the node-community failures in the network. The results also
show that SA achieves higher Ra and Rr values than GA, PA,
Betweenness, Degree, PageRank and CI. This demonstrates
the effectiveness of the node protection strategy, as well as
the superiority of SA over the other baseline algorithms in
discovering influential nodes.

As shown in Table III, although they improve the ro-
bustness and resilience of multiplex networks, the centrality-
based greedy algorithms (Betweenness, Degree, PageRank, CI
and PA) can easily get trapped into local optima. This is
reasonable as the greedy algorithms facilitate exploitation but
they conduct inadequate exploration. Moreover, the population
based optimization method (GA) has higher Ra and Rr values
than these greedy algorithms in most cases, which validates the
effectiveness of GA in improving the robustness and resilience
of multiplex networks. However, it is also difficult to find the
solution with the highest Ra and Rr values in a limited number
of iterations. This is because GA facilitates exploration , but it
is lacking in terms of exploitation. By using the probabilistic
search strategy in (7), SA can effectively achieve a good
robustness and resilience improvement performance.

Secondly, to further investigate the vulnerability of ER-
SF, SW-SF, ER-SW-SF and SF-SF multiplex networks to
random attacks, Fig. 5 shows the variations of the attack
robustness Ra and the recovery resilience Rr with the number
of layers q of the networks (n = 500). The results show
that the Ra and Rr values of all networks decrease as q
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TABLE IV
COMPARISONS OF ALL ALGORITHMS IN IMPROVING THE ATTACK ROBUSTNESS Ra AND THE RECOVERY RESILIENCE Rr OF TESTED REAL-WORLD

MULTIPLEX NETWORKS UNDER λ = 0.3.

Indexes Networks WC Origin Betweenness Degree PageRank CI PA GA SA

Ra
CKM 0.0502 0.0459 0.1045 0.1034 0.1078 0.1049 0.0467 0.1107 0.1117

Celegans 0.1762 0.1562 0.2239 0.2305 0.2278 0.2310 0.1587 0.2636 0.2476
FAO 0.0068 0.0002 0.0584 0.0564 0.0581 0.0566 0.0012 0.0531 0.0615

Rr
CKM 0.1364 0.1187 0.1282 0.1410 0.1486 0.1404 0.1197 0.1887 0.1772

Celegans 0.2628 0.2247 0.2348 0.2394 0.2301 0.2427 0.2263 0.2958 0.2630
FAO 0.0496 0.0040 0.0416 0.0355 0.0398 0.0372 0.0191 0.0586 0.0881
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Fig. 5. Robustness of the simulated multiplex networks with n = 500 vs.
Number of layers. (a) the attack robustness Ra and (b) the recovery resilience
Rr . The full lines and the dotted lines correspond to the results of all networks
under NCCFs and NCFs, respectively.

increases. This is reasonable as it is easier for inter-layer
node failures and the community failures to be triggered as
the number of layers increases. The results also show that
in most cases, the SF-SF networks are the network type most
vulnerable to random attacks. This is because the SF networks
have clear community structures and their links are mainly
distributed to a few high-degree nodes, meaning that failures
occurring these communities and nodes may be more likely
to trigger cascading failures. Moreover, the ER-SF networks
are more vulnerable than the SW-SF and ER-SW-SF networks
to random attacks. This is because the ER networks have
fewer clear link structures than the SF networks, while the
SW networks are more robust to random attacks than the
ER and SF networks due to its property having a small
average shortest path length among nodes. The results in Table
III and Figs. 6 and 7 in the supplementary document show

that the tested networks with lesser communities and higher
modularity generally have a higher robustness and resilience.
This is reasonable as the networks with less communities can
restrain community cascading failures, and these with clear
community structures can restrain node cascading failures.

Fig. 5 also compares Ra and Rr of tested simulated
multiplex networks under NCFs and NCCFs. The results show
that all networks under NCCFs have lower Ra and Rr values
than those under NCFs. This indicates that all networks are
more vulnerable to NCCFs than to NCFs. Moreover, the SW-
SF and SF-SF networks have a larger variation in Ra and
Rr values than the other networks under NCFs and NCCFs.
This is because the SW and SF networks have more clear
communities than the ER networks, and community failures
decrease in clear communities.

C. Experiments on real multiplex networks

To demonstrate the vulnerable of multiplex networks and the
superiority of SA, comparisons between SA and all baseline
algorithms are made on three real multiplex networks. The
statistical Ra and Rr results of all algorithms over 100
independent trials under λ = 0.3 are recorded in Table IV.
From Table IV, we can make the following observations.

1) The real multiplex networks are very vulnerable to
damage during both attacks and recoveries, while the Ra and
Rr values vary inversely with the number of communities
in the multiplex networks. More specifically, among the test
networks, the Celegans multiplex network has the lowest
number of communities and the highest Ra and Rr values,
while the FAO trade multiplex network has the highest number
of communities and the lowest Ra and Rr values. This is
because, as the number of communities increases, the size of
communities becomes smaller while node failures can more
easily cause community failures.

2) All networks under NCFs (WC) have higher Ra and Rr

values than those under NCCFs (Origin). This validates that
the proposed NCCFs make all tested real multiplex networks
more fragile than NCFs. This is reasonable as community fail-
ures will trigger both more node failures and more subsequent
community failures during both attacks and recoveries.

3) SA significantly improves the robustness and resilience of
all real multiplex networks during both attacks and recoveries.
More specifically, the improvement of the attack robustness Ra

reaches 143%, 59% and 30650% for the CKM, Celegans and
FAO multiplex networks, respectively. Moreover, the recovery
resilience Rr in the CKM, Celegans and FAO multiplex
networks is increased by 49%, 17% and 2103%, respectively.
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Fig. 6. Variations of the fraction of functional nodes in the real-world
multiplex networks protected by SA with the fraction of attacked nodes. (a)
the Celegans multiplex network and (b) the FAO multiplex network.

4) All baseline algorithms can improve both the Ra and
Rr values of all networks. However, in most cases, they
achieve lower Ra and Rr values than SA, which demon-
strates the superiority of SA in improving the robustness
and resilience of multiplex networks. In baseline algorithms,
the autonomous node construction method (PA) shows a
worse performance than the node protection methods (Degree,
Betweenness, PageRank, CI, GA, and SA). This is to be
expected that the autonomous nodes are sensitive to NCCFs
trigged by community failures. Moreover, GA and CI show
a good performance in improving both the attack robustness
and recovery resilience of the CKM and Celegans multiplex
networks. This is because these two networks contain only a
few of community structures, and GA and CI can effectively
find good solutions for optimization problems with a smaller
scale (e.g., n ≤ 300 and q ≤ 3) and simpler search space
(Q ≥ 0.45 and nc ≤ 15).

5) The tested multiplex networks have lower Ra and Rr

values than the synthetic SF multiplex networks, which further
validates the fragility of real multiplex networks. This is
because the real multiplex networks have more complex link
structures than the SF multiplex networks. For example, in
real multiplex networks, influential nodes are densely linked
to the other nodes of the same community.

To further show the network fragility and the effectiveness
of SA, the fractions of functional nodes of the Celegans and
FAO multiplex networks during each attack and recovery are
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Fig. 7. Variations of the fraction of functional nodes in the real-world
multiplex networks protected by SA with the fraction of recovered nodes.
(a) the Celegans multiplex network and (b) the FAO multiplex network.

plotted in Figs. 6 and 7, respectively. The results show that
an initial attack will cause failures of 20% and 96% of nodes
for the Celegans and FAO multiplex networks, respectively.
Moreover, the Celegans and FAO network functionality will
collapse when only 32% and 1.5% of nodes are attacked,
respectively. However, after protecting 5% of nodes using SA,
the damage to these networks caused by the initial attack is
decreased, while these networks become able to resist more
attacks. More specifically, the Celegans and FAO multiplex
networks only lose the functionality of 17% and 83% of nodes
after an initial attack, and they can resist random attacks
on 42% and 17% of functional nodes, respectively. From
Fig. 7, we can reveal similar observations from Fig. 6, i.e.,
it is easier for networks protected by SA to recover their
functionality, and SA can effectively improve the resilience
of tested networks.

D. Effects of parameter settings

In the proposed system and SA algorithm, there are two
key parameters: the fraction (β) of protected nodes and the
threshold (λ) of community failures. Here, we test SA on the
FAO multiplex network with different β and λ, and compare
Ra and Rr between the original network (i.e., Attack or
Recovery) and the network protected by SA (i.e., Attack with
SA or Recovery with SA).

Fig. 8 plots the variations of Ra and Rr with different
β values. The results illustrate that both Ra and Rr of the
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Fig. 9. Statistic robustness and resilience of the FAO multiplex network vs.
Threshold λ of community failures.

network protected by SA increase with β. Moreover, the
improvement rate of Rr drop sharply when β > 0.25. Note
that, the budget of protecting a network is always finite, and a
protection strategy with a higher β results in higher costs. In
this study, β is set to 0.05 as both Ra and Rr can be greatly
increased by SA at low cost. More specifically, the attack
robustness and recovery resilience are improved by 30650%
and 2103%, respectively.

Fig. 9 illustrates the Ra and Rr of the FAO multiplex
network with different λ values. Generally, with the decrease
of λ, it is easier for community failures to occur, which causes
more NCCFs. Therefore, the network is more vulnerable to
damage during both attacks and recoveries when λ is smaller.
This is further validated by the results in Fig. 9. The results
also demonstrate the effectiveness of SA in improving the
robustness and resilience of the FAO multiplex network under
different values of λ.

V. CONCLUSIONS

In this paper, we studied the robustness and resilience of
multiplex networks, considering the effects of coupling node
relationships and community structures on cascading failures.
We first modeled the node failure processes of multiplex
networks as NCCFs, which combine node cascading failures
(triggered by coupling node relationships) with community
failures (induced by community structures). Subsequently,
we modeled the robustness and resilience improvement of

multiplex networks as a constrained optimization problem. To
solve this problem, we devised the node protection strategy
to protect a minimum set of influential nodes from damage
and failure, and further proposed the SA algorithm to find
the influential nodes. Extensive experiments on both the sim-
ulated SF-multiplex networks and three real multiplex net-
works demonstrated that the proposed NCCFs make networks
more vulnerable to unpredictable damage than classical NCFs.
Moreover, they validated the superiority of the proposed SA
over six classical algorithms in improving the robustness and
resilience of the networks.

In future work, we will analyze the feasibility of the
modeled NCCFs and the robustness and resilience improve-
ment strategy in more systems, like social systems under
novel COVID-19 attacks [59], nonlinear neural networks under
adversarial attacks [60], nonlinear synchronization systems
under random perturbance [18]–[20], etc. Moreover, we plan
to develop a more rigorous analysis of our theoretical result
on more types of multiplex networks (such as ER-SF, SW-SF,
SF-SF and ER-SW-SF), and give some theoretical analyses
to our optimization problem. In addition, we will study data-
driven robustness and resilience optimization, and apply our
SA optimization strategy for tackling large-scale networks.
Finally, we will study the impacts of the recovery rate on
the recovery processes of multiplex networks, as well as the
robustness and resilience of interdependent networks with
dependent nodes and edges.
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Herrmann, “Towards designing robust coupled networks,” Scientific
Reports, vol. 3, p. 1969, 2013.

[30] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215–239, 1978.

[31] S. Pei and H. A. Makse, “Spreading dynamics in complex networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2013,
no. 12, p. P12002, 2013.

[32] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[33] F. Morone and H. A. Makse, “Influence maximization in complex
networks through optimal percolation,” Nature, vol. 524, no. 7563, p. 65,
2015.

[34] S. D. Reis, Y. Hu, A. Babino, J. S. Andrade Jr, S. Canals, M. Sigman,
and H. A. Makse, “Avoiding catastrophic failure in correlated networks
of networks,” Nature Physics, vol. 10, no. 10, p. 762, 2014.

[35] A. Majdandzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, S. Havlin, and
H. E. Stanley, “Spontaneous recovery in dynamical networks,” Nature
Physics, vol. 10, no. 1, p. 34, 2014.
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